

July 31, 2012

Ms. Kim Shore, CCIM UCLA Real Estate 10920 Wilshire Boulevard, Suite 810 Los Angeles, CA 90024

### Re: University of California Seismic Rating for 1807 Wilshire Boulevard, Santa Monica

Dear Kim:

Nabih Youssef & Associates (NYA) have performed an Independent Review of the 2-story office building located at 1807 Wilshire Boulevard in Santa Monica. The review consisted of a site visit to observe the existing condition of the exposed structural elements, review of the structural drawings, identification of potential falling hazards that pose a significant life or safety risk to occupants, and a seismic risk assessment.

#### Description:

The building is part of The Courtyard on Wilshire, a 5-building complex that share a common basement level. The buildings are inter-connected at the 2<sup>nd</sup> floor by pedestrian bridges. The building is a 2-story steel frame office building that is rectangular shaped in-plan with overall dimensions of 162' by 60'. The building was constructed in 1978 and designed to the 1976 edition of the Uniform Building Code.

The roof and 2<sup>nd</sup> floor is constructed of plywood sheathing supported by 2x wood joists that span to wide flange steel beams. The steel beams are supported by wide-flange steel girders and columns. The first floor is constructed of concrete slab supported by two-way concrete joists. The joists are supported by interior concrete columns and 8" thick reinforced masonry walls along the perimeter. The steel columns are supported on reinforced concrete columns that are continuous to the foundation below the first floor.

The foundation system consists of isolated concrete spread footings supporting the interior columns, continuous concrete strip footings beneath the masonry walls and a 4" thick concrete slab-on-grade.

The lateral-force-resisting system consists of the plywood roof and 2<sup>nd</sup> floors acting as structural diaphragms to transfer seismic inertial forces to welded steel moment frames that are continuous to the first floor. At the first floor, the seismic forces are transferred through the concrete slab to the perimeter reinforced masonry walls.

#### Observation:

A site visit was performed by Maurizio Trevellin of NYA on July 27, 2012, to observe the condition and characteristics of the building. Observations were limited to visible areas of the structure. The building appeared to be in good condition and there were no obvious signs of distress.

No significant potential falling hazards were observed.

#### **Evaluation:**

The site is not subject to the jurisdiction of the Alquist-Priolo Special Studies Zone Act. The building is founded on older alluvium that consists of medium dense to very dense sand, clay and silt with gravel that is not susceptible to liquefaction. Therefore, the potential for earthquake induced site failure is very low.

The welded steel moment frame connections are pre-Northridge connections, which were standard practice at the time of construction. These connections are no longer allowed by current building codes. These connections were visually inspected by California Seismic Construction after the 1994 Northridge Earthquake and no damage to the connections was observed.

The building has a complete load path to transfer seismic forces to the foundations. The roof and floor diaphragms appear to have adequate strength with no major openings. There are no significant strength or stiffness irregularities in the vertical elements of the lateral system.



#### Seismic Risk Assessment:

Based on the review of the structural drawings and visual observations, a seismic risk assessment considering building stability, site stability, seismic ground motion hazard and building damageability was performed. The on-line seismic risk assessment tool *SeismiCat*, developed by ImageCat, Inc., for screening of buildings for seismic risk, was used. The assessment was performed to the Level 1 requirements of ASTM E-2026.

The Scenario Expected Loss (SEL) for ground shaking hazards having 10% probability of exceedance within a 50-year exposure period (BSE-1) was calculated. The SEL corresponds to the Implied Seismic Damageability, as defined by the 2011 UC Seismic Safety Policy. The SEL for the building is 13%. The report generated by SeismiCat is attached.

#### Conclusion:

Based on our review of the structural drawings, prior engineering and inspection reports, observations made during our site visit, and the results of the seismic risk assessment, the expected earthquake performance of the building corresponds to the University of California seismic rating of "IV" ("Fair").

#### **References:**

Set of structural drawings for the Wilshire West Shopping Plaza (sheets \$1 through \$25), as prepared by Norman J. Epstein, dated August 11, 1978.

Seismic Screening Report, as prepared by John Labib & Associates (10111-60), dated November 26, 2010. Steel Moment Frame Connection Inspection Report, as prepared by California Seismic Construction, dated January 24, 1994.

