January 23, 2017

Ms. Joanne Williams
UCLA Real Estate
10920 Wilshire Boulevard, Suite 810
Los Angeles, California 90024-6502

Subject: Westfield Mall Century City
10250 Santa Monica Blvd, Los Angeles, CA
Seismic Screening Report
JLA Job no. 16130-15

Per your request, John Labib + Associates Structural Engineers (JLA) performed a seismic screening of the subject building structure currently being constructed and nearing completion. The structure consists of a new structure above the below grade portion of a pre-existing structure that was structurally strengthened. UCLA will lease a space on Level 2 Zone 8, Column Lines 30 – 32. Our services included a general evaluation of the structural systems of the structure based on a review of the structural drawings.

Building Description

Structural drawings titled “Westfield Century City, 10250 Santa Monica Blvd, Los Angeles, CA” prepared by Saiful Bouquet Structural Engineers were provided. See Figure 1 below for the rendering of the subject building.

WESTFIELD CENTURY CITY
10250 SANTA MONICA BOULEVARD
LOS ANGELES, CALIFORNIA 90067

Figure 1 – Rendering of north corner elevation of 10250 Santa Monica Blvd in Los Angeles, CA.
The building site is relatively level. The building portion for the proposed UCLA space consists of four office levels (Levels 1-4) above two levels (Levels B- and A) of below grade parking. Levels B through Level 1 are existing levels that were structurally modified and strengthened to accept the new Levels 2 through 4.

Building Structure

According to the structural drawings, the structure was designed based on the 2011 City of Los Angeles Building Code. The below is a description of the structure.

Level B Slab on Grade and Foundations
Level B consists of an existing concrete slab on grade with existing concrete belled pile foundations at the concrete columns and perimeter concrete foundation walls. Some areas of the existing slab on grade were replaced where new concrete pile foundations and grade beams were added at new BRBFs (buckling restrained braced frames) and SMFs (steel moment frames) located above Level 1.

Level A and 1
Level A and 1 consist of existing reinforced concrete slabs and beams. Some areas of the existing slabs and some concrete columns were strengthened at the new BRBFs (buckling restrained braced frames) and SMFs (steel moment frames).

Levels 2 through 4 and Roof
Levels 2 through 4 and roof consist of concrete and metal deck slabs supported by steel wide flange beams, girders, and columns.

Lateral Load Resisting Systems
The lateral system above Level 1 is the horizontal concrete and metal deck floor and roof diaphragms that transfer seismic forces to the vertical BRBFs in the north south direction and SMFs in the east west direction. The lateral loads are then transferred thru the concrete first floor diaphragm to the vertical concrete shear walls and foundations.

Seismic Evaluation Criteria

The structure was generally evaluated based on the University of California Seismic Safety Policy dated September 15, 2014. The seismic policy provides 7 seismic performance ratings: I thru VII. Please refer to attached Appendix A for the information on Seismic Safety Policy & Rating.

Seismic Evaluation

- The structure has a complete load path to transfer seismic forces to the foundations.
- The roof and floor diaphragms are continuous without major openings.
- Based on our review of the above noted previous seismic report and our conceptual evaluation of the lateral-load-resisting system, the lateral system is adequate for the size, configuration, and age of the building. A major seismic disturbance is likely to result in structural and non-structural damage that would not significantly jeopardize life.
Seismic Rating

III

Limitations

This limited seismic screening was based on the review of the plans. Services were performed by JLA in a manner consistent with the level of care and skill ordinarily exercised by members of the profession currently practicing under similar conditions. The results of the structural evaluation represent our opinion and are not intended to preempt the responsibility of the original design consultants in any way. No other warranty, expressed or implied, is made.

If you have any questions, please do not hesitate to call us.

Yours truly,

John Labib & Associates

John Labib, S.E.
Principal
APPENDIX A

Earthquake Performance Levels For Existing Buildings

This series of definitions was developed by the California State University, the University of California, the California Department of General Services, and the Administrative Office of the Courts from 1995 through 2009.

Table A.1. Determination of Expected Seismic Performance Based on Structural Compliance with the 2010 Edition, California Code of Regulations, Part 2, California Building Code (CBC)

Definitions based upon California Building Code (CBC) requirements for seismic evaluation of buildings using Occupancy Categories of CBC Table 1604A.5, depending on which applies, and performance criteria in CBC Table 3417.5.²

<table>
<thead>
<tr>
<th>Rating Level</th>
<th>No Peer Review</th>
<th>Peer Review</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>II</td>
<td>II</td>
<td>II</td>
</tr>
<tr>
<td>III</td>
<td>III</td>
<td>III²</td>
</tr>
<tr>
<td>IV</td>
<td>IV²</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>V</td>
<td>IV²</td>
</tr>
<tr>
<td>VI</td>
<td>VI</td>
<td></td>
</tr>
<tr>
<td>VII</td>
<td>VII</td>
<td></td>
</tr>
</tbody>
</table>

For Notes, see page 14
Table A.2. Indications of Implied Risk to Life and Implied Seismic Damageability

