Building Name: Fernald CTR CLSRM 2

CAAN ID: 4370

Auxiliary Building ID: 4370.2 Date: Oct 28, 2020

FORM 1 CERTIFICATE OF SEISMIC PERFORMANCE LEVEL

UC-Designed & Constructed Facility

☐ Campus-Acquired or Leased Facility

BUILDING DATA

Building Name: Fernald CTR - CLSRM 2

Address: 320 CHARLES E. YOUNG DRIVE, NORTH

Site location coordinates: Latitude 34.07636829 Longitudinal -118.44363768

UCOP SEISMIC PERFORMANCE LEVEL (OR "RATING"): IV

ASCE 41-17 Model Building Type:

a. Longitudinal Direction: RM1: Reinforced Masonryb. Transverse Direction: RM1: Reinforced Masonry

Gross Square Footage: 1,113 Number of stories *above* grade: 1

Number of basement stories below grade: 0

Year Original Building was Constructed: 1957 Original Building Design Code & Year: UBC-1955

Retrofit Building Design Code & Code (if applicable): N/A, N/A

SITE INFORMATION

Site Class: C Basis: (Geocon West, Inc., 07/24/2014, Pg. 7)

Geologic Hazards:

Fault Rupture: No Basis: Referenced Geotech Report Liquefaction: No Basis: Referenced Geotech Report Landslide: No Basis: Referenced Geotech Report

ATTACHMENT

Original Structural Drawings: (UCLA Psychology Clinic School, Welton Becket & Associates, 02/17/1959,

S-3) or

Seismic Evaluation: (Fernald CTR – CLSRM 2 Seismic Evaluation, KPFF, 10/28/2020, ASCE 41-17 Tier 1)

Retrofit Structural Drawings: (N/A, N/A, N/A, N/A)

Building Name: Fernald CTR CLSRM 2

CAAN ID: 4370

CERTIFICATION & PRESUMPTIVE RATING VERIFICATION STATEMENT

I, Mark Hershberg, a California-licensed structural engineer, am responsible for the completion of this certificate, and I have no ownership interest in the property identified above. My scope of review to support the completion of this certificate included both of the following ("No" responses must include an explanation):

¹ A comprehensive retrofit addresses the entire building structural system as indicated by the associated seismic evaluation, as opposed to addressing selective portions of the structural system.

Building Name: Fernald CTR CLSRM 2

CAAN ID: 4370

Auxiliary Building ID: 4370.2

Date: Oct 28, 2020

CERTIFICATION SIGNATURE

Mark Hershberg Principal

Print Name Title

S5078 6/30/2021

CA Professional Registration No. License Expiration Date

10/28/2020

Date

KPFF Inc., (213) 418-0201, 700 S. Flower St., Suite 2100, Los Angeles, CA 90017

Firm Name, Phone Number, and Address

AFFIX SEAL HERE

Building Name: Fernald CTR CLSRM 2

CAAN ID: 4370



Table 1: Benchmark Building Codes and Standards

-	Building Seismic Design Provisions		
Building Type ^{a,b}	UBC	IBC	
Wood frame, wood shear panels (Types W1 and W2)	1976	2000	
Wood frame, wood shear panels (Type W1a)	1976	2000	
Steel moment-resisting frame (Types S1 and S1a)	1997	2000	
Steel concentrically braced frame (Types S2 and S2a)	1997	2000	
Steel eccentrically braced frame (Types S2 and S2a)	1988 ^g	2000	
Buckling-restrained braced frame (Types S2 and S2a)	f	2006	
Metal building frames (Type S3)	f	2000	
Steel frame with concrete shear walls (Type S4)	1994	2000	
Steel frame with URM infill (Types S5 and S5a)	f	2000	
Steel plate shear wall (Type S6)	f	2006	
Cold-formed steel light-frame construction—shear wall system (Type CFS1)	1997 ^h	2000	
Cold-formed steel light-frame construction—strap-braced wall system (Type CFS2)	f	2003	
Reinforced concrete moment-resisting frame (Type C1) ⁱ	1994	2000	
Reinforced concrete shear walls (Types C2 and C2a)	1994	2000	
Concrete frame with URM infill (Types C3 and C3a)	f	f	
Tilt-up concrete (Types PC1 and PC1a)	1997	2000	
Precast concrete frame (Types PC2 and PC2a)	f	2000	
Reinforced masonry (Type RM1)	1997	2000	
Reinforced masonry (Type RM2)	1994	2000	
Unreinforced masonry (Type URM)	f	f	
Unreinforced masonry (Type URMa)	f	f	
Seismic isolation or passive dissipation	1991	2000	

Note: This table has been adapted from ASCE 41-17 Table 3-2. Benchmark Building Codes and Standards for Life Safety Structural Performed at BSE-1E.

Note: UBC = Uniform Building Code . IBC = International Building Code .

^a Building type refers to one of the common building types defined in Table 3-1 of ASCE 41-17.

^b Buildings on hillside sites shall not be considered Benchmark Buildings.

c not used

 $^{^{\}it d}$ not used

e not used

^f No benchmark year; buildings shall be evaluated in accordance with Section III.J.

g Steel eccentrically braced frames with links adjacent to columns shall comply with the 1994 UBC Emergency Provisions, published September/October 1994, or subsequent requirements.

 $^{^{\}it h}$ Cold-formed steel shear walls with wood structural panels only.

¹ Flat slab concrete moment frames shall not be considered Benchmark Buildings.

Fernald CTR Classroom 2

DATE: 10/28/2020

ASCE 41-17 Tier 1 Seismic Evaluation Minimum Building Report Information

BUILDING DATA

Campus: UCLA

Building Name: Fernald CTR Classroom 2

CAAN ID: 4370

Auxiliary Building ID: 4370.2

Address: 320 Charles E. Young Drive, North, Los Angeles 90024

Site location coordinates: Latitude 34.07636829 Longitudinal -118.4436377

Aerial Photo

Exterior Elevation

ASCE 41-17 Model Building Type:

a. Longitudinal Direction: RM1: Reinforced Masonry b. Transverse Direction: RM1: Reinforced Masonry

Site-specific Ground Motion Study? No

Seismic Design Acceleration Parameters of Interest (S_{XS} and S_{X1}):

a. For BSE-1E 0.898g and 0.518g b. For BSE-2E 1.858g and 0.947g

Estimated	Fundamental Period (s	econd	ds)		
a. Lon	gitudinal: 0.14s				
b. Tra	nsverse: 0.14s				
Gross Squa	re Footage: 1,113				
Number of	stories <i>above</i> grade: 1				
Number of	basement stories <i>belo</i>	w gra	ade: 0		
Year Origin	nal Building was Constr	ucted	l: 1957		
Original Bu	ilding Design Code & \	ear: L	JBC-1955		
Retrofit Bu	ilding Design Code & (ode (i	if applicable):	N/A, N/A	
SITE INFOR	RMATION				
Site Class:	C (Measured) Bas	s: Ge	eocon West, Ir	c., 07/24/2014, Pg. 7	
Geologic H	azards:				
Fault Rupti	ure: No Bas	s: Re	eferenced Geo	technical Report	
Liquefaction		s: Re	eferenced Geo	technical Report	
Landslide:	No Bas	s: Re	eferenced Geo	technical Report	
LICOR CEIC		A T INIC	C (OD ((DATIN)	2 / 1. 1./	
OCOP SEIS	MIC PERFORMANCE R	ATING	G (OK KATING	j ; IV	
"BALLPAF	RK" RETROFIT COST (if	applio	cable)	Naimon / scc O /of)	
				Minor (<\$50/sf)	
				Moderate (~\$50-\$200/sf) Major (>\$200/sf)	
	TIER 1 SEISMIC EVAL			AL NON-COMPLIANCES/FI N	NDINGS
Significant	Structural Deficiencies	, Pote	entially Affecti	ng Seismic Performance Le	vel Designation:
Late	eral System Stress Che		•	nn shear or flexure, or bra	_
	olicable)	oinfo	rcomont ratio	confinement aspect ratio	, oto)
	d Path	enno	ncement ratio	, confinement, aspect ratio	i, etc)
⊠ Adj	acent Buildings				
□ We	ak Story				
Sof	t Story				
Geo	ometry (vertical irregu	arities	s)		
Tor	sion		,		
☐ Ma	ss – Vertical Irregularit	У			

Cripple Walls
Wood Sills (bolting)
Diaphragm Continuity
Openings at Shear Walls (concrete or masonry)
Liquefaction
Slope Failure
Surface Fault Rupture
Masonry or Concrete Wall Anchorage at Diaphragm
URM wall height to thickness ratio
URM Parapets or Cornices
URM Chimney
Heavy Partitions Braced by Ceilings
Appendages

BRIEF DESCRIPTION OF ANTICIPATED FAILURE MECHANISM

There is differing stiffness on the north elevation, where most of the elevation consists of mullions, as opposed to the south elevation, where brick wall exists along most of elevation. The lack of wall on the north elevation may lead to local overstressing of the drag elements and mullions along the north exterior wall. However, since the seismic demand on the existing lateral system is found to be low, any increased local demands will be absorbed by the shear wall's residual capacity.

It is known that unblocked diaphragms have lower shear capacities than fully blocked wood strucutral panel diaphragms due to the limited ability to directly transfer shear to the unsupported edges. However, because the square footage is approximately 1,100 square feet, we anticipate that the existing diapragm shear capacity is adequate and the installed bridging is in place will prevent rafter twisting.

Classrooms 1, 2 and 3 are connected to Classroom 5 via an arcade canopy without a seismic joint. Because the diaphragm of the canopy is flexible, it should allow for movement between the buildings. Potential damage during a seismic event may occur due to the simultaneous movement of each classroom building, causing canopy damage and/or connection failure.

COMMENTS AND RECOMMENDATIONS

The Tier 1 evaluation revealed that the building is adequate and meets the checks required to be a rating IV.

All observations were made from the exterior of the building due to COVID-19 protocols in place at the time of evaluation.

UCLA Seismic Tier 1 Evaluation – Minimum Building Report Information

POTENTIAL FALLING HAZARDS

Heavy ceilings, features or ornamentation above large lecture halls, auditoriums
lobbies or other areas where large numbers of people congregate.
Heavy masonry or stone veneer above exit ways.
Unbraced masonry parapets, cornices or other ornamentation above exit ways.
Unrestrained hazardous materials storage.
Masonry chimneys.
Unrestrained natural gas-fueled equipment such as water heaters, boilers,
emergency generators, etc.
None of the above.

Appendices

- A. ASCE 41-17 Tier 1 Checklists
- B. Quick Check Calculations