Seismic Hazard Zone Report for the Beverly Hills 7.5-Minute Quadrangle, Los Angeles County, CA, prepared by State of California, Department of Conservation Division of Mines and Geology, Report No. 023, 1998. State of California Seismic Hazard Zone, Beverly Hills Quadrangle, March 25, 1999.

University of California Seismic Safety Policy, August 25, 2011.

#### Sincerely, NABIH YOUSSEF & ASSOCIATES

Nabih Youssef, S.E. Principal

Enclosure

cc: N. Youssef; O. Hata; File 12241.00



# Earthquake Risk Analysis Summary 1807 Wilshire Boulevard

**Project Number:** 12241.00 **Analyst Name:** Maurizio Trevellian, PE **Analysis Date:** 2012-07-30 10:00:20

Project Name: 1807 Wilshire BoulevardProperty ID: 1335Site Name: 1807 Wilshire BoulevardSite Address: 1807 Wilshire BoulevardCity: Santa MonicaState: CALatitude: 34.030418Longitude: -118.484958

# 1. Introduction

SeismiCat is a web-based seismic risk assessment tool for individual buildings. For seismic hazards, SeismicCat uses ground shaking data from the USGS National Seismic Hazard Mapping Project [Petersen et al, 2010], together with digital maps of ground conditions, faulting and liquefaction. SeismiCat offers three vulnerability models: ATC-13, Code-Oriented Damage Assessment (CODA), and HAZUS-MH. SeismicCat provides estimates of Scenario Loss (SEL and SUL), Probable Loss (PL), and Average Annual Loss (AAL).

# 2. Level of Review / Data Quality

The quality of the data affects the uncertainty modeled for the hazards and structures. Investigation by engineering professionals using visual surveys, site-specific geotechnical data, and structural design documents improves data quality and reduces the modeling uncertainties.

### Study Level: 1

### **Definition:**

- 0 Preliminary or desktop study
- 1 Visual survey by Professional Engineer (Civil or Structural)
- 2 Visual survey + review of structural design drawings by Professional Engineer
- 3 Detailed engineering study (ASCE 31 Tier 2) or detailed design information provided by the Engineer-of-Record

## 3. Seismic Hazards

The seismic hazards considered in the risk estimates include strong ground shaking and liquefaction damage on flat sites (i.e., excluding lurching and lateral spread). Other hazards are shown here for the user to consider, but these are not considered in the damage estimates. These are surface fault rupture, tsunami and earthquake-induced landslide. Where seismic hazards other than strong ground shaking are present or suspected, the user may wish to consult with a Geotechnical Engineer.

# 3.1 Site Ground Conditions

Ground condition found at site coordinates: CD Ground condition used in risk estimates: CD

## 3.2 Soil Liquefaction

Liquefaction Susceptibility: Low

### 3.3 Ground Shaking (Hazard Recurrence)

Per USGS National Seismic Hazard Mapping Project [M. Petersen and others, 2008-2010]

| <b>Return Periods (yr)</b> | PGA (%g) | SA at 0.2 sec (%g) | SA at 1 sec (%g) |
|----------------------------|----------|--------------------|------------------|
| 10                         | 3.3      | 7.4                | 2.3              |
| 72                         | 14.9     | 34.4               | 10.9             |
| 475                        | 40.1     | 97.5               | 29.4             |
| 975                        | 55.4     | 136.1              | 41.4             |
| 2475                       | 79.7     | 199.0              | 62.4             |

Standard soft-rock site conditions (NEHRP B-C)

Actual site conditions (CD)

| <b>Return Periods (yr)</b> | PGA (%g) | SA at 0.2 sec (%g) | SA at 1 sec (%g) |
|----------------------------|----------|--------------------|------------------|
| 10                         | 4.4      | 10.0               | 3.9              |
| 72                         | 18.5     | 42.5               | 18.7             |
| 475                        | 45.6     | 103.5              | 49.5             |
| 975                        | 60.6     | 135.8              | 68.9             |
| 2475                       | 83.6     | 184.5              | 102.6            |

