August 13, 2012

Ms. Joanne Williams
Senior Leasing Specialist
UCLA Real Estate
10920 Wilshire Boulevard, Suite 810
Los Angeles, California 90024-6502

Subject: 4560 Admiralty Way, Marina del Rey
Seismic Screening Report
JLA Job no. 12111-14

Dear Ms. Williams,

Per your request, we have performed a seismic screening of the building located at 4560 Admiralty Way in Marina del Rey, California. Our services included a site visit performed on August 10, 2012 to observe the existing conditions of the exposed structural systems, review of the available structural drawings & an evaluation of the existing structural systems of the building.

Building Description

The building is located at 4560 Admiralty Way, at the corner of Bali Way and Admiralty Way, in Marina Del Rey, California. The building is composed of two parts, Phase I and Phase II.

Phase I was constructed in 1969. Phase I of the building is L-shaped in plan, which can be approximated by two rectangles that are 148 feet by 35 feet and 44 feet by 100 feet respectively. The former is 3 stories tall, while the latter is single story, and both structures are wood. The 2nd floor through the roof are rectangular in plan, and measure approximately 125 feet by 50 feet.

Phase 2 of the building is three stories tall and is rectangular in plan, measuring approximately 124 feet by 53 feet. It is also constructed out of wood and was built in 1973. There is a 2” seismic joist separating the 1967 “Phase I” structure from the 1973 addition “Phase 2”.

Construction

Gravity Construction:

The gravity framing for Phase I and II at the 2nd floor through the roof consists of wood joists framing to steel beams which are supported by steel columns. At the one story section of the building, the gravity framing consists of plywood sheathing supported by wood joists which are supported by wood-framed bearing walls.

Foundation System:

The foundation system consists of a concrete slab on grade, with concrete pads supporting the steel columns and continuous footings supporting the walls. The moment frame columns of Phase I are tied together with concrete grade beams.

Lateral-Force-Resisting-System:

The lateral-force-resisting system of Phase I consists of plywood diaphragms that transfer seismic inertial loads to wood shear walls as well as welded steel moment frames. Along the East and West faces of the structure are a single-story 5-bay steel moment frame with two stories of wood shearwalls above. Along the North face of the structure is a single-bay steel moment frame with two stories of shear walls above. Along the South face is a 3 story wood shear wall. There is a 2" seismic joint between Phase I and Phase II.

The lateral-force-resisting system of Phase II consists of plywood diaphragms that transfer seismic inertial loads to wood shear walls as well as steel braced-frames. At the West face of the structure is a 3-story steel chevron-braced frame, while at the North and South faces are a 3-story X-braced frame. The East face of the structure is a 3-story shear wall.

Observations

The exposed structural elements appeared to be in fair condition considering the age of the building.
Seismic Evaluation Criteria

General: The property was evaluated based on the University of California Seismic Safety Policy dated August 25, 2011. The seismic policy provides 7 seismic performance ratings: I thru VII. Please refer to Appendix for more info on Seismic Safety Policy & rating.

Seismic Evaluation

- The structure has a complete load path to transfer seismic inertial forces to the foundations.
- The roof and floor diaphragms are continuous with no major openings.
- It appears that the plywood sheathed shear walls, welded steel moment frames and concentric braced frames are adequate for the size, configuration, and age of the building. A major seismic disturbance is anticipated to result in some structural and/or nonstructural damage that would represent low life hazards.
- Damage to the welded steel moment frames was observed during the Northridge Earthquake. This building is fairly regular, fairly light because of the wood framing & it is only three stories tall. The size of the moment frame beams & columns are fairly small compared to the buildings with larger beam & column sections which sustained damage. A major seismic disturbance is anticipated to result in some structural and/or nonstructural damage that would represent low life hazards.
- At Phase 1 building one story section, the existing wood-framed shear walls are sheathed with stucco. Current codes have significantly reduced the capacity of plaster shear walls based on past performance in recent earthquakes. This is mitigated by the fact that it is a fairly light one story structure. A major seismic disturbance is anticipated to result in some structural and/or nonstructural damage that would represent low life hazards.
- The 2” seismic separation joint is probably not adequate to fully separate the two buildings from each other. In a major seismic event, the two buildings could potentially pound against each other. This condition could result in some structural and/or nonstructural damage that would represent low life hazards.

Seismic Rating

III
Limitations

This limited seismic screening was based on our limited site observations of the exposed structural members & our review of the existing structural drawings. Services were performed by JLA in a manner consistent with the level of care and skill ordinarily exercised by members of the profession currently practicing under similar conditions. The structural observations and recommendations represent our opinion and are not intended to preempt the responsibility of the original design consultants in any way. No other warranty, expressed or implied, is made.