<table>
<thead>
<tr>
<th>Rating Level</th>
<th>Historic Risk Ratings of DSA/SSC7</th>
<th>UC6</th>
<th>Implied Risk to Life 3</th>
<th>Implied Seismic Damageability</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>I</td>
<td></td>
<td>Negligible</td>
<td>0% to 10%</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>II</td>
<td></td>
<td>Insignificant</td>
<td>0% to 15%</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>III</td>
<td></td>
<td>Good</td>
<td>5% to 20%</td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>IV</td>
<td></td>
<td>Fair</td>
<td>10% to 30%</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>V</td>
<td></td>
<td>Poor</td>
<td>20% to 50%</td>
<td></td>
</tr>
<tr>
<td>VI</td>
<td>VI</td>
<td></td>
<td>Very Poor</td>
<td>40% to 100%</td>
<td></td>
</tr>
<tr>
<td>VII</td>
<td>VII</td>
<td></td>
<td>Dangerous</td>
<td>100%</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. Earthquake damageability levels are indicated by Roman numerals I through VII. Assignments are to be made following a professional assessment of the building’s expected seismic performance as measured by the referenced technical standard and earthquake ground motions. Equivalent Arabic numerals, fractional values, or plus or minus values are not to be used. These assignments were prepared by a task force of state agency technical personnel, including the California State University, the University of California, the California Department of General Services, the Division of the State Architect, and the Administrative Office of the Courts. The ratings apply to structural and non-structural elements of the building as contained in Chapter 34, CBC requirements. These definitions replace those previously used by these agencies.

2. Chapter 34 of the California Building Code, current edition, regulates existing buildings. It uses and references the American Society of Civil Engineers Standard Seismic Rehabilitation of Existing Buildings, ASCE-41. All earthquake ground motion criteria are specific to the site of the evaluated building. The CBC definitions for earthquake ground motions to be assessed are paraphrased below for convenience:

 BSE-2, the 2,475-year return period earthquake ground motion, or 150% of the Maximum Considered Earthquake ground motion for the site.
 BSE-C, the 975-year return period earthquake ground motion.
 BSE-1, two-thirds of the BSE-2, nominally, the 475-year return period earthquake ground motion.
 BSE-R, the 225-year return period earthquake ground motion.

 Occupancy Category is defined in the CBC Table 1604A.5. The occupancy category sets the level of required seismic building performance under the CBC. Occupancy Category IV includes acute care hospitals, fire, rescue and police stations and emergency vehicle garages, designated emergency shelters, emergency operations centers, and structures containing highly toxic materials where the quantities exceed the maximum allowed quantities, among others. Occupancy categories I-III includes all other building uses that include most state owned buildings.

3. Implied Risk to Life is a subjective measure of the threat of a life threatening injury or death that is expected to occur in an average building in each rank following the indicated technical requirements. The terms negligible through dangerous are not specifically defined, but are linguistic indications of the relative degree of hazard posed to an individual occupant.

4. Implied Damageability is the level of damage expected to the average building in each rank following the indicated technical requirements when a BSE-1 level earthquake occurs. The damage includes both the structural and non-structural systems, but does not consider furnishing and tenant contents. Damage is measured as the ratio of the cost to repair the building divided by the current cost to reconstruct the building from scratch. Such assessments are to be completed to the requirements of ASTM E-2026 at ASTM Level 1 or higher in order to be considered appropriate, where the damage ratio is the Scenario Expected Loss (SEL) in the BSE-1 earthquake ground motion evaluated. ASTM E2026 is the standard for evaluating the seismic damageability of buildings for financial transactions.

5. In those cases where the engineer making the assessment using the requirements for a given Rating Level concludes that the expected seismic performance is consistent with a one-level higher or lower rating, this alternative Rating Level may be assigned if and only if an independent technical peer reviewer concurs in the evaluation. The peer review must be completed consistent with the requirements of Chapter 34 of the CBC. It is
anticipated that most projects that are independently peer reviewed from the initiation of the evaluation and/or design process will qualify for a higher Rating than those buildings, which have not been so reviewed at all. The second column under Peer Review the Ratings have been assigned when this occurs. Note that peer review is unlikely to improve buildings rated as VI or VII because they have fundamental seismic system flaws. The ratings for I and II are not changed because the performance increment between levels is so large.

6. Historically the University of California has used the terms good, fair, poor and very poor to distinguish the relative seismic performance of buildings. The concordance of values in the table above is approximate. The former rating procedures did not provide specific performance levels as is done herein, but were sentence fragments for qualitative performance and are recalled below for historical purposes only:

A \textit{Good} seismic performance rating would apply to buildings and other structures whose performance during a major seismic disturbance is anticipated to result in some structural and/or nonstructural damage and/or falling hazards that would not /significantly/ jeopardize life. Buildings and other structures with a \textit{Good} rating would have a level of seismic resistance such that funds need not be spent to improve their seismic resistance to gain greater life safety, and would represent an acceptable level of earthquake safety.

A \textit{Fair} seismic performance rating would apply to buildings and other structures whose performance during a major seismic disturbance is anticipated to result in structural and nonstructural damage and/or falling hazards that would represent /low/ life hazards. Buildings and other structures with a \textit{Fair} seismic performance rating would be given a low priority for expenditures to improve their seismic resistance and/or to reduce falling hazards so that the building could be reclassified \textit{Good}.

A \textit{Poor} seismic performance rating would apply to buildings and other structures whose performance during a major seismic disturbance is anticipated to result in significant structural and nonstructural damage and/or falling hazards that would represent appreciable life hazards. Such buildings or structures either would be given a high priority for expenditures to improve their seismic resistance and/or to reduce falling hazards so that the building could be reclassified as \textit{Good}, or would be considered for other abatement programs, such as reduction of occupancy.

A \textit{Very Poor} seismic performance rating would apply to buildings and other structures whose performance during a major seismic disturbance is anticipated to result in /extensive/ structural and nonstructural damage, potential structural collapse, and/or falling hazards that would represent /high/ life hazards. Such buildings or structures either would be given the highest priority for expenditures to improve their seismic resistance and/or to reduce falling hazards so that the building could be reclassified \textit{Good}, or would be considered for other abatement programs such as reduction of occupancy.

7. For reference, the historically used Division of the State Architect and Seismic Safety Commission levels corresponds approximately to the new Performance Level numerical values in this table.