### **3.4 Seismic Sources**

Seismic sources within 50.0 miles. of the site [per USGS, Petersen and others, 2008]:

| Fault Name                   | Туре | Limiting<br>Magnitude | Distance<br>(mi.) |
|------------------------------|------|-----------------------|-------------------|
| Santa Monica Connected alt 1 | SS   | 7.3                   | 0.1               |
| Santa Monica, alt 1          | SS   | 6.6                   | 0.1               |
| Santa Monica, alt 2          | SS   | 6.8                   | 0.7               |

| Santa Monica Connected alt 2      | SS | 7.4 | 0.7  |
|-----------------------------------|----|-----|------|
| Malibu Coast, alt 1               | SS | 6.7 | 2.8  |
| Malibu Coast, alt 2               | SS | 7.0 | 2.8  |
| Anacapa-Dume, alt 2               | RV | 7.2 | 4.7  |
| Newport Inglewood Connected alt 1 | SS | 7.5 | 6.7  |
| Newport-Inglewood, alt 2          | SS | 7.2 | 6.7  |
| Newport-Inglewood, alt 1          | SS | 7.2 | 6.7  |
| Newport Inglewood Connected alt 2 | SS | 7.5 | 6.7  |
| Hollywood                         | SS | 6.7 | 7.0  |
| Palos Verdes                      | SS | 7.3 | 7.1  |
| Palos Verdes Connected            | SS | 7.7 | 7.1  |
| Puente Hills (LA)                 | RV | 7.0 | 10.4 |
| Puente Hills                      | RV | 7.1 | 13.1 |
| Elysian Park (Upper)              | RV | 6.7 | 14.7 |
| Anacapa-Dume, alt 1               | RV | 7.2 | 15.0 |
| Verdugo                           | RV | 6.9 | 18.0 |
| Raymond                           | RV | 6.8 | 19.6 |
| Sierra Madre (San Fernando)       | RV | 6.7 | 21.9 |
| Sierra Madre Connected            | RV | 7.3 | 21.9 |
| Santa Susana, alt 1               | RV | 6.9 | 22.9 |
| Sierra Madre                      | RV | 7.2 | 23.7 |
| Northridge                        | RV | 6.9 | 24.4 |
| Puente Hills (Santa Fe Springs)   | RV | 6.7 | 26.1 |
| Simi-Santa Rosa                   | SS | 6.9 | 27.0 |
| San Gabriel                       | SS | 7.3 | 27.8 |
| Elsinore;W+GI                     | SS | 7.3 | 30.4 |
| Elsinore;W+GI+T                   | SS | 7.5 | 30.4 |
| Elsinore;W+GI+T+J                 | SS | 7.8 | 30.4 |
| Elsinore;W                        | SS | 7.0 | 30.4 |
| Elsinore;W+GI+T+J+CM              | SS | 7.8 | 30.4 |
| Elsinore                          | SS | 7.8 | 30.4 |
| Holser, alt 1                     | RV | 6.8 | 32.5 |
| Puente Hills (Coyote Hills)       | RV | 6.9 | 32.6 |

| Oak Ridge Connected | RV | 7.4 | 34.7 |
|---------------------|----|-----|------|
| Oak Ridge (Onshore) | RV | 7.2 | 34.7 |
| Clamshell-Sawpit    | RV | 6.7 | 35.8 |
| San Cayetano        | RV | 7.2 | 38.8 |
| San Jose            | SS | 6.7 | 41.9 |
| San Joaquin Hills   | RV | 7.1 | 47.2 |

\*NM - Normal SS - Strike Slip OB - Oblique RV - Reverse / Thrust

# **3.5 Fault Rupture**

1:24,000 Geology Quadrangle: Beverly Hills California Alquist-Priolo (AP) 'Special Studies' Zone: Not found within 1 km of a currently-defined zone.

# 4. Seismic Vulnerability

# **4.1 Building Structure**

| General Information                          |                                                  |
|----------------------------------------------|--------------------------------------------------|
| Year Built                                   | 1978                                             |
| Number of Stories Above Grade                | 2                                                |
| Number of Basement Levels                    | 2                                                |
| Design Code                                  | UBC                                              |
| Code Edition                                 | 1976                                             |
| Designed for UBC Seismic Zone                | 4                                                |
| Special Type                                 |                                                  |
| Occupancy Type                               | Professional, Technical<br>and Business Services |
| Building Value                               | \$0.00                                           |
| Business Loss Rate / Month                   | \$0.00                                           |
| Contents Value                               | \$0.00                                           |
| Vulnerability Model                          | CODA                                             |
| Material in Lateral Force-Resisting Elements | Steel                                            |
| Model Building Type                          | MRSF_S                                           |
| Description                                  | Moment-Resisting<br>Space Frame                  |