If you have any questions, please do not hesitate to call us.

Yours truly,

John Labib & Associates

John Labib, S.E.
Principal
APPENDIX A
Earthquake Performance Levels For Existing Buildings

This series of definitions was developed by the California State University, the University of California, the California Department of General Services, and the Administrative Office of the Courts from 1995 through 2009.

Table A.1. Determination of Expected Seismic Performance Based on Structural Compliance with the 2010 Edition, California Code of Regulations, Part 2, California Building Code (CBC)

<table>
<thead>
<tr>
<th>Definitions based upon California Building Code (CBC) requirements for seismic evaluation of buildings using Occupancy Categories of CBC Table 1604A.5, depending on which applies, and performance criteria in CBC Table 3417.5</th>
<th>Rating Level</th>
<th>No Peer Review</th>
<th>Peer Review</th>
</tr>
</thead>
<tbody>
<tr>
<td>A building evaluated as meeting or exceeding the requirements of CBC Chapter 34 for Occupancy Category IV performance criteria with BSE-1 and BSE-2 hazard levels replacing BSE-R and BSE-C as given in Chapter 34.</td>
<td>I</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>A building evaluated as meeting or exceeding the requirements of CBC Chapter 34 for Occupancy Category IV performance criteria.</td>
<td>II</td>
<td>II</td>
<td></td>
</tr>
<tr>
<td>A building evaluated as meeting or exceeding the requirements of CBC Chapter 34 for Occupancy Category I-III performance criteria with BSE-1 and BSE-2 hazard levels replacing BSE-R and BSE-C respectively as given in Chapter 34; alternatively, a building meeting CBC requirements for a new building.</td>
<td>III</td>
<td>II²</td>
<td></td>
</tr>
<tr>
<td>A building evaluated as meeting or exceeding the requirements of CBC Chapter 34 for Occupancy Category I-III performance criteria.</td>
<td>IV</td>
<td>III²</td>
<td></td>
</tr>
<tr>
<td>A building evaluated as meeting or exceeding the requirements of CBC Chapter 34 for Occupancy Category I-III performance criteria only if the BSE-R and BSE-C values are reduced to 2/3 of those specified for the site.</td>
<td>V</td>
<td>IV²</td>
<td></td>
</tr>
<tr>
<td>A building evaluated as not meeting the minimum requirements for Level V designation and not requiring a Level VII designation.</td>
<td>VI</td>
<td>VI</td>
<td></td>
</tr>
<tr>
<td>A building evaluated as posing an immediate life-safety hazard to its occupants under gravity loads. The building should be evacuated and posted as dangerous until remedial actions are taken to assure the building can support CBC prescribed dead and live loads.</td>
<td>VII</td>
<td>VII</td>
<td></td>
</tr>
</tbody>
</table>

For Notes, see page 14
Table A.2. Indications of Implied Risk to Life and Implied Seismic Damageability

<table>
<thead>
<tr>
<th>Rating Level</th>
<th>Historic Risk Ratings of</th>
<th>Implied Risk to Life</th>
<th>Implied Seismic Damageability</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>I</td>
<td>Negligible</td>
<td>0% to 10%</td>
</tr>
<tr>
<td>II</td>
<td>II</td>
<td>Insignificant</td>
<td>0% to 15%</td>
</tr>
<tr>
<td>III</td>
<td>III</td>
<td>Good</td>
<td>Slight</td>
</tr>
<tr>
<td>IV</td>
<td>IV</td>
<td>Fair</td>
<td>Small</td>
</tr>
<tr>
<td>V</td>
<td>V</td>
<td>Poor</td>
<td>Serious</td>
</tr>
<tr>
<td>VI</td>
<td>VI</td>
<td>Very Poor</td>
<td>Severe</td>
</tr>
<tr>
<td>VII</td>
<td>VII</td>
<td>Very Poor</td>
<td>Dangerous</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>DSA/SSCE</th>
<th>UC</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>II</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>III</td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>IV</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>VI</td>
<td>VI</td>
<td></td>
</tr>
<tr>
<td>VII</td>
<td>VII</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

1. Earthquake damageability levels are indicated by Roman numerals I through VII. Assignments are to be made following a professional assessment of the building's expected seismic performance as measured by the referenced technical standard and earthquake ground motions. Equivalent Arabic numerals, fractional values, or plus or minus values are not to be used. These assignments were prepared by a task force of state agency technical personnel, including the California State University, the University of California, the California Department of General Services, the Division of the State Architect, and the Administrative Office of the Courts. The ratings apply to structural and non-structural elements of the building as contained in Chapter 34, CBC requirements. These definitions replace those previously used by these agencies.