# 4.1.1 Shaking Vulnerability

| <b>CODA Engineering Parameters</b> |  |
|------------------------------------|--|
|------------------------------------|--|

| Structural Period (seconds)                | 0.44  |
|--------------------------------------------|-------|
| Design Base Shear (Cs, V/W) LRFD           | 0.131 |
| Near Source Factor Na (UBC97 only)         | 1.00  |
| Near Source Factor Nv (UBC97 only)         | 1.00  |
| Effective Response Modification Factor (R) | 5.5   |
| Shaking Scaling Factor                     | 1.00  |

Building Vulnerability Notes:

# 4.1.2 Liquefaction Vulnerability

Foundation Type: Spread/Strip footings Earthquake Magnitude: 7.0 Water Table Depth (ft): 5.0 Liquefaction Scaling Factor: 1.00

# 5. Risk Results

### 5.1 Probable Loss

Exposure Period: 50Years Loss Threshold: 10% Probability of Exceeding Threshold: 21.11% Average Annual Loss: 0.1727%

Summary of Probabilistic Results

| Return Period<br>(years) | Loss Level<br>(% of Building<br>Repl. Value) | Probability of<br>Exceedance in<br>Exposure Period | Downtime (days) |
|--------------------------|----------------------------------------------|----------------------------------------------------|-----------------|
| 50                       | 2.1                                          | 63.2                                               | 11              |
| 72                       | 3.7                                          | 50.1                                               | 16              |
| 250                      | 11.2                                         | 18.0                                               | 41              |
| 475                      | 16.0                                         | 10.0                                               | 58              |
| 975                      | 22.1                                         | 5.1                                                | 82              |
| 2475                     | 30.3                                         | 2.0                                                | 125             |

# 5.2 Probable Maximum Loss (PML)

Selected Scenario: 10% probability of exceedence in 50 years. Return Period: 475 years

| PML (Mean)           | <ul><li>13.21% of building replacement value</li><li>48 days business interruption</li></ul> |
|----------------------|----------------------------------------------------------------------------------------------|
| PML (90% confidence) | <ul><li>23.96% of building replacement value</li><li>93 days business interruption</li></ul> |

# 5.3 Scenario Loss (SL)

Selected Scenario: 10% probability of exceedence in 50 years. Return Period: 475.0 years

| Scenario Expected Loss (SEL) | 13.21% of building replacement value<br>48 days business interruption                        |
|------------------------------|----------------------------------------------------------------------------------------------|
| Scenario Unner Loss (SUIL)   | <ul><li>23.96% of building replacement value</li><li>93 days business interruption</li></ul> |

## 6. Program Limitations

SeismiCat is intended for seismic risk screening of real estate properties, to help identify high-risk properties for further evaluation. For detailed reviews of individual, high-value or critical facilities, engineering investigation is recommended, using detailed site-specific data and accepted national standards (e.g., ASCE 31 and ASCE 41). The damage models employed for the various facility classes in SeismiCat are based upon historical building earthquake performance data and expert opinion, rather than upon specific information concerning the properties in question.

The damage estimates produced by SeismiCat are based on damage to the building structure from strong ground shaking and (where relevant) liquefaction-induced settlements. Loss estimates from SeismiCat do not include damage due to other hazards such as surface fault rupture, tsunami, seismically induced landslide or earthquake-initiated fires.

The seismic performance of each property type may vary considerably, and all risk estimates involve uncertainty. Factors affecting the seismic performance include structural configuration, design force levels, seismic design details, dynamic characteristics, construction quality, condition and any preexisting damage, and local site conditions. These factors are generally beyond the scope of the damage models, and require the involvement of experienced engineers and geologists to refine the estimates.

This report utilizes site condition data and building vulnerability data assembled and interpreted by the user, who is solely responsible for the data and for the use of the results obtained. ImageCat makes no representation regarding the accuracy of risk estimates produced using the software for particular properties or sites. The user must evaluate the results and take responsibility for all engineering or business decisions made.