2. Chapter 34 of the California Building Code, current edition, regulates existing buildings. It uses and references the American Society of Civil Engineers Standard Seismic Rehabilitation of Existing Buildings, ASCE-41. All earthquake ground motion criteria are specific to the site of the evaluated building. The CBC definitions for earthquake ground motions to be assessed are paraphrased below for convenience:

 - BSE-2, the 2,475-year return period earthquake ground motion, or 150% of the Maximum Considered Earthquake ground motion for the site.
 - BSE-C, the 975-year return period earthquake ground motion.
 - BSE-1, two-thirds of the BSE-2, nominally, the 475-year return period earthquake ground motion.
 - BSE-R, the 225-year return period earthquake ground motion.

 Occupancy Category is defined in the CBC Table 1604A.5. The occupancy category sets the level of required seismic building performance under the CBC. Occupancy Category IV includes acute care hospitals, fire, rescue and police stations and emergency vehicle garages, designated emergency shelters, emergency operations centers, and structures containing highly toxic materials where the quantities exceed the maximum allowed quantities, among others. Occupancy categories I-III includes all other building uses that include most state owned buildings.

3. Implied Risk to Life is a subjective measure of the threat of a life threatening injury or death that is expected to occur in an average building in each rank following the indicated technical requirements. The terms negligible through dangerous are not specifically defined, but are linguistic indications of the relative degree of hazard posed to an individual occupant.

4. Implied Damageability is the level of damage expected to the average building in each rank following the indicated technical requirements when a BSE-1 level earthquake occurs. The damage includes both the structural and non-structural systems, but does not consider furnishing and tenant contents. Damage is measured as the ratio of the cost to repair the building divided by the current cost to reconstruct the building from scratch. Such assessments are to be completed to the requirements of ASTM E-2026 at ASTM Level 1 or higher in order to be considered appropriate. Where the damage ratio is the Scenario Expected Loss (SEL) in the BSE-1 earthquake ground motion evaluated. ASTM E2026 is the standard for evaluating the seismic damageability of buildings for financial transactions.

5. In those cases where the engineer making the assessment using the requirements for a given Rating Level concludes that the expected seismic performance is consistent with a one-level higher or lower rating, this
alternative Rating Level may be assigned if and only if an independent technical peer reviewer concurs in the
evaluation. The peer review must be completed consistent with the requirements of Chapter 34 of the CBC. It is
anticipated that most projects that are independently peer reviewed from the initiation of the evaluation and/or
design process will qualify for a higher Rating than those buildings, which have not been so reviewed at all. The
second column under Peer Review the Ratings have been assigned when this occurs. Note that peer review is
unlikely to improve buildings rated as VI or VII because they have fundamental seismic system flaws. The ratings
for I and II are not changed because the performance increment between levels is so large.

6. Historically the University of California has used the terms good, fair, poor and very poor to distinguish the relative
seismic performance of buildings. The concordance of values in the table above is approximate. The former
rating procedures did not provide specific performance levels as is done herein, but were sentence fragments for
qualitative performance and are recalled below for historical purposes only:

A Good seismic performance rating would apply to buildings and other structures whose performance during a
major seismic disturbance is anticipated to result in some structural and/or nonstructural damage and/or falling
hazards that would not /significantly/ jeopardize life. Buildings and other structures with a Good rating would
have a level of seismic resistance such that funds need not be spent to improve their seismic resistance to
gain greater life safety, and would represent an acceptable level of earthquake safety.

A Fair seismic performance rating would apply to buildings and other structures whose performance during a
major seismic disturbance is anticipated to result in structural and nonstructural damage and/or falling hazards
that would represent low/ life hazards. Buildings and other structures with a Fair seismic performance rating
would be given a low priority for expenditures to improve their seismic resistance and/or to reduce falling
hazards so that the building could be reclassified Good.

A Poor seismic performance rating would apply to buildings and other structures whose performance during a
major seismic disturbance is anticipated to result in significant structural and nonstructural damage and/or
falling hazards that would represent appreciable life hazards. Such buildings or structures either would be
given a high priority for expenditures to improve their seismic resistance and/or to reduce falling hazards so
that the building could be reclassified as Good, or would be considered for other abatement programs, such
as reduction of occupancy.

A Very Poor seismic performance rating would apply to buildings and other structures whose performance
during a major seismic disturbance is anticipated to result in extensive/ structural and nonstructural damage,
potential structural collapse, and/or falling hazards that would represent high/ life hazards. Such buildings or
structures either would be given the highest priority for expenditures to improve their seismic resistance and/or
to reduce falling hazards so that the building could be reclassified Good, or would be considered for other
abatement programs such as reduction of occupancy.

7. For reference, the historically used Division of the State Architect and Seismic Safety Commission levels
corresponds approximately to the new Performance Level numerical values in this table.