# 7. Earthquake Risk Glossary

| Acceleration                                 | The rate of change of velocity. As applied to strong ground motions, the rate of change of earthquake shaking velocity of a reference point. Commonly expressed as a fraction or percentage of the acceleration due to gravity (g), wherein $g = 980$ centimeters per second squared.                                                                                                                                                                                                                                                                                                                                      |
|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Active Fault                                 | An earthquake fault that is considered to be likely to undergo renewed<br>movement within a period of concern to humans. Faults are commonly<br>considered to be active if they have moved one or more times in the last<br>10,000-11,000 years, but they may also be considered potentially active<br>when assessing the hazard for some applications even if movement has<br>occurred in the last 500,000 years. See fault.                                                                                                                                                                                              |
| Alluvium                                     | A soil type consisting of loosely compacted gravel, sand, silt, or clay deposited by streams.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Amplification                                | An increase in seismic wave amplitude as the waves propagate through<br>certain soils, in sedimentary basins, or in certain topographic configurations<br>(e.g. along ridge lines).                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Alquist-Priolo (A-P)<br>Special Studies Zone | More recently known as Earthquake Fault Zone (EFZ). In California, these<br>are defined areas surrounding active faults, as defined by the State<br>Geologist, within which it is necessary to perform fault location studies in<br>order to construct buildings for human occupancy. Buildings for human<br>occupancy may not be constructed within 50 feet of the identified fault<br>rupture trace. Details of the regulations are presented in Special Publication<br>42, published by the California Geological Survey (CGS).                                                                                         |
| Average Annual Loss                          | The long-term loss rate per year due to hazards, calculated as the probabilistic loss contribution of all events.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Business Interruption<br>(BI) Loss           | Economic loss associated with loss of function of a commercial enterprise.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Damage                                       | Physical disruption of a structure or equipment item, such as cracking in walls or overturning of equipment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Hazard                                       | A natural physical manifestation of the earthquake peril, such as ground<br>shaking, soil liquefaction, surface fault rupture, landslide or other ground<br>failures, tsunami, seiche. These hazards can cause damage to man-made<br>structures.                                                                                                                                                                                                                                                                                                                                                                           |
| Liquefaction                                 | A ground failure phenomenon in which loose, granular soils below the water table lose shear strength when subjected to many cycles of strong ground shaking.                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Magnitude (M)                                | Magnitude (M) is the most widely used measure of the size of an<br>earthquake. Magnitude scales are logarithmic, found by taking the common<br>logarithm (base 10) of the largest ground motion recorded at the arrival of<br>the type of seismic wave being measured and correcting for the distance to<br>the earthquake's epicenter. A typical seismogram will display separate<br>arrival times for P-waves or compressional waves, and the slower S-waves<br>or shear waves. The difference in arrival times for P- and S-waves indicates<br>site-to-source distance. The logarithmic scale means that an increase in |

|  |                                                    | magnitude by one unit corresponds to a tenfold increase in measured wave<br>amplitude. Moreover, the energy released by an earthquake increases by a<br>factor of about 30 for each unit increase in magnitude.                                                                                                                                                                                                                                                                                                                                      |
|--|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|  |                                                    | A numerical scale ranging from I to XII which describes local ground<br>earthquake intensity in terms of local earthquake effects. In many historical<br>earthquakes (1900 to 1970's), few ground shaking instruments were in use,<br>and ground shaking maps were compiled on the basis of observed effects,<br>using scales like the Modified Mercalli Intensity (MMI) scale. As a result,<br>building damage statistics from older earthquakes are often correlated to the<br>MMI scale.                                                          |
|  |                                                    | I-V Not significant to structures or equipment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|  |                                                    | VI Felt by all; many are frightened and run outdoors. Some heavy furniture moved; a few instances of fallen plaster or damaged chimneys. Damage slight.                                                                                                                                                                                                                                                                                                                                                                                              |
|  |                                                    | VII Everybody runs outdoors. Damage negligible in buildings of good<br>design and construction; slight to moderate in well-built ordinary structures;<br>considerable in poorly built or badly designed structures; some chimneys<br>broken. Noticed by persons driving motorcars.                                                                                                                                                                                                                                                                   |
|  | Modified Mercalli<br>Intensity (MMI)<br>(abridged) | VIII Damage slight in specially designed structures; considerable in<br>ordinary substantial buildings, with partial collapse; great in poorly built<br>structures. Panel walls thrown out of frame structures. Chimneys, factory<br>stacks, columns, monuments, and walls fall. Heavy furniture overturned.<br>Disturbs persons driving motorcars.                                                                                                                                                                                                  |
|  |                                                    | IX Damage considerable in specially designed structures; well-designed frame structures thrown out of plumb; damage great in substantial buildings, with partial collapse. Buildings shifted off foundations. Ground cracked conspicuously. Underground pipes broken.                                                                                                                                                                                                                                                                                |
|  |                                                    | X Some well-built wooden structures destroyed; most masonry and frame<br>structures destroyed, along with foundations; ground badly cracked. Rails<br>bent. Landslides considerable from river banks and steep slopes. Shifted<br>sand and mud. Water splashed (slopped) over banks.                                                                                                                                                                                                                                                                 |
|  |                                                    | XI Few, if any, (masonry) structures remain standing. Bridges destroyed.<br>Broad fissures in ground. Underground pipelines completely out of service.<br>Earth slumps and land dips in soft ground. Rails bent greatly.                                                                                                                                                                                                                                                                                                                             |
|  |                                                    | XII Damage total. Waves seen on ground surfaces. Lines of sight and level distorted. Objects thrown upward into the air.                                                                                                                                                                                                                                                                                                                                                                                                                             |
|  | Peak Horizontal<br>Acceleration (PHA)              | An instrumental measure of earthquake ground motion intensity, normally<br>taken from a triaxial earthquake accelerogram. The horizontal of the<br>randomly-oriented component maxima may be combined to give a<br>'geometric mean', or simply taken as the maximum value recorded from the<br>horizontally-oriented axes. The time history may also be processed to<br>instantaneous vectorial maximum value, or rotated to fault-parallel and<br>fault-perpendicular directions. PHA may also be referred to as PGA (peak<br>ground acceleration). |
|  | Probable Loss                                      | A level of building damage from earthquake, expressed as a fraction of the building replacement value, having a stated probability of exceedance                                                                                                                                                                                                                                                                                                                                                                                                     |
|  |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

|                              | within a given exposure period. Alternatively, a level of earthquake damage<br>having a stated return period. Probable Loss is found by considering all<br>levels of earthquake hazard that may occur for the site in question, the<br>building damage associated with each hazard level, and the variability of<br>building damage within each hazard state.                                                                                                                                                                                                                                                                                                                                            |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Probable Maximum<br>Loss     | A term used in the past to characterize the risk of earthquake damage to<br>buildings. Care must be used to avoid ambiguity in definition [ASTM E<br>2026-07]. PML50 is a term sometimes used interchangeably with Scenario<br>Expected Loss (SEL), and PML90 is sometimes used interchangeably with<br>Scenario Upper Loss (SUL).                                                                                                                                                                                                                                                                                                                                                                       |
| Probability of<br>Exceedance | In the context of these risk reports, this is the probability that a specified level of damage will be surpassed within the exposure period (related to building life or term of investment), given the site's seismic environment and the property's seismic vulnerability. Using a Poissonian model, the probability of exceedance and exposure period are related to the average return interval of the loss. For example, a loss level that has a 10% chance of exceedance in a 30-year exposure period may be described as having a 285-year average recurrence interval. A loss level that has a 10% chance of exceedance in a 50-year exposure period has a 475-year average recurrence interval. |
| Risk                         | The chance or probability that some undesirable outcome, such as injury, damage or loss, will occur during a specified exposure period.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Scenario Loss                | A level of building damage from earthquake, expressed as a fraction of the building replacement value, associated with a stated earthquake hazard scenario. In our reports, probabilistic seismic hazards are used, and the stated scenario is based on the level of ground shaking that has a 10% chance of being exceeded in the exposure period specified by the user. Scenario Loss is further specified as the mean loss (Scenario Expected Loss or SEL) or the 90% nonexceedance loss (Scenario Upper Loss or SUL) for the stated hazard.                                                                                                                                                          |
| Vulnerability                | The susceptibility of a building, equipment item or component to damage or loss from a specific hazard.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Tsunami                      | Seismic seawave                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |