Appendix A

Initial Study and NOP Comment Letters

BERKELEY • DAVIS • IRVINE • LOS ANGELES • RIVERSIDE • SAN DIEGO • SAN FRANCISCO

SANTA BARBARA . SANTA CRUZ

Federal Express

CAMPUS CAPITAL PLANNING 1060 VETERAN AVENUE BOX 951365 LOS ANGELES, CA. 90095-1365

May 27, 2008

State of California Office of Planning and Research 1400 Tenth Street, Room 222 Sacramento, CA 95814

NOTICE OF PREPARATION

DRAFT ENVIRONMENTAL IMPACT REPORT

Project Title and Number: Northwest Housing Infill Project (NHIP) and 2002 Long Range

Development Plan (LRDP) Amendment, Project No. 948375

Project Location:

University of California, Los Angeles campus

Lead Agency:

University of California

County:

Los Angeles

Project Description:

Located in the community of Westwood in the City of Los Angeles, the UCLA campus is approximately 12 miles northwest of downtown Los Angeles. The main campus is generally bound by Le Conte Avenue to the south, Gayley Avenue and Veteran Avenue to the west, Sunset Boulevard to the north, and Hilgard Avenue to the east. The proposed Project (NHIP) involves development of additional undergraduate student housing in the Northwest zone of the UCLA campus, and an Amendment to the 2002 Long Range Development Plan (LRDP) to accommodate the NHIP.

The NHIP consists of approximately 1,525 dormitory beds, 10 faculty in-residence apartments, dining, assembly and support space totaling approximately 550,000 square feet of new development in four separate buildings on three separate infill sites. The NHIP would result in an increase of roughly 100 new staff on campus; however no new parking would be required. The NHIP is being proposed in response to the continuing unmet demand for on-campus undergraduate student housing and the success of the UCLA housing program in providing a cohesive student learning community that continues the transformation of UCLA from a commuter to a residential campus. Construction is estimated to begin in mid-2009 with completion in 2013.

Because this proposed NHIP was not contemplated under the 2002 LRDP, an LRDP amendment to provide additional square footage necessary to accommodate the NHIP is required. The proposed Amendment would involve an increase of 550,000 square feet of new development entitlement in the Northwest zone. In addition, because the proposed NHIP has an anticipated completion date of 2013, the LRDP Amendment will also adjust projections for total campus population to account for the

UCLA NHIP and 2002 LRDP Amendment Notice of Preparation May 27, 2008 Page 2

extended LRDP planning horizon from 2010 to 2013. The Amendment will not involve any modifications to the previously adopted campus wide vehicle trip generation and parking limits.

Environmental Review and Comment:

In compliance with the State and University of California guidelines for implementation of the California Environmental Quality Act, this Notice of Preparation is hereby sent to inform you that the University of California, Los Angeles is preparing a Draft Environmental Impact Report (Draft EIR) on the proposed NHIP and Amendment to the 2002 LRDP. The attached Initial Study identifies the potential environmental issues pertaining to aesthetics, air quality, biological resources, cultural resources, geology/soils, hazards and hazardous materials, hydrology/water quality, land use/planning, noise, population/housing, public services, recreation, transportation/traffic, utilities/service systems that will be addressed in the Draft EIR for both the NHIP and the LRDP Amendment. The Draft EIR will also include analysis of project alternatives and cumulative effects for both the NHIP and the LRDP Amendment.

A Public Information and EIR Scoping Meeting will be conducted at the UCLA Faculty Center, Redwood Room, located at 480 Charles E. Young Drive East, on June 10, 2008 from 7:00 to 9:00 PM, and will be advertised in local newspapers; and by direct mailing to interested individuals, organizations and associations, and property owners and occupants within a 500-foot radius of the proposed NHIP site. Courtesy parking will be available in Parking Lot A adjacent to the Faculty Center by obtaining a parking pass from the parking kiosk located at the Westholme Avenue entrance to the campus off Hilgard Avenue.

As Lead Agency, we need to know the views of public agencies with respect to the scope and content of the environmental information which is germane to each agency's statutory responsibilities in connection with the proposed Project. Copies of this NOP and the attached Initial Study have been forwarded to the agencies and other groups and individuals listed below, and are also available at www.capital.ucla.edu/ep-curr-proj.html.

Due to the time limits mandated by State law, responses to this NOP must be sent at the earliest possible date, but not later than 30 days after receipt of this Notice. Please designate a contact person in your agency and send responses to the address below.

Sincerely,

Tova Lelah

Assistant Director
Campus and Environmental Planning
UCLA Capital Programs
1060 Veteran Avenue
Los Angeles, CA 90095-1365

Fax (310) 206-1510

Town Lelah

UCLA NHIP and 2002 LRDP Amendment Notice of Preparation May 27, 2008 Page 3

Attachments:

Document Transmittal Form

Regional and Campus Location Maps NOP Initial Study, May 2008 (15 copies)

cc:

City of Los Angeles, Planning Department

Councilmember, 5th District

County of Los Angeles, Regional Planning, Environmental Section

Los Angeles Department of Transportation Southern California Association of Governments South Coast Air Quality Management District

Local Associations, Groups and Individuals

University of California and UCLA Administrators

Property Owners and Residents Within 500-foot Radius of Proposed Project Site

Notice of Completion — Form A

Mail to: State Clearinghouse, 1400 Tenth Street, Sacramento, CA 95814 (916) 445-0613

See Note Below	
SCH#	

Pro	Project Title: Life Sciences Replacement Building							
	Agency: Univers	sity of Califor	nia , Los Angeles		act Person:			
		eteran Avenue		Phor	ne:	(310) 206-5482		
City:		Zip:_	90095	Cour	nty:	Los Angeles		
Cros	ject Location hty: Los Angeles s Streets: Hilgard Aver Manning Dri	nue <u>&</u> Zip (Nearest Community: West Code: 90095	Tota	l Acres: <u>2.8</u>			
	ssor's Parcel No		T	Secti	ion/Twp		Rang	ge/Base:
With	in 2 Miles:	State	Hwy #: <u>I-405</u> orts:	Wate	erways: ways:		Scho	ools:
D	4 M		J113	IXan	NEPA:	_	SCIIC	Other:
Ø Ø	nOP	<u>CEQA:</u> □	Supplement/Subsequent EIR (Prior SCH No.)		NOI			Joint Document
	Early Cons Neg Dec Draft EIR		Other		EA Draft EIS FONSI			Final Document Other
Loc	al Action Type							
	General Plan Update General Plan Amendr General Plan Element Community Plan	_	Specific Plan Master Plan Planned Unit Development Site Plan		Rezone Prezone Use Permit Land Division	,		Annexation Redevelopment Coastal Permit Other - Project Approval
ъ	1 475				Parcel & Traci		Т	MCD
	elopment Type				Water Facili			MGD
		nitsAcres_			Transportation			<u> </u>
			Employees		Mining:			al
			Employees		Power:			Watts
			Employees			ment: Type		
		boratory buildi	ing			Vaste: Type		
	Recreational:				Other			
Pro	ject Issues Discuss				$\overline{\checkmark}$		_	
$\overline{\checkmark}$	Aesthetic/Visual		Flood Plain/Flooding		Schools/Univ	versities	Ш	Water Quality
	Agricultural Land		Forest Land/Fire Hazard		Septic System			Water Supply/Groundwater
$\overline{\checkmark}$	Air Quality (construct	tion)	Geologic/Seismic		Sewer Capac	city		Wetland/Riparian
\checkmark	Archeological/Histori	ical \Box	Minerals		Soil Erosion/Co	mpaction/ Grading		Wildlife
	Coastal Zone	$\overline{\checkmark}$	Noise (construction)		Solid Waste			Growth Inducing
	Drainage/Absorption		Population/Housing Balance		Toxic/Hazar	dous		Land Use
	Economic/Jobs		Public Services/Facilities		Traffic/Circu (construction		$\overline{\checkmark}$	Cumulative Effects
	Fiscal		Recreation/Parks		Vegetation			Other

Present Land Use/Zoning/General Plan Use

Campus

Project Description

The proposed project involves the construction of a replacement laboratory building for the Life Sciences program of the College of Letters and Science on the UCLA campus. Work would involve demolition of the non-historic portion of Hershey Hall to create a site for construction of a five-story (plus basement), replacement laboratory building at the corner of Manning Drive and Charles E. Young Drive East. The building would provide approximately 185,000 square feet of laboratory and office space for the existing program including approximately 25,000 square feet for new life sciences research initiatives. These new research initiatives could involve an addition of approximately 30 individuals to the campus population. Following completion of the Life Sciences Replacement Building, Hershey Hall would be renovated in compliance with the State Guidelines for renovating historic buildings. The project is consistent with the land use and population estimates described in the 2002 Long Range Development Plan (LRDP) and analyzed in the 2002 LRDP EIR certified in 2003. Construction is anticipated to begin in 2006, with completion estimated by 2009.

Note: Clearinghouse will assign identification numbers for all new projects. If a SCH number already exist for a project (e.g. from a Notice of Preparation or previous draft document) Please fill it in.

NORTHWEST HOUSING INFILL PROJECT AND LONG RANGE DEVELOPMENT PLAN AMENDMENT UNIVERSITY OF CALIFORNIA, LOS ANGELES

Project No. 948375.02

Initial Study/Notice of Preparation and Environmental Checklist Form

I. PROJECT INFORMATION

1. PROJECT TITLE

UCLA Northwest Housing Infill Project and Long Range Development Plan Amendment

2. LEAD AGENCY NAME AND ADDRESS

The Regents of the University of California 1111 Franklin Street, 12th Floor Oakland, California 94607

3. CONTACT PERSON AND CUSTODIAN OF THE ADMINISTRATIVE RECORD FOR THIS PROJECT

Tova Lelah, Assistant Director University of California, Los Angeles Capital Programs, Environmental Planning 1060 Veteran Avenue Los Angeles, CA 90095-1365 (310) 206-5482

4. PROJECT LOCATION

University of California, Los Angeles Los Angeles, California 90095 (Refer to Exhibits 1 and 2)

5. PROJECT SPONSOR'S NAME AND ADDRESS

University of California, Los Angeles Capital Programs, Environmental Planning 1060 Veteran Avenue Los Angeles, California 90095-1365

II. PROJECT DESCRIPTION

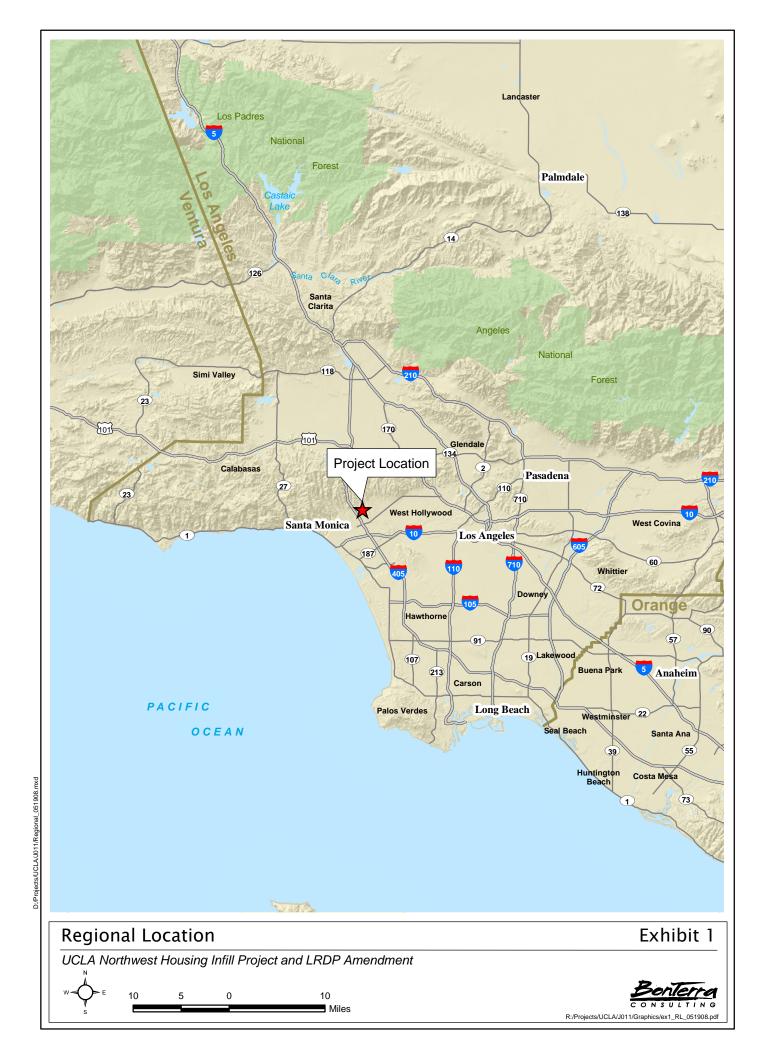
1. INTRODUCTION

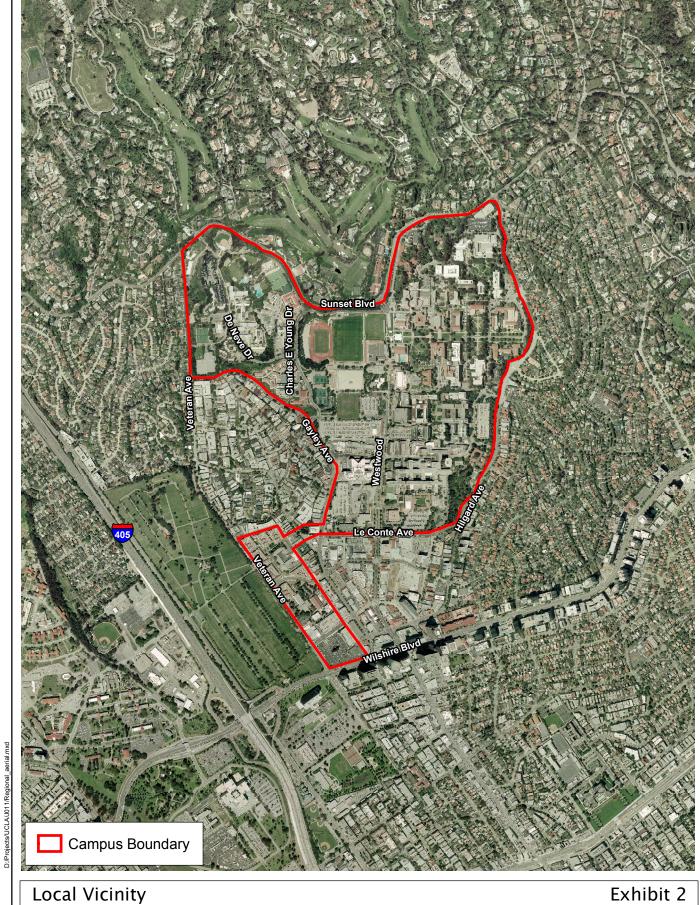
The University of California is the Lead Agency responsible for preparing an environmental impact report (EIR) for the proposed actions relating to the proposed Northwest Housing Infill Project (NHIP) and a related amendment to the 2002 Long-Range Development Plan (LRDP Amendment). The EIR will be prepared in accordance with the California Environmental Quality Act (CEQA), as amended (*Public Resources Code*, Section 21000-21178), the CEQA Guidelines (*California Code of Regulations*, Title 4, Chapter 14, Sections 15000–15387), and the *University of California Procedures for the Implementation of CEQA*.

This Initial Study (IS) presents a description of the proposed NHIP and proposed amendment to the 2002 LRDP (hereafter referred to as the proposed "LRDP Amendment"), an identification of the actions required for project approval, and a preliminary evaluation of the probable environmental effects anticipated upon project implementation to inform preparation of the Draft EIR. Together with the Notice of Preparation (NOP) and the Environmental Checklist Form, the IS will be distributed to any responsible agencies, trustee agencies, and interested parties, as required by CEQA, to solicit comments on the scope of the environmental analysis.

The Draft EIR will provide a project-level analysis for the proposed NHIP in accordance with Section 15161 of the CEQA Guidelines, as well as a program-level evaluation of the proposed LRDP Amendment (inclusive of the proposed NHIP) in accordance with Section 15168 of the CEQA Guidelines.

2. SURROUNDING LAND USES/ENVIRONMENTAL SETTING


The University of California, Los Angeles (UCLA) campus is located in the community of Westwood in the City of Los Angeles, approximately 12 miles northwest of downtown Los Angeles (refer to Exhibit 1). The UCLA main campus is generally bound by LeConte Avenue to the south, Gayley Avenue and Veteran Avenue to the west, Sunset Boulevard to the north, and Hilgard Avenue to the east (refer to Exhibit 2). An additional area of the campus (known as the Southwest Campus) is located immediately north of Wilshire Boulevard between Gayley Avenue and Veteran Avenue.


Existing development on the 419-acre campus is organized into eight land use zones with a variety of academic and related uses. Facilities include those dedicated to instruction, research, recreation, housing, medical, and support functions. The campus is primarily bordered by residential land uses, with the exception of Marymount High School to the north, the Westwood Village commercial area to the south, and a section of the Veterans Memorial Cemetery to the west. Development on the UCLA campus is guided by the 2002 LRDP and accompanying EIR that adopted new development square footage allocations for each land use zone, and trip generation and parking caps for the campus through a planning horizon of 2010.

Pursuant to Section 15125(a) of the State CEQA Guidelines, the baseline physical conditions for the EIR analysis will be the setting at the time this NOP is released.

3. PROJECT DESCRIPTION

UCLA proposes to develop additional student housing in the Northwest zone of the campus to help fulfill the unmet need for on-campus bed spaces, as identified in the *UCLA Student Housing Master Plan 2007–2017.* Expanding the undergraduate housing program would allow UCLA to continue its transformation from a predominantly commuter campus to a residential

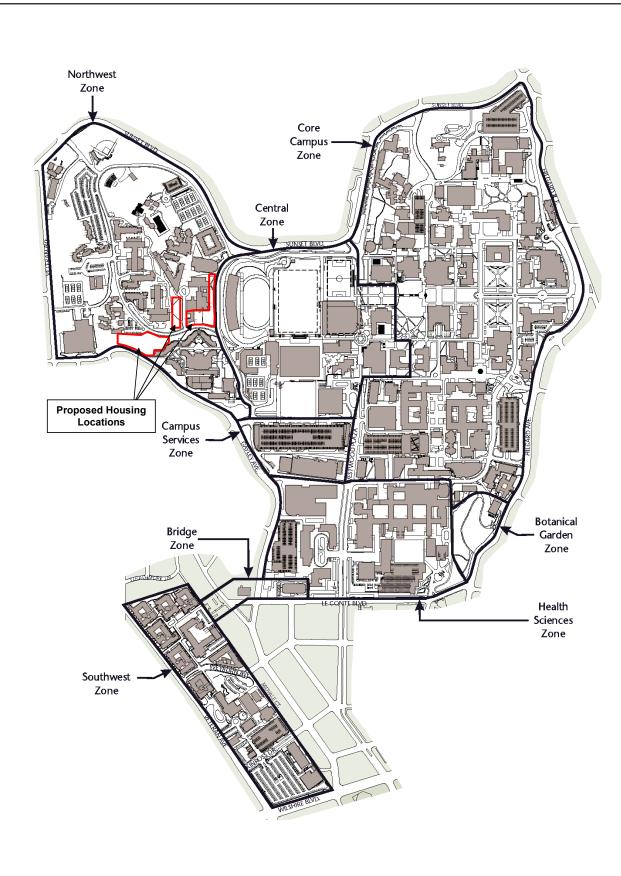
Local Vicinity

UCLA Northwest Housing Infill Project and LRDP Amendment

Northwest Housing Infill Project and LRDP Amendment

campus, and would further the success of the existing on campus housing program in providing a cohesive student learning community.

Because the proposed NHIP was not contemplated under the 2002 Long Range Development Plan (LRDP), an LRDP amendment to provide additional square footage necessary to accommodate the NHIP (550,000 square feet) is required. In addition, because the proposed NHIP has an anticipated completion date of 2013, the LRDP amendment would also adjust projections for total campus population to account for the extended LRDP planning horizon from 2010 to 2013. The proposed NHIP and LRDP Amendment are described further below.


Northwest Housing Infill Project

The proposed NHIP includes the development of four new residence halls and their associated support facilities for undergraduate students on land immediately adjacent to existing residence halls in the Northwest zone of the campus. The NHIP in its entirety would include approximately 550,000 gross square feet (gsf) of new development and would accommodate the following uses: (1) approximately 1,525 student beds (including beds for Resident Assistants); (2) approximately ten apartments for professional staff and faculty-in-residence; (3) an approximate 750-seat dining commons; (4) multipurpose assembly, study, and meeting rooms; (5) a fitness center; and (6) maintenance and support space.

In consideration of existing land constraints in the Northwest zone, the four separate residence buildings would be developed on three infill sites, shown conceptually on the attached campus map (Exhibit 3). Two buildings (referred to as "Upper and Lower De Neve") would be constructed in an undeveloped hillside area west of the existing De Neve Commons and north of Gayley Avenue and are proposed to be nine and seven levels, respectively. The other two buildings (referred to as "Sproul South" and "Sproul West") would be constructed adjacent to the existing Sproul Residence Hall. Sproul South would include six levels for residences (housing) and would be constructed on a three-story podium structure (referred to as the Sproul Complex), which would include primary support services identified above. Sproul West would be constructed as a nine-story residence hall, immediately east of Rieber Hall.

As part of the proposed NHIP, the Office of Residential Life Building would be demolished and occupants would be permanently relocated to the Bradley Hall building. In addition, the space that accommodates the Housing Maintenance Division located in the covered parking area south of Sproul Hall would be renovated as part of the proposed project, and those occupants would be temporarily relocated during construction to the Ornamental Horticulture buildings adjacent to Parking Lot 15.

Vehicular circulation improvements for the proposed NHIP would include: (1) a new vehicular entry for Housing Maintenance service vehicles into the Sproul Complex from Charles E. Young Drive and (2) widening of the existing Sproul Hall loading dock off De Neve Drive from two bays to three. For the proposed Upper De Neve building, a vehicular drop-off with a few short-term parking spaces would be provided adjacent to De Neve Drive. Lower De Neve would include two driveways on the northern side of Gayley Avenue for service vehicle access and removal of a few public parking spaces. Proposed modifications to Charles E. Young Drive and Sunset Village Drive (on-campus roadway) would result in changes to short-term parking and loading and drop-off areas. The proposed NHIP does not include the construction of new long-term parking facilities. Existing pedestrian facilities in proximity to the proposed NHIP would be reconfigured and/or replaced, and new facilities would be constructed to ensure safe and efficient movement of residents within the Northwest zone and to other campus areas.

UCLA NHIP and Campus Boundaries

Exhibit 3

UCLA Northwest Housing Infill Project and LRDP Amendment

The proposed NHIP would include installation of new hardscape and landscape. Additionally, campus utilities (storm drain, water, sewer, electric, natural gas, telecommunication, and cable television) would be extended and/or relocated, as necessary, to serve the new buildings.

During construction, temporary modifications to the existing circulation and parking facilities may be required. This could include, but not be limited to: (1) operation of portions of De Neve Drive and Charles E. Young Drive West as one-way streets; (2) construction staging on existing parking lot(s) in the Northwest zone; and (3) temporary removal of existing on-street parking.

The proposed NHIP would create on-campus housing for the current student population, and no increase in student population would result from the proposed NHIP development. However, an increase in full-time staff to serve the proposed residence halls and support facilities is anticipated. It is estimated that approximately 131 new staff would be employed on campus by 2013 to provide administrative, maintenance, and dining services to the new on-campus residential population.

Phased construction of the proposed NHIP is estimated to begin in mid-2009 with completion in early 2013.

2002 Long-Range Development Plan Amendment

Because the proposed NHIP was not contemplated under the 2002 LRDP, an LRDP Amendment to provide additional square footage necessary to accommodate the NHIP is required. The proposed Amendment would involve an increase of 550,000 square feet of new development entitlement in the Northwest zone. The LRDP Amendment will identify the existing developed campus square footage (approximately 16.8 million square feet of occupied space and 7.6 million square feet of parking structures that provide approximately 24,000 parking spaces) and the remaining development allocation under the 2002 LRDP (1.3 million square feet) available for future campus development. With the exception of the proposed NHIP, specific development projects that may be constructed in the future under the LRDP Amendment are not known, but the total remaining development allocation for each campus zone will be identified. Therefore, the Draft EIR for the LRDP Amendment will serve as a Program EIR for the consideration of subsequent project-specific actions on campus.

In addition, because the proposed NHIP has an anticipated completion date of 2013, the LRDP Amendment will also adjust projections for total campus population to account for the extended LRDP planning horizon from 2010 to 2013. The projected average weekday campus population (students, faculty, staff, and visitors) during the regular session is estimated to increase by approximately 2,780 individuals compared to the 2007–2008 population of approximately 59,700.

The Amendment will not involve any modifications to the previously adopted campus wide vehicle trip generation and parking limits (139,500 average daily trips and 25,169 parking spaces, respectively). Traffic generation from campus uses is estimated based on the total number of parking spaces (not by land use type). The current campus parking inventory consists of approximately 24,072 parking spaces that generate approximately 119,269 average daily vehicle trips, as counted during the fall 2007 cordon count.

4. ANTICIPATED DISCRETIONARY APPROVALS

The Draft EIR will address State, regional, local government, and University approvals needed for construction and/or operation of the proposed NHIP and LRDP Amendment, whether or not such actions are known at this time or are explicitly listed in this Initial Study. The approvals that are anticipated to be considered by the University of California Board of Regents include, but are not necessarily limited to:

- Certification of the EIR
- Approval of the Northwest Housing Infill Project
- Approval of the 2002 LRDP Amendment

Another public agency whose approval may be required is the City of Los Angeles Department of Transportation for NHIP project features along Gayley Avenue.

5. ESTIMATED ENVIRONMENTAL REVIEW SCHEDULE

Pursuant to the CEQA Guidelines, the NOP/IS will be circulated for a 30-day public review. During the NOP/IS public review period, UCLA will conduct a public information and EIR scoping meeting. Following receipt of comments on the NOP/IS, the Draft EIR will be prepared. It is anticipated that the Draft EIR will be available for public review by summer or fall 2008. A 45-day public review period will be provided, after which responses to comments received will be prepared. A public hearing will be held by UCLA during the 45-day review period. The project will subsequently be submitted to the Regents of the University of California for its consideration in early 2009.

III. ENVIRONMENTAL FACTORS POTENTIALLY AFFECTED

at least one impact that is a "Potentially Significant Impact" as indicated by the checklist on the following pages. Aesthetics ☐ Agriculture Resources Air Quality ⊠ Biological Resources Cultural Resources ☐ Geology/Soils ☐ Hazards & Hazardous Materials □ Land Use/Planning ☐ Mineral Resources Noise Population/Housing □ Public Services □ Recreation ☐ Transportation/Traffic □ Utilities/Service Systems Mandatory Findings of Significance 1. **DETERMINATION**: (To be completed by the Lead Agency.) On the basis of this initial evaluation: I find that the proposed project COULD NOT have a significant effect on the environment, and a NEGATIVE DECLARATION will be prepared. I find that although the proposed project could have a significant effect on the environment, there will not be a significant effect in this case because revisions in the project have been made by or agreed to be the project proponent. A MITIGATED NEGATIVE DECLARATION will be prepared. I find that the proposed project MAY have a significant effect on the environment, and an **ENVIRONMENTAL IMPACT REPORT is required.** I find that the proposed project MAY have a "potentially significant impact" or "potentially significant unless mitigated" impact on the environment, but at least one effect 1) has been adequately analyzed in an earlier document pursuant to applicable legal standards, and 2) has been addressed by mitigation measures based on the earlier analysis as described on attached sheets. An ENVIRONMENTAL IMPACT REPORT is required, but it must analyze only the effects that remain to be addressed. I find that although the proposed project could have a significant effect on the environment, because al potentially significant effects (a) have been analyzed adequately in an earlier EIR or NEGATIVE DECLARATION pursuant to applicable standards, and (b) have been avoided or mitigated pursuant to that earlier EIR or NEGATIVE DECLARATION, including revisions or mitigation measures that are imposed upon the proposed project, nothing further is required. Lova Lelah May 28,2008

The environmental factors checked below would be potentially affected by this project, involving

2. EVALUATION OF ENVIRONMENTAL IMPACTS:

This Initial Study serves to identify the potential environmental impacts that will be addressed in the EIR for the Proposed NHIP and LRDP Amendment. Appendix G of the CEQA Guidelines provides only a suggested format to use when preparing an Initial Study. The University of California has adopted a slightly different format with respect to the response column headings, while still addressing the Appendix G checklist questions that are relevant to each environmental issue area. The two columns in this Initial Study checklist include:

- Impact to be Analyzed in EIR. This heading applies to those environmental issues, which may or may not be significant that will be analyzed in the EIR. As appropriate, the analysis will include a program level analysis for the LRDP Amendment, a project-level analysis for the NHIP, and a cumulative-level analysis for potential effects of LRDP implementation (including the NHIP) combined with known and reasonably foreseeable future growth in the surrounding area.
- **No Additional Analysis Required.** This heading applies where the proposed LRDP Amendment, including the NHIP, would have no effect on the particular environmental issue, and no additional analysis, beyond that provided in this Initial Study is required.

A list of references used in the preparation of this Initial Study is included in Section IV of this document.

Environmental Checklist and Evaluation

1. Aesthetics

		LRDP Amendment		NHIP		
		Impact to be Analyzed in EIR	No Additional Analysis Required	Impact to be Analyzed in EIR	No Additional Analysis Required	
(b)	Would the project have a substantial adverse effect on a scenic vista?					

Discussion

Views of scenic vistas are generally described in two ways: "panoramic views" (visual access to a large geographic area, for which a field of view can be wide and extend into the distance) and "focal views" (visual access to a particular object, scene, setting, or feature of interest). Following is discussion of panoramic and focal views as they relate to the proposed NHIP and LRDP Amendment projects.

Panoramic Views

Panoramic views are typically associated with vantage points that provide a sweeping geographic orientation not commonly available. Examples of panoramic views include urban skylines, valleys, mountain ranges, or large bodies of water. Views of the Santa Monica Mountains may be available from some of the taller buildings along Wilshire Boulevard and within the campus itself. However, from many of these vantage points, views are at least partially blocked by surrounding development. In addition, visible portions of the Santa Monica Mountains are developed with residential and commercial land uses. There are no panoramic

views of a pristine undeveloped mountain range from the UCLA campus. However, it should be noted that development under the LRDP Amendment could provide additional view opportunities of the Santa Monica Mountains through the provision of additional buildings on campus, including the proposed NHIP. Development under the LRDP Amendment, and the proposed NHIP, would not result in a substantial adverse effect on panoramic views toward the Santa Ana Mountains through continued implementation of campus design policies identified below.

While views of the campus would not typically be considered an urban skyline, the campus is unique when viewed from off-campus locations due to the predominance of landscaping in an otherwise urban area, and the general consistency of the architectural palette. Panoramic views of the campus are held from some of the high-rise buildings along the Wilshire Corridor, from other more distant locations, such as the Getty Museum, as well as from residences at higher elevations to the north of Sunset Boulevard. Any future development on campus associated with the LRDP Amendment, would be subject to existing campus programs, practices, and procedures included below that require new landscaping be provided with future projects (PP 4.1-2[d]) and existing landscaping be maintained to the extent feasible (PPs 4.1-1[b] and 4.1-2[e]). This would ensure that views from these vantage points are not substantially altered. Additionally, PP 4.1-1(a) requires individual projects be reviewed during the design process relative to building mass and form, building proportion, and roof profile to ensure preservation and enhancement of the visual character and quality of the campus and the surrounding area. 2002 LRDP Final EIR PP 4.1-1(c) requires that new building projects be sited to ensure compatibility with existing uses and the height and massing of adjacent facilities. Specific to the proposed NHIP, the line of sight from distant vantage points with proposed NHIP buildings would be similar to existing conditions since the finished elevation of the proposed structures would be similar to existing adjacent structures including the DeNeve Commons, Sproul and Reiber Residence Halls.

There are no panoramic views of large bodies of waters or valleys from any location on campus. Development of additional academic and support uses associated with the proposed NHIP and LRDP Amendment would not alter panoramic views to or from the campus. No impacts would occur to panoramic views and no mitigation is required with implementation of the existing campus programs, practices, and procedures from the 2002 LRDP Final EIR identified below. No further analysis of this issue (panoramic views) is required in the Draft EIR for the proposed NHIP or LRDP Amendment.

- PP 4.1-1(a) The design process shall evaluate and incorporate, where appropriate, factors including, but not necessarily limited to, building mass and form, building proportion, roof profile, architectural detail and fenestration, the texture, color, and quality of building materials, focal views, pedestrian and vehicular circulation and access, and the landscape setting to ensure preservation and enhancement of the visual character and quality of the campus and the surrounding area. Landscaped open space (including plazas, courts, gardens, walkways, and recreational areas) shall be integrated with development to encourage use through placement and design.
- PP 4.1-1(b) The Mildred E. Mathias Botanical Garden, Franklin D. Murphy Sculpture Garden, Dickson Plaza, Janss Steps, Stone Canyon Creek area, Meyerhoff Park, Wilson Plaza, Bruin Plaza, and the University Residence shall be maintained as open space preserves during the 2002 LRDP planning horizon.

- PP 4.1-1(c) New building projects shall be sited to ensure compatibility with existing uses and the height and massing of adjacent facilities.
- PP 4.1-2(d) Projects proposed under 2002 LRDP shall include landscaping.
- PP 4.1-2(e) The western, northern, and eastern edges of the main campus shall include a landscaped buffer to complement the residential uses of the surrounding community and to provide an attractive perimeter that effectively screens and enhances future development.

Focal Views

Focal views include views of natural landforms, public art/signs, and visually important structures, such as historic buildings. Focal views on campus would include views of outdoor public art spaces, including the Franklin D. Murphy Sculpture Garden and the Rolfe Sculpture Courtyard, as well as historic buildings, such as Royce Hall, Powell Library, Haines Hall, Kinsey Hall, and other structures located in the campus historic core (in the Core Campus zone), which contains the first major campus buildings. There are no significant natural landforms on campus.

The LRDP is a general land use plan intended to guide the development on campus and with the exception of the proposed NHIP does not articulate specific development projects. Therefore, besides the proposed NHIP there are no specific projects to evaluate for focal views. The Draft EIR for the proposed NHIP and LRDP Amendment will include an evaluation of potential impacts to focal views from neighboring off-campus uses. Specifically, the analysis for the proposed NHIP will address the existing view of the Northwest zone from the top of Janss Steps (the original 87-step entrance to the UCLA campus).

		LRDP Amendment		NH	IP
		Impact to be Analyzed in EIR	No Additional Analysis Required	Impact to be Analyzed in EIR	No Additional Analysis Required
(b)	Would the project substantially damage scenic resources, including, but not limited to, trees, rock outcroppings, and historic buildings within a state scenic highway?				

Discussion

The UCLA Campus is located in the City of Los Angeles in an area that is predominantly urban in character. No State-designated scenic highways are located near the UCLA campus (Caltrans 2007).

Although the *Wilshire-Westwood Scenic Corridor Specific Plan* (City of Los Angeles 2005) component of the Los Angeles Citywide General Plan designates a portion of Wilshire Boulevard as a scenic corridor, this designation does not extend to the Wilshire Boulevard frontage of UCLA between Veteran Avenue and Gayley Avenue. The designated corridor terminates just east of Glendon Avenue.

Sunset Boulevard, which extends along the northern boundary of the UCLA campus, is identified as a scenic highway in the Transportation Element of the Los Angeles Citywide General Plan (1997 amendment); however, the City has not adopted a Corridor Plan for Sunset

Boulevard. In the absence of an adopted Corridor Plan, the Transportation Element contains Scenic Highways Guidelines to guide future development that may affect a scenic highway. These guidelines cover specific roadway design, earthwork/grading activities, and planting/landscaping requirements within the public right-of-way; use of signs and outdoor advertising; and the placement of utilities. Development under the proposed LRDP Amendment would not conflict with the Scenic Highways Guidelines for Sunset Boulevard. Additionally, as identified previously, PP 4.1-2(d) from the 2002 LRDP Final EIR requires projects under the 2002 LRDP to include landscaping, and PP 4.1-2(e) requires that the northern edge of the main campus (along Sunset Boulevard) include a landscaped buffer to complement the residential uses of the surrounding community and to provide an attractive perimeter that effectively screens and enhances future development.

At its closest point, Sunset Boulevard is approximately 400 feet north of the proposed NHIP site. Views of the NHIP site from Sunset Boulevard are obstructed by existing mature landscaping along the campus perimeter and De Neve Drive, intervening topography, and existing structures. The landscaping, including mature trees, along Sunset Boulevard would not be removed or otherwise be impacted as a result of the proposed NHIP. Development of the proposed NHIP would not conflict with the Scenic Highways Guidelines for Sunset Boulevard.

The campus does not contain or otherwise have views of rock outcroppings. Potential impacts to trees and historic buildings are evaluated in Biological Resources and Cultural Resources sections (Sections 4 and 5), respectively, of this Initial Study. However, because there are no designated State scenic highways located near UCLA, no impacts to State scenic resources would occur and no mitigation is required. No further analysis of this issue is required in the Draft EIR for the proposed NHIP or LRDP Amendment.

		LRDP Amendment No Impact to be Analyzed in EIR Analysis Required		NF Impact to be Analyzed in EIR	No Additional Analysis Required
(c)	Would the project substantially degrade the existing visual character or quality of the site and its surroundings?				

Discussion

Development associated with buildout of the LRDP Amendment could occur on previously undeveloped sites, or within areas characterized by lower development density. Therefore, the Draft EIR will evaluate the potential effects of future development on the general character of those settings, as well as the components of visual settings (such as mature landscaping) and the potential for visual incongruity between proposed campus uses and adjacent land uses in the city of Los Angeles. While the Wilshire-Westwood Scenic Corridor does not extend to the Wilshire Boulevard frontage of UCLA (between Veteran Avenue and Gayley Avenue), the campus recognizes that portions of the Southwest zone are visually associated with the Wilshire Corridor. Therefore, the Draft EIR will evaluate visual consistency between neighboring uses and potential campus development along Wilshire Boulevard.

The LRDP Amendment includes an increase in the remaining entitlement of 550,000 gsf in the Northwest zone to accommodate the proposed NHIP. The proposed NHIP would consist of four new residence halls and associated support facilities, and relocation of the Office of Residential Life within the Northwest zone of the campus. The Draft EIR will evaluate the proposed NHIP's

potential impacts to the visual character and quality of the site and its surroundings from on- and off-campus locations. Relevant campus programs, practices, and procedures (PPs) and mitigation measures (MMs) from the 2002 LRDP Final EIR will be identified as appropriate and/or additional PPs and MMs presented, as needed.

		LRDP Amendment		NHIP		
		Impact to be Analyzed in EIR	No Additional Analysis Required	Impact to be Analyzed in EIR	No Additional Analysis Required	
(d)	Would the project create a new source of substantial light or glare which would adversely affect day or nighttime views in the area?					

Discussion

New development under the LRDP Amendment may include locations near the perimeter of the campus, as well as areas that are currently undeveloped. This development could create new sources of light from exterior building illumination, lighted recreation/athletic facilities, and parking lots/structures, as well as glare from reflective building surfaces or headlights from additional vehicular traffic. Although it is anticipated that light and glare impacts would be reduced through implementation of standard directional nighttime lighting and non-reflective building materials, this issue will be addressed in the Draft EIR for the LRDP Amendment and the proposed NHIP. Additionally, the Draft EIR will evaluate potential impacts related to the shade and shadow effects that the proposed NHIP could have on surrounding land uses. Relevant PPs and MMs from the 2002 LRDP Final EIR will be identified as appropriate and/or additional PPs and MMs presented, as needed.

2. Agricultural Resources

In determining whether impacts to agricultural resources are significant environmental effects, lead agencies may refer to the California Agricultural Land Evaluation and Site Assessment Model (1997) prepared by the California Dept. of Conservation as an optional model to use in assessing impacts on agriculture and farmland.

		LRDP Am Impact to be Analyzed in EIR	endment No Additional Analysis Required	NH Impact to be Analyzed in EIR	No Additional Analysis Required
(a)	Would the project convert Prime Farmland, Unique Farmland, or Farmland of Statewide Importance (Farmland), as shown on the maps prepared pursuant to the Farmland Mapping and Monitoring Program of the California Resources Agency, to nonagricultural use?				
(b)	Would the project conflict with existing zoning for agricultural use, or a Williamson Act contract?				
(c)	Would the project involve other changes in the existing environment, which, due to their location or nature, could result in conversion of Farmland, to nonagricultural use?				

Discussion

The soils on campus do not have the qualities for listing as Prime Farmland, Unique Farmland, or Farmland of Statewide Importance according to the Soil Candidate Listing for Prime Farmland of Statewide Importance, Los Angeles County, which was prepared by the U.S. Department of Agriculture Natural Resources Conservation Service (NRCS) in 1995. It should also be noted that the UCLA campus is within an area, which falls outside of the NRCS soil survey and is not mapped as part of the California Department of Conservation Farmland Mapping and Monitoring Program (CDC LRP 2006).

No farmland or agricultural activity exists on or in the vicinity of campus, and no portion of the campus is zoned for agricultural use or is under a Williamson Act Contract. Therefore, development under the LRDP Amendment, including the proposed NHIP, would not convert or result in the conversion of agricultural uses to nonagricultural uses. The LRDP Amendment, including the NHIP, would have no impact on agricultural resources and no further analysis of this issue is required in the Draft EIR for the proposed NHIP or LRDP Amendment.

3. Air Quality

Where available, the significance criteria established by the applicable air quality management or air pollution control district may be relied upon to make the following determinations.

		LRDP Am Impact to be Analyzed in EIR	endment No Additional Analysis Required	NH Impact to be Analyzed in EIR	No Additional Analysis Required
(a)	Would the project conflict with or obstruct implementation of the applicable air quality plan?				
(b)	Would the project violate any air quality standard or contribute substantially to an existing or projected air quality violation?				
(c)	Would the project result in a cumulatively considerable net increase of any criteria pollutant for which the project region is in nonattainment under an applicable federal or state ambient air quality standard (including releasing emissions that exceed quantitative thresholds for ozone precursors)?				
(d)	Would the project expose sensitive receptors to substantial pollutant concentrations (caused by criteria pollutant emissions)?				

Discussion

The UCLA campus is located in the South Coast Air Basin (SoCAB). Implementation of the proposed NHIP and LRDP Amendment would result in additional on-campus development, which would generate short-term, construction-related and long-term operational air emissions of criteria pollutants that have the potential to affect local and regional air quality. Further evaluation in the Draft EIR is required to determine whether the proposed NHIP and/or LRDP Amendment will conflict with the adopted South Coast Air Quality Management Plan (AQMP). An air quality analysis will be conducted for the Draft EIR to determine if the mobile and stationary source emissions associated with the Proposed NHIP and/or LRDP Amendment would violate any air quality standard; contribute substantially to an existing or projected air quality violation; or cause a considerable cumulative net increase of any criteria pollutant for which the project region is in non-attainment. The air quality analysis will also determine if the potential mobile and stationary air emissions associated with the Proposed NHIP and/or LRDP Amendment could result in exposure of sensitive receptors (including schools, hospitals, day care centers, and residential use) to significant concentrations of air pollutants. These issues will be addressed in the Draft EIR. Relevant PPs and MMs from the 2002 LRDP Final EIR will be identified as appropriate and/or additional PPs and MMs presented, as needed.

Refer to response to Item 17.b for a discussion of green house gas emissions.

		LRDP Amendment		NHIP		
		Impact to be Analyzed in EIR	No Additional Analysis Required	Impact to be Analyzed in EIR	No Additional Analysis Required	
(e)	Would the project expose sensitive receptors to substantial pollutant concentrations (caused by toxic air emissions)?					

Mechanical equipment that may be proposed under the LRDP Amendment for new facilities (e.g., boilers, laboratories, internal combustion engines, gasoline dispensers, and cogeneration gas turbines) and equipment for proposed facilities associated with the NHIP (primarily internal combustion engines for emergency diesel generators) could generate toxic air contaminants that could potentially affect sensitive receptors in proximity to existing and proposed uses. The Draft EIR will include a Health Risk Assessment (HRA) that will analyze whether implementation of the projects would generate such contaminants and whether such contaminants could potentially result in a health risk to sensitive receptors. Relevant PPs from the 2002 LRDP Final EIR will be identified as appropriate and/or additional PPs and MMs presented, as needed.

		LRDP Amendment		NHIP		
		Impact to be Analyzed in EIR	No Additional Analysis Required	Impact to be Analyzed in EIR	No Additional Analysis Required	
(f)	Would the project create objectionable odors affecting a substantial number of people?					

Discussion

The proposed NHIP and LRDP Amendment are not expected to create unusual or objectionable odors. No industrial facilities are proposed. Construction activities occurring with the LRDP Amendment and the proposed NHIP would generate odors associated with the operation of construction vehicles (i.e., diesel exhaust) and the application of architectural coatings. These odors are typical of urbanized environments and would be subject to construction and air quality regulations, including proper maintenance of machinery to minimize engine emissions. These emissions would occur during daytime hours and would be isolated to the immediate vicinity of construction activities. In addition, these emissions would be temporary, and would quickly disperse into the atmosphere.

Potential airborne odors may result from cooking activities associated with operation of the proposed NHIP and future uses to be developed under the LRDP Amendment. These odors would be similar to existing housing and food service uses on the campus, including those in the Northwest zone, and would be confined to the immediate vicinity of the new buildings. The other potential source of odors would be new trash receptacles associated with development under the LRDP Amendment, including the proposed NHIP. Consistent with current campus operations, all new trash receptacles would have lids and be emptied on a regular basis to prevent potentially objectionable odors from developing. Any future uses on site that may emit steam are required to secure appropriate permits from the South Coast Air Quality

Management District (SCAQMD). Compliance with SCAQMD rules and permit requirements would ensure that no objectionable odors would be created.

The proposed NHIP and LRDP Amendment would not generate objectionable odors affecting a substantial number of people and no mitigation is required. No further analysis of this issue is required in the Draft EIR for the proposed NHIP or LRDP Amendment.

4. Biological Resources

		LRDP Am Impact to be Analyzed in EIR	Analyzed Analysis		No Additional Analysis Required
(a)	Would the project have a substantial adverse effect, either directly or through habitat modifications, on any species identified as a candidate, sensitive, or special status species in local or regional plans, policies, or regulations, or by the California Department of Fish and Game or U.S. Fish and Wildlife Service?				

Discussion

The campus is a densely developed site with a high level of human activity. The majority of vegetation on campus consists primarily of ornamental landscaping, including extensive mature trees, shrubs, turf, and groundcover on slopes and in areas between buildings. Based on a site visit conducted by BonTerra Consulting on May 7, 2008, a small, isolated area containing patches of coastal sage scrub and chaparral habitat resources does occur in the northwestern portion of the campus west of Parking Lot 11. This isolated area also contains scattered coast live oak and Mexican elderberry trees with patches of toyon and laurel sumac. While this isolated area would have a very low potential to provide suitable habitat for any sensitive wildlife species, it would have some limited potential to support sensitive plant species. Based on review of the California Department of Fish and Game's (CDFG) California Natural Diversity Database on May 8, 2008, Plummer's mariposa lily (Calochortus plummerae, CNPS 1B.2), southern tarplant (Centromadia parryi, CNPS 1B.1), and Parish's brittlescale (Atroplex parishii, CNPS 1B.1) have potential to occur within this small, isolated area. No plant or wildlife species listed by the CDFG or the United States Fish and Wildlife Service (USFWS) as endangered or threatened were identified and their potential to occur is extremely low.

The LRDP is a general land use plan intended to guide the pattern of development on campus and does not identify specific projects or structures other than those proposed as part of the NHIP. The Draft EIR will include a discussion of the potential for future projects under the LRDP Amendment to impact habitat for sensitive plant species in the area west of Parking Lot 11. Relevant PPs and MMs will be identified, as necessary. It should be noted that the proposed NHIP does not include any development in this area.

The mature trees and shrubs on campus also provide potential suitable nesting and breeding habitat for raptors as well as other resident and migratory bird species. The Draft EIR will include an evaluation of the potential effects of the proposed NHIP and LRDP Amendment on roosting, nesting, and foraging opportunities for protected species (such as raptors and migratory birds), as well as common wildlife species that are associated with highly developed areas.

The vegetation within the proposed NHIP site primarily consists of landscaped areas that are dominated by mature horticultural tree, shrub and ground cover plant species. The mature tree species include pines, eucalyptus, magnolia, palm, bay, and Brazilian pepper. Understory plant species primarily include oleander, cape honeysuckle, ivy, jasmine, and turf grass. An analysis of potential habitat removal, loss, and fragmentation from development of the proposed NHIP (including the removal of mature trees) will be included in the Draft EIR. Relevant PPs from the 2002 LRDP Final EIR will be identified as appropriate and additional PPs and/or MMs presented, as needed.

		LRDP Am Impact to be Analyzed	endment No Additional Analysis	NH Impact to be Analyzed	No Additional Analysis
		in EIR	Required	in EIR	Required
(b)	Would the project have a substantial adverse effect on any riparian habitat or other sensitive natural community identified in local or regional plans, policies, or regulations or by the California Department of Fish and Game or US Fish and Wildlife Service?				

Discussion

The portion of the campus drainage system that runs south of Corinne A. Seeds University Elementary School, north of the Anderson Graduate School of Management and west of Royce Drive, includes a small segment of Stone Canyon Creek. The creek drains to an underground box culvert in the vicinity of the Collins Center of the Graduate School of Management. This segment of the creek contains native riparian habitat (mature coast live oak and California sycamore) as well as mature non-native riparian species and other tree species.

The LRDP is a general land use plan intended to guide the pattern of development on campus and does not identify specific projects or structures other than those proposed as part of the NHIP. The LRDP Amendment does not propose any long-term or permanent alterations to Stone Canyon Creek; however, the Draft EIR will include an evaluation of potential impacts to riparian habitat that may result from implementation of development under the LRDP Amendment. PPs and MMs will be presented, as needed.

There is no riparian habitat within the proposed NHIP site and no further analysis of this issue is required in the Draft EIR for the proposed NHIP.

		LRDP Am Impact to be Analyzed in EIR	endment No Additional Analysis Required	NH Impact to be Analyzed in EIR	No Additional Analysis Required
(c)	Would the project have a substantial adverse effect on federally protected wetlands as defined by Section 404 of the Clean Water Act (including, but not limited to, marsh, vernal pool, coastal, etc.) through direct removal, filling, hydrological interruption, or other means?				

As noted above, a small segment of Stone Canyon Creek occurs within the northeastern portion of the campus and contains bed, bank, stream resources, and native riparian trees (i.e., coast live oak and California sycamore). However, no wetland resources were identified during a preliminary evaluation of this area by BonTerra Consulting on May 7, 2008. This assessment was based on the absence of hydrophytic vegetation as defined by the *National List of Vascular Plants that Occur in Wetlands: National Summary* (Reed, 1988), one of the three mandatory wetlands criteria. Since no wetlands are present in Stone Canyon Creek, the LRDP Amendment does not propose development in this area, and there are no wetlands within the proposed NHIP site, no further analysis of this issue is required in the Draft EIR.

		LRDP Am Impact to be Analyzed in EIR	Analyzed Analysis		No Additional Analysis Required
(d)	Would the project interfere substantially with the movement of any native resident or migratory fish or wildlife species or with established native resident or migratory wildlife corridors, or impede the use of native wildlife nursery sites?				

Discussion

The campus is extensively developed and does not include any natural stream courses that would provide suitable habitat for native fish species. As described in Item 4a above, existing landscaping on campus consists primarily of ornamental landscaping, including mature trees, shrubs, turf and groundcover. Existing landscaping on campus provides limited native habitat value due to extensive human activity and alteration. The campus is highly developed and completely surrounded by residential, commercial, and institutional land uses with no connection to any natural areas that would serve as a wildlife corridor/movement area. As such, the campus does not contain suitable habitat that would provide potential for a wildlife corridor and associated movement or regional connectivity to core wildlife movement and use areas. However, the mature trees and shrubs on campus may provide opportunities for breeding and nesting, roosting, and foraging by resident and migratory bird species. The Draft EIR will evaluate the potential effects from additional development associated with the proposed NHIP and LRDP Amendment on nesting, roosting, and foraging opportunities by resident and migratory bird species. Relevant PPs and MMs from the 2002 LRDP Final EIR will be identified as appropriate and/or additional PPs and MMs presented, as needed.

		LRDP Amendment		NHIP	
		Impact to be Analyzed in EIR	No Additional Analysis Required	Impact to be Analyzed in EIR	No Additional Analysis Required
(e)	Would the project conflict with any local policies or ordinances protecting biological resources, such as a tree preservation policy or ordinance?				

UCLA is a part of the University of California, a constitutionally created unit of the State of California. As a State entity, the University of California is not subject to municipal plans, policies, and regulations, such as the County and City General Plans or local ordinances. However, the Draft EIR will evaluate the consistency of the LRDP Amendment, including the proposed NHIP, with federal and State plans, policies, and regulations, such as the Federal Migratory Bird Treaty Act.

		LRDP Am Impact to be Analyzed in EIR	endment No Additional Analysis Required	NH Impact to be Analyzed in EIR	No Additional Analysis Required
(f)	Would the project conflict with the provisions of an adopted Habitat Conservation Plan, Natural Community Conservation Plan, or other approved local, regional, or state habitat conservation plan?				

Discussion

The UCLA campus is not located within an area designated for an adopted Habitat Conservation Plan, Natural Community Conservation Plan, or other approved habitat conservation plan. No impacts would occur and no further analysis of this issue is required in the Draft EIR for the proposed NHIP or LRDP Amendment.

5. Cultural Resources

		LRDP Amendment		NHIP	
		Impact to be Analyzed in EIR	No Additional Analysis Required	Impact to be Analyzed in EIR	No Additional Analysis Required
(a)	Would the project cause a substantial adverse change in the significance of a historical resource as defined in 15064.5?				

Discussion

The LRDP Amendment does not specifically propose to demolish or substantially alter campus structures that have been determined to be eligible or potentially eligible for inclusion in the National Register of Historic Places or the California Register of Historic Resources. However, the Draft EIR will evaluate the potential effects to these structures that may occur with implementation of the LRDP Amendment. Relevant PPs from the 2002 LRDP Final EIR will be identified as appropriate and additional PPs and/or MMs presented, as needed.

The proposed NHIP would involve demolition of the Office of Residential Life Building (ORL) and a complete deconstruction/renovation of the space that accommodates the Housing Maintenance Division located in the covered parking area south of Sproul Hall. However, the ORL building was built in 1992 and Sproul Hall was built in 1960, thus, neither is eligible or potentially eligible for inclusion in the National Register of Historic Places or the California Register of Historic Resources. No impacts to historic resources would result with implementation of the proposed NHIP and no mitigation is required. No further analysis of this issue is required in the Draft EIR for the proposed NHIP.

		LRDP Am Impact to be Analyzed in EIR	endment No Additional Analysis Required	NH Impact to be Analyzed in EIR	No Additional Analysis Required
(b)	Would the project cause a substantial adverse change in the significance of an archaeological resource pursuant to 15064.5?				

Discussion

The 2002 LRDP Final EIR documented that no archaeological resources have been recovered or recorded on the campus to date. However, development under the proposed NHIP and LRDP Amendment would involve excavation activities. Although it is not anticipated, there is a potential to damage previously unidentified archaeological resources. This issue will be evaluated in the Draft EIR. Relevant PPs from the 2002 LRDP Final EIR will be identified as appropriate and additional PPs and/or MMs presented, as needed.

		LRDP Amendment		NHIP	
		Impact to be Analyzed in EIR	No Additional Analysis Required	Impact to be Analyzed in EIR	No Additional Analysis Required
(c)	Would the project directly or indirectly destroy a unique paleontological resource or site or unique geologic feature?				

The 2002 LRDP Final EIR documented that no fossils have been documented on the campus. However, nearby rock area units identical to those that underlie the campus have yielded significant paleontological specimens in the past. Therefore, the potential exists for the discovery of paleontological resources during excavation activities for projects associated with the LRDP Amendment, including the proposed NHIP. This issue will be evaluated in the Draft EIR. Relevant PPs and MMs from the 2002 LRDP Final EIR will be identified as appropriate and additional PPs and/or MMs presented, as needed.

		LRDP Amendment		NHIP	
		Impact to be Analyzed in EIR No Additional Analysis Required		Impact to be Analyzed in EIR	No Additional Analysis Required
(d)	Would the project disturb any human remains, including those interred outside of formal cemeteries?				

Discussion

As described in Section 4.4 (Cultural Resources) of the 2002 LRDP Final EIR, no formal cemeteries are known to have occupied the UCLA campus, so any human remains encountered would likely pre-date modern history and represent an archaeological resource. As described above in response 5(b), no archaeological materials, including human burials, have been discovered on the campus. Although the potential still exists for such resources to be present and for excavation during construction activities to disturb these resources, the likelihood of discovery of such resources is extremely low and this impact is, therefore, considered to be less than significant.

Additionally, the *California Health and Safety Code* (Section 7050.5) states that if human remains are discovered on site, no further disturbance shall occur until the County Coroner has made a determination of origin and disposition pursuant to the *Public Resources Code* (Section 5097.98). As adherence to State regulations is required for all development, no additional mitigation is required in the unlikely event human remains are discovered on site and potential impacts would be less than significant. As required by law, 2002 LRDP Final EIR PP 4.4-5, which would continue to apply to development under the LRDP Amendment (including the proposed NHIP), reflects provisional measures to enforce in the event that human remains are discovered on campus. This PP would ensure that this impact remains less than significant. No further analysis of this issue is required in the Draft EIR for the proposed NHIP and LRDP Amendment.

PP 4.4-5

In the event of the discovery of a burial, human bone, or suspected human bone, all excavation or grading in the vicinity of the find shall halt immediately, the area of the find shall be protected, and the University immediately shall notify the Los Angeles County Coroner of the find and comply with the provisions of Public Resources Code Section 5097 with respect to Native American involvement, burial treatment, and re-burial, if necessary.

6. Geology and Soils

			LRDP Am Impact to be Analyzed in EIR	endment No Additional Analysis Required	NH Impact to be Analyzed in EIR	No Additional Analysis Required
(a)	pote	uld the project expose people or structures to ential substantial adverse effects, including the risk of injury, or death involving:				
	(i)	Rupture of a known earthquake fault, as delineated on the most recent Alquist-Priolo Earthquake Fault Zoning Map issued by the State Geologist for the area or based on other substantial evidence of a known fault? Refer to Division of Mines and Geology Special Publication 42.				

Discussion

The UCLA campus is not located within an Alquist-Priolo Earthquake Fault Zone as established by the California Department of Conservation, California Geologic Survey, and no known active or potentially active faults traverse the campus (Bryant et al. 2002). Because ground rupture generally only occurs at the location of a fault and because no active or potentially active faults are known on campus, the campus would not be subject to a substantial risk of fault (ground surface) ruptures. The potential for ground fault rupture to occur on campus is remote. As such, this issue will not be addressed further in the Draft EIR for the proposed NHIP and LRDP Amendment.

(ii)	Strong seismic ground shaking?		
(iii)	Seismic-related ground failure, including liquefaction?		
(iv)	Landslides?		

Discussion

The campus lies within a seismically active area that is bound on the north and south by two faults of a fault zone that is expected to produce maximum credible earthquakes of magnitude 6.0 or greater. Although the campus is not located in an Alquist-Priolo Earthquake Fault Zone and would not be subject to ground rupture, implementation of the proposed NHIP and LRDP Amendment has the potential to expose people and structures to seismically induced impacts including groundshaking, liquefaction, and landslides.

Based on review of the *Seismic Hazard Zones Map: Beverly Hills 7.5-Minute Quadrangle* prepared by the California Department of Conservation (DOC DMG 1999) and as illustrated on Figure 4.5-1 of the 2002 LRDP Final EIR, a small area in the Northwest zone has been designated as a potential landslide hazard area, and areas in the Northwest and Southwest zones have been designated as potential liquefaction hazard areas. Potential seismically induced impacts must be evaluated on a site-specific basis. The LRDP is a general land use plan intended to guide the pattern of development on campus, and does not articulate specific developments other than the proposed NHIP. Therefore, the Draft EIR will generally address the potential risks associated with seismic activity for the overall campus and will address site-specific conditions and potential impacts of these conditions with respect to the proposed NHIP. Relevant PPs from the 2002 LRDP Final EIR will be identified as appropriate and additional PPs and/or MMs presented, as needed.

		LRDP Amendment		NHIP	
		Impact to be Analyzed in EIR No Additional Analysis Required		Impact to be Analyzed in EIR	No Additional Analysis Required
(b)	Would the project result in substantial soil erosion or the loss of topsoil?				

Discussion

The campus is not currently used, and is not intended to be used, for agricultural or other purposes that require topsoil. Therefore, the proposed NHIP and LRDP Amendment would not result in the loss of topsoil. No impacts would occur and no mitigation is required. The loss of topsoil will not be further addressed in the Draft EIR.

Erosion can occur as a result of, and can be accelerated by, site preparation activities associated with development. Vegetation removal in landscaped (pervious) areas could reduce soil cohesion, as well as the buffer provided by vegetation from wind, water, and surface disturbance. As a result, vegetation removal has the potential to render the exposed soils more susceptible to erosive forces. Additionally, excavation or grading for foundations and below-grade levels may also result in erosion during construction activities as bare soils would be exposed and could be eroded by wind or water. Earth-disturbing activities associated with construction would be temporary and erosion effects would depend largely on the areas excavated, the quantity of excavation, and the length of time soils are subject to conditions that would be affected by erosion processes. Following completion of the development projects there would be minimal exposed soil and the potential for erosion during operation would be remote. The potential for erosion to occur during construction of future projects under the LRDP Amendment, and the proposed NHIP will be addressed in the Draft EIR. Relevant PPs and MMs from the 2002 LRDP Final EIR will be identified as appropriate and additional PPs and/or MMs presented, as needed.

		LRDP Amendment Impact to be Analyzed in EIR Analysis Required		Analyzed Analysis	
(c)	Would the project be located on a geologic unit or soil that is unstable, or that would become unstable as a result of the project, and potentially result in on- or offsite landslide, lateral spreading, subsidence, liquefaction, or collapse?				

As previously noted, a small area in the Northwest zone has been designated as a potential landslide hazard area, and areas in the Northwest and Southwest zones have been designated as potential liquefaction hazard areas. Soil stability and other properties must be evaluated on a site-specific basis. The LRDP is a general land use plan intended to guide the pattern of development on campus, and does not articulate specific developments other than the proposed NHIP. Therefore, the Draft EIR will generally address the potential risks associated with soil characteristics of the overall campus and will address site-specific soil conditions and potential impacts of these conditions with respect to the proposed NHIP. Relevant PPs from the 2002 LRDP Final EIR will be identified as appropriate and additional PPs and/or MMs presented, as needed.

		LRDP Amendment		NHIP	
		Impact to be Analyzed in EIR	No Additional Analysis Required	Impact to be Analyzed in EIR	No Additional Analysis Required
(d)	Would the project be located on expansive soil, as defined in Table 18-1-B of the Uniform Building Code (1994), creating substantial risks to life or property?				

Discussion

As illustrated by Figure 4.5-1 in the 2002 LRDP EIR, the UCLA campus contains two major soil series, both of which underlie extensive residential, commercial and industrial development in the Los Angeles basin. Although specific soils characteristics, such as expansiveness, are not known for the entire campus, geotechnical investigations throughout the campus determined that the soils in the areas investigated ranged from very low to moderate expansion potential. Soil expansion potential, therefore, varies across the campus and can affect structures constructed on such soils, as water uptake after rainfall could cause soils to expand and damage building foundations, which may compromise the stability of the structures that underlie the affected foundations. The Draft EIR will address the potential for expansive soils to effect proposed structures to be constructed as part of the proposed NHIP and LRDP Amendment. Relevant PPs from the 2002 LRDP Final EIR will be identified as appropriate and additional PPs and/or MMs presented, as needed.

		LRDP Amendment No Impact to be Analyzed in EIR Required		NH Impact to be Analyzed in EIR	No Additional Analysis Required
(e)	Would the project have soils incapable of adequately supporting the use of septic tanks or alternative waste water disposal systems where sewers are not available for the disposal of waste water?				

The City of Los Angeles Bureau of Sanitation provides sewer service to the UCLA campus. Existing infrastructure is located throughout the campus, and any new development would connect to existing wastewater lines. Because no septic tanks or alternative wastewater systems are proposed, no effects associated with soil incapable of adequately supporting these systems would occur with implementation of the proposed NHIP and/or LRDP Amendment. No additional analysis of this issue is required in the Draft EIR.

7. Hazards and Hazardous Materials

		LRDP Am Impact to be Analyzed in EIR	endment No Additional Analysis Required	NH Impact to be Analyzed in EIR	No Additional Analysis Required
(a)	Would the project create a significant hazard to the public or the environment through the routine transport, use, or disposal of hazardous materials?				
(b)	Would the project create a significant hazard to the public or the environment through reasonably foreseeable upset and accident conditions involving the release of hazardous materials into the environment?				

Discussion

Implementation of the LRDP Amendment could result in the development of additional laboratories and other research facilities that would use, store, and require the transport and disposal of hazardous materials. Additionally, hazardous materials handled, used, transported, or disposed of in connection with the proposed NHIP and LRDP Amendment would include standard cleaning products and pesticides or herbicides used in association with standard campus landscaping and maintenance practices. The amount of hazardous materials that are handled at any one time for these activities is relatively small, reducing the potential severity of an accident during handling.

The Draft EIR will evaluate potential hazards impacts resulting from activites and uses associated with future development under the proposed NHIP and LRDP Amendment. Relevant PPs from the 2002 LRDP Final EIR will be identified as appropriate and additional PPs and/or MMs presented, as needed.

		LRDP Amendment		NHIP	
		Impact to be Analyzed in EIR	No Additional Analysis Required	Impact to be Analyzed in EIR	No Additional Analysis Required
(c)	Would the project emit hazardous emissions or handle hazardous or acutely hazardous materials, substances, or waste within one-quarter mile of an existing or proposed school?				

Discussion

Schools or similar facilities on or adjacent to the campus include the Franz Hall Daycare Facility located in the Core zone along Charles E. Young Drive East; Corinne A. Seeds University Elementary School located in the Core Campus zone along Sunset Boulevard; and Marymount High School located off campus also along Sunset Boulevard (just north of the Core Campus zone). The Krieger Child Care Center is also located on campus in the Northwest zone. The Draft EIR will evaluate whether development under the proposed NHIP and LRDP Amendment would generate hazardous emissions or handle hazardous or acutely hazardous materials within one-quarter mile of an existing school. Relevant PPs from the 2002 LRDP Final EIR will be identified as appropriate and additional PPs and/or MMs presented, as needed.

		LRDP Amendment		NHIP	
		Impact to be Analyzed in EIR	No Additional Analysis Required	Impact to be Analyzed in EIR	No Additional Analysis Required
(d)	Would the project be located on a site which is included on a list of hazardous materials sites compiled pursuant to Government Code Section 65962.5 and, as a result, would it create a significant hazard to the public or the environment?				

Discussion

Based on information provided by Environmental Data Resources (EDR) (2008), some campus facilities are included on lists and databases compiled by local, State, and federal agencies pursuant to *Government Code*, Section 65962.5. The majority of these sites appear to be registered underground storage tanks and facilities that generate, transport, store, treat and/or dispose of hazardous waste, rather than contaminated sites. An analysis of the hazards posed by development on a listed site is typically site-specific, and the LRDP is a general land use plan intended to guide the pattern of development on campus. With the exception of the NHIP, the LRDP Amendment does not identify specific developments. Therefore, the analysis in the Draft EIR for the LRDP Amendment will discuss the presence of hazardous materials sites on the campus as a whole, and the potential risks associated with development on or near these

sites. Relevant PPs from the 2002 LRDP Final EIR will be identified as appropriate and additional PPs and/or MMs presented, as needed.

Based on the EDR report, there are no hazardous materials sites within the proposed NHIP site. No further analysis of this issue is required in the Draft EIR for the proposed NHIP.

		LRDP Am Impact to be Analyzed in EIR	endment No Additional Analysis Required	Analyzed Analysis	
(e)	For a project located within an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project result in a safety hazard for people residing or working in the project area?				

Discussion

The campus is not located within two miles of a public airport or public use airport and has not been included in an airport land use plan. No impacts associated with implementation of the proposed NHIP or LRDP Amendment would occur with respect to safety hazards associated with any public use airport, and no additional analysis of this issue is required in the Draft EIR.

		LRDP Amendment		NHIP	
		Impact to be Analyzed in EIR	No Additional Analysis Required	Impact to be Analyzed in EIR	No Additional Analysis Required
(f)	For a project within the vicinity of a private airstrip, would the project result in a safety hazard for people residing or working in the project area?				

Discussion

As described in Section 4.6 (Hazards and Hazardous Materials) of the 2002 LRDP Final EIR, the Medical Center operates a heliport for the emergency transport of critically ill patients. As previously analyzed in the 1998 *Academic Health Center Facilities Reconstruction Plan* (AHCFRP) *Final EIR*, the helipad will be relocated to the new hospital that is now under construction, and is expected to be operational in summer 2008. The Draft EIR will evaluate potential safety hazards of the heliport related to additional developments under the proposed NHIP and LRDP Amendment. Relevant PPs from the 2002 LRDP Final EIR will be identified as appropriate and additional PPs and/or MMs presented, as needed.

		LRDP Amendment		NHIP	
		Impact to be Analyzed in EIR	No Additional Analysis Required	Impact to be Analyzed in EIR	No Additional Analysis Required
(g)	Would the project impair implementation of or physically interfere with an adopted emergency response plan or emergency evacuation plan?				

UCLA implements a Campus Emergency Response Plan that is disseminated campus-wide and outlines procedures for all campus staff, students, and visitors to follow in case of an emergency. In addition, the campus has a Disaster Response Manual, which provides instructions and procedures for employees of Facilities Management and Environmental Health and Safety (EH&S) to follow in the event of an emergency, such as a hazardous materials release. UCLA has also developed a Disaster Initial Response Plan and a Hazardous Materials Response Plan that cover a broad range of emergency situations related to both human made disasters (such as bomb threats) and natural disasters (such as earthquakes). Multiple evacuation areas for major emergencies or disasters are also provided in each campus zone. In addition, both the City and County of Los Angeles have Emergency Contingency Plans that address emergency situations that could occur on the UCLA campus.

The Draft EIR will evaluate the potential for construction and operation activities associated with the proposed NHIP and LRDP Amendment to affect emergency response or evacuation plans due to temporary construction barricades or other obstructions that could impede emergency access on campus. Relevant PPs from the 2002 LRDP Final EIR will be identified as appropriate and additional PPs and/or MMs presented, as needed.

		LRDP Amendment Impact to be Analyzed in EIR Analysis Required		NHIP Impact to be Additional Analyzed in EIR Required	
(h)	Would the project expose people or structures to a significant risk of loss, injury, or death involving wildland fires, including where wildlands are adjacent to urbanized areas or where residences are intermixed with wildlands?				

Discussion

The UCLA campus is not located adjacent to a wildland area and would not be subject to significant impacts associated with wildland fires. No further analysis of this issue is required in the Draft EIR for the proposed NHIP or the LRDP Amendment.

8. Hydrology and Water Quality

		LRDP Amendment		NHIP	
		Impact to be Analyzed in EIR	No Additional Analysis Required	Impact to be Analyzed in EIR	No Additional Analysis Required
(a)	Would the project violate any water quality standards or waste discharge requirements?				
(f)	Would the project otherwise substantially degrade water quality?				

Discussion

The UCLA campus is not considered a point source for regulatory purposes and is not subject to waste discharge requirements (WDRs). While the campus has an industrial wastewater permit for wastewater discharge associated with the food service and laboratory uses on campus, no hazardous waste is discharged into the sewer or storm drain system on campus.

The UCLA campus is included in the Water Quality Control Plan for the Los Angeles Basin as administered by the California Regional Water Quality Control Board, Los Angeles Region. Implementation of the proposed NHIP and LRDP Amendment would result in an increase in the amount of impervious surfaces on campus, which would increase the amount of storm water runoff. This runoff would carry typical urban pollutants from the site, and could discharge into the local and regional drainage system. Additionally, short-term construction impacts to surface water quality would result from grading and other construction-related activities (e.g., erosion, spills, and leaks due to construction equipment).

The Draft EIR will describe current water quality conditions and will provide an analysis of potential short-term and long-term water quality impacts associated with the proposed uses under the proposed NHIP and LRDP Amendment. Additionally, the proposed project would be required to comply with the National Pollutant Discharge Elimination System (NPDES) General Construction Activity Storm Water Permit requirements, which includes implementation of a Storm Water Pollution Prevention Plan (SWPPP). The Draft EIR will address compliance with these regulations. Relevant PPs from the 2002 LRDP Final EIR will be identified as appropriate and additional PPs and/or MMs presented, as needed.

		LRDP Am Impact to be Analyzed in EIR	endment No Additional Analysis Required	NH Impact to be Analyzed in EIR	No Additional Analysis Required
(b)	Would the project substantially deplete groundwater supplies or interfere substantially with groundwater recharge such that there would be a net deficit in aquifer volume or a lowering of the local groundwater table level (e.g., the production rate of pre-existing nearby wells would drop to a level that would not support existing land uses or planned uses for which permits have been granted)?				

Implementation of the LRDP Amendment, including the proposed NHIP, would reduce the amount of pervious surfaces within the Santa Monica Groundwater Basin (Basin) through the addition of new buildings and paved areas. However, the campus is not designated as a groundwater recharge area, nor does the campus serve as a primary source of groundwater recharge within the Basin. Further, the campus would not extract groundwater for long-term operations.

To the extent that the campus draws water from the Los Angeles Department of Water and Power (LADWP), which relies on groundwater, additional on-campus development under the proposed NHIP and LRDP Amendment could result in additional demand for groundwater supplies. Additionally, construction activities could require temporary dewatering of development sites. Even in this instance, however, such a disturbance would not constitute a substantial interference with groundwater recharge, as the campus does not serve as a primary source of groundwater recharge.

The Draft EIR will evaluate potential short-term construction-related and long-term operational impacts on groundwater supplies. PPs and/or MMs will be identified, as needed.

		LRDP Am Impact to be Analyzed in EIR	endment No Additional Analysis Required	NH Impact to be Analyzed in EIR	No Additional Analysis Required
(c)	Would the project substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river, in a manner that would result in substantial erosion or siltation on or off site?				
(d)	Would the project substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river, or substantially increase the rate or amount of surface runoff in a manner that would result in flooding on or off site?				

Implementation of the proposed NHIP and LRDP Amendment would not result in alterations to a stream or river course. As described above in response to Item 4.b, there are no proposed uses that would result in long-term or permanent alterations to Stone Canyon Creek, the only feature on campus that could potentially be characterized as a stream. However, construction activities associated with implementation of the proposed NHIP and LRDP Amendment could result in alterations to existing drainage patterns that could result in erosion or siltation. Additionally, future development could alter drainage patterns at the site of new buildings, which could result in an increase in runoff and the potential for increased erosion or siltation and flooding. The Draft EIR will address potential alteration to drainage patterns resulting from construction and operation of the proposed NHIP and LRDP Amendment. PPs and/or MMs will be presented, as needed.

		LRDP Amendment		NHIP	
		Impact to be Analyzed in EIR	No Additional Analysis Required	Impact to be Analyzed in EIR	No Additional Analysis Required
(e)	Would the project create or contribute runoff water that would exceed the capacity of existing or planned stormwater drainage systems or provide substantial additional sources of polluted runoff?				

Discussion

Implementation of the LRDP Amendment, including the NHIP, would result in the development of additional academic, research, and housing facilities. This would increase the amount of impervious surface on campus, which would increase runoff. The Draft EIR will evaluate whether the existing or planned drainage system can accommodate the runoff that would be generated as a result of this proposed future development on campus. Relevant PPs from the 2002 LRDP Final EIR will be identified as appropriate and additional PPs and/or MMs presented, as needed.

		LRDP Am Impact to be Analyzed in EIR	endment No Additional Analysis Required	NH Impact to be Analyzed in EIR	No Additional Analysis Required
(g)	Would the project place housing within a 100-year flood hazard area as mapped on a federal Flood Hazard Boundary or Flood Insurance Rate Map or other flood hazard delineation map?				

Based on flood hazard zone mapping information from the Federal Emergency Management Agency (FEMA 1995), the majority of the UCLA campus is within Zone X (an area that is determined to be outside the 100- and 500-year floodplains). A linear area along Sunset Boulevard following Stone Canyon Creek is within Zone A. Zone A represents areas inundated by 100-year flooding, for which no base flood elevations¹ have been determined.

The majority of the housing on campus is located in the Northwest zone of the campus (Zone X), and additional development of residential uses under the LRDP Amendment, including the proposed NHIP, would occur there. Therefore, because no housing would be placed in a 100-year flood zone, no further analysis of this issue is required in the Draft EIR for the proposed NHIP or LRDP Amendment.

		LRDP Amendment		NHIP	
		Impact to be Analyzed in EIR	No Additional Analysis Required	Impact to be Analyzed in EIR	No Additional Analysis Required
(h)	Would the project place within a 100-year flood hazard area structures that would impede or redirect flood flows?				

Discussion

The LRDP is a general land use plan intended to guide the pattern of development on campus and does not identify specific projects or structures other than those proposed as part of the NHIP. As described above, there is a limited area on campus (along Stone Canyon Creek) within a 100-year flood hazard area. Given the relatively small and linear area designated within a 100-year flood hazard area on campus and its location adjacent to Sunset Boulevard and existing development, it is not anticipated that structures would be constructed in the future that would impede or redirect flood flows. Potential impacts resulting from development within a 100-year flood hazard area are addressed on a site-specific basis. No further analysis of this issue is required in the Draft EIR for the LRDP Amendment.

Additionally, as noted above, the proposed NHIP would not be located in a 100-year flood hazard area; therefore, it would not impede or redirect flood flows. No further analysis of this issue is required in the Draft EIR for the proposed NHIP.

The base flood elevation (BFE) is the elevation associated with the flood having a one-percent annual chance of being equaled or exceeded in any given year. It is shown on the Flood Insurance Rate Map.

		LRDP Am Impact to be Analyzed in EIR	endment No Additional Analysis Required	NH Impact to be Analyzed in EIR	No Additional Analysis Required
(i)	Would the project expose people or structures to a significant risk of loss, injury or death involving flooding, including flooding as a result of the failure of a levee or dam?				

The Stone Canyon Reservoir, located north of the campus across Sunset Boulevard, is operated by the LADWP. A catastrophic failure of this dam could result in flooding on the UCLA campus. The hypothetical inundation area is shown on Figure 4.7-2 of the 2002 LRDP Final EIR. As reported in the 2002 LRDP Final EIR, a study completed in April 2002 by URS evaluated the seismic stability of the Stone Canyon Dam. This study (approved by the State Department of Water Resources, Division of Safety of Dams in 2003) performed a state-of-the-art dynamic analysis that evaluated how the dam would perform in the event of an earthquake and developed a computer model that also evaluated re-occurrence of the 1994 Northridge earthquake. The analysis predicted a higher deformation of the dam than actually occurred in 1994, which demonstrated the conservative nature of the model. Nonetheless, the study concluded that the dam structure of Stone Canyon Reservoir can withstand the maximum credible earthquake (magnitude 6.5) at the Hollywood Fault (the closest known active fault to the campus). It was concluded that a seismic-related or sudden, accidental breach of the dam structure is considered remote and speculative.

The LADWP Reservoir Surveillance Section performs daily surveillance and periodic security inspections of all LADWP reservoirs and dam structures to ensure the safety of the structures and the water they contain. No unauthorized personnel are allowed at the reservoirs, access has been limited, and surveillance includes several helicopter flights per day over the LADWP reservoir structures. According to the LADWP, tampering with the structures and water has not occurred, and such an event is considered remote (Westdal 2008).

While a catastrophic failure of the dam structure of Stone Canyon Reservoir could result in flooding in the central areas of the UCLA campus, which primarily consists of open playing fields, including the Intramural Field, the North Athletic Soccer Field, and Drake Track and Field Stadium, the possibility of failure due to seismic or other factors is considered by LADWP to be extremely remote and speculative (Westdal 2008). This impact would, therefore, be less than significant and will not be addressed further in the Draft EIR. No mitigation is required.

		LRDP Amendment		NHIP	
		Impact to be Analyzed in EIR	No Additional Analysis Required	Impact to be Analyzed in EIR	No Additional Analysis Required
(j)	Would the project cause inundation by seiche, tsunami, or mudflow?				

The UCLA campus is located in an inland area and at a sufficient elevation not to be subject to tsunamis. No large, open bodies of water that would represent a substantial seiche risk are located on campus. As previously noted, an area of the UCLA campus in the Northwest zone (southeast of the Sunset Boulevard/Veteran Avenue intersection) is identified as potentially subject to landsliding, and could potentially represent a risk for mudflows during periods of heavy rainfall. However, no mudflows have ever been documented in this area, likely because the majority of the Northwest zone is covered with landscaping, naturalized vegetation, and hardscape, and the natural topography consists of gently sloping hillsides rather than steep, sheer embankments. Therefore, the potential for mudflows to occur would be considered remote, and engineering studies performed for individual campus projects would continue to ensure that slopes remain stable during and after construction of these projects. Further, implementation of the proposed NHIP and LRDP Amendment would not result in the long-term creation of bare, unstable slopes. As such, impacts associated with mudflows would be less than significant, and no mitigation is required. This issue will not be addressed further in the Draft EIR.

9. Land Use and Planning

		LRDP Amendment		NHIP	
		Impact to be Analyzed in EIR	No Additional Analysis Required	Impact to be Analyzed in EIR	No Additional Analysis Required
(a)	Would the project physically divide an established community?				

Discussion

The community surrounding the UCLA campus is fully developed and established. The LRDP is the campus land use plan that guides future development within the campus boundaries. Development outside of the campus boundaries would not be governed by the LRDP and would not occur with implementation of future development under the LRDP Amendment, including the NHIP. Therefore, the proposed NHIP and LRDP Amendment would not physically divide an established community. No impacts would occur and no further analysis of this issue is required in the Draft EIR for the proposed NHIP or LRDP Amendment.

		LRDP Amendment		NHIP		
		Impact to be Analyzed in EIR	No Additional Analysis Required	Impact to be Analyzed in EIR	No Additional Analysis Required	
(b)	Would the project conflict with any applicable land use plan, policy, or regulation of an agency with jurisdiction over the project (including, but not limited to the general plan, specific plan, local coastal program, or zoning ordinance) adopted for the purpose of avoiding or mitigating an environmental effect?					

UCLA is a part of the University of California, a constitutionally created entity of the State of California. As a constitutional entity, the University of California is not subject to municipal regulations, such as the County of Los Angeles or City of Los Angeles General Plans. Westwood and other surrounding communities are part of the City of Los Angeles, and this jurisdictional separation provides no formal mechanism for joint planning or exchange of ideas. Nevertheless, the campus maintains ongoing communication with the City of Los Angeles and the local communities surrounding the campus to resolve land use issues of mutual concern.

The proposed projects involve an amendment to the 2002 LRDP. The Draft EIR will include an evaluation of the proposed NHIP and LRDP Amendment's consistency with relevant UCLA land use plans, including but not limited to, the 2002 LRDP, the 1978 Benign Use Agreement, and the UCLA Student Housing Master Plan 2007–2017. In addition to UCLA planning documents, the applicable planning policies identified in regional planning documents, such as the Southern California Association of Government's Regional Comprehensive Plan and Guide, will be addressed in the Draft EIR. Relevant PPs from the 2002 LRDP Final EIR will be identified as appropriate and additional PPs and/or MMs presented, as needed.

		LRDP Amendment		NHIP	
		Impact to be Analyzed in EIR	No Additional Analysis Required	Impact to be Analyzed in EIR	No Additional Analysis Required
(c)	Would the project conflict with any applicable habitat conservation plan or natural community conservation plan?				

Discussion

As discussed under Item 4.f of this Initial Study, the UCLA campus is not located within an area governed by an adopted habitat conservation plan or natural community conservation plan. No impacts would occur and no further analysis of this issue is required in the Draft EIR for the proposed NHIP or LRDP Amendment.

10. Mineral Resources

		LRDP Amendment		NHIP	
		Impact to be Analyzed in EIR	No Additional Analysis Required	Impact to be Analyzed in EIR	No Additional Analysis Required
(a)	Would the project result in the loss of availability of a known mineral resource that would be of value to the region and the residents of the state?				
(b)	Would the project result in the loss of availability of a locally-important mineral resource recovery site delineated on a local general plan, specific plan, or other land use plan?				

Discussion

The 2002 LRDP Final EIR determined that implementation of the 2002 LRDP would not result in the loss of availability of either a known mineral resource of value to the state or region or a locally important mineral resource recovery site because no such sites exist on the campus. Further, the California Geologic Survey, in its *Update of Mineral Land Classification of Portland Cement Concrete Aggregate in Ventura, Los Angeles, and Orange Counties, California: Part II—Los Angeles County* has only identified concrete aggregate as a mineral resource that could potentially be present on the campus. However, no recovery of concrete aggregate occurs or is known to have occurred on campus, and access to such a resource would already have been precluded by existing development. Additionally, the *City of Los Angeles General Plan* does not designate the campus as a mineral resource recovery site (City of Los Angeles 2001).

Therefore, the proposed NHIP and LRDP Amendment would not result in the loss of availability of a locally important mineral resource delineated on a local general plan, specific plan, or other land use plan. Therefore, no impacts would occur no further analysis of this issue is required in the Draft EIR for the proposed NHIP or LRDP Amendment.

11. Noise

		LRDP Am Impact to be Analyzed in EIR	endment No Additional Analysis Required	NH Impact to be Analyzed in EIR	No Additional Analysis Required
(a)	Would the project result in exposure of persons to or generation of noise levels in excess of standards established in the local general plan or noise ordinance, or applicable standards of other agencies?				
(c)	Would the project result in a substantial permanent increase in ambient noise levels in the project vicinity above levels existing without the project?				
(d)	Would the project result in a substantial temporary or periodic increase in ambient noise levels in the project vicinity above levels existing without the project?				

Discussion

Increases in traffic, mechanical equipment use, and other operational activities associated with new structures could result in potential long-term increases in noise levels. Additionally, operation of construction equipment could result in substantial short-term noise increases. The Draft EIR will use current noise modeling methods to predict the magnitude of these noise increases, and will evaluate whether the increased noise levels associated with implementation of the proposed NHIP and LRDP Amendment would exceed applicable standards or ordinances. Relevant PPs and MMs from the 2002 LRDP Final EIR will be identified as appropriate and additional PPs and/or MMs presented, as needed.

		LRDP Amendment		NHIP	
		Impact to be Analyzed in EIR	No Additional Analysis Required	Impact to be Analyzed in EIR	No Additional Analysis Required
(b)	Would the project result in exposure of persons to or generation of excessive groundborne vibration or groundborne noise levels?				

Discussion

Construction activities could result in the generation of excessive groundborne vibration or groundborne noise levels. The Draft EIR for the LRDP Amendment will generally evaluate potential impacts of construction activities associated with implementation of the LRDP Amendment, and a site-specific analysis of potential construction impacts resulting from implementation of the proposed NHIP will be provided. Relevant PPs from the 2002 LRDP Final EIR will be identified as appropriate and additional PPs and/or MMs presented, as needed.

		LRDP Am Impact to be Analyzed in EIR	endment No Additional Analysis Required	NH Impact to be Analyzed in EIR	No Additional Analysis Required
(e)	For a project located within an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project expose people residing or working in the project area to excessive noise levels?				

The campus is not located within two miles of a public airport or public use airport, and has not been included in an airport land use plan. No impacts would occur and no further analysis of this issue is required in the Draft EIR for the proposed NHIP or LRDP Amendment.

		LRDP Amendment		NHIP	
		Impact to be Analyzed in EIR	No Additional Analysis Required	Impact to be Analyzed in EIR	No Additional Analysis Required
(f)	For a project within the vicinity of a private airstrip, would the project expose people residing or working in the project area to excessive noise levels?				

Discussion

The UCLA campus is not located within the vicinity of a private airstrip. However, the Medical Center complex currently operates a heliport for emergency transport of critically ill patients and, as previously analyzed in the 1998 *Academic Health Center Facilities Reconstruction Project Final EIR*, will be relocated to the new medical center that is now under construction. The Draft EIR will identify existing and future helicopter noise levels and determine whether additional people, including students and faculty that would reside in the proposed NHIP, would be subject to excessive noise levels from helicopter operations. PPs and/or MMs will be presented, as needed.

12. Population and Housing

		LRDP Am Impact to be Analyzed in EIR	endment No Additional Analysis Required	NH Impact to be Analyzed in EIR	No Additional Analysis Required
(a)	Would the project induce substantial population growth in an area, either directly (for example, by proposing new homes and businesses) or indirectly (for example, through extension of roads or other infrastructure)?				

Discussion

With implementation of the LRDP Amendment the projected average weekday population (students, faculty, staff, visitors) during the regular session is estimated to increase by approximately 2,780 individuals compared to the 2007–2008 population. This projection includes the 131 staff positions that would result from implementation of the proposed NHIP. The Draft EIR for the proposed NHIP and LRDP Amendment will evaluate the demand for short-term and long-term housing associated with this increase in population and the potential for this demand to exceed the projected housing supply on campus and within the City of Los Angeles and adjacent areas.

		LRDP Am Impact to be Analyzed in EIR	endment No Additional Analysis Required	NH Impact to be Analyzed in EIR	No Additional Analysis Required
(b)	Would the project displace substantial numbers of existing housing, necessitating the construction of replacement housing elsewhere?				
(c)	Would the project displace substantial numbers of people, necessitating the construction of replacement housing elsewhere?				

Discussion

Implementation of the proposed NHIP and LRDP Amendment would not require the demolition of any existing on campus housing, rather it would add housing capacity to the campus. Because there would be no displacement of existing housing facilities, relocation of students currently housed on campus and construction of replacement housing would not be necessary. Therefore, no impacts would occur and no additional analysis of these issues in the Draft EIR is required for the proposed NHIP or LRDP Amendment.

13. Public Services

(a) Would the project result in substantial adverse physical impacts associated with the provision of new or physically altered governmental facilities, need for new or physically altered governmental facilities, the construction of which could cause significant environmental impacts, in order to maintain acceptable service ratios, response times or other performance objectives for any of the public services: LRDP Amendment **NHIP** No No Impact to be Impact to be Additional Additional Analyzed Analyzed Analysis Analysis in EIR in EIR Required Required (i) Fire protection? (ii) Police protection?

Discussion

Fire protection to the UCLA campus is provided by the City of Los Angeles Fire Department (LAFD), and police protection is provided by the UC Police Department and the City of Los Angeles Police Department (LAPD). The Draft EIR will evaluate whether implementation of the proposed NHIP and LRDP Amendment would increase demand for fire and police protection services and compare the potential increased demand with existing and planned equipment and staffing levels. The Draft EIR will also evaluate the potential physical impacts of new, expanded, or altered facilities, if they are required to meet an increase in demand. Relevant PPs from the 2002 LRDP Final EIR will be identified as appropriate and additional PPs and MMs presented, as needed.

		LRDP Amendment		NHIP	
		Impact to be Analyzed in EIR	No Additional Analysis Required	Impact to be Analyzed in EIR	No Additional Analysis Required
(iii) S	Schools?	\boxtimes			

Discussion

The projected increased campus population (students, faculty, and staff) resulting from the LRDP Amendment, including the proposed NHIP, may increase the number of school-age children that would potentially enroll in local schools. The Draft EIR will evaluate potential effects of increased enrollment on the capacity of local schools, and the potential environmental impacts of new, expanded, or altered facilities, if any are required to meet an increase in demand. PPs and/or MMs will be identified as needed.

		LRDP Am	endment	NH	IP
		Impact to be Analyzed in EIR	No Additional Analysis Required	Impact to be Analyzed in EIR	No Additional Analysis Required
(iii)	Parks?	\boxtimes			

Refer to the discussion provided below in Section 14, Recreation.

14. Recreation

		LRDP Am Impact to be Analyzed in EIR	endment No Additional Analysis Required	NH Impact to be Analyzed in EIR	No Additional Analysis Required
(a)	Would the project increase the use of existing neighborhood and regional parks or other recreational facilities such that substantial physical deterioration of the facility would occur or be accelerated?				

Discussion

The LRDP Amendment would not substantially change the campus population anticipated with implementation of the 2002 LRDP Amendment. However, the NHIP would involve the development of additional undergraduate housing and faculty apartments in the Northwest zone, which could increase the demand for on-campus recreational facilities. The Draft EIR will evaluate the potential impacts of new, expanded, or altered recreational facilities, if they are required, to meet an increase in demand. Relevant PPs from the 2002 LRDP Final EIR will be identified as appropriate and additional PPs and/or MMs presented, as needed.

		LRDP Am Impact to be Analyzed in EIR	endment No Additional Analysis Required	NH Impact to be Analyzed in EIR	No Additional Analysis Required
(b)	Does the project include recreational facilities or require the construction or expansion of recreational facilities that might have an adverse physical effect on the environment?				

Discussion

The LRDP is a general land use plan intended to guide the pattern of development on campus and does not articulate specific projects or structures other than those proposed as part of the NHIP. However, additional recreational uses may be developed as part of the implementation of the LRDP Amendment. Additionally, the proposed NHIP includes a fitness center in the Sproul South building. The Draft EIR will evaluate the potential physical environmental impacts

resulting from new recreational facilities. Relevant PPs from the 2002 LRDP Final EIR will be identified as appropriate and additional PPs and/or MMs presented, as needed.

15. Traffic

		LRDP Am Impact to be Analyzed in EIR	endment No Additional Analysis Required	NH Impact to be Analyzed in EIR	IP No Additional Analysis Required
(a)	Would the project cause an increase in traffic which is substantial in relation to the existing traffic load and capacity of the street system (i.e., result in a substantial increase in either the number of vehicle trips, the volume to capacity ratio on roads, or congestion at intersections)?				
(b)	Would the project exceed, either individually or cumulatively, a level of service standard established by the county congestion management agency for designated roads or highways?				

Discussion

Although potential increases in traffic could result from implementation of the LRDP Amendment, including the proposed NHIP, the 2002 LRDP Amendment would maintain the adopted trip limits adopted in the 2002 LRDP through 2013. The Draft EIR will include an analysis of potential daily and peak hour trip generation associated with implementation of the LRDP Amendment, and the effects on the local and regional traffic system. In addition, the Draft EIR will include an analysis of the campus transportation demand management provisions and the effect on trip reduction strategies. The Draft EIR will also analyze the impact of additional construction-related, project-related, and cumulative traffic on the local street networks, including intersection capacity, as well as the regional highway network and roadways designated in the Los Angeles Congestion Management Program. Relevant PPs and MMs from the 2002 LRDP Final EIR will be identified as appropriate and additional PPs and/or MMs presented, as needed.

		LRDP Amendment		NHIP	
		Impact to be Analyzed in EIR	No Additional Analysis Required	Impact to be Analyzed in EIR	No Additional Analysis Required
(c)	Would the project result in a change in air traffic patterns, including either an increase in traffic levels or a change in location that results in substantial safety risks?				

Development allowed under the LRDP Amendment and the proposed NHIP would not change air traffic patterns of existing airport facilities. The UCLA campus is currently developed, and future development would not increase air traffic levels or result in a change in the location of air traffic patterns resulting in substantial safety risks. No further analysis of this issue is required in the Draft EIR for the proposed NHIP or LRDP Amendment.

		LRDP Amendment		NHIP	
		Impact to be Analyzed in EIR	No Additional Analysis Required	Impact to be Analyzed in EIR	No Additional Analysis Required
(d)	Would the project substantially increase hazards due to a design feature (e.g., sharp curves or dangerous intersections) or incompatible uses (e.g., farm equipment)?				

Discussion

The LRDP is a general land use plan intended to guide the pattern of development on campus and does not articulate specific projects or structures other than those proposed as part of the NHIP. The Draft EIR will evaluate the potential for future changes to the campus circulation system or development of incompatible uses to increase traffic hazards. For the proposed NHIP, the Draft EIR will provide a project-specific evaluation of proposed circulation changes on and off campus (including along Gayley Avenue) to determine whether such changes would substantially increase hazards due to a design feature or the construction of incompatible uses. Relevant PPs and MMs from the 2002 LRDP Final EIR will be identified as appropriate and additional PPs and/or MMs will be presented, as needed.

		LRDP Amendment		NHIP		
		Impact to be Analyzed in EIR	No Additional Analysis Required	Impact to be Analyzed in EIR	No Additional Analysis Required	
(e)	Would the project result in inadequate emergency access?					

Construction and operational activities associated with development under the LRDP Amendment and the proposed NHIP could potentially interfere with emergency access routes. The Draft EIR will evaluate potential impacts to emergency access during construction and operation. PPs and/or MMs will be presented, as needed.

Please also refer to Item 7.g regarding emergency response and evacuation plans.

		LRDP Amendment		NHIP	
		Impact to be Analyzed in EIR	No Additional Analysis Required	Impact to be Analyzed in EIR	No Additional Analysis Required
(f)	Would the project result in inadequate parking capacity?				

Discussion

With implementation of the proposed NHIP and LRDP Amendment the campus-wide parking cap (25,169 spaces) would remain unchanged. However, the Draft EIR will evaluate the adequacy of parking on campus with development of allowed uses and gsf under the LRDP Amendment. A project-level parking analysis will also be provided for the proposed NHIP, and will evaluate the temporary removal of parking during construction and operation. Relevant PPs and MMs from the 2002 LRDP Final EIR will be identified as appropriate and additional PPs and/or MMs presented, as needed.

		LRDP Amendment		NHIP	
		Impact to be Analyzed in EIR	No Additional Analysis Required	Impact to be Analyzed in EIR	No Additional Analysis Required
(g)	Would the project conflict with adopted policies, plans, or programs supporting alternative transportation (e.g., bus turnouts, bicycle racks)?				

Discussion

As with the 2002 LRDP, the LRDP Amendment includes alternative transportation modes. The Draft EIR will analyze whether implementation of the LRDP Amendment and the proposed NHIP would conflict with the existing LRDP policies supporting alternative transportation. Relevant PPs and MMs from the 2002 LRDP Final EIR will be identified as appropriate and additional PPs and MMs presented, as needed.

16. Utilities and Service Systems

		LRDP Amendment		NHIP		
		Impact to be Analyzed in EIR	No Additional Analysis Required	Impact to be Analyzed in EIR	No Additional Analysis Required	
(a)	Would the project exceed wastewater treatment requirements of the applicable Regional Water Quality Control Board?					

Discussion

Wastewater originating from the allowed uses under the LRDP Amendment, including the proposed NHIP, would be generated by academic, laboratory, and residential uses and would ultimately be treated by the Hyperion Treatment Plant (HTP) owned and operated by the City of Los Angeles, Bureau of Sanitation. The wastewater treatment requirements issued by the Los Angeles Regional Water Quality Control Board (RWQCB) for the treatment plant were developed to ensure that adequate levels of treatment would be provided for the wastewater flows emanating from all land uses within its service area, including the UCLA Campus.

It should also be noted that the UCLA campus is not considered a point source for regulatory purposes and is not subject to waste discharge requirements (WDRs). While the campus has an industrial wastewater permit for wastewater discharge associated with the food service and laboratory uses on campus, no hazardous waste is discharged into the sewer or storm drain system on campus. Further evaluation of this issue in the Draft EIR for the proposed NHIP and LRDP Amendment is not required and no mitigation measures are necessary.

		LRDP Am Impact to be Analyzed in EIR	endment No Additional Analysis Required	NH Impact to be Analyzed in EIR	No Additional Analysis Required
(b) Would the project require or result in the confined water or wastewater treatment facilities, the construction could cause significant environmental effects:	ties or on of which				
(c) Would the project require or result in the confined stormwater drainage facilities or expression facilities, the construction of which construction is a significant environmental effects?	ansion of				
(e) Would the project result in a determination wastewater treatment provider that serves of the project that it has adequate capacity to sproject's projected demand in addition to the existing commitments?	or may serve erve the				

Anticipated uses under the LRDP Amendment and the proposed NHIP would increase the demand for water provided by the LADWP and wastewater treatment services provided by the City of Los Angeles, Bureau of Sanitation. The existing and post-development demands on existing utilities will be addressed in the Draft EIR to determine what impacts may occur from implementation of the proposed development. As noted under the discussion of Hydrology and Water Quality, runoff from the project site would enter the existing storm drain system. The need for the construction of new and/or upgraded water, wastewater, and storm drain lines (on and off site) will be addressed in the Draft EIR and potential environmental impacts associated with these construction activities will be analyzed. Relevant PPs from the 2002 LRDP Final EIR will be identified as appropriated and additional PPs and MMs presented, as needed.

		LRDP Amendment		NHIP	
		Impact to be Analyzed in EIR	No Additional Analysis Required	Impact to be Analyzed in EIR	No Additional Analysis Required
(d)	Would the project have sufficient water supplies available to serve the project from existing entitlements and resources, or are new or expanded entitlements needed?				

Discussion

The LADWP currently provides water service to the UCLA campus. With implementation of the LRDP Amendment, including the proposed NHIP, an increased demand for water would be generated. The Draft EIR will evaluate the current campus water demand and system capacity. Additionally, a Water Supply Assessment (WSA) will be conducted pursuant to California State Senate Bill 610. Results of the WSA will be discussed in the Draft EIR. The Draft EIR will also evaluate the potential impacts of new, expanded, or altered facilities, if they are required to meet an increase in demand. Relevant PPs from the 2002 LRDP Final EIR will be identified as appropriate and additional mitigation measures presented, as needed.

		LRDP Amendment		NHIP	
		Impact to be Analyzed in EIR	No Additional Analysis Required	Impact to be Analyzed in EIR	No Additional Analysis Required
(f)	Would the project be served by a landfill with sufficient permitted capacity to accommodate the project's solid waste disposal needs?				

Discussion

Implementation of the LRDP Amendment, including the proposed NHIP, could result in an increase in campus solid waste generation. The Draft EIR will evaluate whether the existing and planned landfill capacity would be sufficient to accommodate the potential increases in solid waste generation that would result from implementation of the proposed NHIP and LRDP Amendment. Relevant PPs from the 2002 LRDP Final EIR will be identified as appropriate and additional PPs and/or MMs presented, as needed.

		LRDP Amendment		NHIP	
		Impact to be Analyzed in EIR	No Additional Analysis Required	Impact to be Analyzed in EIR	No Additional Analysis Required
(g)	Would the project comply with federal, state, and local statutes and regulations related to solid waste?				

As an entity created by the State Constitution, the University of California is exempt from local regulations pertaining to solid waste. However, the California Integrated Waste Management Act of 1989 (AB 939) requires that local jurisdictions divert at least 50 percent of all solid waste generated. This requirement, as well as more stringent diversion goals are adopted in the UC Sustainability Policy and are being implemented by the campus. The Draft EIR will evaluate the compliance of the proposed NHIP and LRDP Amendment with applicable regulations related to solid waste, including AB 939. Relevant PPs from the 2002 LRDP Final EIR will be identified as appropriate and additional PPs and/or MMs presented, as needed.

		LRDP Am Impact to be Analyzed in EIR	endment No Additional Analysis Required	NH Impact to be Analyzed in EIR	No Additional Analysis Required
(h)	Would the project require or result in the construction of new energy production and/or transmission facilities or expansion of existing facilities, the construction of which could cause significant environmental effects?				
(i)	Would the project encourage the wasteful or inefficient use of energy?				

Discussion

The campus Energy Systems (cogeneration) Facility (ESF) serves the majority of the electricity demand generated by on-campus uses and the LADWP serves the remaining demand. The Southern California Gas Company provides natural gas to the campus. Implementation of the LRDP Amendment and the proposed NHIP would increase the demand for electricity and natural gas, although campus energy conservation measures would offset some of this increase in demand. The Draft EIR will quantify the potential increase in campus energy usage and determine whether the implementation of the LRDP Amendment and the proposed NHIP would result in wasteful, inefficient, or unnecessary consumption of energy. The Draft EIR will also evaluate the potential impacts of providing new, expanded, or altered energy-production facilities, if they are required to meet an increase in demand. Compliance with applicable State and University (pursuant to the UC Sustainability Policy) energy standards will also be addressed. Relevant PPs from the 2002 LRDP Final EIR will be identified as appropriate and additional PPs and/or MMs presented, as needed.

17. Mandatory Findings of Significance

		LRDP Am Impact to be Analyzed in EIR	endment No Additional Analysis Required	NH Impact to be Analyzed in EIR	No Additional Analysis Required
(a)	Does the project have the potential to degrade the quality of the environment, substantially reduce the habitat of a fish or wildlife species, cause a fish or wildlife population to -drop below self-sustaining levels, threaten to eliminate a plant or animal community, reduce the number or restrict the range of a rare or endangered plant or animal or eliminate important examples of the major periods of California history or prehistory?				

Discussion

As indicated in the preceding discussion, implementation of the LRDP Amendment and the proposed NHIP have the potential to result in significant impacts that could degrade the quality of the environment. Because the campus is fully developed, the potential for the LRDP Amendment and the proposed NHIP to substantially reduce the habitat of a fish or wildlife species, cause a fish or wildlife population to drop below self-sustaining levels, threaten to eliminate a plant or animal community, reduce the number or restrict the range of a rare or endangered plant or animal is considered low. Nevertheless, the Draft EIR will address this issue. Implementation of the LRDP Amendment and the proposed NHIP could also result in potential damage to or loss of some paleontological or archaeological resources. The LRDP Amendment could result in modification or demolition of structures that are potentially eligible to the National Register of Historic Places or the California Register of Historic Resources. Such effects will be addressed in the Draft EIR.

		LRDP Am Impact to be Analyzed in EIR	endment No Additional Analysis Required	NH Impact to be Analyzed in EIR	IP No Additional Analysis Required
(b)	Does the project have impacts that are individually limited, but cumulatively considerable? ("Cumulatively considerable" means that the incremental effects of a project are considerable when viewed in connection with the effects of past projects, the effects of other current projects, and the effects of probable future projects)?				

Discussion

The Draft EIR will evaluate whether the potential impacts of implementation of the LRDP Amendment and the proposed NHIP combined with other current projects and probable future projects and projected regional growth in the surrounding area, would be cumulatively considerable.

The Draft EIR will also include an evaluation of climate change impacts associated with greenhouse gas emissions projected under future development under the proposed NHIP and LRDP Amendment. The discussion will also generally describe existing campus programs and policies to reduce greenhouse gas emissions and, if required, will also identify feasible mitigation measures.

		LRDP Amendment		NHIP	
		Impact to be Analyzed in EIR	No Additional Analysis Required	Impact to be Analyzed in EIR	No Additional Analysis Required
(c)	Does the project have environmental effects that will cause substantial adverse effects on human beings, either directly or indirectly?				

Discussion

As indicated in the preceding discussion, implementation of the proposed NHIP and LRDP Amendment have the potential to result in significant impacts. The Draft EIR will evaluate whether any of those impacts have the potential to result in substantial adverse effects on human beings.

IV. REFERENCES

- Bryant, W.A., R. Martin, P. Wong, D. Maldonado, J. Wampole, and D. Dixon. 2002. GIS Files of Official Alquist-Priolo Earthquake Fault Zones, Southern Region. Sacramento, CA: California Department of Conservation, California Geological Survey.
- California, State of, Department of Conservation, Division of Land Resource Protection (DOC LRP). 2006. Farmland Mapping and Monitoring Program (GIS meta-data). Sacramento, CA: CDC LRP.
- California, State of, Department of Conservation, Division of Mines and Geology (DOC DMG). 1999 (March). Seismic Hazard Zones Map: Beverly Hills 7.5-Minute Quadrangle. Sacramento, CA: DMG. http://gmw.consrv.ca.gov/shmp/download/pdf/ozn_bevh.pdf.
- California Department of Transportation (Caltrans). 2007 (December 7, last update). California Scenic Highway Mapping System. http://www.dot.ca.gov/hq/LandArch/scenic_highways/index.htm.
- California Geologic Survey (CGS). 1994. Update of Mineral Land Classification of Portland Cement Concrete Aggregate in Ventura, Los Angeles, and Orange Counties, California: Part II—Los Angeles County. Sacramento, CA: CGS & The Resources Agency
- Environmental Data Resources, Inc. (EDR). 2008 (February). The EDR Radius Map with GeoCheck®: UCLA LRDP Amendment and NHIP Charles E. Young Drive West/Strathmore Los Angeles, CA 90024. Milford, CT: EDR.
- Federal Emergency Management Agency (FEMA). 1995 (June). *Q3 Flood Data Specifications*. Washington, D.C.: FEMA.
- Los Angeles, City of. 2005 (March). Wilshire-Westwood Scenic Corridor Specific Plan. Los Angeles, California: City of Los Angeles.
- Los Angeles, City of. 1996 (as amended through 2001). *General Plan of the City of Los Angeles General Plan.* Los Angeles, CA: the City. http://www.lacity.org/PLN/cwd/gnlpln/History.htm
- Reed, P.B., Jr. 1988. *National List of Plant Species That Occur In Wetlands: National Summary* (Biological Report 88 [24]). Washington, D.C.: USFWS.
- University of California, Los Angeles (UCLA). 2007 (October). *UCLA Student Housing Master Plan 2007–2017*. Los Angeles, California: UCLA.
- ——. 2003a (February). University of California, Los Angeles 2002 Long Range Development Plan [LRDP] Draft Environmental Impact Report. Volume I (SCH No. 2002031115; Prepared by EIP Associates). Los Angeles, California: EIP Associates.
- ——. 2003b (February). 2002 Long Range Development Plan/Northwest Housing Infill Project [NHIP] Final Environmental Impact Report. Volume II (Prepared by EIP Associates). Los Angeles, California: EIP Associates.
- ——. 1998 (November). UCLA Academic Health Center Facilities Reconstruction Plan Final Environmental Impact Report. Volume I (Prepared by EIP Associates). Sacramento, CA: EIP Associates.

- ——. 1989 (March). Amended University Procedures for Implementation of the California Environmental Quality Act. Los Angeles, CA: UCLA. http://www.ucop.edu/facil/pd/ceqacomp/documents/ceqaproc.pdf.
- Westdal, P. 2008 (May 8). Personal communication. Telephone call between P. Westdal, Waterworks Engineer (City of Los Angeles Department of Water and Power) and J. Partridge, Environmental Planner (BonTerra Consulting) regarding the Stone Canyon Reservoir.

NOP Comment Letters

STATE OF CALIFORNIA

GOVERNOR'S OFFICE of PLANNING AND RESEARCH

STATE CLEARINGHOUSE AND PLANNING UNIT

DIRECTOR

Notice of Preparation

May 28, 2008

To: Reviewing Agencies

Re:

Northwest Housing Infill Project & 2002 LRDP Amendment SCH# 2008051121

& 2002 LRDP Amendment draft Environmental Impact Report (EIR).

Attached for your review and comment is the Notice of Preparation (NOP) for the Northwest Housing Infill Project

Responsible agencies must transmit their comments on the scope and content of the NOP, focusing on specific information related to their own statutory responsibility, within 30 days of receipt of the NOP from the Lead Agency. This is a courtesy notice provided by the State Clearinghouse with a reminder for you to comment in a timely manner. We encourage other agencies to also respond to this notice and express their concerns early in the

environmental review process.

Please direct your comments to:

Tova Lelah University of California, Los Angeles 1060 Verteran Avenue, CPB Los Angeles, CA 90095

with a copy to the State Clearinghouse in the Office of Planning and Research. Please refer to the SCH number noted above in all correspondence concerning this project.

If you have any questions about the environmental document review process, please call the State Clearinghouse at (916) 445-0613.

Sincerely,

Project Analyst, State Clearinghouse

Attachments cc: Lead Agency

Document Details Report State Clearinghouse Data Base

SCH# 2008051121

Project Title Northwest Housing Infill Project & 2002 LRDP Amendment

Lead Agency University of California, Los Angeles

Type NOP Notice of Preparation

Description UCLA proposes to construct additional undergraduate student housing consisting of 1,525 dormitory

beds, dining, and support space totaling 550,000 gross square feet (gsf) in four buildings on three infill sites within the Northwest zone of the campus. The Northwest Housing Infill Project (NHIP) requires an Amendment to the 2002 Long Range Development Plan (LRDP) to provide the additional 550,000 gsf entitlement in the Northwest zone to accommodate the project. Because the NHIP has an estimated completion date of 2013, the LRDP Amendment will also account for an extended LRDP planning horizon from 2010 to 2013, but will not involve any modifications to the previously adopted

Fax

campus wide trip generation and parking limits.

Lead Agency Contact

Name Tova Lelah

Agency University of California, Los Angeles

Phone 310-206-5482

email

Address 1060 Verteran Avenue, CPB

City Los Angeles State CA Zip 90095

Project Location

County Los Angeles

City

Region

Gayley Avenue and Veteran Avenue

Cross Streets Parcel No.

Township Range Section Base

Proximity to:

Highways 1-405 & 10

Airports Los Angeles International

Railways Waterways

Cabada Maaw

Schools Marymount High

Land Use University of California - Los Angeles Campus/Student Housing

Project Issues Aesthetic/Visual; Air Quality; Archaeologic-Historic; Biological Resources; Drainage/Absorption; Flood

Plain/Flooding; Geologic/Seismic; Noise; Population/Housing Balance; Public Services;

Recreation/Parks; Schools/Universities; Sewer Capacity; Soil Erosion/Compaction/Grading; Solid Waste; Toxic/Hazardous; Traffic/Circulation; Vegetation; Water Quality; Water Supply; Growth

Inducing; Landuse; Cumulative Effects

Reviewing Resources Agency; Department of Conservation; Department of Parks and Recreation; Department of **Agencies** Water Resources; Department of Fish and Game, Region 5; Native American Heritage Commission;

California Highway Patrol; Caltrans, District 7; Department of Toxic Substances Control; Regional

Water Quality Control Board, Region 4

Date Received 05/28/2008 Start of Review 05/28/2008 End of Review 06/26/2008

Note: Blanks in data fields result from insufficient information provided by lead agency.

1101 Distribution List		County: LOS AVIC	KIKZ SCH#	ZUUÖUƏ11Z
Resources Agency	Fish & Game Region 2 Jeff Drongesen	Public Utilitles Commission Ken Lewis	Caltrans, District 8 Dan Kopulsky	Regional Water Quality Control
Resources Agency Nadell Gayou Dept. of Boating & Waterways	Fish & Game Region 3 Robert Floerke Fish & Game Region 4 Julie Vance	Santa Monica Bay Restoration Guangyu Wang State Lands Commission Jean Sanno	Caltrans, District 9 Gayle Rosander Caltrans, District 10 Tom Dumas	Board (RWQCB) RWQCB 1 Cathleen Hudson North Coast Region (1)
	Fish & Game Region 4 Julie Vance Fish & Game Region 5 Don Chadwick Habitat Conservation Program Fish & Game Region 6 Gabrina Gatchel Habitat Conservation Program Fish & Game Region 6 I/M Gabrina Getchel Inyo/Mono, Habitat Conservation Program Dept. of Fish & Game M George Isaac Marine Region Other Departments Food & Agriculture Steve Shaffer Dept. of Food and Agriculture Depart. of General Services Public School Construction Dept. of General Services Robert Sleppy Environmental Services Section Dept. of Health Services Veronica Malloy Dept. of Health/Drinking Water Independent Commissions, Boards Delta Protection Commission Debby Eddy Office of Emergency Services Dennis Castrillo Governor's Office of Planning & Research State Clearinghouse Native American Heritage	State Lands Commission		
Donald Koch Fish & Game Region 1E Laurie Harnsberger	Comm. Debbie Treadway			Last Updated on 02/21/08

DEPARTMENT OF TRANSPORTATION

DISTRICT 7, REGIONAL PLANNING IGR/CEQA BRANCH 100 MAIN STREET LOS ANGELES, CA 90012-3606 PHONE (213) 897-3747 FAX (213) 897-1337

June 25, 2008

Ms. Tova Lelah - Capital Programs University of California - Los Angeles 1060 Veteran Avenue Los Angeles CA 90095-1365

> UCLA Long Range Development Plan Amendment Notice of Preparation of Environmental Impact Report SCH No. 2008051121 IGR/CEQA No. 080636/EK Vicinity LOS / 405 / 29 - 35

Dear Ms. Lelah:

We have received the Initial Study (IS) and the Notice of Preparation (NOP) of Environmental Impact Report for the Plan referenced at above right. Development of more undergraduate student housing in the northwest of the campus is proposed. For the California State Department of Transportation (Department), we have the following comments.

We note that effects on the regional traffic system would be analyzed (IS, p. 41). We ask that such analysis include freeway off-ramps queuing and vehicle off-take from off-ramps at local intersections. Queue back up onto freeway travel lanes might have especially severe effects. Should any Plan criterion for implementing mitigation be triggered, please indicate so. Also, please note that we look forward to receiving word on the effects of provisions for campus transportation demand management.

If you have any questions regarding our comments, please refer to our internal IGR/CEQA Record Number 080636/EK. Also please do not hesitate to contact our review coordinator Edwin Kampmann at (213) 897-1346 or to contact me at (213) 897-6696.

Sincerely,

Elmer Alvarez

IGR/CEOA Program Manager

cc: Scott Morgan, State Clearinghouse

Elmer allum

Carole Magnuson 11147 Ophir Drive Los Angeles, CA 90024

June 25, 2008

Tova Lelah University of California, Los Angeles Capital Programs, Environmental Planning 1060 Veteran Ave Los Angeles, CA 90095-1365

RE: Scope of Environmental Impact Study for NHIP

Dear Ms. Lelah:

Thank you for the opportunity to comment on the scope of the DEIR on the UCLA Northwest Housing Infill Project. I regret that the presentation of the project at the informational meeting didn't include a massing model or a computerized visual depicting the new buildings in the context of the surrounding buildings on the site so that the community could be more fully aware of the project and its physical implications for the surrounding community. Such three-dimensional representations are usually prepared early in the planning phase for any project to test the feasibility of the proposed massing of the project and probably would have been available for this meeting. This would have been helpful since the site proposed for this project is small, hilly and relatively inaccessible giving rise to concerns about how construction activity will be managed and how the buildings will relate in scale to their campus and off-campus neighbors. I hope that construction impacts and project scale in situ will be studied and reported in your DEIR. At a minimum, your DEIR should include graphic depictions in three-dimensions of the De Neve buildings in relationship to Gayley Avenue so that the community and campus decision makers can fully understand their physical impact on the surrounding area.

In addition, the DEIR should consider the following possible impacts of the proposal:

1. Aesthetics:

- a. The project will alter existing valued focal and long-range views of the campus and the site from homes at higher elevations in Westwood Hills, and may eliminate existing views of a forested hillside. These impacts should be mitigated by changes to the design or a fully developed landscape plan.
- b. The hillside site for the De Neve Buildings is represents a scarce natural area in the otherwise built environment and has special value as visual relief and as habitat for flora and fauna. Loss of this habitat could be mitigated by dedicating an alternative area on the Northwest campus as a nature preserve.

c. Light and glare from the new buildings will change existing nighttime views from homes west of the site. All security lighting should be shielded to reduce spillover and should be mounted close to the ground not at the parapet of the buildings. If roof top lighting is required, it should be kept to a minimum and should be shielded to prevent spillover.

2. Air Quality

Construction of these buildings in close proximity to student living areas could negatively impact the health of students and workers, especially those with asthma and other respiratory issues. The impact of adding construction emissions from the NHIP in close proximity to the Chiller/Cogen Plant on sensitive receptors such as on and off campus student residences and the new hospital should be considered and impacts fully mitigated.

3. Biological Resources

The De Neve building site includes a number of young and mature non-native trees that provide habitat for animals and visual relief for humans. The DEIR should provide a tree census and a plan for replacing or preserving trees with a diameter of eight inches or greater.

4. Land Use and Planning

a. Although UCLA is not bound by local zoning and planning ordinances, the DEIR should consider the fact that the proposed lower De Neve building is within 25 feet of a the North Village where development is restricted by a Specific Plan. The DEIR should report on the compatibility of the proposed lower De Neve building with the massing and scale that the City has determined desirable for that area. If the buildings are found to be incompatible with local development standards, the lower De Neve building should provide a set-back from the street greater than the 25 feet at all points and add a generous parking strip planted with street trees to increase the perception of compatibility with the buildings with adjacent UCLA residence halls to the south and multi-family buildings across the street.

5. Noise

The DEIR should consider the impact of 24-hour student activities on surrounding communities. Building design should incorporate features that will orient student activities toward campus. No rooftop recreation or lounging areas should be provided. Construction noise should be mitigated, and if pilings are required they should be drilled, not pounded into place.

6. Population and Housing

- a. The DEIR should consider the impact of the proposed 10 percent increase in 24-hour student on-campus population on public safety, parking and traffic in the North Village area.
- b. The DEIR should explain the increase in total campus population projected in the LRDP amendment and provide mitigations that will allow the total campus

population to remain at the current level by reducing the daily population of visitors not associated with the educational program or medical enterprise.

7. Traffic

- a. The DEIR should analyze and mitigate local impacts resulting from the increase in 24-hour student population.
- b. The DEIR should also consider and mitigate the possibility that the reduction in trips that can be expected as a result of moving students onto campus will be negated if the on-campus parking spaces that they are currently using as commuters are filled by other drivers. To mitigate likely impacts on traffic and off-campus parking demand, the campus should offer on-campus parking to residents of the new buildings. (This should not result in a difficulty for the campus, since the student residents are currently commuting to campus and presumably parking on campus.)

8. Construction Impact

The DEIR should analyze and mitigate the very serious impacts on local traffic and circulation that are expected to result from construction on the difficult De Neve site. Among issues to consider: Will construction staging impact traffic on Gayley Avenue, Veteran Avenue and/or Montana Avenue? What plans are in place to redirect peak hour commuter traffic going to and from the campus? What plan is in place to assure that emergency vehicle access to the new hospital is available at all times? What plan is in place to protect pedestrians walking to class via Bruin Walk? What plans are in place to limit truck traffic on Montana and Veteran Avenues? Will construction on Gayley interfere with bus services? What is the haul route specified for removal of soils? Where will concrete trucks stage? What is the plan for construction worker parking? Construction traffic access should be planned to avoid Montana Ave. and other adjacent residential areas.

9. Project Alternatives

The DEIR should analyze and report on a full range of alternatives to the project, including a less dense project on the same site.

Thank you for your consideration.

Very sincerely,

Carole Magnson

Carole Magnuson

From: alvin milder [mailto:alvinm134@yahoo.com]

Sent: Thursday, June 26, 2008 2:50 PM

To: Lelah, Tova

Subject: Scope of Environmental Impact Study for NHIP

ALVIN S. MILDER

134 Greenfield Avenue Los Angeles, CA 90049 Tel: 310.472.6799, Fax: 310.472.5652

June 26, 2008

Tova Lelah University of California, Los Angeles Capital Programs, Environmental Planning 1060 Veteran Ave Los Angeles, CA 90095-1365

RE: Scope of Environmental Impact Study for NHIP

Dear Ms. Lelah:

UCLA's proposed seven-story building ("lower DeNeve") does not belong on Gayley Ave. UCLA can certainly do better than this too facile plan for an environmentally insensitive, incompatible oversized building, which, to compound the problem, is set much too close to the street. If the University feels that it must construct more buildings on its already overbuilt campus, it can certainly improve on the NHIP plans presented at the scoping meeting.

UCLA should postpone its preparation of the DEIR and any additional documentation for this project until it has had a meaningful and sincere discussion with the community about the NHIP plans. UCLA must fulfill its obligations as set forth in the U.C. CEQA Handbook and in the many UCLA LRDPs; i.e., that the community be kept informed and be consulted regarding new developments. (Such consultations that have been held in the past have generally been beneficial to both sides and resulted in improved projects.) In this case, the community was not consulted about the project and was not advised of the NHIP plans until almost a year after UCLA proposed the project to the Regents. (N.B.: as with so many of UCLA's CEQA required meeting, the students were excluded – in this case by scheduling the scoping meeting during finals week.)

Since, based upon past experience, it is more likely than not that the UCLA's administrators will not consult with the community and will continue to ignore their UC CEQA and LRDP responsibilities, they should at least revise this project:

(i) To reduce the size of the lower DeNeve building,

- (ii) To increase the setback from Gayley Ave., and
- (iii) To provide for a densely landscaped buffer along Gayley Ave.

In addition, the DEIR must discuss:

- Aesthetics/land use. The DEIR must fully explore all aspects of this project and explain how removing many trees and a great deal of landscaping and putting an oversized building on Gayley Ave. will contribute to the preservation and enhancement of the environment.
- Alternatives. Why can't all or some of this project be moved to Lots 32/36, the Sunset Village area, along Young/Circle Drive south of Sunset Blvd.., or the North Village, etc.?
- Noise. How will the University control all of the noise that will be generated by the thousands of students that will be housed in such close proximity to the adjacent residential community? E.g., the Midnight Yells and other student activity noises.
- Cumulative Impacts. The DEIR must discuss all other projects being studied or proposed for the campus and the nearby area. E.g., for faculty and/or staff housing. The DEIR should also include full information on all property, including, but not limited to, all faculty, staff and student housing, the University owns and/or leases in the Los Angeles area. (Does UCLA still own all of the homes it built for faculty in the Westchester area?)
- Other items that must be discussed in the DEIR include, without limitation:
 - Will the NHIP buildings be "green buildings," i.e., built in conformance with LEED standards?
 - What were: the number of specimen trees on campus at the time of the 1990 LRDP? What are the number of specimen trees on campus now? What are the number of trees to be removed because of the NHIP? What are the plans for the replacement of removed trees?
 - What landscaping is planned for this project -- particularly for the buffer zone along Gayley Ave.?

- What impacts will the serious economic problems in this country have on demand for dorm rooms and for the University's construction costs for this project?.
- What is the promise vs. performance record of UCLA's Capital Programs department for campus construction projects since the 1990 LRDP? E.g., the DEIR should set forth the amount of the cost overruns and time delays for the new hospital, the DeNeve dorms, the Weyburn Ave. graduate dorms, etc.
- The rationale for many UCLA projects was based on "Tidal Wave II" predictions. What were the actual figures from "Tidal Wave II?"

Sincerely,

Alvin Milder

CITY OF LOS ANGELES

CALIFORNIA

ANTONIO R. VILLARAIGOSA MAYOR

August 25 2008

DEPARTMENT OF PUBLIC WORKS

BUREAU OF SANITATION

ENRIQUE C. ZALDIVAR

TRACI J. MINAMIDE CHIEF OPERATING OFFICER

VAROUJ S. ABKIAN ADEL H. HAGEKHALIL ALEXANDER E. HELOU ASSISTANT DIRECTORS

WASTEWATER ENGINEERING SERVICES DIV. 2714 MEDIA CENTER DRIVE LOS ANGELES, CA 90065 FAX: (323) 342-6210 OR 6211

SC.CE.

VICE PRESIDENT

PAULA A. DANIELS
PRESIDENT PRO TEMPORE

BOARD OF

PUBLIC WORKS

COMMISSIONERS

CYNTHIA M. RUIZ

PRESIDENT

JULIE B. GUTMAN

ERNESTO CÁRDENAS

VALERIE LYNNE SHAW

Tova Lelah Campus and Environmental Planning UCLA Capital Programs 1060 Veteran Avenue Los Angeles, CA 90095

Dear Ms. Lelah:

UCLA NHIP and 2002 LRDP Amendment Project - Notice of Preparation EIR

This is in response to your May 27, 2008 letter requesting wastewater service information for the proposed project. On August 18, 2008 we received your responses to our Request for Information (RFI). The Bureau of Sanitation, Wastewater Engineering Services Division (WESD), has conducted a preliminary evaluation of the potential impacts to the wastewater system for the proposed project.

Projected Wastewater Discharges for the Proposed Project:

Type Description	Average Daily Flow per Type Description (GPD/UNIT)	Proposed No. of Units	Average Daily Flow (GPD)
Proposed			
Dormitory	75 GPD/STU	1,525 STU	114,375
Residential (2BR)	160 GPD/DU	8 DU	1,280
Residential (3BR)	200 GPD/DU	2 DU	400
Restaurant	30 GPD/SEAT	750 SEAT	22,500
Multi-Purpose	150 GPD/1000 SQ.FT	20,319 SQ.FT	3,048
Room			
Gymnasium	250 GPD/1000 SQ.FT	3,686 SQ.FT	922
Housing	20 GPD/ 1000SQ.FT	16,211 SQ.FT	325
Maintenance		_	
_	142,850		
	Total		2 <u> </u>

Tova Lelah, Campus and Environmental Planning UCLA NHIP and 2002 LRDP Amendment Project – Notice of Preparation EIR August 25, 2008

Page 2 of 2

SEWER AVAILABILITY

The sewer infrastructure in the vicinity of the proposed project includes an existing 8-inch, 12-inch and 18-inch line on Gayle Ave., and then the pipe splits into 18-inch pipe and 10-inch pipe on Gayle Ave. The 18-inch pipe flows to 18-inch pipe on Kelton Ave. and continues to 24-inch line on Ohio Ave. The 10-inch line on Gayle Ave feeds into 24-inch and 30-inch line on Gayle Ave. before discharging 39-inch line on Wilshire Blvd.

The current flow level (d/D) in the 8-inch, 12-inch, 18-inch, 24-inch, and 33-inch lines cannot be determined at this time, as gauging is needed. Based on the available gauging information, the current flow level (d/D) in the 21-inch, 30-inch, and 33-inch line on Rochester Ave., is approximately 32%, 13% and 35% full, respectively. The design capacities at d/D of 50% for the 8-inch line is 743,090 Gallons per Day, for 10-inch line on Gayle Ave. is 415,790 Gallons per Day, for the12-inch line is 1.65 million Gallons per Day, for the 18-inch line on Gayle Ave. is 2.18 million Gallons per Day, for the 18-inch line on Kelton Ave. is 3.15 million Gallons per Day, for the 24-inch line on Ohio Ave. is 4.29 million Gallons per Day, for the 30-inch line on Gayle Ave. is 10.29 million Gallons per Day, and for the 39-inch line on Wilshire Blvd. is 15.27 million Gallons per Day.

The estimated flow that would be generated from your proposed project exceeds 20,000 GPD and therefore may have a significant impact on the sewer system capacity. Thus, detailed gauging is necessary to determine whether the sewer system is capable of safely accommodating the total flow for your proposed project. We have initiated a work order to gauge the designated critical locations in the project area. This process usually takes approximately three (3) to four (4) weeks. A detailed evaluation and response will be provided to you within one (1) to two (2) weeks upon receipt of gauging data. If this schedule is not acceptable, please call us to discuss options.

If you have any questions, please call Abdul Danishwar of my staff at (323) 342-6220.

Sincerely,

Brent Lorscheider, Acting Division Manager

Wastewater Engineering Services Division

Bureau of Sanitation

Ap	per	ndix	B
<i>,</i>	, p • •		

LRDP Amendment Tables

APPENDIX B

2002 LRDP AMENDMENT REVISED TABLES (Square Footage)

(The following tables have been revised for the LRDP Amendment)

Table 8 - Proposed Development Re-Allocation by LRDP Zone

Table 9 - Botanical Garden Zone

Table 10 - Bridge Zone

Table 11 – Campus Services Zone

Table 12 – Central Zone

Table 13 - Core Campus Zone

Table 14 – Health Sciences Zone

Table 15 - Northwest Zone

Table 16 - Southwest Zone

Table 8 (REVISED for 2002 LRDP Amendment) PROPOSED DEVELOPMENT RE-ALLOCATION BY LRDP ZONE

LRDP Zone	2002 LRDP Allocation (gsf)	2002 LRDP Remaining Allocation (gsf)	2008 Amendment to the 2002 LRDP	2002 LRDP Proposed Amended Allocation (gsf)
Botanical Garden	0	0	0	0
Bridge	175,000	175,000	0	175,000
Campus Services	20,000	11,000	0	11,000
Central	5,000	5,000	0	5,000
Core	457,465	305,165	0	305,165
Health Sciences	269,000	274,150 ¹	0	274,150
Northwest	570,000	104,000 ²	550,000	654,000
Southwest	210,000	446,300 ³	0	446,3000
Total	1,706,465	1,320,615	550,000	1,870,615

¹ 5,150 gsf was deducted from the 1990 LRDP allocation for the MP 200 project, which was never undertaken, thus, this square footage has been added back into the remaining allocation for the Health Sciences Zone.

² 15,000 gsf recreation component of 2002 NHIP was deducted from 2002 LRDP allocation but never undertaken and SRLF Phase II (85,000 gsf) analyzed under 1983 LRDP and SRLF Phase II Supplemental EIR (Sept. 1992) was already deducted from 1990 and 2002 LRDP beginning allocation, but this project was deferred and remains in planning. Therefore, the square footage for these two projects (100,000 gsf) has been added back into the remaining allocation for the Northwest Zone.

³ SWH Phase II (243,500 gsf) analyzed under 1990 LRDP was already deducted from 2002 LRDP beginning allocation, but this project was deferred and remains in planning. Therefore, the square footage for this project has been added back into the remaining allocation for the Southwest Zone.

Table 9 (REVISED for 2002 LRDP Amendment) Botanical Garden Zone		
	gsf	
2002 Built Environment	0	
Under construction	0	
Square Footage Addition Since 2002		
Subtotal	19,100	
Existing 2008 Built Environment	19,100	
Remaining LRDP Development Allocation		
Total	19,100	
Source: UCLA Capital Programs, 2008		

Table 10 (REVISED for 2002 LRDP Amendment)		
Bridge Zone		
	gsf	
2002 Built Environment	330,568 ¹	
Square Footage Addition Since 2002	0	
Subtotal	330,568	
Existing 2008 Built Environment	330,568	
Remaining LRDP Development Allocation	175,000	
Total	505,568	
Source: UCLA Capital Programs, 2008		

¹ The 2002 Built Environment square footage has been revised to reflect an actual number as opposed to a rounded number.

Table 11 (REVISED for 2002 LRDP Amendment)				
Campus Services Zone				
	gsf			
2002 Built Environment	411,072			
Square Footage Addition Since 2002	0			
Subtotal	411,072			
Existing 2008 Built Environment	411,072			
Under construction	9,000 ¹			
Subtotal	420,072			
Remaining LRDP Development Allocation	11,000			
Total	431,072			
Source: UCLA Capital Programs, 2008				

¹ Police Replacement Building is currently under construction (Police demo of 11,617 gsf, Replacement Police building of 20,600 gsf, or a net of approximately 9,000 gsf).

Table 12 (REVISED for 2002 LRDP Am Central Zone	endment)
	gsf
2002 Built Environment	1,007,125
Square Footage Addition Since 2002	69,950 ¹
Subtotal	1,077,075
Existing 2008 Built Environment	1,077,075
Under construction	0
Subtotal	1,077,075
Remaining LRDP Development Allocation	5,000
Total	1,082,075
Source: UCLA Capital Programs, 2008	

¹ Acosta, IM Field Storage, and Wooden West approved under the 1990 LRDP allocation have been constructed since 2002.

Table 13 (REVISED for 2002 LRDP Amendment) Core Campus Zone

		gsf
2002 Built Environment		6,135,802 ¹
Square Footage Addition Since 2002		818,900 ²
	Subtotal	6,954,702
Existing 2008 Built Environment		6,954,702
Under construction		123,000 ³
	Subtotal	7,077,702
Remaining LRDP Development Allocation		305,165
	Total	7,382,867

Source: UCLA Capital Programs, 2008

¹ The 2002 Built Environment has been corrected to include the demolition of structures not subtracted from the existing building square footage for Core (South) and to correct for rounding the square footage number from 6,272,400 to the actual 6,272,407. See 2002 Appendix B (Revised) Core (South). These buildings include Engineering Building 1 Unit B (-60,000 gsf), Hershey Hall 1957 Addition (-40,000 gsf), Life Science Auditorium (-11,000 gsf), Plant Greenhouse (-900 gsf), and Plant Physiology (-24,705 gsf). The combined demolished square footage from these five structures is 136,605 gsf, which is the difference shown here between the original 2002 Core Zone Built Environment of 6,272,407 and the revised number of 6,135,802.

² Broad Art Center, CNSI, Engineering 1 Replacement Building, HSSRB#1, HSSRB#2, Luck, Kaufman Hall, La Kretz Hall, Physics & Astronomy were approved under the 1990 LRDP, yet were not constructed until after 2002, thus, their square footage is included here. CENS Lab and Magnet Lab were approved under the 2002 LRDP and have been constructed since 2002.

³ Life Science Replacement Building (185,000 gsf) is under construction and the demolition of Engineering 1 Unit B (-62,000 gsf) is pending.

Table 14 (REVISED for 2002 LRDP Amendment) Health Sciences Zone

	gsf
2002 Built Environment	3,288,000 ¹ **
Square Footage Addition Since 2002	1,006,503 ²
Subtotal	4,294,503
Existing 2008 Built Environment	4,294,503
Under construction	0
Subtotal	4,294,503
Remaining LRDP Development Allocation	274,105 ³
Total	4,568,653

Source: UCLA Capital Programs, 2008

¹ Reflects retention of NPI (280,188 gsf), Reed (69,176 gsf), BRI (86,578 gsf), and portions of CHS (1,184,011 gsf) previously assumed to be demolished by 2010 as analyzed in the AHCFRP Final EIR. Due to changed circumstances related to construction delays and increased costs, new seismic ratings, and availability of new construction technologies, these buildings may or may not be demolished in the future in conjunction with continued seismic renovation of the Center for the Health Sciences. Therefore, they remain as part of the existing built environment at this point in time.

² The Ronald Reagan UCLA Medical Center, approved under the 1990 LRDP, has been constructed since 2002.

³ 5,150 gsf for the MP 200 Building project was deducted from the 1990 LRDP allocation. Since that project has been abandoned, its square footage has been added back into the remaining allocation for the Health Science Zone.

^{**} The square footage number was rounded up from the actual square footage of 3,287,991 gsf.

Table 15 (REVISED for 2002 LRDP Amendment) Northwest Zone

	gsf
2002 Built Environment	2,100,079
Square Footage Addition Since 2002	545,000 ¹
Subtotal	2,645,079
Existing 2008 Built Environment	2,645,079
Under construction	6,000 ²
Subtotal	2,651,079
Remaining LRDP Development Allocation	104,000 ³
Proposed Amendment to 2002 LRDP for NHIP	550,000 ⁴
Total	3,305,079

Source: UCLA Capital Programs, 2008

¹ Hedrick Summit, Rieber Vista, Rieber Terrace (all part of the 2002 LRDP Northwest Campus Undergraduate Student Housing), and Krieger Childcare have been constructed since 2002.

² Spieker Aquatic Center is currently under construction.

³ Includes 85,000 gsf for the previously proposed Southern Regional Library, Phase 3, originally proposed under the 1983 LRDP, carried forward as part of the existing baseline for the 1990 and 2002 LRDPs. That project has been deferred and therefore the square footage has been added back into the remaining development allocation.

⁴ The 2002 LRDP Amendment is proposed to add 550,000 square feet of new development allocation to the Northwest Zone for the construction of the Northwest Housing Infill Project.

Table 16 (REVISED for 200 Southwest	•
Southwest	gsf
2002 Built Environment	472,500
Square Footage Addition Since 2002	645,700 ¹
Su	btotal 1,103,917
Existing 2008 Built Environment	1,103,917
Under construction	0
Su	btotal 1,103,917
Remaining LRDP Development Allocation	446,300
	Total 1,550,217
Source: UCLA Capital Programs, 2008	

¹ Southwest Housing Phase I including demolition of Taper Center (638,500 gsf net) and Warren Hall Modular Building (7,200 gsf) were approved under the 1990 LRDP and have been constructed since 2002.

2002 LRDP APPENDIX B (REVISED for 2002 LRDP Amendment)*
*Note: All buildings underlined and shown in italics in the tables have been approved under either the 1990 or 2002 LRDP and were completed since adoption of the 2002 LRDP.

	F BUILDINGS (REVISED for 2002 LRDF		-	
Zone/Building Status	Building Name	Year		Basic GSF
Botanical Garden	2222	0000	<i>(</i> , ,)	10.10
Existing	PPRB	2002	(est)	19,10
	Botanical Garden Zone Total			19,10
Under Construction				
Bridge				
Existing	Faculty Levering Apartments	1983		122,39
	Margan Apartments	1965		44,13
	Ueberroth Building	1982		65,73
	University Extension	1971		98,30
	Bridge Zone Total	1371		330,5 (
Under Construction	2/10ge 20/10 / Otta			
Campus Services	0004	4077		50.04
Existing	CSB1	1977		56,90
	Facilities Management Bldg	1993		189,19
	Fleet Services Modular	1998		4,9
	K6 Pkg Kiosk - WW Plaza	1988		1
	Parking Structure 8	1967		48,8
	Police Station	1959		11,6
	Strathmore Office Bldg	2000		85,5
	ESF	2002		13,7
	Campus Services Zone Total			411,0
Under Construction	Police Station Replacement			20,6
	Police Station Demo			-11,6
Central				
Existing	Ackerman Union	1961		221,76
9	Acosta Athletic Trng Ctr	1965		32,5
	Acosta Athletic Trng Ctr (addition)	<u>2004</u>		33,3
	Ashe Center	1994		32,0
	CRA Ticket Booth	1996		2
	Drake Stadium	1969		12,2
	Equip Storage (Spaulding)	1967		3,9
	IM Field Storage	2004		3,6
	K4 Pkg Kiosk - WW/Sunset	1988		<u>5,0</u>
	Kerckhoff Hall	1930		
	L.A. Tennis Center	1930		84,3
		1904		27,09
	Men's Gym			102,3
	Morgan Center	1965		70,5
	Parking Structure 6	1980		54
	Pauley Pavilion	1965		204,4
	West Center	1976		30,1
	Wooden Ctr / PS 4	1983		184,7
	<u>Wooden West</u>	<u>2004</u>		<u>33,0</u> 2
	Central Zone Total			1,077,0

LIST OF BUILDINGS (REVISED)			
Zone/Building Status	Building Name	Year	Basic GSF
Core (North)			
Existing	AGSM Collins Exec Edu Ctr	1995	31,311
	AGSM Cornell Hall	1995	54,763
	AGSM Entrepreneurs Hall	1995	72,591
	AGSM Gold Hall	1995	55,344
	AGSM Mullin Commons	1995	33,957
	AGSM Rosenfeld Library	1995	51,046
	Broad Art Center	1965	140,116
	Broad Art Center exp	<u>2005</u>	<u>10,000</u>
	Bunche Hall	1964	197,945
	Campbell Hall	1954	54,844
	Dodd Hall	1948	78,303
	East Melnitz	1992	25,123
	Fernald Center	1957	9,252
	Fowler Museum	1990	105,854
	GSEIS	1991	29,838
	University Guest House	1984	26,462
	Haines Hall	1929	133,851
	K3 Pkg Kiosk - Wyton	1988	100
	Kaufman Hall	1932	73,553
	Kaufman Hall Theater	<u>2003</u>	<u>11,600</u>
	Law School	1951	275,439
	LuValle Commons	1985	17,866
	MacGowan Hall	1963	134,109
	MacGowan Hall East	1998	2,417
	Melnitz Hall	1967	61,827
	NC Electrical Distribution	1993	2,900
	North Campus Student Ctr	1976	17,628
	Parking Structure 3	1964	694
	Parking Structure 5	1961	478
	Perloff Hall	1952	65,909
	Public Policy	1958	221,242
	Physics & Astronomy	<u>2004</u>	<u>117,000</u>
	Rolfe Hall	1956	73,276
	Royce Hall	1929	184,673
	University Elementary Schl 1	1950	47,303
	University Elementary Schl 2	1993	13,051
	University Residence	1930	10,455
	Young Research Library	1964	305,919
	Core (North) Zone Total		2,748,039
Under Construction			<u>0</u>

LIST OF BUILDINGS (REVISED)			
Zone/Building Status	Building Status	Year	Basic GSF
Core (South)			
Existing	BH/MS CENS Lab		<u>6,000</u>
_	Boelter Hall	1959	373,904
	Bombshelter	1968	2,436
	Botany	1959	37,351
	Boyer Hall	1976	133,042
	Bus Terminal	1937	72
	Campus Corners	1957	827
	<u>CNSI-CoS</u>	<u>2002</u>	<u>188,000</u>
	Engineering Building 1	1950	118,497
	<u>Unit B Demo</u>		<u>-60,000</u>
	Engineering 1 Replacement	<u>2005</u>	<u>100,000</u>
	Engineering Building 4	1990	294,124
	Faculty Center	1959	30,573
	Franz Hall	1940	238,054
	Geology	1952	172,430
	Gonda Center	1998	125,202
	Hershey Hall	1931	80,699
	Hershey Hall addition demo for LSRB	<u>2007</u>	<u>-40,000</u>
	<u> HSSRB #1</u>	<u>2004</u>	<u>133,000</u>
	<u> HSSRB #2</u>	<u>2005</u>	<u>133,000</u>
	IPAM	1976	16,459
	K2 Pkg Kiosk - Westholme	1988	100
	Kinsey Hall	1929	125,077
	Knudsen Hall	1963	160,811
	Lath House	1952	4,199
	La Kretz	<u>2004</u>	<u>24,000</u>
	Life Sciences	1954	219,327
	Life Science Auditorium Demo for Luck	2002	<u>-11,000</u>
	Luck Research Center	2005	95,000
	MacDonald Lab	1991	144,611
	Math Science	1957	224,078
	Molecular Science	1993	164,702
	Moore Hall	1930	88,505
	MSB Magnet Lab		<u>1,300</u>
	Murphy Hall	1937	220,188
	Nuclear Reactor	1960	6,038
	Parking Structure 2	1969	1,052
	Parking Structure 9	1966	5,371
	Plant Greenhouse	1989	990
	Plant Greenhouse demo for SRB2	<u>2002</u>	<u>-900</u>
	Plant Physiology	1950	24,705
	Plant Physiology demo for SRB2	<u>2002</u>	<u>-24,705</u>
	Powell Library	1930	166,846
	Schoenberg Hall	1955	122,552
	Slichter Hall	1965	62,557
	Young Hall	1952	297,589
	Core (South) Zone Subtota		4,206,663
	Core (North) Zone Subtota		2,748,039
Total Core Zone			6,954,702
Under Construction	Life Science Replacement Bldg	-	<u>185,000</u>
	Demo Engineering 1, Unit A		<u>-62,000</u>

LIST OF BUILDINGS (REVISED)							
Zone/Building Status	Building Name	Year	Basic GSF				
Health Sciences							
Existing	700 WW Plaza	1979	31,509				
	Brain Mapping	1996	13,420				
	Brain Research Institute	1961	86,578				
	Clinical Research	1954	25,244				
	Cyclotron - Add	1990	1,614				
	Cyclotron - Biomedical	1971	4,252				
	Dentistry	1966	204,369				
	Doris Stein Eye Research Inst	1989	65,440				
	Factor Health Sciences Bldg	1981	199,857				
	Center for Health Sciences	1954	1,265,387				
	Jules Stein Institute	1967	87,905				
	K1 Pkg Kiosk - Tiverton	1988	100				
	K7 Pkg Kiosk - Stein Plaza	1990	100				
	M Davies Children's Clinic	1962	70,228				
	Med Plaza 100	1990	45,012				
	Med Plaza 200	1990	366,834				
	Med Plaza 300	1990	101,095				
	Neuropsychiatric Institute	1961	280,188				
	Parking Structure CHS	1977	97,131				
	Parking Structure 1	1989	3,827				
	Parking Structure E	1967	1,772				
	Public Health	1968	140,563				
	Reed Neurological Research	1970	69,176				
	Vivarium	1954	126,390				
	RR/UCLA MC	2008	<u>1,006,503</u>				
	Subtotal		4,294,494				
	Health Sciences Zone Total		4,294,494				
Under Construction 0							

	LIST OF BUILDINGS (REVISE	ED)	
Zone/Building Status	Building Name	Year	Basic GSF
Northwest			
Existing	Bradley Hall	1997	46,907
	Canyon Point	1991	107,419
	Canyon Recreation Ctr	1965	12,030
	Child Care A	1987	2,160
	Child Care B	1987	3,168
	Child Care C	1987	2,496
	Courtside Pkg	1992	198,250
	Covel Commons	1992	130,095
	CRA Modular Unit	1999	2,272
	De Neve Podium (A & B)	2002	177,785
	De Neve C	2000	42,512
	De Neve D	2000	42,519
	De Neve E	2000	56,693
	De Neve F	2000	43,027
	Delta Terrace	1991	131,118
	Dykstra Hall	1959	163,262
	Easton Field	1997	1,854
	Hedrick Hall	1964	198,485
	Hitch RS-A	1981	21,603
	Hitch RS-B	1981	23,72
	Hitch RS-C	1981	10,282
	Hitch RS-D	1981	15,236
	Housing Administration	1982	16,736
	NW Auditorium	1992	9,584
	Ornamental Horticulture J	1958	4,800
	Ornamental Horticulture M	1975	7,20
	Parking Structure RC	1989	.,20
	Residential Life Bldg	1992	8,472
	Rieber Hall	1963	199,076
	RS Srv Bldg N	1981	1,194
	RS Srv Bldg S	1981	1,739
	Saxon RS-E	1981	7,586
	Saxon RS-F	1981	18,04
		1981	18,04
	Saxon RS-G Saxon RS-H	1981	12,818
	Saxon RS-J	1981	12,70
		1981	12,70
	Saxon RS-K		
	Sproul Hall	1960	174,478
	SRLF	1987	158,717
	Sunset Court	1988	3,023
	<u>2002 (Hedrick, Rieber Vista,</u> <u>Rieber Terrace)</u>	<u>2003</u>	<u>535,000</u>
	Krieger Childcare	<u>2004</u>	10,000
	Northwest Zone Total		2,645,079
Under Construction	Spieker Aquatic Center		<u>6,000</u>

	LIST OF BUILDINGS (REVISE	D)	
Zone/Building Status	Building Name	Year	Basic GSF
Southwest			
Existing	Capital Programs	1989	29,564
	K32 Pkg Kiosk - Gayley	1988	100
	K32 Pkg Kiosk - Veteran	1989	100
	Parking Structure 32	1986	96
	Rehab Center	1965	142,566
	STRB	1998	49,512
	Taper Ctr 1	1984	5,020
	Taper Ctr 1 demo for SWH Ph I	<u>2005</u>	<u>-5,020</u>
	Taper Ctr 2	1984	9,216
	Taper Ctr 2 demo for SWH Ph I	<u>2005</u>	<u>-9,216</u>
	Warren Hall	1961	102,205
	West Steam Plant	1965	5,925
	West Medical Bldg	1988	27,229
	SW Campus Staging	2001	75,000
	SW Campus Modulars	2002	25,920
	<u>SW Housing Ph I</u>	<u>2005</u>	<u>638,500</u>
	Warren Hall Modulars	<u>2005</u>	<u>7,200</u>
	Southwest Zone Total	1	1,103,917
Under Construction			0

.

CAMPUS BUILDINGS TOTAL GSF BY ZONE (REVISED)									
Cotogony	Zone	2002 LRDP GSF	2002 LRDP Proposed Amendment GSF						
Category	Zone	GSF	GSF						
Square Feet by Zone									
	Botanical Garden	0	<u>19,100</u>						
	Bridge	330,568	330,568						
	Campus Services	411,072	411,072						
	Central	1,007,125	1,077,072						
	Core	6,272,407	6,954,702						
	Health Sciences	3,287,991	4,294,494						
	Northwest	2,100,079	<u>2,645,079</u>						
	Southwest	472,453	<u>1,103,917</u>						
	Subtotal	13,881,695	<u>16,836,004</u>						
Under Construction									
	Botanical Garden	19,100	<u>0</u>						
	Bridge	0	<u>0</u>						
Police Replacement + demo	Campus Services	0	<u>9,000</u>						
	Central	69,950	<u>0</u>						
LSRB	Core	652,880	<u>185,000</u>						
Demo Engr. 1, Unit A (pending)			<u>-62,000</u>						
	Health Sciences	-183,595	<u>o</u>						
Spieker Aquatic Center	Northwest	65,100	<u>6,000</u>						
	Southwest	882,000	<u>0</u>						
	Subtotal	1,505,435	<u>138,000</u>						
	Total Buildings	15,387,130	<u>17,036,004</u>						

^{*}Note: Changes between the 2002 LRDP GSF and the 2002 LRDP Proposed Amendment GSF reflect development (i.e. new construction, demolition and retention of buildings previously assumed to be demolished) since approval of the 2002 LRDP as shown in detail under the previous List of Buildings tables for each campus land use zone.

PARKING STRUCTURE TOTAL GSF BY ZONE (REVISED)								
Category	Zone	2002 LRDP GSF*	2002 LRDP Proposed Amendment GSF					
Existing Parking Structures								
	Botanical Garden	0	<u>C</u>					
	Bridge	0	<u>.</u>					
	Campus Services	941,726	941,726					
	Central	840,912	1,358,912					
	Core	2,205,665	2,205,665					
	Health Sciences	1,665,167	1,880,167					
	Northwest	243,267	243,267					
	Southwest	308,314	<u>1,014,314</u>					
	Subtotal	6,205,051	<u>7,644,051</u>					
Under Construction								
	Botanical Garden	0	<u>(</u>					
	Bridge	0	<u>(</u>					
	Campus Services	0	<u>(</u>					
	Central	518,000	<u>(</u>					
	Core	0	<u>(</u> <u>(</u> <u>(</u> () () () ()					
	Health Sciences	215,000	<u>(</u>					
	Northwest	0	<u>(</u>					
	Southwest	706,000	<u>(</u>					
	Subtotal Total Parking	1,439,000						
	Structures		7,644,05					

*Note: Changes between the 2002 LRDP GSF and the 2002 LRDP Proposed Amendment GSF reflect the completion of parking structures after approval of the 2002 LRDP. The square footage has been moved from the "Under Construction" heading to the "Existing Parking Structures" heading.

Appendix C

Air Quality

Appendix C1 Air Quality Calculations

9/2/2008 04:54:54 PM

Urbemis 2007 Version 9.2.4

Detail Report for Summer Area Source Unmitigated Emissions (Pounds/Day)

File Name: C:\Documents and Settings\boparaip\Desktop\Work\UCLA LRDP\Urbemis\UCLA Area Source Existing.urb924

Project Name: UCLA Existing Area Source Emissions

Project Location: Los Angeles County

On-Road Vehicle Emissions Based on: Version: Emfac2007 V2.3 Nov 1 2006

Off-Road Vehicle Emissions Based on: OFFROAD2007

AREA SOURCE EMISSION ESTIMATES (Summer Pounds Per Day, Unmitigated)

Source	<u>ROG</u>	<u>NOx</u>	<u>CO</u>	<u>SO2</u>	<u>PM10</u>	PM2.5	<u>CO2</u>
Natural Gas	3.86	53.10	44.61	0.00	0.10	0.09	63,723.58
Hearth - No Summer Emissions							
Landscape	0.14	0.02	1.66	0.00	0.00	0.00	2.75
Consumer Products	0.00						
Architectural Coatings	32.15						
TOTALS (lbs/day, unmitigated)	36.15	53.12	46.27	0.00	0.10	0.09	63,726.33

Area Source Changes to Defaults

9/2/2008 04:55:10 PM

Urbemis 2007 Version 9.2.4

Detail Report for Winter Area Source Unmitigated Emissions (Pounds/Day)

File Name: C:\Documents and Settings\boparaip\Desktop\Work\UCLA LRDP\Urbemis\UCLA Area Source Existing.urb924

Project Name: UCLA Existing Area Source Emissions

Project Location: Los Angeles County

On-Road Vehicle Emissions Based on: Version: Emfac2007 V2.3 Nov 1 2006

Off-Road Vehicle Emissions Based on: OFFROAD2007

AREA SOURCE EMISSION ESTIMATES (Winter Pounds Per Day, Unmitigated)

Source	<u>ROG</u>	<u>NOx</u>	<u>CO</u>	<u>SO2</u>	<u>PM10</u>	<u>PM2.5</u>	<u>CO2</u>
Natural Gas	3.86	53.10	44.61	0.00	0.10	0.09	63,723.58
Hearth	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Landscaping - No Winter							
Consumer Products	0.00						
Architectural Coatings	32.15						
TOTALS (lbs/day, unmitigated)	36.01	53.10	44.61	0.00	0.10	0.09	63,723.58

Area Source Changes to Defaults

9/2/2008 04:54:12 PM

Urbemis 2007 Version 9.2.4

Summary Report for Summer Emissions (Pounds/Day)

File Name: C:\Documents and Settings\boparaip\Desktop\Work\UCLA LRDP\Urbemis\UCLA Area Source Existing.urb924

Project Name: UCLA Existing Area Source Emissions

Project Location: Los Angeles County

On-Road Vehicle Emissions Based on: Version: Emfac2007 V2.3 Nov 1 2006

Off-Road Vehicle Emissions Based on: OFFROAD2007

AREA SOURCE EMISSION ESTIMATES

TOTALS (lbs/day, unmitigated)	<u>ROG</u>	<u>NOx</u>	<u>CO</u>	<u>SO2</u>	<u>PM10</u>	<u>PM2.5</u>	<u>CO2</u>
	36.15	53.12	46.27	0.00	0.10	0.09	63,726.33
SUM OF AREA SOURCE AND OPERATIONAL EMISS	SION ESTIMAT	ES					
TOTALS (lbs/day, unmitigated)	<u>ROG</u>	<u>NOx</u>	<u>CO</u>	<u>SO2</u>	<u>PM10</u>	PM2.5	<u>CO2</u>
	36.15	53.12	46.27	0.00	0.10	0.09	63,726.33

9/2/2008 04:55:01 PM

Urbemis 2007 Version 9.2.4

Summary Report for Winter Emissions (Pounds/Day)

File Name: C:\Documents and Settings\boparaip\Desktop\Work\UCLA LRDP\Urbemis\UCLA Area Source Existing.urb924

36.01

Project Name: UCLA Existing Area Source Emissions

Project Location: Los Angeles County

On-Road Vehicle Emissions Based on: Version: Emfac2007 V2.3 Nov 1 2006

Off-Road Vehicle Emissions Based on: OFFROAD2007

AREA SOURCE EMISSION ESTIMATES

TOTALS (lbs/day, unmitigated)

TOTALS (lbs/day, unmitigated)	<u>ROG</u> 36.01	<u>NOx</u> 53.10	<u>CO</u> 44.61	<u>SO2</u> 0.00	<u>PM10</u> 0.10	<u>PM2.5</u> 0.09	<u>CO2</u> 63,723.58
SUM OF AREA SOURCE AND OPERATIONAL EMIS	SSION ESTIMAT	ES					
	ROG	<u>NOx</u>	CO	<u>SO2</u>	<u>PM10</u>	<u>PM2.5</u>	<u>CO2</u>

53.10

0.00

44.61

0.10

0.09

63,723.58

9/2/2008 04:59:50 PM

Urbemis 2007 Version 9.2.4

Detail Report for Summer Operational Unmitigated Emissions (Pounds/Day)

File Name: C:\Documents and Settings\boparaip\Desktop\Work\UCLA LRDP\Urbemis\UCLA Mobile Source Existing.urb924

Project Name: UCLA Existing Vehicle Emissions

Project Location: Los Angeles County

On-Road Vehicle Emissions Based on: Version: Emfac2007 V2.3 Nov 1 2006

Off-Road Vehicle Emissions Based on: OFFROAD2007

OPERATIONAL EMISSION ESTIMATES (Summer Pounds Per Day, Unmitigated)

<u>Source</u>	ROG	NOX	CO	SO2	PM10	PM25	CO2
Apartments high rise	1,165.70	1,599.67	15,336.22	12.76	2,082.21	405.50	1,242,160.86
TOTALS (lbs/day, unmitigated)	1,165.70	1,599.67	15,336.22	12.76	2,082.21	405.50	1,242,160.86

Does not include correction for passby trips

Does not include double counting adjustment for internal trips

Analysis Year: 2008 Temperature (F): 80 Season: Summer

Emfac: Version: Emfac2007 V2.3 Nov 1 2006

Summary of Land Uses

Land Use Type	Acreage	Trip Rate	Unit Type	No. Units	Total Trips	Total VMT				
Apartments high rise	0.16	11,926.90	dwelling units	10.00	119,269.00	1,204,950.89				
			dillo		119,269.00	1,204,950.89				
Vehicle Fleet Mix										
Vehicle Type	Percent T	уре	Non-Cataly	est	Catalyst	Dies				

Vehicle Type	Percent Type	Non-Catalyst	Catalyst	Diesel
Light Auto	53.7	1.7	97.9	0.4
Light Truck < 3750 lbs	6.8	4.4	92.7	2.9
Light Truck 3751-5750 lbs	22.9	0.9	99.1	0.0

Page: 1 9/2/2008 04:59:50 PM						
Med Truck 5751-8500 lbs		10.1	1.0		99.0	0.0
Lite-Heavy Truck 8501-10,000 lbs		1.4	0.0		85.7	14.3
Lite-Heavy Truck 10,001-14,000 lbs		0.4	0.0		50.0	50.0
Med-Heavy Truck 14,001-33,000 lbs		0.9	0.0		22.2	77.8
Heavy-Heavy Truck 33,001-60,000 lbs		0.4	0.0		0.0	100.0
Other Bus		0.1	0.0		100.0	0.0
Urban Bus		0.1	0.0		0.0	100.0
Motorcycle		2.3	78.3		21.7	0.0
School Bus		0.1	0.0		0.0	100.0
Motor Home		0.8	12.5		75.0	12.5
		Travel Cond	<u>ditions</u>			
		Residential		(Commercial	
	Home-Work	Home-Shop	Home-Other	Commute	Non-Work	Customer
Urban Trip Length (miles)	12.7	7.0	9.5	13.3	7.4	8.9
Rural Trip Length (miles)	17.6	12.1	14.9	15.4	9.6	12.6
Trip speeds (mph)	30.0	30.0	30.0	30.0	30.0	30.0
% of Trips - Residential	32.9	18.0	49.1			

Operational Changes to Defaults

% of Trips - Commercial (by land

use)

9/2/2008 05:01:52 PM

Urbemis 2007 Version 9.2.4

Detail Report for Winter Operational Unmitigated Emissions (Pounds/Day)

File Name: C:\Documents and Settings\boparaip\Desktop\Work\UCLA LRDP\Urbemis\UCLA Mobile Source Existing.urb924

Project Name: UCLA Existing Vehicle Emissions

Project Location: Los Angeles County

On-Road Vehicle Emissions Based on: Version: Emfac2007 V2.3 Nov 1 2006

Off-Road Vehicle Emissions Based on: OFFROAD2007

OPERATIONAL EMISSION ESTIMATES (Winter Pounds Per Day, Unmitigated)

<u>Source</u>	ROG	NOX	CO	SO2	PM10	PM25	CO2
Apartments high rise	1,334.85	1,939.93	14,772.60	10.62	2,082.21	405.50	1,125,998.11
TOTALS (lbs/day, unmitigated)	1,334.85	1,939.93	14,772.60	10.62	2,082.21	405.50	1,125,998.11

Does not include correction for passby trips

Does not include double counting adjustment for internal trips

Analysis Year: 2008 Temperature (F): 60 Season: Winter

Emfac: Version: Emfac2007 V2.3 Nov 1 2006

Summary of Land Uses

odiffinally of Early Osca												
Land Use Type	Acreage	Trip Rate	Unit Type	No. Units	Total Trips	Total VMT						
Apartments high rise	0.16	11,926.90 dwelling 10.00 units		119,269.00	1,204,950.89							
					119,269.00	1,204,950.89						
	7	Vehicle Fleet №	<u>lix</u>									
Vehicle Type	Percent	Туре	Non-Cataly	/st	Catalyst	Diesel						
Light Auto		53.7	1	.7	97.9	0.4						
Light Truck < 3750 lbs		6.8	4	.4	92.7	2.9						

Page: 1 9/2/2008 05:01:52 PM						
Light Truck 3751-5750 lbs		22.9	0.9		99.1	0.0
Med Truck 5751-8500 lbs		10.1	1.0		99.0	0.0
Lite-Heavy Truck 8501-10,000 lbs		1.4	0.0		85.7	14.3
Lite-Heavy Truck 10,001-14,000 lbs		0.4	0.0		50.0	50.0
Med-Heavy Truck 14,001-33,000 lbs		0.9	0.0		22.2	77.8
Heavy-Heavy Truck 33,001-60,000 lbs		0.4	0.0		0.0	100.0
Other Bus		0.1	0.0		100.0	0.0
Urban Bus		0.1	0.0		0.0	100.0
Motorcycle		2.3	78.3		21.7	0.0
School Bus		0.1	0.0		0.0	100.0
Motor Home		0.8	12.5		75.0	12.5
		Travel Cond	<u>ditions</u>			
		Residential			Commercial	
	Home-Work	Home-Shop	Home-Other	Commute	Non-Work	Customer
Urban Trip Length (miles)	12.7	7.0	9.5	13.3	7.4	8.9
Rural Trip Length (miles)	17.6	12.1	14.9	15.4	9.6	12.6
Trip speeds (mph)	30.0	30.0	30.0	30.0	30.0	30.0
% of Trips - Residential	32.9	18.0	49.1			

Operational Changes to Defaults

% of Trips - Commercial (by land use)

9/2/2008 04:59:37 PM

Urbemis 2007 Version 9.2.4

Summary Report for Summer Emissions (Pounds/Day)

File Name: C:\Documents and Settings\boparaip\Desktop\Work\UCLA LRDP\Urbemis\UCLA Mobile Source Existing.urb924

Project Name: UCLA Existing Vehicle Emissions

Project Location: Los Angeles County

On-Road Vehicle Emissions Based on: Version: Emfac2007 V2.3 Nov 1 2006

Off-Road Vehicle Emissions Based on: OFFROAD2007

OPERATIONAL (VEHICLE) EMISSION ESTIMATES

TOTALS (lbs/day, unmitigated)	<u>ROG</u>	<u>NOx</u>	<u>CO</u>	<u>SO2</u>	<u>PM10</u>	<u>PM2.5</u>	<u>CO2</u>
	1,165.70	1,599.67	15,336.22	12.76	2,082.21	405.50	1,242,160.86

SUM OF AREA SOURCE AND OPERATIONAL EMISSION ESTIMATES

	<u>ROG</u>	<u>NOx</u>	<u>co</u>	<u>SO2</u>	<u>PM10</u>	<u>PM2.5</u>	<u>CO2</u>
TOTALS (lbs/day, unmitigated)	1,165.70	1,599.67	15,336.22	12.76	2,082.21	405.50	1,242,160.86

9/2/2008 05:00:01 PM

Urbemis 2007 Version 9.2.4

Summary Report for Winter Emissions (Pounds/Day)

File Name: C:\Documents and Settings\boparaip\Desktop\Work\UCLA LRDP\Urbemis\UCLA Mobile Source Existing.urb924

Project Name: UCLA Existing Vehicle Emissions

Project Location: Los Angeles County

On-Road Vehicle Emissions Based on: Version: Emfac2007 V2.3 Nov 1 2006

Off-Road Vehicle Emissions Based on: OFFROAD2007

OPERATIONAL (VEHICLE) EMISSION ESTIMATES

TOTALS (lbs/day, unmitigated)	<u>ROG</u>	<u>NOx</u>	<u>CO</u>	<u>SO2</u>	<u>PM10</u>	<u>PM2.5</u>	<u>CO2</u>
	1,334.85	1,939.93	14,772.60	10.62	2,082.21	405.50	1,125,998.11
SUM OF AREA SOURCE AND OPERATIONAL EMIS							

	ROG	<u>NOx</u>	<u>CO</u>	<u>SO2</u>	<u>PM10</u>	PM2.5	<u>CO2</u>
TOTALS (lbs/day, unmitigated)	1,334.85	1,939.93	14,772.60	10.62	2,082.21	405.50	1,125,998.11

Area source calculation for UCLA LRDP, including NHIP

Manual calculation of consumer product VOC emissions added to area source VOC emissions from Urbemis

Existing consumer 0.0171 #/day VOC per resident - factor from Urbemis

11402 residents from Table 3 of traffic report

194.97 consumer products VOC36.15 existing from Urbemis231 total area source VOC

2013 consumer 0.0171 #/day VOC per resident

12927 residents Existing plus 1525221.1 consumer products VOC38.7 2013 from Urbemis260 total area source VOC

10/22/2008 07:40:38 PM

Urbemis 2007 Version 9.2.4

Summary Report for Summer Emissions (Pounds/Day)

File Name: C:\Documents and Settings\boparaip\Desktop\Work\Projects\Bonterra Projects\UCLA LRDP\BonTerra Comments\NHIP Construction Project Name: UCLA NHIP Amended LRDP

Project Location: Los Angeles County

On-Road Vehicle Emissions Based on: Version: Emfac2007 V2.3 Nov 1 2006

Off-Road Vehicle Emissions Based on: OFFROAD2007

CONSTRUCTION EMISSION ESTIMATES

	ROG	<u>NOx</u>	<u>CO</u>	<u>SO2</u>	PM10 Dust PM	10 Exhaust	<u>PM10</u>	PM2.5 Dust PM2	.5 Exhaust	PM2.5	<u>CO2</u>
2009 TOTALS (lbs/day unmitigated)	9.84	102.89	46.56	0.09	124.48	5.23	129.71	26.03	4.81	30.85	11,892.80
2009 TOTALS (lbs/day mitigated)	9.84	102.89	46.56	0.09	20.68	5.23	25.92	4.36	4.81	9.17	11,892.80
2010 TOTALS (lbs/day unmitigated)	27.86	163.46	205.11	0.16	119.97	9.34	123.28	25.09	8.57	28.14	29,921.66
2010 TOTALS (lbs/day mitigated)	27.86	163.46	205.11	0.16	16.18	9.34	19.49	3.41	8.57	8.82	29,921.66
2011 TOTALS (lbs/day unmitigated)	25.64	152.77	194.47	0.16	0.70	8.91	9.61	0.25	8.17	8.42	29,919.06
2011 TOTALS (lbs/day mitigated)	25.64	152.77	194.47	0.16	0.70	8.91	9.61	0.25	8.17	8.42	29,919.06
2012 TOTALS (lbs/day unmitigated)	23.66	142.64	184.50	0.16	0.70	8.06	8.76	0.25	7.39	7.64	29,916.88
2012 TOTALS (lbs/day mitigated)	23.66	142.64	184.50	0.16	0.70	8.06	8.76	0.25	7.39	7.64	29,916.88

10/22/2008 07:41:01 PM

Urbemis 2007 Version 9.2.4

Detail Report for Summer Construction Unmitigated Emissions (Pounds/Day)

File Name: C:\Documents and Settings\boparaip\Desktop\Work\Projects\Bonterra Projects\UCLA LRDP\BonTerra Comments\NHIP Construction Emissions_102208.urb924

Project Name: UCLA NHIP Amended LRDP

Project Location: Los Angeles County

On-Road Vehicle Emissions Based on: Version: Emfac2007 V2.3 Nov 1 2006

Off-Road Vehicle Emissions Based on: OFFROAD2007

CONSTRUCTION EMISSION ESTIMATES (Summer Pounds Per Day, Unmitigated)

	ROG	<u>NOx</u>	<u>CO</u>	<u>SO2</u>	PM10 Dust	PM10 Exhaust	PM10 Total	PM2.5 Dust	PM2.5 Exhaust	PM2.5 Total	<u>CO2</u>
Time Slice 5/1/2009-5/29/2009 Active Days: 21	2.66	16.60	10.90	0.00	5.01	1.38	6.39	1.05	1.27	2.32	1,594.28
Mass Grading 05/01/2009-05/31/2009	1.44	9.36	5.87	0.00	5.01	0.73	5.73	1.05	0.67	1.72	913.92
Mass Grading Dust	0.00	0.00	0.00	0.00	5.00	0.00	5.00	1.04	0.00	1.04	0.00
Mass Grading Off Road Diesel	1.40	9.29	4.71	0.00	0.00	0.72	0.72	0.00	0.67	0.67	789.53
Mass Grading On Road Diesel	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Mass Grading Worker Trips	0.04	0.07	1.16	0.00	0.01	0.00	0.01	0.00	0.00	0.00	124.39
Trenching 05/01/2009-09/30/2009	1.22	7.24	5.03	0.00	0.00	0.65	0.66	0.00	0.60	0.60	680.36
Trenching Off Road Diesel	1.19	7.19	4.16	0.00	0.00	0.65	0.65	0.00	0.60	0.60	587.07
Trenching Worker Trips	0.03	0.05	0.87	0.00	0.00	0.00	0.01	0.00	0.00	0.00	93.29
Time Slice 6/1/2009-9/22/2009 Active Days: 82	1.22	7.24	5.03	0.00	0.00	0.65	0.66	0.00	0.60	0.60	680.36
Trenching 05/01/2009-09/30/2009	1.22	7.24	5.03	0.00	0.00	0.65	0.66	0.00	0.60	0.60	680.36
Trenching Off Road Diesel	1.19	7.19	4.16	0.00	0.00	0.65	0.65	0.00	0.60	0.60	587.07
Trenching Worker Trips	0.03	0.05	0.87	0.00	0.00	0.00	0.01	0.00	0.00	0.00	93.29
Time Slice 9/23/2009-9/30/2009 Active Days: 6	1.96	11.53	7.92	0.00	0.01	1.01	1.01	0.00	0.92	0.93	1,081.34
Asphalt 09/23/2009-09/30/2009	0.74	4.29	2.89	0.00	0.00	0.35	0.36	0.00	0.33	0.33	400.98
Paving Off-Gas	0.04	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Paving Off Road Diesel	0.66	4.05	2.23	0.00	0.00	0.34	0.34	0.00	0.32	0.32	313.43
Paving On Road Diesel	0.02	0.21	0.08	0.00	0.00	0.01	0.01	0.00	0.01	0.01	25.36
Paving Worker Trips	0.02	0.04	0.58	0.00	0.00	0.00	0.00	0.00	0.00	0.00	62.19
Trenching 05/01/2009-09/30/2009	1.22	7.24	5.03	0.00	0.00	0.65	0.66	0.00	0.60	0.60	680.36
Trenching Off Road Diesel	1.19	7.19	4.16	0.00	0.00	0.65	0.65	0.00	0.60	0.60	587.07
Trenching Worker Trips	0.03	0.05	0.87	0.00	0.00	0.00	0.01	0.00	0.00	0.00	93.29
Time Slice 10/1/2009-11/30/2009 Active Days: 43	2.67	28.88	12.69	0.03	47.24	1.43	48.66	9.88	1.31	11.19	3,381.73
Mass Grading 10/01/2009-02/28/2010	2.67	28.88	12.69	0.03	47.24	1.43	48.66	9.88	1.31	11.19	3,381.73
Mass Grading Dust	0.00	0.00	0.00	0.00	47.14	0.00	47.14	9.84	0.00	9.84	0.00
Mass Grading Off Road Diesel	0.84	5.95	2.86	0.00	0.00	0.43	0.43	0.00	0.40	0.40	529.92
Mass Grading On Road Diesel	1.81	22.90	9.24	0.03	0.09	0.99	1.09	0.03	0.91	0.95	2,789.62
Mass Grading Worker Trips	0.02	0.04	0.58	0.00	0.00	0.00	0.00	0.00	0.00	0.00	62.19
Time Slice 12/1/2009-12/31/2009 Active Days: 23	9.84	102.89	<u>46.56</u>	0.09	124.48	<u>5.23</u>	129.71	<u>26.03</u>	<u>4.81</u>	30.85	11,892.80
Demolition 12/01/2009-12/31/2009	2.97	25.79	13.38	0.02	4.51	1.54	6.05	0.94	1.42	2.36	2,772.59
Fugitive Dust	0.00	0.00	0.00	0.00	4.45	0.00	4.45	0.93	0.00	0.93	0.00
Demo Off Road Diesel	1.93	12.93	7.34	0.00	0.00	0.98	0.98	0.00	0.90	0.90	1,119.34
Demo On Road Diesel	1.01	12.80	5.17	0.01	0.05	0.56	0.61	0.02	0.51	0.53	1,559.97

Page: 1

10/22/2008 07:41:01 PM

Demo Worker Trips	0.03	0.05	0.87	0.00	0.00	0.00	0.01	0.00	0.00	0.00	93.29
Mass Grading 10/01/2009-02/28/2010	2.67	28.88	12.69	0.03	47.24	1.43	48.66	9.88	1.31	11.19	3,381.73
Mass Grading Dust	0.00	0.00	0.00	0.00	47.14	0.00	47.14	9.84	0.00	9.84	0.00
Mass Grading Off Road Diesel	0.84	5.95	2.86	0.00	0.00	0.43	0.43	0.00	0.40	0.40	529.92
Mass Grading On Road Diesel	1.81	22.90	9.24	0.03	0.09	0.99	1.09	0.03	0.91	0.95	2,789.62
Mass Grading Worker Trips	0.02	0.04	0.58	0.00	0.00	0.00	0.00	0.00	0.00	0.00	62.19
Mass Grading 12/01/2009-03/31/2010	4.19	48.22	20.49	0.05	72.73	2.27	75.00	15.21	2.09	17.30	5,738.48
Mass Grading Dust	0.00	0.00	0.00	0.00	72.56	0.00	72.56	15.15	0.00	15.15	0.00
Mass Grading Off Road Diesel	0.84	5.95	2.86	0.00	0.00	0.43	0.43	0.00	0.40	0.40	529.92
Mass Grading On Road Diesel	3.34	42.24	17.05	0.05	0.17	1.83	2.01	0.06	1.69	1.74	5,146.37
Mass Grading Worker Trips	0.02	0.04	0.58	0.00	0.00	0.00	0.00	0.00	0.00	0.00	62.19
Time Slice 1/1/2010-2/26/2010 Active Days: 41	6.37	70.63	30.70	0.08	119.97	3.31	123.28	<u>25.09</u>	3.05	<u>28.14</u>	9,120.17
Mass Grading 10/01/2009-02/28/2010	2.48	26.49	11.79	0.03	47.24	1.28	48.52	9.88	1.18	11.06	3,381.71
Mass Grading Dust	0.00	0.00	0.00	0.00	47.14	0.00	47.14	9.84	0.00	9.84	0.00
Mass Grading Off Road Diesel	0.78	5.55	2.82	0.00	0.00	0.39	0.39	0.00	0.36	0.36	529.92
Mass Grading On Road Diesel	1.68	20.90	8.43	0.03	0.09	0.89	0.98	0.03	0.82	0.85	2,789.62
Mass Grading Worker Trips	0.02	0.03	0.54	0.00	0.00	0.00	0.00	0.00	0.00	0.00	62.17
Mass Grading 12/01/2009-03/31/2010	3.90	44.15	18.91	0.05	72.73	2.03	74.77	15.21	1.87	17.08	5,738.46
Mass Grading Dust	0.00	0.00	0.00	0.00	72.56	0.00	72.56	15.15	0.00	15.15	0.00
Mass Grading Off Road Diesel	0.78	5.55	2.82	0.00	0.00	0.39	0.39	0.00	0.36	0.36	529.92
Mass Grading On Road Diesel	3.11	38.56	15.55	0.05	0.17	1.64	1.81	0.06	1.51	1.56	5,146.37
Mass Grading Worker Trips	0.02	0.03	0.54	0.00	0.00	0.00	0.00	0.00	0.00	0.00	62.17
Time Slice 3/1/2010-3/31/2010 Active Days: 23	14.46	108.29	92.24	0.10	72.97	5.69	78.66	15.29	5.23	20.52	16,678.44
Building 03/01/2010-03/31/2012	10.56	64.15	73.33	0.05	0.23	3.66	3.89	0.08	3.36	3.44	10,939.98
Building Off Road Diesel	8.86	56.14	32.23	0.00	0.00	3.30	3.30	0.00	3.03	3.03	5,706.80
Building Vendor Trips	0.53	5.85	4.87	0.01	0.04	0.25	0.29	0.01	0.23	0.24	1,090.42
Building Worker Trips	1.16	2.16	36.23	0.04	0.20	0.11	0.31	0.07	0.10	0.17	4,142.76
Mass Grading 12/01/2009-03/31/2010	3.90	44.15	18.91	0.05	72.73	2.03	74.77	15.21	1.87	17.08	5,738.46
Mass Grading Dust	0.00	0.00	0.00	0.00	72.56	0.00	72.56	15.15	0.00	15.15	0.00
Mass Grading Off Road Diesel	0.78	5.55	2.82	0.00	0.00	0.39	0.39	0.00	0.36	0.36	529.92
Mass Grading On Road Diesel	3.11	38.56	15.55	0.05	0.17	1.64	1.81	0.06	1.51	1.56	5,146.37
Mass Grading Worker Trips	0.02	0.03	0.54	0.00	0.00	0.00	0.00	0.00	0.00	0.00	62.17
Time Slice 4/1/2010-12/31/2010 Active Days: 197	<u>27.86</u>	<u>163.46</u>	<u>205.11</u>	<u>0.16</u>	0.70	<u>9.34</u>	10.05	0.25	<u>8.57</u>	8.82	29,921.66
Building 03/01/2010-03/31/2012	10.56	64.15	73.33	0.05	0.23	3.66	3.89	80.0	3.36	3.44	10,939.98
Building Off Road Diesel	8.86	56.14	32.23	0.00	0.00	3.30	3.30	0.00	3.03	3.03	5,706.80
Building Vendor Trips	0.53	5.85	4.87	0.01	0.04	0.25	0.29	0.01	0.23	0.24	1,090.42
Building Worker Trips	1.16	2.16	36.23	0.04	0.20	0.11	0.31	0.07	0.10	0.17	4,142.76
Building 04/01/2010-03/31/2012	9.02	52.80	67.76	0.05	0.23	3.01	3.25	0.08	2.76	2.85	9,827.96
Building Off Road Diesel	7.33	44.80	26.66	0.00	0.00	2.65	2.65	0.00	2.44	2.44	4,594.78
Building Vendor Trips	0.53	5.85	4.87	0.01	0.04	0.25	0.29	0.01	0.23	0.24	1,090.42
Building Worker Trips	1.16	2.16	36.23	0.04	0.20	0.11	0.31	0.07	0.10	0.17	4,142.76
Building 04/01/2010-11/30/2012	8.28	46.51	64.03	0.05	0.23	2.67	2.90	0.08	2.45	2.53	9,153.71
Building Off Road Diesel	6.58	38.51	22.93	0.00	0.00	2.31	2.31	0.00	2.12	2.12	3,920.53
Building Vendor Trips	0.53	5.85	4.87	0.01	0.04	0.25	0.29	0.01	0.23	0.24	1,090.42
Building Worker Trips	1.16	2.16	36.23	0.04	0.20	0.11	0.31	0.07	0.10	0.17	4,142.76

Page: 1

10/22/2008 07:41:01 PM

Time Slice 1/3/2011-12/30/2011 Active Days: 260	<u>25.64</u>	<u>152.77</u>	<u>194.47</u>	<u>0.16</u>	<u>0.70</u>	<u>8.91</u>	<u>9.61</u>	<u>0.25</u>	<u>8.17</u>	<u>8.42</u>	29,919.06
Building 03/01/2010-03/31/2012	9.71	59.93	69.61	0.05	0.23	3.49	3.73	0.08	3.20	3.29	10,939.12
Building Off Road Diesel	8.15	52.67	31.30	0.00	0.00	3.15	3.15	0.00	2.90	2.90	5,706.80
Building Vendor Trips	0.49	5.29	4.52	0.01	0.04	0.23	0.26	0.01	0.21	0.22	1,090.45
Building Worker Trips	1.06	1.98	33.79	0.04	0.20	0.11	0.31	0.07	0.10	0.17	4,141.87
Building 04/01/2010-03/31/2012	8.31	49.35	64.29	0.05	0.23	2.87	3.11	0.08	2.63	2.72	9,827.10
Building Off Road Diesel	6.76	42.08	25.98	0.00	0.00	2.53	2.53	0.00	2.33	2.33	4,594.78
Building Vendor Trips	0.49	5.29	4.52	0.01	0.04	0.23	0.26	0.01	0.21	0.22	1,090.45
Building Worker Trips	1.06	1.98	33.79	0.04	0.20	0.11	0.31	0.07	0.10	0.17	4,141.87
Building 04/01/2010-11/30/2012	7.62	43.49	60.57	0.05	0.23	2.55	2.78	0.08	2.33	2.42	9,152.85
Building Off Road Diesel	6.07	36.23	22.26	0.00	0.00	2.21	2.21	0.00	2.03	2.03	3,920.53
Building Vendor Trips	0.49	5.29	4.52	0.01	0.04	0.23	0.26	0.01	0.21	0.22	1,090.45
Building Worker Trips	1.06	1.98	33.79	0.04	0.20	0.11	0.31	0.07	0.10	0.17	4,141.87
Time Slice 1/2/2012-3/30/2012 Active Days: 65	23.66	<u>142.64</u>	<u>184.50</u>	<u>0.16</u>	0.70	<u>8.06</u>	<u>8.76</u>	0.25	<u>7.39</u>	7.64	29,916.88
Building 03/01/2010-03/31/2012	8.97	55.93	66.14	0.05	0.23	3.15	3.39	0.08	2.89	2.98	10,938.39
Building Off Road Diesel	7.55	49.38	30.46	0.00	0.00	2.84	2.84	0.00	2.61	2.61	5,706.80
Building Vendor Trips	0.45	4.74	4.19	0.01	0.04	0.20	0.24	0.01	0.18	0.20	1,090.45
Building Worker Trips	0.96	1.82	31.49	0.04	0.20	0.11	0.31	0.07	0.10	0.17	4,141.14
Building 04/01/2010-03/31/2012	7.66	46.08	61.05	0.05	0.23	2.60	2.83	0.08	2.38	2.46	9,826.37
Building Off Road Diesel	6.25	39.53	25.36	0.00	0.00	2.28	2.28	0.00	2.10	2.10	4,594.78
Building Vendor Trips	0.45	4.74	4.19	0.01	0.04	0.20	0.24	0.01	0.18	0.20	1,090.45
Building Worker Trips	0.96	1.82	31.49	0.04	0.20	0.11	0.31	0.07	0.10	0.17	4,141.14
Building 04/01/2010-11/30/2012	7.03	40.63	57.32	0.05	0.23	2.31	2.54	0.08	2.12	2.20	9,152.12
Building Off Road Diesel	5.62	34.08	21.64	0.00	0.00	2.00	2.00	0.00	1.84	1.84	3,920.53
Building Vendor Trips	0.45	4.74	4.19	0.01	0.04	0.20	0.24	0.01	0.18	0.20	1,090.45
Building Worker Trips	0.96	1.82	31.49	0.04	0.20	0.11	0.31	0.07	0.10	0.17	4,141.14
Time Slice 4/2/2012-11/30/2012 Active Days: 175	7.03	40.63	57.32	0.05	0.23	2.31	2.54	80.0	2.12	2.20	9,152.12
Building 04/01/2010-11/30/2012	7.03	40.63	57.32	0.05	0.23	2.31	2.54	0.08	2.12	2.20	9,152.12
Building Off Road Diesel	5.62	34.08	21.64	0.00	0.00	2.00	2.00	0.00	1.84	1.84	3,920.53
Building Vendor Trips	0.45	4.74	4.19	0.01	0.04	0.20	0.24	0.01	0.18	0.20	1,090.45
Building Worker Trips	0.96	1.82	31.49	0.04	0.20	0.11	0.31	0.07	0.10	0.17	4,141.14

Phase Assumptions

Phase: Demolition 12/1/2009 - 12/31/2009 - Demolition of Office of Residential Life and Housing Maintenance

Building Volume Total (cubic feet): 220700 Building Volume Daily (cubic feet): 10600 On Road Truck Travel (VMT): 368.06

Off-Road Equipment:

- 1 Air Compressors (106 hp) operating at a 0.48 load factor for 8 hours per day
- 1 Excavators (168 hp) operating at a 0.57 load factor for 8 hours per day
- 1 Tractors/Loaders/Backhoes (108 hp) operating at a 0.55 load factor for 8 hours per day

Phase: Mass Grading 5/1/2009 - 5/31/2009 - Garden Walk

10/22/2008 07:41:01 PM

Total Acres Disturbed: 0.5

Maximum Daily Acreage Disturbed: 0.5 Fugitive Dust Level of Detail: Default

10 lbs per acre-day

On Road Truck Travel (VMT): 0

Off-Road Equipment:

1 Air Compressors (106 hp) operating at a 0.48 load factor for 8 hours per day

1 Plate Compactors (8 hp) operating at a 0.43 load factor for 8 hours per day

1 Tractors/Loaders/Backhoes (108 hp) operating at a 0.55 load factor for 8 hours per day

1 Water Trucks (189 hp) operating at a 0.5 load factor for 3 hours per day

Phase: Mass Grading 10/1/2009 - 2/28/2010 - Upper/Lower De Neve Grading

Total Acres Disturbed: 2

Maximum Daily Acreage Disturbed: 2

Fugitive Dust Level of Detail: Low

Onsite Cut/Fill: 230 cubic yards/day; Offsite Cut/Fill: 0 cubic yards/day

On Road Truck Travel (VMT): 658.18

Off-Road Equipment:

1 Tractors/Loaders/Backhoes (108 hp) operating at a 0.55 load factor for 8 hours per day

1 Water Trucks (189 hp) operating at a 0.5 load factor for 3 hours per day

Phase: Mass Grading 12/1/2009 - 3/31/2010 - Sproul South and West Grading

Total Acres Disturbed: 2.3

Maximum Daily Acreage Disturbed: 2.3

Fugitive Dust Level of Detail: Low

Onsite Cut/Fill: 420 cubic yards/day; Offsite Cut/Fill: 0 cubic yards/day

On Road Truck Travel (VMT): 1214.22

Off-Road Equipment:

1 Tractors/Loaders/Backhoes (108 hp) operating at a 0.55 load factor for 8 hours per day

1 Water Trucks (189 hp) operating at a 0.5 load factor for 3 hours per day

Phase: Trenching 5/1/2009 - 9/30/2009 - Utilities/Infrastructure

Off-Road Equipment:

1 Air Compressors (106 hp) operating at a 0.48 load factor for 8 hours per day

- 1 Plate Compactors (8 hp) operating at a 0.43 load factor for 8 hours per day
- 1 Tractors/Loaders/Backhoes (108 hp) operating at a 0.55 load factor for 8 hours per day

Phase: Paving 9/23/2009 - 9/30/2009 - Repair of Trenching Areas

Acres to be Paved: 0.1

Off-Road Equipment:

1 Plate Compactors (8 hp) operating at a 0.43 load factor for 8 hours per day

10/22/2008 07:41:01 PM

1 Rollers (95 hp) operating at a 0.56 load factor for 8 hours per day

Phase: Building Construction 3/1/2010 - 3/31/2012 - Upper/Lower De Neve Construction Off-Road Equipment:

- 3 Cranes (399 hp) operating at a 0.43 load factor for 8 hours per day
- 2 Forklifts (50 hp) operating at a 0.3 load factor for 8 hours per day
- 2 Generator Sets (49 hp) operating at a 0.74 load factor for 8 hours per day
- 3 Other Equipment (175 hp) operating at a 0.62 load factor for 8 hours per day
- 2 Tractors/Loaders/Backhoes (108 hp) operating at a 0.55 load factor for 8 hours per day
- 2 Welders (45 hp) operating at a 0.45 load factor for 8 hours per day

Phase: Building Construction 4/1/2010 - 11/30/2012 - Sproul South/Complex Construction Off-Road Equipment:

- 2 Cranes (399 hp) operating at a 0.43 load factor for 8 hours per day
- 1 Forklifts (50 hp) operating at a 0.3 load factor for 8 hours per day
- 2 Generator Sets (49 hp) operating at a 0.74 load factor for 8 hours per day
- 2 Other Equipment (175 hp) operating at a 0.62 load factor for 8 hours per day
- 1 Tractors/Loaders/Backhoes (108 hp) operating at a 0.55 load factor for 8 hours per day
- 2 Welders (45 hp) operating at a 0.45 load factor for 8 hours per day

Phase: Building Construction 4/1/2010 - 3/31/2012 - Sproul West Construction Off-Road Equipment:

- 2 Cranes (399 hp) operating at a 0.43 load factor for 8 hours per day
- 1 Forklifts (50 hp) operating at a 0.3 load factor for 8 hours per day
- 2 Generator Sets (49 hp) operating at a 0.74 load factor for 8 hours per day
- 3 Other Equipment (175 hp) operating at a 0.62 load factor for 8 hours per day
- 1 Tractors/Loaders/Backhoes (108 hp) operating at a 0.55 load factor for 8 hours per day
- 2 Welders (45 hp) operating at a 0.45 load factor for 8 hours per day

10/22/2008 07:41:09 PM

Urbemis 2007 Version 9.2.4

Detail Report for Summer Construction Mitigated Emissions (Pounds/Day)

File Name: C:\Documents and Settings\boparaip\Desktop\Work\Projects\Bonterra Projects\UCLA LRDP\BonTerra Comments\NHIP Construction Emissions_102208.urb924

Project Name: UCLA NHIP Amended LRDP

Project Location: Los Angeles County

On-Road Vehicle Emissions Based on: Version: Emfac2007 V2.3 Nov 1 2006

Off-Road Vehicle Emissions Based on: OFFROAD2007

CONSTRUCTION EMISSION ESTIMATES (Summer Pounds Per Day, Mitigated)

	ROG	<u>NOx</u>	<u>CO</u>	SO2	PM10 Dust	PM10 Exhaust	PM10 Total	PM2.5 Dust	PM2.5 Exhaust	PM2.5 Total	<u>CO2</u>
Time Slice 5/1/2009-5/29/2009 Active Days: 21	2.66	16.60	10.90	0.00	0.67	1.38	2.05	0.14	1.27	1.41	1,594.28
Mass Grading 05/01/2009-05/31/2009	1.44	9.36	5.87	0.00	0.67	0.73	1.40	0.14	0.67	0.81	913.92
Mass Grading Dust	0.00	0.00	0.00	0.00	0.66	0.00	0.66	0.14	0.00	0.14	0.00
Mass Grading Off Road Diesel	1.40	9.29	4.71	0.00	0.00	0.72	0.72	0.00	0.67	0.67	789.53
Mass Grading On Road Diesel	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Mass Grading Worker Trips	0.04	0.07	1.16	0.00	0.01	0.00	0.01	0.00	0.00	0.00	124.39
Trenching 05/01/2009-09/30/2009	1.22	7.24	5.03	0.00	0.00	0.65	0.66	0.00	0.60	0.60	680.36
Trenching Off Road Diesel	1.19	7.19	4.16	0.00	0.00	0.65	0.65	0.00	0.60	0.60	587.07
Trenching Worker Trips	0.03	0.05	0.87	0.00	0.00	0.00	0.01	0.00	0.00	0.00	93.29
Time Slice 6/1/2009-9/22/2009 Active Days: 82	1.22	7.24	5.03	0.00	0.00	0.65	0.66	0.00	0.60	0.60	680.36
Trenching 05/01/2009-09/30/2009	1.22	7.24	5.03	0.00	0.00	0.65	0.66	0.00	0.60	0.60	680.36
Trenching Off Road Diesel	1.19	7.19	4.16	0.00	0.00	0.65	0.65	0.00	0.60	0.60	587.07
Trenching Worker Trips	0.03	0.05	0.87	0.00	0.00	0.00	0.01	0.00	0.00	0.00	93.29
Time Slice 9/23/2009-9/30/2009 Active Days: 6	1.96	11.53	7.92	0.00	0.01	1.01	1.01	0.00	0.92	0.93	1,081.34
Asphalt 09/23/2009-09/30/2009	0.74	4.29	2.89	0.00	0.00	0.35	0.36	0.00	0.33	0.33	400.98
Paving Off-Gas	0.04	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Paving Off Road Diesel	0.66	4.05	2.23	0.00	0.00	0.34	0.34	0.00	0.32	0.32	313.43
Paving On Road Diesel	0.02	0.21	0.08	0.00	0.00	0.01	0.01	0.00	0.01	0.01	25.36
Paving Worker Trips	0.02	0.04	0.58	0.00	0.00	0.00	0.00	0.00	0.00	0.00	62.19
Trenching 05/01/2009-09/30/2009	1.22	7.24	5.03	0.00	0.00	0.65	0.66	0.00	0.60	0.60	680.36
Trenching Off Road Diesel	1.19	7.19	4.16	0.00	0.00	0.65	0.65	0.00	0.60	0.60	587.07
Trenching Worker Trips	0.03	0.05	0.87	0.00	0.00	0.00	0.01	0.00	0.00	0.00	93.29
Time Slice 10/1/2009-11/30/2009 Active Days: 43	2.67	28.88	12.69	0.03	6.36	1.43	7.79	1.34	1.31	2.65	3,381.73
Mass Grading 10/01/2009-02/28/2010	2.67	28.88	12.69	0.03	6.36	1.43	7.79	1.34	1.31	2.65	3,381.73
Mass Grading Dust	0.00	0.00	0.00	0.00	6.26	0.00	6.26	1.31	0.00	1.31	0.00
Mass Grading Off Road Diesel	0.84	5.95	2.86	0.00	0.00	0.43	0.43	0.00	0.40	0.40	529.92
Mass Grading On Road Diesel	1.81	22.90	9.24	0.03	0.09	0.99	1.09	0.03	0.91	0.95	2,789.62
Mass Grading Worker Trips	0.02	0.04	0.58	0.00	0.00	0.00	0.00	0.00	0.00	0.00	62.19
Time Slice 12/1/2009-12/31/2009 Active Days: 23	<u>9.84</u>	102.89	<u>46.56</u>	0.09	20.68	<u>5.23</u>	<u>25.92</u>	<u>4.36</u>	<u>4.81</u>	<u>9.17</u>	11,892.80
Demolition 12/01/2009-12/31/2009	2.97	25.79	13.38	0.02	4.51	1.54	6.05	0.94	1.42	2.36	2,772.59
Fugitive Dust	0.00	0.00	0.00	0.00	4.45	0.00	4.45	0.93	0.00	0.93	0.00
Demo Off Road Diesel	1.93	12.93	7.34	0.00	0.00	0.98	0.98	0.00	0.90	0.90	1,119.34
Demo On Road Diesel	1.01	12.80	5.17	0.01	0.05	0.56	0.61	0.02	0.51	0.53	1,559.97

Page: 1

10/22/2008 07:41:09 PM

Demo Worker Trips	0.03	0.05	0.87	0.00	0.00	0.00	0.01	0.00	0.00	0.00	93.29
Mass Grading 10/01/2009-02/28/2010	2.67	28.88	12.69	0.03	6.36	1.43	7.79	1.34	1.31	2.65	3,381.73
Mass Grading Dust	0.00	0.00	0.00	0.00	6.26	0.00	6.26	1.31	0.00	1.31	0.00
Mass Grading Off Road Diesel	0.84	5.95	2.86	0.00	0.00	0.43	0.43	0.00	0.40	0.40	529.92
Mass Grading On Road Diesel	1.81	22.90	9.24	0.03	0.09	0.99	1.09	0.03	0.91	0.95	2,789.62
Mass Grading Worker Trips	0.02	0.04	0.58	0.00	0.00	0.00	0.00	0.00	0.00	0.00	62.19
Mass Grading 12/01/2009-03/31/2010	4.19	48.22	20.49	0.05	9.82	2.27	12.08	2.07	2.09	4.16	5,738.48
Mass Grading Dust	0.00	0.00	0.00	0.00	9.64	0.00	9.64	2.01	0.00	2.01	0.00
Mass Grading Off Road Diesel	0.84	5.95	2.86	0.00	0.00	0.43	0.43	0.00	0.40	0.40	529.92
Mass Grading On Road Diesel	3.34	42.24	17.05	0.05	0.17	1.83	2.01	0.06	1.69	1.74	5,146.37
Mass Grading Worker Trips	0.02	0.04	0.58	0.00	0.00	0.00	0.00	0.00	0.00	0.00	62.19
Time Slice 1/1/2010-2/26/2010 Active Days: 41	6.37	70.63	30.70	0.08	<u>16.18</u>	3.31	<u>19.49</u>	3.41	3.05	6.46	9,120.17
Mass Grading 10/01/2009-02/28/2010	2.48	26.49	11.79	0.03	6.36	1.28	7.64	1.34	1.18	2.52	3,381.71
Mass Grading Dust	0.00	0.00	0.00	0.00	6.26	0.00	6.26	1.31	0.00	1.31	0.00
Mass Grading Off Road Diesel	0.78	5.55	2.82	0.00	0.00	0.39	0.39	0.00	0.36	0.36	529.92
Mass Grading On Road Diesel	1.68	20.90	8.43	0.03	0.09	0.89	0.98	0.03	0.82	0.85	2,789.62
Mass Grading Worker Trips	0.02	0.03	0.54	0.00	0.00	0.00	0.00	0.00	0.00	0.00	62.17
Mass Grading 12/01/2009-03/31/2010	3.90	44.15	18.91	0.05	9.82	2.03	11.85	2.07	1.87	3.94	5,738.46
Mass Grading Dust	0.00	0.00	0.00	0.00	9.64	0.00	9.64	2.01	0.00	2.01	0.00
Mass Grading Off Road Diesel	0.78	5.55	2.82	0.00	0.00	0.39	0.39	0.00	0.36	0.36	529.92
Mass Grading On Road Diesel	3.11	38.56	15.55	0.05	0.17	1.64	1.81	0.06	1.51	1.56	5,146.37
Mass Grading Worker Trips	0.02	0.03	0.54	0.00	0.00	0.00	0.00	0.00	0.00	0.00	62.17
Time Slice 3/1/2010-3/31/2010 Active Days: 23	14.46	108.29	92.24	0.10	10.05	5.69	15.74	2.15	5.23	7.38	16,678.44
Building 03/01/2010-03/31/2012	10.56	64.15	73.33	0.05	0.23	3.66	3.89	0.08	3.36	3.44	10,939.98
Building Off Road Diesel	8.86	56.14	32.23	0.00	0.00	3.30	3.30	0.00	3.03	3.03	5,706.80
Building Vendor Trips	0.53	5.85	4.87	0.01	0.04	0.25	0.29	0.01	0.23	0.24	1,090.42
Building Worker Trips	1.16	2.16	36.23	0.04	0.20	0.11	0.31	0.07	0.10	0.17	4,142.76
Mass Grading 12/01/2009-03/31/2010	3.90	44.15	18.91	0.05	9.82	2.03	11.85	2.07	1.87	3.94	5,738.46
Mass Grading Dust	0.00	0.00	0.00	0.00	9.64	0.00	9.64	2.01	0.00	2.01	0.00
Mass Grading Off Road Diesel	0.78	5.55	2.82	0.00	0.00	0.39	0.39	0.00	0.36	0.36	529.92
Mass Grading On Road Diesel	3.11	38.56	15.55	0.05	0.17	1.64	1.81	0.06	1.51	1.56	5,146.37
Mass Grading Worker Trips	0.02	0.03	0.54	0.00	0.00	0.00	0.00	0.00	0.00	0.00	62.17
Time Slice 4/1/2010-12/31/2010 Active Days: 197	27.86	163.46	205.11	<u>0.16</u>	0.70	9.34	10.05	0.25	<u>8.57</u>	<u>8.82</u>	29,921.66
Building 03/01/2010-03/31/2012	10.56	64.15	73.33	0.05	0.23	3.66	3.89	0.08	3.36	3.44	10,939.98
Building Off Road Diesel	8.86	56.14	32.23	0.00	0.00	3.30	3.30	0.00	3.03	3.03	5,706.80
Building Vendor Trips	0.53	5.85	4.87	0.01	0.04	0.25	0.29	0.01	0.23	0.24	1,090.42
Building Worker Trips	1.16	2.16	36.23	0.04	0.20	0.11	0.31	0.07	0.10	0.17	4,142.76
Building 04/01/2010-03/31/2012	9.02	52.80	67.76	0.05	0.23	3.01	3.25	0.08	2.76	2.85	9,827.96
Building Off Road Diesel	7.33	44.80	26.66	0.00	0.00	2.65	2.65	0.00	2.44	2.44	4,594.78
Building Vendor Trips	0.53	5.85	4.87	0.01	0.04	0.25	0.29	0.01	0.23	0.24	1,090.42
Building Worker Trips	1.16	2.16	36.23	0.04	0.20	0.11	0.31	0.07	0.10	0.17	4,142.76
Building 04/01/2010-11/30/2012	8.28	46.51	64.03	0.05	0.23	2.67	2.90	0.08	2.45	2.53	9,153.71
Building Off Road Diesel	6.58	38.51	22.93	0.00	0.00	2.31	2.31	0.00	2.12	2.12	3,920.53
Building Vendor Trips	0.53	5.85	4.87	0.01	0.04	0.25	0.29	0.01	0.23	0.24	1,090.42
Building Worker Trips	1.16	2.16	36.23	0.04	0.20	0.11	0.31	0.07	0.10	0.17	4,142.76

Page: 1

10/22/2008 07:41:09 PM

Time Slice 1/3/2011-12/30/2011 Active Days: 260	<u>25.64</u>	<u>152.77</u>	<u>194.47</u>	<u>0.16</u>	0.70	<u>8.91</u>	<u>9.61</u>	0.25	<u>8.17</u>	<u>8.42</u>	29,919.06
Building 03/01/2010-03/31/2012	9.71	59.93	69.61	0.05	0.23	3.49	3.73	0.08	3.20	3.29	10,939.12
Building Off Road Diesel	8.15	52.67	31.30	0.00	0.00	3.15	3.15	0.00	2.90	2.90	5,706.80
Building Vendor Trips	0.49	5.29	4.52	0.01	0.04	0.23	0.26	0.01	0.21	0.22	1,090.45
Building Worker Trips	1.06	1.98	33.79	0.04	0.20	0.11	0.31	0.07	0.10	0.17	4,141.87
Building 04/01/2010-03/31/2012	8.31	49.35	64.29	0.05	0.23	2.87	3.11	0.08	2.63	2.72	9,827.10
Building Off Road Diesel	6.76	42.08	25.98	0.00	0.00	2.53	2.53	0.00	2.33	2.33	4,594.78
Building Vendor Trips	0.49	5.29	4.52	0.01	0.04	0.23	0.26	0.01	0.21	0.22	1,090.45
Building Worker Trips	1.06	1.98	33.79	0.04	0.20	0.11	0.31	0.07	0.10	0.17	4,141.87
Building 04/01/2010-11/30/2012	7.62	43.49	60.57	0.05	0.23	2.55	2.78	0.08	2.33	2.42	9,152.85
Building Off Road Diesel	6.07	36.23	22.26	0.00	0.00	2.21	2.21	0.00	2.03	2.03	3,920.53
Building Vendor Trips	0.49	5.29	4.52	0.01	0.04	0.23	0.26	0.01	0.21	0.22	1,090.45
Building Worker Trips	1.06	1.98	33.79	0.04	0.20	0.11	0.31	0.07	0.10	0.17	4,141.87
Time Slice 1/2/2012-3/30/2012 Active Days: 65	23.66	142.64	<u>184.50</u>	<u>0.16</u>	0.70	<u>8.06</u>	<u>8.76</u>	0.25	<u>7.39</u>	<u>7.64</u>	29,916.88
Building 03/01/2010-03/31/2012	8.97	55.93	66.14	0.05	0.23	3.15	3.39	0.08	2.89	2.98	10,938.39
Building Off Road Diesel	7.55	49.38	30.46	0.00	0.00	2.84	2.84	0.00	2.61	2.61	5,706.80
Building Vendor Trips	0.45	4.74	4.19	0.01	0.04	0.20	0.24	0.01	0.18	0.20	1,090.45
Building Worker Trips	0.96	1.82	31.49	0.04	0.20	0.11	0.31	0.07	0.10	0.17	4,141.14
Building 04/01/2010-03/31/2012	7.66	46.08	61.05	0.05	0.23	2.60	2.83	0.08	2.38	2.46	9,826.37
Building Off Road Diesel	6.25	39.53	25.36	0.00	0.00	2.28	2.28	0.00	2.10	2.10	4,594.78
Building Vendor Trips	0.45	4.74	4.19	0.01	0.04	0.20	0.24	0.01	0.18	0.20	1,090.45
Building Worker Trips	0.96	1.82	31.49	0.04	0.20	0.11	0.31	0.07	0.10	0.17	4,141.14
Building 04/01/2010-11/30/2012	7.03	40.63	57.32	0.05	0.23	2.31	2.54	0.08	2.12	2.20	9,152.12
Building Off Road Diesel	5.62	34.08	21.64	0.00	0.00	2.00	2.00	0.00	1.84	1.84	3,920.53
Building Vendor Trips	0.45	4.74	4.19	0.01	0.04	0.20	0.24	0.01	0.18	0.20	1,090.45
Building Worker Trips	0.96	1.82	31.49	0.04	0.20	0.11	0.31	0.07	0.10	0.17	4,141.14
Time Slice 4/2/2012-11/30/2012 Active Days: 175	7.03	40.63	57.32	0.05	0.23	2.31	2.54	0.08	2.12	2.20	9,152.12
Building 04/01/2010-11/30/2012	7.03	40.63	57.32	0.05	0.23	2.31	2.54	0.08	2.12	2.20	9,152.12
Building Off Road Diesel	5.62	34.08	21.64	0.00	0.00	2.00	2.00	0.00	1.84	1.84	3,920.53
Building Vendor Trips	0.45	4.74	4.19	0.01	0.04	0.20	0.24	0.01	0.18	0.20	1,090.45
Building Worker Trips	0.96	1.82	31.49	0.04	0.20	0.11	0.31	0.07	0.10	0.17	4,141.14

Construction Related Mitigation Measures

The following mitigation measures apply to Phase: Mass Grading 5/1/2009 - 5/31/2009 - Garden Walk

For Soil Stablizing Measures, the Apply soil stabilizers to inactive areas mitigation reduces emissions by:

PM10: 84% PM25: 84%

For Soil Stablizing Measures, the Water exposed surfaces 3x daily watering mitigation reduces emissions by:

PM10: 61% PM25: 61%

For Soil Stablizing Measures, the Equipment loading/unloading mitigation reduces emissions by:

PM10: 69% PM25: 69%

For Unpaved Roads Measures, the Reduce speed on unpaved roads to less than 15 mph mitigation reduces emissions by:

PM10: 44% PM25: 44%

The following mitigation measures apply to Phase: Mass Grading 10/1/2009 - 2/28/2010 - Upper/Lower De Neve Grading

For Soil Stablizing Measures, the Apply soil stabilizers to inactive areas mitigation reduces emissions by:

10/22/2008 07:41:09 PM

PM10: 84% PM25: 84%

For Soil Stablizing Measures, the Water exposed surfaces 3x daily watering mitigation reduces emissions by:

PM10: 61% PM25: 61%

For Soil Stablizing Measures, the Equipment loading/unloading mitigation reduces emissions by:

PM10: 69% PM25: 69%

For Unpaved Roads Measures, the Reduce speed on unpaved roads to less than 15 mph mitigation reduces emissions by:

PM10: 44% PM25: 44%

The following mitigation measures apply to Phase: Mass Grading 12/1/2009 - 3/31/2010 - Sproul South and West Grading

For Soil Stablizing Measures, the Apply soil stabilizers to inactive areas mitigation reduces emissions by:

PM10: 84% PM25: 84%

For Soil Stablizing Measures, the Water exposed surfaces 3x daily watering mitigation reduces emissions by:

PM10: 61% PM25: 61%

For Soil Stablizing Measures, the Equipment loading/unloading mitigation reduces emissions by:

PM10: 69% PM25: 69%

For Unpaved Roads Measures, the Reduce speed on unpaved roads to less than 15 mph mitigation reduces emissions by:

PM10: 44% PM25: 44%

Phase Assumptions

Phase: Demolition 12/1/2009 - 12/31/2009 - Demolition of Office of Residential Life and Housing Maintenance

Building Volume Total (cubic feet): 220700 Building Volume Daily (cubic feet): 10600

On Road Truck Travel (VMT): 368.06

Off-Road Equipment:

- 1 Air Compressors (106 hp) operating at a 0.48 load factor for 8 hours per day
- 1 Excavators (168 hp) operating at a 0.57 load factor for 8 hours per day
- 1 Tractors/Loaders/Backhoes (108 hp) operating at a 0.55 load factor for 8 hours per day

Phase: Mass Grading 5/1/2009 - 5/31/2009 - Garden Walk

Total Acres Disturbed: 0.5

Maximum Daily Acreage Disturbed: 0.5 Fugitive Dust Level of Detail: Default

10 lbs per acre-day

On Road Truck Travel (VMT): 0

Off-Road Equipment:

- 1 Air Compressors (106 hp) operating at a 0.48 load factor for 8 hours per day
- 1 Plate Compactors (8 hp) operating at a 0.43 load factor for 8 hours per day
- 1 Tractors/Loaders/Backhoes (108 hp) operating at a 0.55 load factor for 8 hours per day
- 1 Water Trucks (189 hp) operating at a 0.5 load factor for 3 hours per day

Phase: Mass Grading 10/1/2009 - 2/28/2010 - Upper/Lower De Neve Grading

Total Acres Disturbed: 2

10/22/2008 07:41:09 PM

Maximum Daily Acreage Disturbed: 2 Fugitive Dust Level of Detail: Low

Onsite Cut/Fill: 230 cubic yards/day; Offsite Cut/Fill: 0 cubic yards/day

On Road Truck Travel (VMT): 658.18

Off-Road Equipment:

1 Tractors/Loaders/Backhoes (108 hp) operating at a 0.55 load factor for 8 hours per day

1 Water Trucks (189 hp) operating at a 0.5 load factor for 3 hours per day

Phase: Mass Grading 12/1/2009 - 3/31/2010 - Sproul South and West Grading

Total Acres Disturbed: 2.3

Maximum Daily Acreage Disturbed: 2.3

Fugitive Dust Level of Detail: Low

Onsite Cut/Fill: 420 cubic yards/day; Offsite Cut/Fill: 0 cubic yards/day

On Road Truck Travel (VMT): 1214.22

Off-Road Equipment:

1 Tractors/Loaders/Backhoes (108 hp) operating at a 0.55 load factor for 8 hours per day

1 Water Trucks (189 hp) operating at a 0.5 load factor for 3 hours per day

Phase: Trenching 5/1/2009 - 9/30/2009 - Utilities/Infrastructure

Off-Road Equipment:

1 Air Compressors (106 hp) operating at a 0.48 load factor for 8 hours per day

- 1 Plate Compactors (8 hp) operating at a 0.43 load factor for 8 hours per day
- 1 Tractors/Loaders/Backhoes (108 hp) operating at a 0.55 load factor for 8 hours per day

Phase: Paving 9/23/2009 - 9/30/2009 - Repair of Trenching Areas

Acres to be Paved: 0.1

Off-Road Equipment:

- 1 Plate Compactors (8 hp) operating at a 0.43 load factor for 8 hours per day
- 1 Rollers (95 hp) operating at a 0.56 load factor for 8 hours per day

Phase: Building Construction 3/1/2010 - 3/31/2012 - Upper/Lower De Neve Construction

Off-Road Equipment:

- 3 Cranes (399 hp) operating at a 0.43 load factor for 8 hours per day
- 2 Forklifts (50 hp) operating at a 0.3 load factor for 8 hours per day
- 2 Generator Sets (49 hp) operating at a 0.74 load factor for 8 hours per day
- 3 Other Equipment (175 hp) operating at a 0.62 load factor for 8 hours per day
- 2 Tractors/Loaders/Backhoes (108 hp) operating at a 0.55 load factor for 8 hours per day
- 2 Welders (45 hp) operating at a 0.45 load factor for 8 hours per day

Phase: Building Construction 4/1/2010 - 11/30/2012 - Sproul South/Complex Construction Off-Road Equipment:

10/22/2008 07:41:09 PM

- 2 Cranes (399 hp) operating at a 0.43 load factor for 8 hours per day
- 1 Forklifts (50 hp) operating at a 0.3 load factor for 8 hours per day
- 2 Generator Sets (49 hp) operating at a 0.74 load factor for 8 hours per day
- 2 Other Equipment (175 hp) operating at a 0.62 load factor for 8 hours per day
- 1 Tractors/Loaders/Backhoes (108 hp) operating at a 0.55 load factor for 8 hours per day
- 2 Welders (45 hp) operating at a 0.45 load factor for 8 hours per day

Phase: Building Construction 4/1/2010 - 3/31/2012 - Sproul West Construction Off-Road Equipment:

- 2 Cranes (399 hp) operating at a 0.43 load factor for 8 hours per day
- 1 Forklifts (50 hp) operating at a 0.3 load factor for 8 hours per day
- 2 Generator Sets (49 hp) operating at a 0.74 load factor for 8 hours per day
- 3 Other Equipment (175 hp) operating at a 0.62 load factor for 8 hours per day
- 1 Tractors/Loaders/Backhoes (108 hp) operating at a 0.55 load factor for 8 hours per day
- 2 Welders (45 hp) operating at a 0.45 load factor for 8 hours per day

Architectural Coatings calculation for UCLA NHIP construction

RESIDEN	TAL SQUARE FEET - Urbemis method	EMISSION FACTOR - per Urbemis	EMISSIONS	RATE
# units	sqft/unit x 2.7 x 0.75 = Interior	gr/liter /454*3.785/180 = lb/sq ft	sq ft $x lb/sq ft '= lb$	apply to total below
	1565 351.4 2.7 0.75 1113750	50 0.002316	1113750 0.002316	2579
	see below	Urbemis		
		based on		
# units	sqft/unit x 2.7 x 0.25 = Exterior	Rule 1113		
	1565 351.4 2.7 0.25 371250	100 0.004632	371250 0.004632	1720

total area 550000 sq ft units 1565 area/unit 351.4377 sq ft

lb / days = lb/day 4299 92 **46.7**

92 days is 9 weeks in Spring and 9 at the end

9/2/2008 05:38:15 PM

Urbemis 2007 Version 9.2.4

Summary Report for Summer Emissions (Pounds/Day)

File Name: C:\Documents and Settings\boparaip\Desktop\Work\UCLA LRDP\Urbemis\UCLA Area Source 2013.urb924

Project Name: UCLA 2013 Area Source Emissions

Project Location: Los Angeles County

On-Road Vehicle Emissions Based on: Version: Emfac2007 V2.3 Nov 1 2006

Off-Road Vehicle Emissions Based on: OFFROAD2007

AREA SOURCE EMISSION ESTIMATES

TOTALS (lbs/day, unmitigated)	<u>ROG</u> 37.80	<u>NOx</u> 55.59	<u>CO</u> 48.23	<u>SO2</u> 0.00	<u>PM10</u> 0.11	<u>PM2.5</u> 0.11	<u>CO2</u> 66.692.14
TOTALS (ibs/day, diffillingated)	37.00	55.59	40.23	0.00	0.11	0.11	00,092.14
SUM OF AREA SOURCE AND OPERATIONAL EM	ISSION ESTIMAT	ES					
	<u>ROG</u>	<u>NOx</u>	<u>CO</u>	<u>SO2</u>	<u>PM10</u>	PM2.5	<u>CO2</u>
TOTALS (lbs/day, unmitigated)	37.80	55.59	48.23	0.00	0.11	0.11	66,692.14

9/2/2008 05:38:46 PM

Urbemis 2007 Version 9.2.4

Summary Report for Winter Emissions (Pounds/Day)

File Name: C:\Documents and Settings\boparaip\Desktop\Work\UCLA LRDP\Urbemis\UCLA Area Source 2013.urb924

Project Name: UCLA 2013 Area Source Emissions

Project Location: Los Angeles County

On-Road Vehicle Emissions Based on: Version: Emfac2007 V2.3 Nov 1 2006

Off-Road Vehicle Emissions Based on: OFFROAD2007

AREA SOURCE EMISSION ESTIMATES

TOTALS (lbs/day, unmitigated)	<u>ROG</u> 37.68	<u>NOx</u> 55.57	<u>CO</u> 46.68	<u>SO2</u> 0.00	<u>PM10</u> 0.10	<u>PM2.5</u> 0.10	<u>CO2</u> 66,689.33
SUM OF AREA SOURCE AND OPERATIONAL EMIS	SION ESTIMAT	ES					
TOTALS (lbs/day, upmitigated)	<u>ROG</u>	<u>NOx</u>	<u>CO</u> 46.68	<u>SO2</u>	PM10	PM2.5	<u>CO2</u>
TOTALS (lbs/day, unmitigated)	37.68	55.57	40.08	0.00	0.10	0.10	66,689.33

9/2/2008 05:38:39 PM

Urbemis 2007 Version 9.2.4

Detail Report for Summer Area Source Unmitigated Emissions (Pounds/Day)

File Name: C:\Documents and Settings\boparaip\Desktop\Work\UCLA LRDP\Urbemis\UCLA Area Source 2013.urb924

Project Name: UCLA 2013 Area Source Emissions

Project Location: Los Angeles County

On-Road Vehicle Emissions Based on: Version: Emfac2007 V2.3 Nov 1 2006

Off-Road Vehicle Emissions Based on: OFFROAD2007

AREA SOURCE EMISSION ESTIMATES (Summer Pounds Per Day, Unmitigated)

<u>Source</u>	ROG	<u>NOx</u>	<u>CO</u>	<u>SO2</u>	<u>PM10</u>	PM2.5	<u>CO2</u>
Natural Gas	4.03	55.57	46.68	0.00	0.10	0.10	66,689.33
Hearth - No Summer Emissions							
Landscape	0.12	0.02	1.55	0.00	0.01	0.01	2.81
Consumer Products	0.00						
Architectural Coatings	33.65						
TOTALS (lbs/day, unmitigated)	37.80	55.59	48.23	0.00	0.11	0.11	66,692.14

Area Source Changes to Defaults

9/2/2008 05:38:51 PM

Urbemis 2007 Version 9.2.4

Detail Report for Winter Area Source Unmitigated Emissions (Pounds/Day)

File Name: C:\Documents and Settings\boparaip\Desktop\Work\UCLA LRDP\Urbemis\UCLA Area Source 2013.urb924

Project Name: UCLA 2013 Area Source Emissions

Project Location: Los Angeles County

On-Road Vehicle Emissions Based on: Version: Emfac2007 V2.3 Nov 1 2006

Off-Road Vehicle Emissions Based on: OFFROAD2007

AREA SOURCE EMISSION ESTIMATES (Winter Pounds Per Day, Unmitigated)

<u>Source</u>	ROG	<u>NOx</u>	<u>CO</u>	<u>SO2</u>	<u>PM10</u>	PM2.5	<u>CO2</u>
Natural Gas	4.03	55.57	46.68	0.00	0.10	0.10	66,689.33
Hearth	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Landscaping - No Winter							
Consumer Products	0.00						
Architectural Coatings	33.65						
TOTALS (lbs/day, unmitigated)	37.68	55.57	46.68	0.00	0.10	0.10	66,689.33

Area Source Changes to Defaults

Area source calculation for UCLA LRDP, including NHIP

Manual calculation of consumer product VOC emissions added to area source VOC emissions from Urbemis

Existing consumer 0.0171 #/day VOC per resident - factor from Urbemis

11402 residents from Table 3 of traffic report

194.97 consumer products VOC36.15 existing from Urbemis231 total area source VOC

2013 consumer 0.0171 #/day VOC per resident

12927 residents Existing plus 1525221.1 consumer products VOC38.7 2013 from Urbemis

260 total area source VOC

9/2/2008 05:41:45 PM

Urbemis 2007 Version 9.2.4

Summary Report for Summer Emissions (Pounds/Day)

File Name: C:\Documents and Settings\boparaip\Desktop\Work\UCLA LRDP\Urbemis\UCLA Mobile Source 2013.urb924

Project Name: UCLA NHIP LRDP Vehicle Emissions

Project Location: Los Angeles County

On-Road Vehicle Emissions Based on: Version: Emfac2007 V2.3 Nov 1 2006

Off-Road Vehicle Emissions Based on: OFFROAD2007

OPERATIONAL (VEHICLE) EMISSION ESTIMATES

TOTALS (lbs/day, unmitigated)	<u>ROG</u> 38.80	<u>NOx</u> 57.62	<u>CO</u> 538.70	<u>SO2</u> 0.68	<u>PM10</u> 111.62	<u>PM2.5</u> 21.70	<u>CO2</u> 66,781.61
SUM OF AREA SOURCE AND OPERATIONAL EMIS	SION ESTIMAT	ES					
	ROG	<u>NOx</u>	<u>CO</u>	<u>SO2</u>	<u>PM10</u>	PM2.5	<u>CO2</u>
TOTALS (lbs/day, unmitigated)	38.80	57.62	538.70	0.68	111.62	21.70	66,781.61

9/2/2008 05:42:23 PM

Urbemis 2007 Version 9.2.4

Summary Report for Winter Emissions (Pounds/Day)

File Name: C:\Documents and Settings\boparaip\Desktop\Work\UCLA LRDP\Urbemis\UCLA Mobile Source 2013.urb924

44.14

Project Name: UCLA NHIP LRDP Vehicle Emissions

Project Location: Los Angeles County

TOTALS (lbs/day, unmitigated)

On-Road Vehicle Emissions Based on: Version: Emfac2007 V2.3 Nov 1 2006

Off-Road Vehicle Emissions Based on: OFFROAD2007

OPERATIONAL (VEHICLE) EMISSION ESTIMATES

	<u>ROG</u>	<u>NOx</u>	<u>CO</u>	<u>SO2</u>	<u>PM10</u>	<u>PM2.5</u>	<u>CO2</u>
TOTALS (lbs/day, unmitigated)	44.14	69.48	510.20	0.57	111.62	21.70	60,458.21
CLIMA OF A DE A COLUDOR AND ODED ATIONIAL EM	ICCIONI FOTIMAT	F0					
SUM OF AREA SOURCE AND OPERATIONAL EM	ISSION ESTIMAT	ES					
	ROG	<u>NOx</u>	CO	SO2	<u>PM10</u>	PM2.5	<u>CO2</u>

69.48

510.20

0.57

111.62

21.70

60,458.21

9/2/2008 05:42:17 PM

Urbemis 2007 Version 9.2.4

Detail Report for Summer Operational Unmitigated Emissions (Pounds/Day)

File Name: C:\Documents and Settings\boparaip\Desktop\Work\UCLA LRDP\Urbemis\UCLA Mobile Source 2013.urb924

Project Name: UCLA NHIP LRDP Vehicle Emissions

Project Location: Los Angeles County

On-Road Vehicle Emissions Based on: Version: Emfac2007 V2.3 Nov 1 2006

Off-Road Vehicle Emissions Based on: OFFROAD2007

OPERATIONAL EMISSION ESTIMATES (Summer Pounds Per Day, Unmitigated)

<u>Source</u>	ROG	NOX	CO	SO2	PM10	PM25	CO2
Apartments high rise	38.80	57.62	538.70	0.68	111.62	21.70	66,781.61
TOTALS (lbs/day, unmitigated)	38.80	57.62	538.70	0.68	111.62	21.70	66,781.61

Does not include correction for passby trips

Does not include double counting adjustment for internal trips

Analysis Year: 2013 Temperature (F): 80 Season: Summer

Emfac: Version: Emfac2007 V2.3 Nov 1 2006

Light Truck 3751-5750 lbs

Summary of Land Uses

Land Use Type	Acreage	Trip Rate	Unit Type	No. Units	Total Trips	Total VMT
Apartments high rise	0.02	6,397.00	dwelling units	1.00	6,397.00	64,627.61
					6,397.00	64,627.61
	<u>V</u>	ehicle Fleet M	<u>lix</u>			
Vehicle Type	Percent 1	Туре	Non-Cataly	st	Catalyst	Diesel
Light Auto		53.3	0	.4	99.4	0.2
Light Truck < 3750 lbs		6.8	1	.5	97.0	1.5

0.4

99.6

0.0

23.0

Page: 1 9/2/2008 05:42:17 PM						
Med Truck 5751-8500 lbs		10.1	1.0		99.0	0.0
Lite-Heavy Truck 8501-10,000 lbs		1.5	0.0		86.7	13.3
Lite-Heavy Truck 10,001-14,000 lbs		0.5	0.0		60.0	40.0
Med-Heavy Truck 14,001-33,000 lbs		0.9	0.0		22.2	77.8
Heavy-Heavy Truck 33,001-60,000 lbs		0.5	0.0		0.0	100.0
Other Bus		0.1	0.0		0.0	100.0
Urban Bus		0.1	0.0		0.0	100.0
Motorcycle		2.3	56.5		43.5	0.0
School Bus		0.1	0.0		0.0	100.0
Motor Home		0.8	0.0		87.5	12.5
		Travel Cond	<u>litions</u>			
		Residential			Commercial	
	Home-Work	Home-Shop	Home-Other	Commute	Non-Work	Customer
Urban Trip Length (miles)	12.7	7.0	9.5	13.3	7.4	8.9
Rural Trip Length (miles)	17.6	12.1	14.9	15.4	9.6	12.6
Trip speeds (mph)	30.0	30.0	30.0	30.0	30.0	30.0
% of Trips - Residential	32.9	18.0	49.1			

Operational Changes to Defaults

% of Trips - Commercial (by land

use)

9/2/2008 05:42:29 PM

Urbemis 2007 Version 9.2.4

Detail Report for Winter Operational Unmitigated Emissions (Pounds/Day)

File Name: C:\Documents and Settings\boparaip\Desktop\Work\UCLA LRDP\Urbemis\UCLA Mobile Source 2013.urb924

Project Name: UCLA NHIP LRDP Vehicle Emissions

Project Location: Los Angeles County

On-Road Vehicle Emissions Based on: Version: Emfac2007 V2.3 Nov 1 2006

Off-Road Vehicle Emissions Based on: OFFROAD2007

OPERATIONAL EMISSION ESTIMATES (Winter Pounds Per Day, Unmitigated)

<u>Source</u>	ROG	NOX	CO	SO2	PM10	PM25	CO2
Apartments high rise	44.14	69.48	510.20	0.57	111.62	21.70	60,458.21
TOTALS (lbs/day, unmitigated)	44.14	69.48	510.20	0.57	111.62	21.70	60,458.21

Does not include correction for passby trips

Does not include double counting adjustment for internal trips

Analysis Year: 2013 Temperature (F): 60 Season: Winter

Emfac: Version: Emfac2007 V2.3 Nov 1 2006

Summary of Land Uses

	Summe	ily of Land Os	<u> </u>			
Land Use Type	Acreage	Trip Rate	Unit Type	No. Units	Total Trips	Total VMT
Apartments high rise	0.02	6,397.00	dwelling units	1.00	6,397.00	64,627.61
					6,397.00	64,627.61
	<u>V</u>	ehicle Fleet M	<u>lix</u>			
Vehicle Type	Percent T	ype	Non-Cataly	/st	Catalyst	Diesel
Light Auto	Ę	3.3	0).4	99.4	0.2
Light Truck < 3750 lbs		6.8	1	.5	97.0	1.5

Page: 1 9/2/2008 05:42:29 PM						
Light Truck 3751-5750 lbs		23.0	0.4		99.6	0.0
Med Truck 5751-8500 lbs		10.1	1.0		99.0	0.0
Lite-Heavy Truck 8501-10,000 lbs		1.5	0.0		86.7	13.3
Lite-Heavy Truck 10,001-14,000 lbs		0.5	0.0		60.0	40.0
Med-Heavy Truck 14,001-33,000 lbs		0.9	0.0		22.2	77.8
Heavy-Heavy Truck 33,001-60,000 lbs		0.5	0.0		0.0	100.0
Other Bus		0.1	0.0		0.0	100.0
Urban Bus		0.1	0.0		0.0	100.0
Motorcycle		2.3	56.5		43.5	0.0
School Bus		0.1	0.0		0.0	100.0
Motor Home		0.8	0.0		87.5	12.5
		Travel Cond	<u>ditions</u>			
		Residential		(Commercial	
	Home-Work	Home-Shop	Home-Other	Commute	Non-Work	Customer
Urban Trip Length (miles)	12.7	7.0	9.5	13.3	7.4	8.9
Rural Trip Length (miles)	17.6	12.1	14.9	15.4	9.6	12.6
Trip speeds (mph)	30.0	30.0	30.0	30.0	30.0	30.0
% of Trips - Residential	32.9	18.0	49.1			

Operational Changes to Defaults

% of Trips - Commercial (by land use)

LST Analysis - Construction

Upper/Lower De Neve

Site Area (acres)
Receptor Distance from Site Boundary (m)

Source Receptor Area 2 - Northwest Coastal Los Angeles County

2.9

25

Pollutant	Threshold (lb/day)
Nitrogen Oxides (NOx)	189
Carbon Monoxide (CO)	1023
Particulate Matter less than 10 microns (PM ₁₀)	8
Particulate Matter less than 2.5 microns (PM _{2.5})	5

Sproul West

Site Area (acres)

Receptor Distance from Site Boundary (m)

25

Source Receptor Area 2 - Northwest Coastal Los Angeles County

Pollutant	Threshold (lb/day)
Nitrogen Oxides (NOx)	149
Carbon Monoxide (CO)	737
Particulate Matter less than 10 microns (PM ₁₀)	5
Particulate Matter less than 2.5 microns (PM _{2.5})	4

Sproul South/Complex

Site Area (acres)

Receptor Distance from Site Boundary (m)

25

Source Receptor Area

2 - Northwest Coastal Los Angeles County

Pollutant	Threshold (lb/day)
Nitrogen Oxides (NOx)	167
Carbon Monoxide (CO)	838
Particulate Matter less than 10 microns (PM ₁₀)	6
Particulate Matter less than 2.5 microns (PM _{2.5})	4

LST Analysis - Operations

Site Area (acres) Receptor Distance from Site Boundary (m) Source Receptor Area 1.7 25

2 - Northwest Coastal Los Angeles County

Pollutant	Threshold (lb/day)
Nitrogen Oxides (NOx)	149
Carbon Monoxide (CO)	737
Particulate Matter less than 10 microns (PM ₁₀)	2
Particulate Matter less than 2.5 microns (PM _{2.5})	1

Appendix C2 Health Risk Assessment

HEALTH RISK ASSESSMENT IN SUPPORT OF THE PROPOSED 2002 LONG RANGE DEVELOPMENT PLAN AMENDMENT FOR THE 2013 HORIZON YEAR FOR THE UNIVERSITY OF CALIFORNIA, LOS ANGELES

Prepared for

BonTerra Consulting 151 Kalmus Drive, Suite E-200 Costa Mesa, CA 92626

and

University of California, Los Angeles 405 Hilgard Avenue Box 951361 Los Angeles, CA 90095-1361

July 11, 2008

2020 East First Street, Suite 400 Santa Ana, California 92705

TABLE OF CONTENTS

SECT	ION		Page
EXEC	UTIVE S	SUMMARY	1
1.0	Intro	ODUCTION	1-1
	1.1	Facility ID	1-2
	1.2	Facility Information	1-2
	1.3	Document Organization	1-3
2.0	HRA	CRITERIA	2-1
	2.1	Regulatory Setting	2-1
		2.1.1 Federal	2-1
		2.1.2 State	
		2.1.3 Regional	
	2.2	Potential Effects	
		2.2.1 Cancer Risk	
	2.2	2.2.2 Non-Cancer Health Risk	
	2.3	Significance Criteria	2-4
3.0	HAZA	ARD IDENTIFICATION	3-1
	3.1	Emissions Quantification	3-1
		3.1.1 Cogeneration Gas Turbines	3-1
		3.1.2 Gasoline Dispensing	
		3.1.3 Boilers	
		3.1.4 Diesel-fueled Internal Combustion Engines	
		3.1.5 Painting Operations3.1.6 Laboratory Chemical Usage	
	3.2	Health Effects	
4.0	Expo	DSURE ASSESSMENT	4-1
	4.1	Air Dispersion Modeling	
		4.1.1 Model Selection	
		4.1.2 Model Input	
		4.1.3 Deposition Methodology	
		4.1.4 Aerodynamic Wake Effects	
	4.2	Multipathway Analysis	
		4.2.1 Inhalation Exposure	
		4.2.2 Soil Ingestion	
		4.2.3 Dermal Exposure	
		4.2.5 Total Exposure	
	4.3	Off- and On-campus Exposure	

2002 LRDP Amendment HRA

	4.4	Zone of Impact	4-6
	4.5	Sensitive Receptors	4-6
5.0	Dose	-RESPONSE ASSESSMENT	5-1
	5.1	Cancer Toxicity Factors	5-1
	5.2	Chronic Noncancer Reference Exposure Levels	5-1
	5.3	Acute Noncancer Reference Exposure Levels	5-2
6.0	Risk	CHARACTERIZATION	6-1
	6.1	Cancer Risk From The 2007 Baseline Scenario	6-2
	6.2	Cancer Burden From The 2007 Baseline Scenario	6-3
	6.3	Noncancer Health Effects From The 2007 Baseline Scenario	6-3
	6.4	Acute Noncancer Health Effects From The 2007 Baseline Scenario	6-4
	6.5	Sensitive Receptor Impacts From The 2007 Baseline Scenario	6-5
	6.6	Sensitive Receptor Cancer Risk From The 2007 Baseline Scenario	6-5
	6.7	Sensitive Receptor Chronic Noncancer Health Effects From The 2007 Base Scenario	
	6.8	Sensitive Receptor Acute Noncancer Health Effects From The 2007 Baseli Scenario	ine
	6.9	Cancer Risk From The LRDP Amendment Scenario	6-7
	6.10	Cancer Burden From The LRDP Amendment Scenario	6-8
	6.11	Noncancer Health Effects From The LRDP Amendment Scenario	6-8
	6.12	Acute Noncancer Health Effects From The LRDP Amendment Scenario	6-9
	6.13	Sensitive Receptor Impacts From The LRDP Amendment Scenario	6-9
	6.14	Sensitive Receptor Cancer Risk From The LRDP Amendment Scenario	6-10
	6.15	Sensitive Receptor Chronic Noncancer Health Effects From The LRDP Amendment Scenario	6-10
	6.16	Sensitive Receptor Acute Noncancer Health Effects From The LRDP Ame Scenario.	
7.0	UNCE	RTAINTIES	7-1
	7.1	Emission Estimates	7-1
	7.2	Air Dispersion Modeling	7-2
	7.3	Exposure Assessment	7-2
	7.4	Dose Response Assessment	7-2
8.0	Refe	RENCES	8-1

Appendix

Emissions Estimates

List of Figures

Figure ES-1. Locations of the Cancer, Chronic Noncancer, and Acute Noncancer Off- and On-cam	
MEIs in the 2007 Baseline Scenario.	
Figure ES-2. Locations of the Cancer, Chronic Noncancer, and Acute Noncancer Off- and On-Cam	•
MEIs in the LRDP Amendment Scenario.	
Figure 1-1. Site Location MapFigure 1-2. UCLA Campus Map	
Figure 1-2. UCLA Campus Map	
Figure 4-1. Campus Boundary Receptors	
Figure 4-2. Complete Off-campus Receptor Grid.	
Figure 4-3. On and Off-campus Discrete and Sensitive Receptor Locations	
Figure 4-5. Point Emission Source Locations	
Figure 4-6. Area and Volume Emission Source Locations	
Figure 6-1. Locations of the Cancer, Chronic Noncancer, and Acute Noncancer Off- and On-campu	
MEIs in the 2007 Baseline Scenario.	
Figure 6-2. Location of the Carcinogenic One in a Million Risk Isopleth in the	0 13
2007 Baseline Scenario.	6-44
Figure 6-3. Locations of the Cancer, Chronic Noncancer, and Acute Noncancer Off- and On-campu	
MEIs in the LRDP Amendment Scenario.	
Figure 6-4. Location of the Carcinogenic One in a Million Risk Isopleth in the LRDP Amendment	
Scenario	6-46
LIST OF TABLES	
Table ES-1. Summary of HRA Results for the Off- and On-campus MEIs in the 2007	
Baseline Scenario	7
Table ES-2. Summary of HRA Results for the Off- and On-campus MEIs in the LRDP	/
Amendment Scenario.	7
Table 3-1. Emissions Evaluated in the HRA for the 2007 Baseline and LRDP Amendment Scenario	
Table 3-2. Emission Rates By Source Type	
Table 3-3. Health Effects Categories for Substances Evaluated in the HRA for Both Scenarios	
Table 4-1. Dispersion Modeling Options Used for the 2002 LRDP Amendment HRA	
Table 4-2. Modeled Point Source Parameters in the 2002 LRDP Amendment HRA for	
Both Scenarios	4-12
Table 4-3. Modeled Area Source Parameters in the 2002 LRDP Amendment HRA for	
Both Scenarios	4-18
Table 4-4. Modeled Volume Source Parameters in the 2002 LRDP Amendment HRA for Both Scen	
Table 4-5. Exposure Pathways Evaluated for Each Substance in Both Scenarios	4-22
Table 5-1. Cancer Toxicity Factors and Chronic and Acute Noncancer RELs	
Table 6-1. Summary of HRA Results for the Off- and On-campus MEIs in the	
2007 Baseline Scenario.	6-12
Table 6-2. Source Contribution to Cancer Risk at the Off-Campus MEI in the	
2007 Baseline Scenario.	6-13
Table 6-3. Source Contribution to Cancer Risk at the On-Campus MEI in the	
2007 Baseline Scenario	
Table 6-4. Cancer Risk at the Off-campus MEI by Substance and by Exposure Pathway in the 2007	
Baseline Scenario.	6-22

2002 LRDP Amendment HRA

Table 6-5. Cancer Risk at the On-campus MEI by Substance and by Exposure Pathway in the 2007
Baseline Scenario6-23
Table 6-6. Chronic Noncancer Hazard Index at the Off- and On-Campus MEIs in the 2007 Baseline
Scenario6-24
Table 6-7. Acute Noncancer Hazard Index at the Off- and On-Campus MEIs in the 2007 Baseline
Scenario6-26
Table 6-8. Summary of HRA Results for the Sensitive Receptors within the ZOI in the 2007 Baseline
Scenario6-28
Table 6-9. Summary of HRA Results for the Off- and On-campus MEIs in the LRDP Amedment
Scenario6-29
Table 6-10. Source Contribution to Cancer Risk at the Off-Campus MEI in the LRDP Amendment
Scenario6-30
Table 6-11. Source Contribution to Cancer Risk at the On-Campus MEI in the LRDP Amendment
Scenario6-33
Table 6-12. Cancer Risk at the Off-campus MEI by Substance and by Exposure Pathway in the LRDP
Amendment Scenario6-36
Table 6-13. Cancer Risk at the On-campus MEI by Substance and by Exposure Pathway in the LRDP
Amendment Scenario6-37
Table 6-14. Chronic Noncancer Hazard Index at the Off- and On-Campus MEIs in the LRDP
Amendment Scenario6-38
Table 6-15. Acute Noncancer Hazard Index at the Off- and On-Campus MEIs in the LRDP Amendment
Scenario6-40
Table 6-16. Summary of HRA Results for the Sensitive Receptors within the ZOI in the LRDP
Amendment Scenario6-42

List of Acronyms

AB Assembly Bill

AER Annual Emissions Report APCD Air Pollution Control District

bhp brake horsepower

BPIP Building Profile Input Program California Air Resources Board **CARB**

CNS Central Nervous System **CSF** Cancer Slope Factor Cardiovascular System CV

DEVEL Developmental System DPM diesel particulate matter **ENDO Endocrine System**

U.S. Environmental Protection Agency **EPA**

gallons per hour gal/hr Alimentary system **GILV** hazardous air pollutant HAP

Hotspots Analysis and Reporting Program **HARP**

hazard index HI hazard quotient HO hr/yr hours per year

Health Risk Assessment HRA internal combustion engine ICE

IMMUN Immune System

ISCST3 **Industrial Source Complex Short Term**

KIDN Kidneys KW kilowatt

lbs/hr pounds per hour pounds per year lbs/yr linearized multi-stage **LMS**

LRDP Long Range Development Plan micrograms per cubic meter $\mu g/m^3$ MEI maximally exposed individual

maximally exposed sensitive receptor **MESR**

MSDS Material Safety Data Sheet

million British thermal units per hour MMBTU/hr

MMcf million cubic feet

NESHAP National Emission Standards for Hazardous Air Pollutants

NHIP Northwest Housing Infill Project

Office of Environmental Health Hazard Assessment **OEHHA**

PAH polycyclic aromatic hydrocarbon

particulate matter PM

reference exposure level **REL** Reproductive System REPRO Respiratory System **RESP**

2002 LRDP Amendment HRA

SCAQMD South Coast Air Quality Management District

TAC Toxic Air Contaminant

UCLA University of California, Los Angeles

URF unit risk factor

UTM Universal Transverse Mercator

ZOI zone of impact

EXECUTIVE SUMMARY

URS Corporation (URS) was contracted by BonTerra Consulting to prepare a Health Risk Assessment (HRA) in support of the preparation of the 2002 Long Range Development Plan (LRDP) Amendment for the University of California, Los Angeles (UCLA). This LRDP Amendment addresses the anticipated growth in student housing and campus development through horizon year 2013. The HRA evaluates the potential health risks posed by current and projected campus-wide operations at off- and on-campus locations. Results are presented for two scenarios:

- 1. 2007 Baseline Scenario; and
- 2. LRDP Amendment Scenario.

The results presented for the 2007 Baseline Scenario represent the potential health risks posed by campuswide operations in academic year 2006-07. The results presented for the proposed LRDP Amendment Scenario represent the potential health risks posed by campus-wide operations under the 2007 Baseline Scenario combined with potential new development considered in the LRDP Amendment.

Description of the UCLA Campus and Operations

The campus is located in Los Angeles, California, north of Westwood Village. The campus provides numerous teaching and research facilities to faculty and students in the University of California system. The campus conducts routine operations that generate toxic air contaminant (TAC) emissions regulated by the State of California. The sources of TAC emissions include cogeneration gas turbines, gasoline dispensing operations, boilers, standby generators driven by internal combustion engines (ICEs), painting operations, and laboratory chemical usage. The HRA evaluated the potential health risks associated with TAC emissions from these sources based on fuel, material, and chemical usage considered representative of the current and campus-wide operations expected through 2013.

HRA Procedures

The HRA was prepared in accordance with the most recent risk assessment guidelines and toxicological values published by the California Environmental Protection Agency, Office of Environmental Health Hazard Assessment (OEHHA) (OEHHA, 2003). Use of the OEHHA guidelines, which have been adopted by the South Coast Air Quality Management District, results in a worst-case analysis of risk. For example, the maximum theoretical incremental cancer risk estimated in this HRA is based on an individual being continuously exposed to emissions from routine campus-wide operations for 24 hours per day, 365 days per year, for 70 years at the same specific location. Actual risks are likely to be substantially lower than those estimated using the OEHHA guidelines.

Summary of HRA Results

The results from the HRA are summarized for the 2007 Baseline Scenario and the LRDP Amendment Scenario. For each scenario, a discussion of the estimated cancer, chronic noncancer, and acute noncancer health effects are presented.

2007 Baseline Scenario

Cancer Health Effects

Results of the cancer health effects assessment for the 2007 Baseline Scenario indicate the cancer risks for receptors both on and off campus are less than 10 in one million (1.0 x 10⁻⁵). Cancer risks less than 10 in one million are less than the regulatory threshold of significance and do not require public notification in accordance with state and local guidelines. The theoretical incremental cancer risk as a result of a lifetime exposure to emissions from the routine campus-wide operation of all sources in the 2007 Baseline Scenario was estimated to be 6.3 in one million (6.3 x 10⁻⁶) at the offcampus maximally exposed individual (MEI) and 0.90 in one million (0.90 x 10⁻⁶) at the on-campus MEI. The off-campus MEI was located on the fence line east of the campus along Hilgard Avenue east of Parking Structure Two. The on-campus MEI was located within the general area of Franz

Primary Source Contributions

- Off-campus The primary source type contributors to the estimated cancer risk at the offcampus MEI were the emergency generators containing diesel-fueled ICEs and laboratory chemical usage. Of the sources modeled, the emergency generators contributed 62% of the cancer risk followed by campus laboratory chemical usage with 25% of the cancer risk.
- On campus The primary source type contributors to the estimated cancer risk at the oncampus MEI were the emergency generators containing diesel-fueled ICEs and laboratory chemical usage. Of the sources modeled, the diesel emergency generators contributed 59% of the cancer risk followed by campus laboratory chemical usage with 27% of the cancer risk.

Primary Chemical Contributions

- ◆ Off-campus The primary chemical contribution to the estimated cancer risk at the off-campus MEI was diesel particulate matter (DPM) with approximately 62% of the risk, followed by formaldehyde with approximately 22% of the risk.
- On-campus The primary chemical contribution to the estimated cancer risk at the on-campus MEI was DPM with approximately 59% of the risk, followed by formaldehyde with approximately 23% of the risk.

Chronic Noncancer Health Effects

Results of the chronic noncancer health effects assessment indicate that all of the hazard index (HI) values for each organ system are less than 1.0. Chronic HI values less than 1.0 indicate that noncancer effects from chronic exposure to emissions from routine campus-wide operations are unlikely. The maximum chronic HI for an organ system was 0.08 at the off-campus MEI. The offcampus MEI was located on the fence line east of campus on Hilgard Avenue, east of Parking

Structure Two. The maximum chronic HI for an organ system was 0.10 at the on-campus MEI. The on-campus MEI was located within the general area of Franz Hall.

Primary Source Contributions

- Off-campus The primary source type contributors to the estimated chronic noncancer HI at the off-campus MEI was the laboratory chemical usage and the turbines at the cogeneration plant. Of the sources modeled, the laboratory chemical usage contributed 87% of the chronic noncancer HI followed by turbines at the cogeneration plant with 10% of the chronic noncancer HI.
- ◆ On-campus The primary source type contributors to the estimated chronic noncancer HI at the on-campus MEI was the laboratory chemical usage and the turbines at the cogeneration plant. Of the sources modeled, the laboratory chemical usage contributed 82% of the chronic noncancer HI followed by turbines at the cogeneration plant with 15% of the chronic noncancer HI.

Primary Chemical Contributions

- Off campus The primary chemical contribution to the estimated chronic noncancer HI at the off-campus MEI was formaldehyde with approximately 91% of the chronic noncancer HI, followed by acrolein with approximately 3% of the chronic noncancer HI.
- On-campus The primary chemical contribution to the estimated chronic noncancer HI at the on-campus MEI was formaldehyde with approximately 91% of the chronic noncancer HI, followed by acrolein with approximately 4% of the chronic noncancer HI.

Acute Noncancer Health Effects

Results of the acute noncancer health effects assessment indicate that all of the HI values for each organ system are less than 1.0. Acute HI values less than 1.0 indicate that noncancer effects from acute exposure to emissions from routine campus-wide operations are unlikely. The maximum acute HI for an organ system was 0.07 at the off-campus MEI. The off-campus MEI was located on the northwest campus fence line across from Sunset Bouldevard. The maximum acute HI for an organ system was 0.10 at the on-campus MEI. The on-campus MEI was located at the northwest campus housing complex.

Primary Source Contributions

- ♦ Off-campus The primary source type contributors to the estimated acute noncancer HI at the Off-campus MEI were the boilers and the turbines at the cogeneration plant. Of the sources modeled, boilers contributed 40% of the acute noncancer HI followed by the turbines at the cogeneration plant with 38% of the acute noncancer HI.
- On-campus The primary source type contributors to the estimated acute noncancer HI at the on-campus MEI were the turbines at the cogeneration plant and the boilers. Of the sources modeled, the turbines at the cogeneration plant contributed 49% of the acute noncancer HI followed by the boilers with 31% of the acute noncancer HI.

Primary Chemical Contributions

◆ Off-campus - The primary chemical contribution to the estimated acute noncancer HI at the off-campus MEI was acrolein with approximately 65% of the acute noncancer HI, followed by formaldehyde with approximately 30% of the acute noncancer HI.

• On-campus - The primary chemical contribution to the estimated chronic noncancer HI at the on-campus MEI was acrolein with approximately 68% of the acute noncancer HI, followed by formaldehyde with approximately 26% of the acute noncancer HI.

The cancer, chronic noncancer, and acute noncancer results for the off- and on-campus MEIs in the 2007 Baseline Scenario are presented in Table ES-1. The locations of the cancer, chronic noncancer, and acute noncancer off- and on-campus MEIs in the 2007 Baseline Scenario are presented on Figure ES-1.

Summary of HRA Results from the LRDP Amendment Scenario

Cancer Health Effects

Results of the cancer health effects assessment for the LRDP Amendment Scenario indicate that all of the cancer risks are less than 10 in one million (1.0×10^{-5}) . The theoretical incremental cancer risk as a result of a lifetime exposure to emissions from the routine campus-wide operation of all sources in the LRDP Amendment Scenario was estimated to be 6.4 in one million (6.4 x 10⁻⁶) at the off-campus MEI and 0.9 in one million (0.9 x 10⁻⁶) at the on-campus MEI. The off-campus MEI was located on the fence line east of campus on Hilgard Avenue, east of Parking Structure Two. The on-campus MEI was located at within the general area of Franz Hall.

Primary Source Contributions

- Off campus The primary source type contributors to the estimated cancer risk at the offcampus MEI were the emergency generators containing diesel-fueled ICEs and laboratory chemical usage. Of the sources modeled, the diesel contributed 62% of the cancer risk followed by campus laboratory chemical usage with 26% of the cancer risk.
- On campus The primary source type contributors to the estimated cancer risk at the oncampus MEI were the emergency generators containing diesel-fueled ICEs and laboratory chemical usage. Of the sources modeled, the diesel contributed 59 % of the cancer risk followed by campus laboratory chemical usage with 27% of the cancer risk.

Primary Chemical Contribution

- ◆ Off campus The primary chemical contribution to the estimated cancer risk at the off-campus MEI was DPM with approximately 61% of the risk, followed by formaldehyde with approximately 22% of the risk.
- On campus The primary chemical contribution to the estimated cancer risk at the on-campus MEI was DPM with approximately 59% of the risk, followed by formaldehyde at 23% of the cancer risk.

Chronic Noncancer Health Effects

Results of the chronic noncancer health effects assessment indicate that all of the HI values for each organ system are less than 1.0. Chronic HI values less than 1.0 indicate that noncancer effects from chronic exposure to emissions from routine campus-wide operations are unlikely. The maximum chronic HI for an organ system was 0.09 at the off-campus MEI. The off-campus MEI was located on the fence line east of campus on Hilgard Avenue, east of Parking Structure Two. The maximum

chronic HI for an organ system was 0.10 at the on-campus MEI, well below the significance threshold value of 1.0. The on-campus MEI was located within the general area of Franz Hall.

Primary Source Contributions

- Off-campus The primary source type contributors to the estimated chronic noncancer HI at the off-campus MEI was the laboratory chemical usage and the turbines at the cogeneration plant. Of the sources modeled, the laboratory chemical usage contributed 89% of the chronic noncancer HI followed by turbines at the cogeneration plant with 8% of the chronic noncancer
- ◆ On-campus The primary source type contributors to the estimated chronic noncancer HI at the on-campus MEI was the laboratory chemical usage and the turbines at the cogeneration plant. Of the sources modeled, the laboratory chemical usage contributed 80% of the chronic noncancer HI followed by turbines at the cogeneration plant with 11% of the chronic noncancer HI.

Primary Chemical Contributions

- ◆ Off campus The primary chemical contribution to the estimated chronic noncancer HI at the off-campus MEI was formaldehyde with approximately 93% of the chronic noncancer HI, followed by acrolein with approximately 3% of the chronic noncancer HI.
- On-campus The primary chemical contribution to the estimated chronic noncancer HI at the on-campus MEI was formaldehyde with approximately 92% of the chronic noncancer HI, followed by acrolein with approximately 4% of the chronic noncancer HI.

Acute Noncancer Health Effects

Results of the acute noncancer health effects assessment indicate that all of the HI values for each organ system are less than 1.0. Acute HI values less than 1.0 indicate that noncancer effects from acute exposure to emissions from routine campus-wide operations are unlikely. The maximum acute HI for an organ system was 0.08 at the off-campus MEI. The off-campus MEI was located on the northwest campus fence line across from Sunset Boulevard. The maximum acute HI for an organ system was 0.11 at the on-campus MEI. The on-campus MEI was located at the northwest campus housing complex.

Primary Source Contributions

- Off-campus The primary source type contributors to the estimated acute noncancer HI at the off-campus MEI were the boilers and the turbines at the cogeneration plant. Of the sources modeled, the boilers contributed 40% of the acute noncancer HI followed by turbines at the cogeneration plant with 38% of the acute noncancer HI.
- ◆ On-campus The primary source type contributors to the estimated acute noncancer HI at the on-campus MEI were boilers and the turbines at the cogeneration plant. Of the sources modeled, the boilers contributed 53% of the acute noncancer HI followed by turbines at the cogeneration plant with 28% of the acute noncancer HI.

Primary Chemical Contributions

◆ Off-campus - The primary chemical contribution to the estimated acute noncancer HI at the off-campus MEI was acrolein with approximately 65% of the acute noncancer HI, followed by formaldehyde with approximately 29% of the acute noncancer HI.

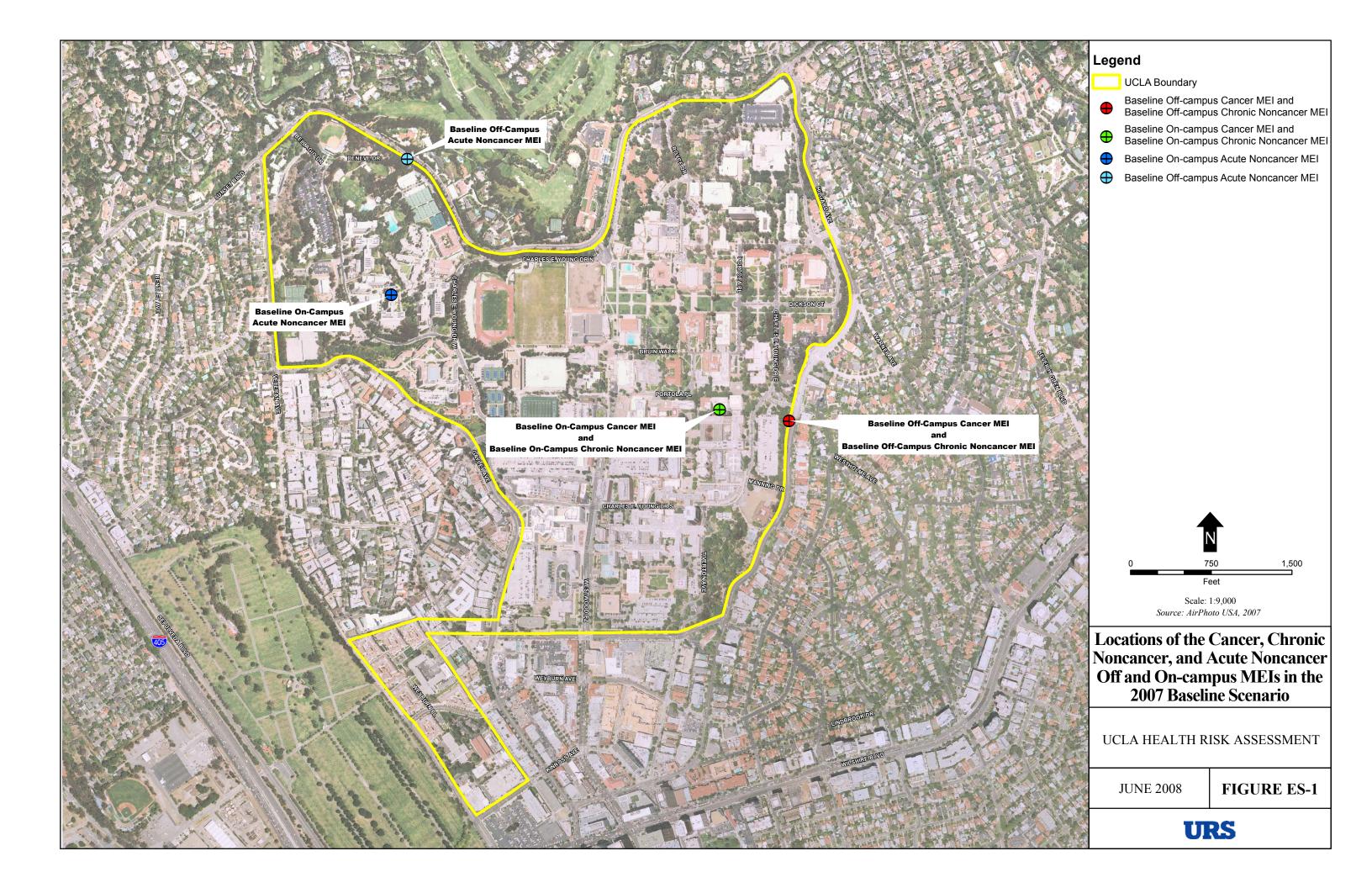
• On-campus - The primary chemical contribution to the estimated chronic noncancer HI at the on-campus MEI was acrolein with approximately 70% of the acute noncancer HI, followed by formaldehyde with approximately 24% of the acute noncancer HI.

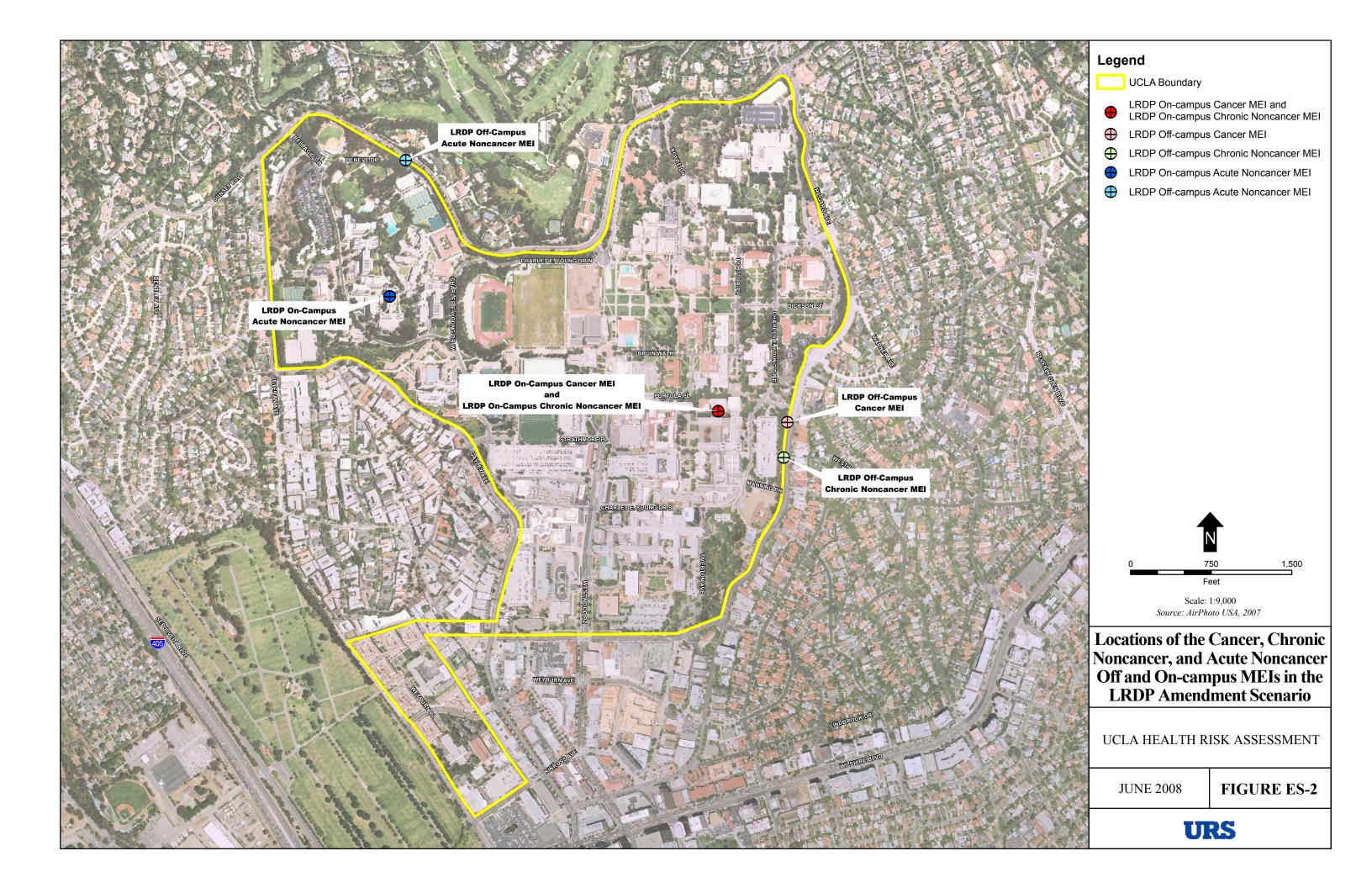
The cancer, chronic noncancer, and acute noncancer results for the off- and on-campus MEIs in the LRDP Amendment Scenario are presented in Table ES-2. The locations of the cancer, chronic noncancer, and acute noncancer off- and on-campus MEIs in the LRDP Amendment Scenario are presented on Figure ES-2.

Table ES-1. Summary of HRA Results for the Off- and On-campus MEIs in the 2007 Baseline Scenario

		Significance	Receptor	Location	
	Result	Threshold ¹	East (m)	North (m)	Receptor Description
Off-campus	MEI				
Cancer Risk	6.3 x 10 ⁻⁶	10 x 10 ⁻⁶	367196	3770768	Fence line east of campus on Hilgard Avenue east of Parking Structure Two
Chronic HI	0.08	1.0	367196	3770768	Fence line east of campus on Hilgard Avenue east of Parking Structure Two
Acute HI	0.07	1.0	366114	3771509	Fence line northwest campus across from Sunset Boulevard
On-campus	MEI ²				
Cancer Risk	0.9 x 10 ⁻⁶	10 x 10 ⁻⁶	367000	3770800	General area of Franz Hall,
Chronic HI	0.10	1.0	367000	3770800	General area of Franz Hall
Acute HI	0.10	1.0	366069	3771124	Northwest campus housing complex

Table ES-2. Summary of HRA Results for the Off- and On-campus MEIs in the LRDP Amendment Scenario


		Significance	Receptor Location		
	Result	Threshold ¹	East (m)	North (m)	Receptor Description
Off-campus MEI					
Cancer Risk	6.4 x 10 ⁻⁶	10 x 10 ⁻⁶	367196	3770768	Fence line east of campus on Hilgard Avenue east of Parking Structure Two
Chronic HI	0.09	1.0	367186	3770669	Fence line east of campus on Hilgard Avenue east of Parking Structure Two
Acute HI	0.08	1.0	366114	3771509	Fence line northwest ampus across from Sunset Boulevard
On-campus MEI ²					
Cancer Risk	0.9 x 10 ⁻⁶	10 x 10 ⁻⁶	367000	3770800	General area of Franz Hall
Chronic HI	0.10	1.0	367000	3770800	General area of Franz Hall
Acute HI	0.11	1.0	366069	3771124	Northwest campus housing complex


Significance threshold provided in SCAQMD Supplemental Guidelines for Preparing Risk Assessments (SCAQMD, 2005)

Cancer risk adjusted for 9-year exposure period based on Air Toxic Hot Spots Program Risk Assessment Guidelines (OEHHA 2003)

Significance threshold provided in SCAQMD Supplemental Guidelines for Preparing Risk Assessments (SCAQMD, 2005)

Cancer risk adjusted for 9-year exposure period based on Air Toxic Hot Spots Program Risk Assessment Guidelines (OEHHA 2003)

1.0 INTRODUCTION

URS Corporation (URS) was contracted by BonTerra Consulting to prepare a Health Risk Assessment (HRA) in support of the preparation of the 2002 Long Range Development Plan (LRDP) Amendment for the University of California, Los Angeles (UCLA). This LRDP Amendment addresses the anticipated growth in student housing and extension of the horizon year through 2013. The HRA evaluates the potential health risks at off- and on-campus locations posed by current and projected campus-wide operations. Results are presented for two scenarios:

- 1. 2007 Baseline Scenario; and
- LRDP Amendment Scenario.

The results presented for the 2007 Baseline Scenario represent the potential health risks posed by campuswide operations in academic year 2006-07. The results presented for the proposed LRDP Amendment Scenario represent the potential health risks posed by campus-wide operations under the 2007 Baseline Scenario combined with potential new development considered in the LRDP Amendment.

UCLA is one of nine campuses that comprise the University of California system. The campus is located on 419 acres in Los Angeles, California, north of Westwood Village. It is bounded by residential communities and Gayle Avenue on the west, Sunset Avenue on the north, Hilgard Avenue on the east, and by the Westwood merchant district on the south by Le Conte Avenue. The campus has approximately 21,000 employees and 30,000 students on an average weekday, and provides notable economic, employment, and cultural benefit to its surrounding community. A site location map is shown on Figure 1-1. A map of the UCLA campus is provided on Figure 1-2.

The campus conducts routine operations that generate toxic air contaminant (TAC) emissions regulated by the State of California. The sources of TAC emissions include cogeneration gas turbines, gasoline dispensing operations, boilers, standby generators driven by internal combustion engines (ICEs), painting operations, and laboratory chemical usage. The HRA evaluated the potential health risks associated with TAC emissions from these sources based on fuel, material, and chemical usage considered representative of the current and subsequent year-to-year routine campus-wide operations through 2013.

The HRA was prepared in accordance with the most recent California Environmental Protection Agency, Office of Environmental Health Hazard Assessment (OEHHA) risk assessment guidelines using the Hotspots Analysis and Reporting Program (HARP) Version 1.4 published by California Environmental Protection Agency Air Resources Board. In addition, the HRA incorporated the most recent toxicological values published by the OEHHA. Use of the OEHHA guidelines, which have been adopted by the South Coast Air Quality Management District (SCAQMD), results in a worst-case analysis of risk. For example, the theoretical maximum incremental cancer risk estimated in this HRA is based on an individual being continuously exposed to emissions from routine campus-wide operations for 24 hours per day, 365 days per year, for 70 years at the same specific location. Actual risks are likely to be substantially lower than those estimated using the OEHHA guidelines.

A standard HRA, such as this, consists of four basic steps to assess potential public health risk from a particular facility:

- 1. Emissions of toxic air contaminants (TACs) from the facility are quantified and segregated according to source type;
- 2. Ground-level impacts resulting from the transport and dilution of these emissions through the atmosphere are assessed by air dispersion modeling;
- 3. Potential public exposure to these compounds resulting from this atmospheric transport are calculated: and
- 4. Potential cancer and non-cancer health risks resulting from the calculated exposures are estimated using dose-response relationships developed from toxicological data.

In general, there are uncertainties at every step of the process, but the cumulative assumptions of risk assessments that follow standard regulatory practices, as this one does, are more likely to cause an over prediction of health risks rather than an underestimation, probably by a substantial margin. The following factors may contribute to an over prediction of health risks:

- 1. A regulatory air dispersion model that tends to over predict ground-level chemical concentrations;
- 2. State-approved toxicity factors developed from human and animal data thought to represent an upper bound of potential cancer potency factors and the most sensitive responses to non-carcinogens;
- 3. An assumption of continuous 70-year exposure at a single off-campus residential location;
- 4. An assumption of continuous exposure as a student over an assumed 9-year exposure period at a single on-campus location and day care center locations.
- 5. An assumption of a continuous 9-year exposure period at day care center locations.

1.1 **FACILITY ID**

The UCLA SCAQMD Facility ID number is 018452.

1.2 **FACILITY INFORMATION**

Facility Address: University of California, Los Angeles

405 Hilgard Avenue

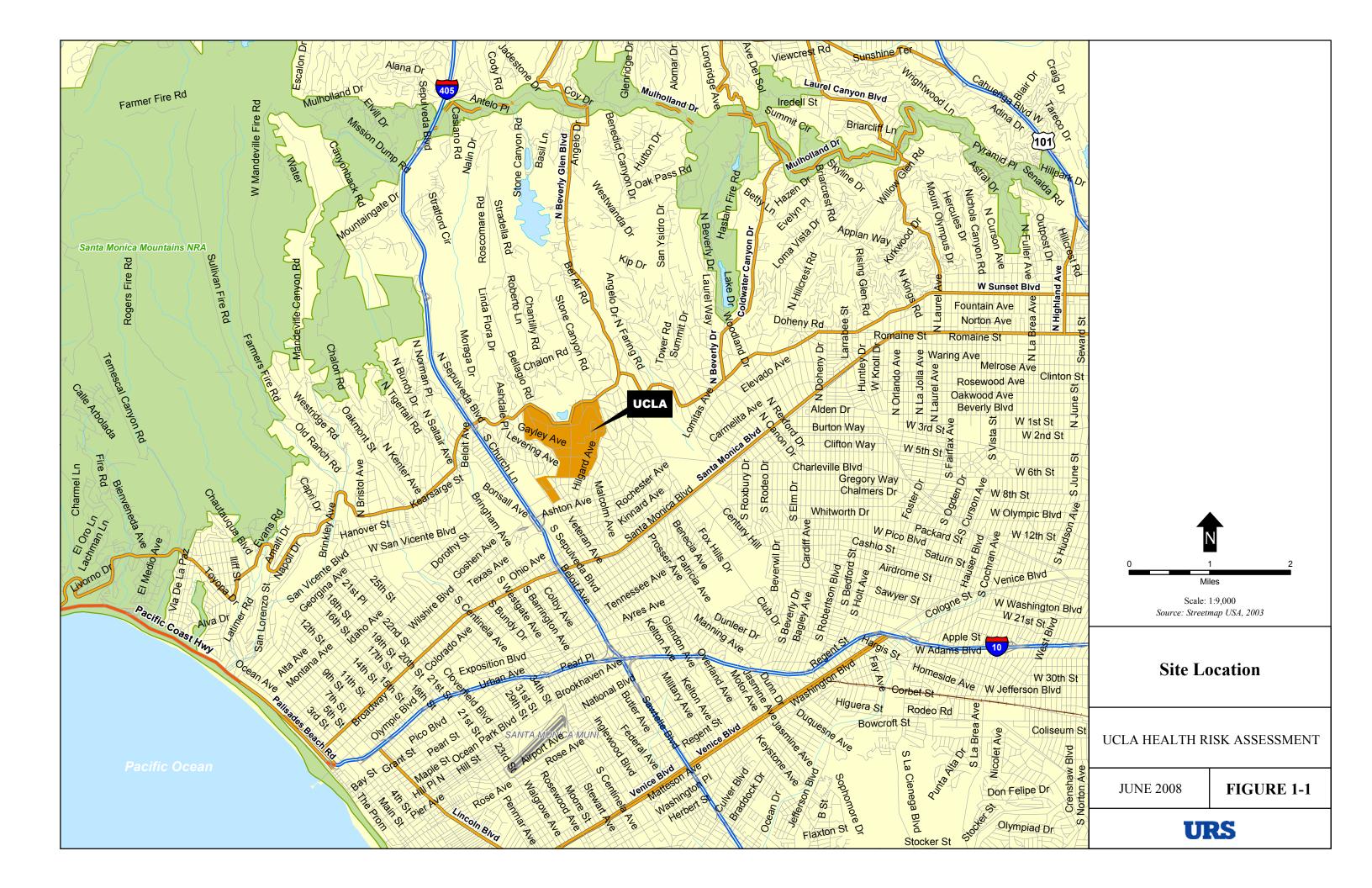
Box 951361

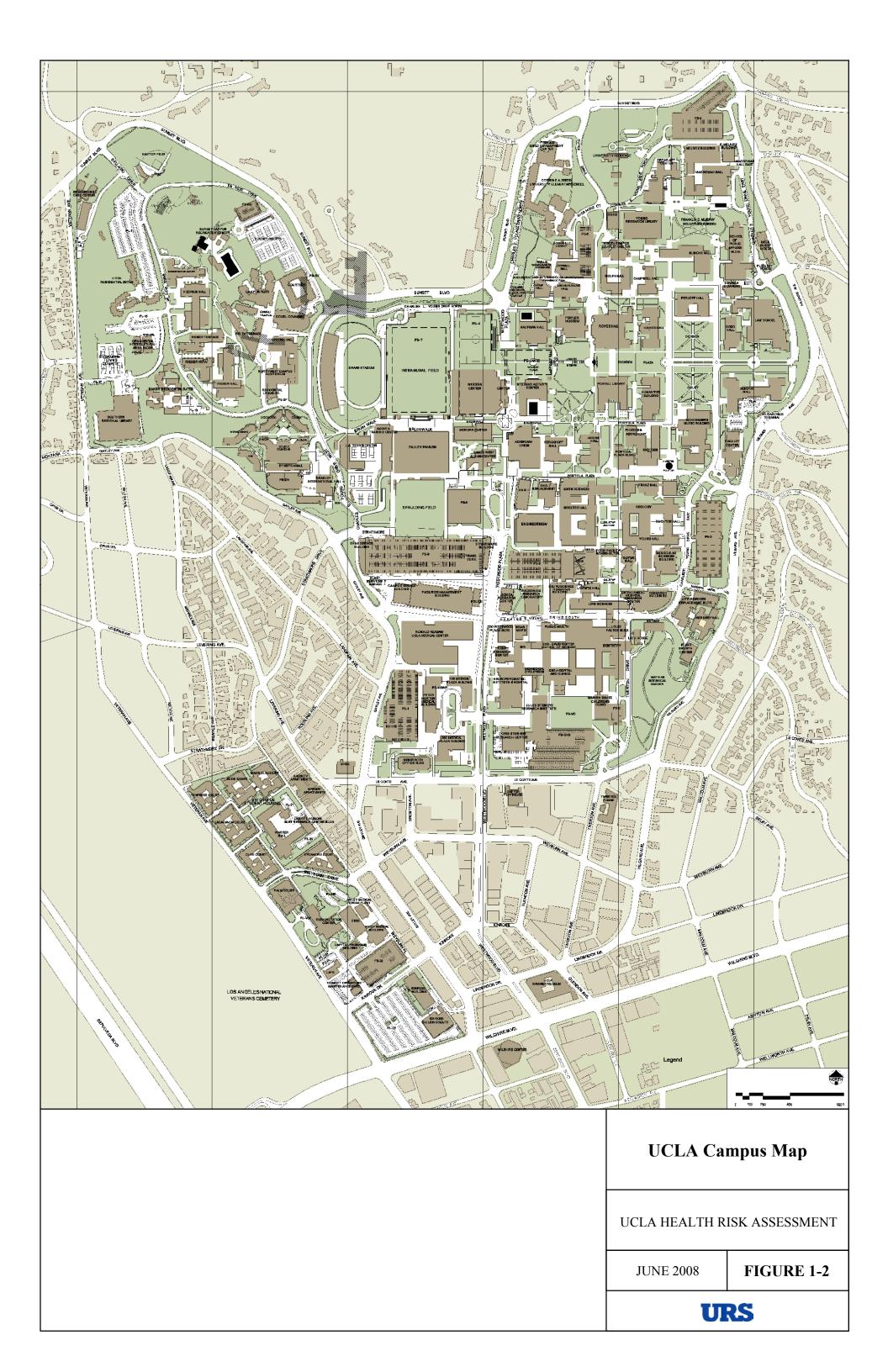
Los Angeles, CA 90095-1361

Primary Contact: Ms. Tova Lelah

> Campus Capital Planning 1060 Veteran Avenue

Box 951365


Los Angeles, CA 90095-1365


1.3 **DOCUMENT ORGANIZATION**

The remainder of this document is organized as follows:

- ♦ Section 2.0 HRA Criteria
- ♦ Section 3.0 Hazard Identification
- ♦ Section 4.0 Exposure Assessment
- ♦ Section 5.0 Dose Response Assessment
- ♦ Section 6.0 Risk Characterization
- ♦ Section 7.0 Uncertainties
- ♦ Section 8.0 References

Technical support documentation is included in Appendix A.

2.0 HRA CRITERIA

The air pollutants of concern in this study are all OEHHA defined TACs. These substances are capable of causing short-term (acute noncancer) and/or long-term (chronic noncancer or carcinogenic) adverse human health effects. TACs are subject to a wide variety of federal, state, and regional regulations.

2.1 REGULATORY SETTING

The following present the federal, state, and regional regulations for reporting TAC emissions.

2.1.1 Federal

Hazardous air pollutants (HAPs) have been regulated at the federal level since the Clean Air Act of 1977. Following the passage of this law, regulations for seven hazardous air pollutants (HAPs) were promulgated as National Emission Standards for Hazardous Air Pollutants (NESHAPs) over a 13-year period. The federal Clean Air Act Amendments of 1990 revamped the NESHAPs program to offer a technology-based approach for reducing the emissions of a greater number of hazardous air pollutants. Under the 1990 Clean Air Act Amendments, 189 substances were identified as HAPs and slated for regulation through the Federal Operating Permit Program.

2.1.2 State

California's TAC or air toxics control program began in 1983 with the passage of the Toxic Air Contaminant Identification and Control Act, better known as Assembly Bill (AB) 1807 or the Tanner Bill. The Tanner Bill established a regulatory process for the scientific and public review of individual toxic compounds. When a compound becomes listed as a TAC under the Tanner process, the California Air Resources Board (CARB) normally establishes minimum statewide emission control measures to be adopted by local Air Pollution Control Districts (APCDs).

The second major component of California's air toxics program, supplementing the Tanner process, was provided by the passage of AB 2588, the Air Toxics "Hot Spots" Information and Assessment Act of 1987. AB 2588 currently regulates over 600 compounds, including all of the Tanner-designated TACs. Under AB 2588, specified facilities must quantify emissions of regulated TACs and report them to the local APCD. If the APCD determines that a potentially significant public health risk is posed by a given facility, the facility is required to perform an HRA and notify the public in the affected area if the calculated risks exceed specified criteria.

In addition to the above, Proposition 65 was passed by California voters in 1986. Proposition 65 required that a list of carcinogenic and reproductive toxicants found in the environment be compiled; the discharge of these toxicants into drinking water be prohibited; and warnings of public exposure by air, land, or water be posted if a potential public health risk is posed. The handling, production, or emission of any of these substances by a facility would require a public warning unless health risks could be demonstrated to be insignificant. For carcinogens, Proposition 65 defines the "no significant risk level" as the level of

exposure that would result in an increased cancer risk of greater than 10 in one million over a 70-year lifetime. This program is currently administered by OEHHA.

CARB formally identified particulate matter emitted by diesel-fueled engines as a TAC in 1998. This action was taken at the end of a lengthy process that considered dozens of health studies, extensive analysis of health effects and exposure data, and public input collected over many years. The CARB action has lead to additional control of diesel engine emissions in recent years by the CARB. The U.S. Environmental Protection Agency (EPA) has also evaluated both the cancer and noncancer health effects of diesel exhaust, and has issued its final health assessment for diesel engine exhaust (EPA 2002).

In September 2000, the CARB approved the *Risk Reduction Plan to Reduce Particulate Matter Emissions from Diesel-Fueled Engines and Vehicles* (Diesel Risk Reduction Plan) (CARB 2000a). The Diesel Risk Reduction Plan outlines a comprehensive and ambitious program that includes the development of numerous new control measures over the next several years aimed at substantially reducing emissions from new and existing on-road vehicles (e.g., heavy-duty trucks and buses), off-road equipment (e.g., graders, tractors, forklifts, sweepers, and boats), portable equipment (e.g., pumps), and stationary engines (e.g., standby power generators). A number of air toxics control measures have been developed and others are in the process of being developed.

Many laboratory fume hoods are operated on the UCLA campus. Title 8 of the California Code of Regulations contains California Occupational Safety and Health Administration requirements for these emission sources. The regulations are associated with worker health and safety requirements for the operation and use of fume hoods. In addition, the code establishes specific requirements for the use and storage of chemicals.

2.1.3 Regional

In compliance with federal law, the SCAQMD implements federal TAC regulatory requirements through the Federal Operating Permit Program. The SCAQMD has also developed various rules for specific TAC source categories. The SCAQMD's permitting program also includes a regulation that requires certain new or modified TAC emission sources to demonstrate that potential health risks are below stated thresholds.

In compliance with state law, the SCAQMD requires facilities that emit greater than district approved thresholds (i.e., four tons per year) of volatile organic compounds (VOCs), oxides of nitrogen (NOx), oxides of sulfur (SOx), and particulate matter (PM), or 100 tons of carbon monoxide (CO), or TACs in excess of annual emission thresholds, to submit an Annual Air Emissions Report (AER) to SCAQMD. Facilities that exceed higher thresholds (i.e., in excess of 10 tons per year of VOC, NOx, SOx, or PM) or in excess of annual AB 2588 TAC thresholds will be entered in the AB 2588 Air Toxics "Hot Spots" Program. AB 2588 facilities must periodically report their TAC emissions and if the SCAQMD determines that the facility poses a potential public health risk, the facility must conduct an HRA. If the estimated health risks exceed threshold levels, the public in the affected area must be notified. The notification threshold is a cancer risk of 10 in one million and a hazard index (HI) of 1.0. In cases where risks exceed specified action levels, steps must be taken to reduce emissions including the preparation of

a risk reduction plan. SCAQMD has labeled UCLA as an AB 2588 facility and prepares all necessary reports as required by the district.

2.2 POTENTIAL EFFECTS

The potential effects evaluated by the HRA include cancer risk, and acute and chronic noncancer risk.

2.2.1 Cancer Risk

Cancer risk is defined as the lifetime probability (chance) of developing cancer from exposure to a carcinogen, typically expressed as the increased chances in a million. The cancer risk for an inhaled TAC is estimated by multiplying the inhalation dose (in milligrams per kilogram-day [mg/kg-day]) by its inhalation cancer potency factor which is the inverse dose of a chemical's potency slope (mg/kg-day)⁻¹. The following equation illustrates the formula for calculating cancer risk. Cancer toxicity factors are discussed in more detail in Section 6.1.

Inhalation Dose $(mg/kg-day) \times Cancer Potency Factor <math>(mg/kg-day)^{-1} = Cancer Risk$

For particulate-bound pollutants, exposure could also come from indirect environmental pathways, such as deposition on the soil, followed by exposure through soil ingestion or absorption of the pollutant from soil adhered to the skin. Other potential ingestion pathways, such as ingestion of crops grown in soil potentially affected by deposited air pollutants, may be included, if applicable. Non-inhalation cancer risk is calculated from cancer toxicity factors and exposure assumptions, as described further in Sections 5.0 and 6.0.

Cancer risks are calculated for all carcinogenic TACs and the results summed to calculate an overall cancer risk for all chemicals. The calculation procedure assumes that cancer risk is proportional to concentration at any level of exposure; that is, there is no dose that would result in a zero probability of contracting cancer. This is generally considered to be a conservative assumption at low doses, as some theories on carcinogenesis assume that certain chemicals may require a threshold level or interaction with other agents, while others say that cancer can form at any exposure level. The zero-threshold approach is consistent with the current OEHHA regulatory guidance.

2.2.2 Non-Cancer Health Risk

Acute and chronic noncancer health impacts are expressed as a hazard quotient (HQ) for individual TACs and as an HI for the accumulated value for multiple TACs. Hazard quotients are estimated for each target organ system that is impacted and the HI for multiple TACs is determined by summing the HQs for all TACs that affect the same target organ system. The HQ is the ratio of the reported or calculated concentration (or dose for the non-inhalation pathway for chronic exposure) and the corresponding reference exposure level (REL) identified by OEHHA. For chronic exposure, HIs are calculated by summing the HQs for TACs that impact the same target organ system for both inhalation and non-inhalation exposure pathways. For acute exposure, HIs are calculated by summing the HQs for TACs that

impact the same target organ system for only the inhalation pathway. This approach is consistent with the current OEHHA regulatory guidance. Noncancer toxicity factors are discussed in Section 5.0.

2.3 SIGNIFICANCE CRITERIA

The significance level used in this study for the maximum lifetime cancer risk associated with total campus emissions (current operations plus proposed future LRDP projects) is 10 in one million. Under various state and local regulations, a cancer risk from an existing facility of 10 in one million or greater is generally considered to be significant enough to warrant public notification. This includes the Air Toxics "Hot Spots" (AB 2588) Program and Proposition 65.

The cumulative exposure to compounds that can cause noncancer health effects must be below applicable RELs, as represented by HIs. The total HI must be below a value of 1.0 for the maximally impacted organ system in order for the cumulative exposure to be considered insignificant. Thus, a total HI of 1.0 is the significance level in this study for chronic or acute noncancer health effects, which is consistent with the SCAQMD's implementation of the State of California AB 2588 Program.

3.0 HAZARD IDENTIFICATION

Hazard identification is the step that identifies whether a substance is a potential human carcinogen or is capable of causing adverse noncancer health effects. Per OEHHA guidelines, all TACs listed in Appendix A-1 of The Air Toxics Hot Spots Program Guidance Manual for Preparation of Health Risk Assessments must be included in all HRA analysis. Therefore, applicable campus sources and associated emissions in both the 2007 Baseline and the LRDP Amendment Scenarios were analyzed for TAC emissions. The following presents the TACs emission estimation methodology for the Baseline and LRDP Scenarios.

3.1 EMISSIONS QUANTIFICATION

The analysis evaluated emissions from various existing sources associated with routine, campus-wide operations. In addition, potential new sources were evaluated to account for growth over the next six years. The following emission source types were included in the analysis.

- ♦ Cogeneration gas turbines;
- ♦ Gasoline dispensing operations;
- ♦ Boilers;
- ♦ ICEs:
- ♦ Painting operations; and
- ♦ Laboratory chemical usage.

The 2007 Baseline sources were identified based on the list of SCAQMD air permits, the annual air emission report, and the previous HRA (URS, 2002). The emissions from the source types were estimated based on fuel and material usage reported in the 2006-2007 AER submitted to the SCAQMD. The laboratory chemical usage was estimated based on laboratory purchase records. The fuel, material, and chemical usage used to estimate the emissions for this HRA are considered representative of the campus-wide operations. The potential new sources were identified based on projected new laboratory and building construction provided by UCLA. The emissions from the potential new sources were estimated based on assumptions on fuel and chemical usage representative of similar campus-wide operations.

3.1.1 Cogeneration Gas Turbines

Two permitted gas turbines located at the Cogeneration Plant provide the majority of the electricity for campus-wide operations. Each turbine is permitted to fire on blended natural and landfill gas with each having a rated capacity of 234 million British thermal units (MMBTU/hr). The 2007 Baseline emissions were estimated based on emission factors and the reported natural and landfill gas usage. The emission factors for the combustion of natural and landfill gas were obtained from the SCAQMD Supplemental Reporting Procedures for AB2588 Facilities, Tables B-1 and B-6, respectively. The annual natural and landfill gas usage of 1348.9 and 308.3 million cubic feet (MMcf) was based on usage reported in the 2006-2007 SCAQMD AER. The hourly emissions were estimated based on assuming the turbines

operated continuously throughout the year and dividing the annual usage by 8,760. The usage was divided equally between the two turbines.

No increase in fuel usage at the Cogeneration Plant is anticipated for the LRDP Amendment Scenario. Therefore, the fuel usage and associated emissions reported in the 2006-2007 SCAQMD AER will be used for the LRDP Amendment analysis.

3.1.2 Gasoline Dispensing

One permitted unleaded gasoline dispensing facility located near Campus Services Building I supplies fuel to the campus fleet vehicles. The facility contains eight dispensing nozzles equipped with Phase II vapor recovery systems and two 10,000-gallon underground storage tanks. The emissions were estimated based on emission factors and the unleaded gasoline throughput. The emission factors for gasoline loading were obtained from EPA AP-42, Section 5.2. Emission factors for gasoline dispensing were obtained from the SCAQMD General Instruction Book for the 2006-2007 Annual Emissions Reporting Program, Appendix K. The gasoline fuel speciation was obtained from SCAQMD Supplemental Instructions for Liquid Storage Tanks, Appendix 3. The annual emissions were estimated based on the annual unleaded gasoline throughput of 320,000 gallons reported in the 2006-2007 SCAQMD AER. Hourly emissions were estimated based on the number of nozzles and assuming a filling rate of 6 gallons per minute over 40 minutes per hour (8 x 6 x 40 gallons per hour [gal/hr]).

No increase in fuel usage at the gasoline dispensing facility is anticipated for the LRDP Amendment Scenario. Therefore, the fuel usage and associated emissions reported in the 2006-2007 SCAQMD AER were used for the LRDP Amendment analysis.

3.1.3 Boilers

The 2007 Baseline Scenario includes six permitted boilers and 54 boilers not subject to SCAQMD permits located throughout the campus. The emissions were estimated based on emission factors and the reported natural gas usage. The emission factors for natural gas boilers were obtained from SCAQMD Supplemental Reporting Procedures for AB2588 Facilities, Table B-1. The annual emissions were estimated based on the annual natural gas usage of 237, 114.4, and 68.78 MMcf, respectively, reported by Facilities, Energy Services, and North Campus. The natural gas reported by Energy Services was assumed to be burned in the Cogeneration Plant auxiliary boiler. The natural gas reported by Facilities and North Campus are distributed by prorating the reported usage by each boiler's rated capacity. The hourly emissions were estimated based on a theoretical maximum hourly usage calculated from the size of the boiler divided by the heating value for natural gas.

The LRDP Amendment Scenario includes all usage and emissions from the boilers in the 2007 Baseline Scenario as well as the eight proposed boilers planned to service the new North Campus dormitories of the NHIP. Emissions were estimated based on emission factors and assuming a representative operating schedule. The emissions factors were obtained from SCAQMD Supplemental Reporting Procedures for AB2588 Facilities, Table B-1. The annual usage was based on a proportional increase in North Campus usage related to the firing capacity of the additional boilers. The hourly emissions were estimated based

on the theoretical maximum hourly usage calculated from the size of the boiler divided by the heating value for natural gas.

3.1.4 Diesel-fueled Internal Combustion Engines

The 2007 Baseline Scenario includes 81 generators containing ICEs located throughout the campus. The standby generators' ICEs fire on diesel fuel and have rated capacities ranging from 50 to 3,622 brake horsepower (bhp). Per Appendix D of OEHHA guidance, diesel particulate matter (DPM) will represent the sole source of toxicity for diesel emissions from ICEs and should be the only TAC quantified in the HRAs. This approach is also consistent with SCAQMD guidance (SCAQMD 2008). DPM emissions were estimated based on emission factors and the reported diesel fuel usage. When available, the ICE's manufacturer specification sheet was used to provide the DPM emission factor. If the specification sheet was not available, the default SCAQMD DPM emission factor was used.

Annual emissions were estimated based on the annual diesel fuel usage of 8,750 and 2,826 gallons reported by Facilities and North Campus, respectively. The diesel fuel reported by North Campus was divided between the eight standby generators supporting the North Campus dormitories based on the size of the engines. The diesel fuel reported by Facilities was divided between the 73 standby generators maintained by Facilities throughout the campus based on the engine size and load factor for the engines. The load factors were estimated based on discussions with Facilities Management personnel. Most standby generators on campus are routinely tested at idle and, thus, were assumed to operate at a 25% load factor. However, the Cogeneration Plant, UCLA Medical Center, and the Ronald Reagan Medical Center's standby generators undergo more rigorous testing and are routinely operated at approximately 75% load. The hourly emissions were estimated based on an hourly usage calculated from the size of the engine and load factor.

The LRDP Amendment Scenario includes all usage and emissions from the generators in the 2007 Baseline Scenario and eight new standby generators planned to support the projected new construction across the campus. Generator sizes were provided by UCLA staff for the proposed standby generators servicing the dormitories of the NHIP. Sproul South, Sproul West, Upper and Lower DeNeve, and Sproul Complex will likely be supported by a 250, 250, 500, and a 1000 kilowatt (kW) generator, respectively. Specification sheets for Cummins 250, 500, and 1000 kW generators were used to provide the data necessary for the LRDP Amendment analysis. (e.g., fuel consumption, bhp, etc). Four new generators are anticipated to service buildings not yet constructed. At this time, no information is available to determine the size of each generator; therefore, a 500 bhp diesel-fired ICE is assumed to drive each generator. The emissions were estimated based on emission factors and assuming a representative operating schedule.

The particulate matter (PM) emissions were estimated based on the proposed California PM emission standard for new diesel-fired standby generators (i.e., 0.1 grams per bhp). The annual emissions were based on diesel fuel usage associated with 6 hours per year (hr/yr) of operation. Based on discussions with Facilities Management personnel, standby generators on campus are generally tested 15 to 20 minutes per month at 25% load for routine maintenance purposes, which equates to 3 to 4 hours of annual operation.

This analysis conservatively assumes that the standby generators will be tested for 30 minutes per month at 25% load for routine maintenance purposes equating to 6 hr/yr of operation. The hourly emissions are estimated based on an hourly usage calculated from the size of the engine and load factor.

3.1.5 Painting Operations

The 2007 Baseline Scenario includes the permitted painting spray booth located in Campus Services Building I. Emissions were estimated based on material composition obtained from representative Material Safety Data Sheets (MSDSs) and material usage. It was assumed that all of the material usage is evaporated through the exhaust stack. The annual emissions were estimated based on daily usage logs provided by painting operations personnel. The hourly emissions were estimated by analyzing the daily coating logs. The maximum amount of material used in one day is conservatively assumed to be used in a one-hour period. No increase in paint usage is anticipated for the LRDP Amendment Scenario; therefore, the paint usage and associated emissions reported in the 2006-2007 SCAQMD AER were used for the LRDP Amendment scenario.

3.1.6 Laboratory Chemical Usage

The 2007 Baseline Scenario includes all TAC emissions associated with the routine use of laboratory chemicals. Lab purchase records were provided by UCLA staff to quantify the total chemical usage throughout the campus. The Stanford Biology Chemistry Quadrangle Project (Decision Focus Incorporated, 1989) provided solvent and formaldehyde loss factors (i.e., 5 and 10%, respectively) to determine the mass air emissions from routine chemical use. No information was available to determine the exact amount of chemical usage within each lab. The campus mass chemical usage was distributed to each lab based on the ratio of the lab's "wet" floor space (i.e., the area where the chemicals are handled and used) over the total "wet" floor space of the campus. The potential hourly laboratory emissions were determined based on laboratory hours of operation. An operational schedule of 12 hours per day, six days per week, and 50 weeks per year was deemed appropriate by UCLA staff. Therefore, the annual emissions were divided by 3,600 hours to estimate hourly emissions.

The LRDP Amendment Scenario includes all laboratory emissions associated with the 2007 Baseline Scenario plus one additional wet laboratory located in the Life Science Replacement Building. Additional usage and associated emissions from this laboratory was based on the percent increase in campus wet floor space between the 2007 Baseline Scenario and the LRDP Amendment Scenario. The hourly emissions were based on the laboratory operational schedule of 12 hours per day, six days per week, and 50 weeks per year. Therefore, the annual emissions were divided by 3600 hours to estimate hourly emissions.

3.2 HEALTH EFFECTS

Table 3-1 presents the emissions evaluated in the HRA for both the 2007 Baseline and LRDP Amendment Scenarios. Table 3-2 provides the emission rates by source type. Table 3-3 presents the health affects categories for substances evaluated in the HRA for both scenarios.

Table 3-1. Emissions Evaluated in the HRA for the 2007 Baseline and LRDP Amendment Scenarios

		2007 Baseli	ne Scenario		nendment nario
CAS Number	Substance	(lbs/yr)	(lbs/hr)	(lbs/yr)	(lbs/hr)
75070	Acetaldehyde	1.11E+02	1.32E-02	1.11E+02	1.33E-02
75058	Acetonitrile	1.12E+02	3.11E-02	1.16E+02	3.23E-02
107028	Acrolein	1.85E+01	2.48E-03	1.85E+01	2.51E-03
7664417	Ammonia	2.59E+04	3.87E+00	2.60E+04	3.90E+00
71432	Benzene	6.87E+01	6.49E-02	6.95E+01	6.51E-02
7726956	Bromine Compounds	1.24E+02	3.45E-02	1.24E+02	3.45E-02
106990	Butadiene, 1,3-	1.18E+00	1.35E-04	1.18E+00	1.35E-04
75650	Butyl Alcohol, Tert-	5.19E-01	1.44E-04	5.39E-01	1.50E-04
56235	Carbon Tetrachloride	7.43E-01	1.34E-04	7.54E-01	1.37E-04
108907	Chlorobenzene	8.53E-01	2.37E-04	8.85E-01	2.46E-04
67663	Chloroform	1.18E+02	3.28E-02	1.23E+02	3.41E-02
106467	Dichlorobenzene, p-	3.42E-01	9.50E-05	3.55E-01	9.85E-05
9901	Diesel Exhaust (particulates) ¹	1.16E+02	1.62E+01	1.17E+02	1.56E+01
68122	Dimethylformamide	1.36E+01	3.78E-03	1.41E+01	3.92E-03
123911	Dioxane, 1,4-	8.53E+00	2.37E-03	8.85E+00	2.46E-03
106898	Epichlorohydrin	5.50E-04	1.53E-07	5.71E-04	1.58E-07
100414	Ethylbenzene	1.03E+02	8.69E-02	1.03E+02	8.70E-02
107062	Ethylene Dichloride	1.38E-02	3.84E-06	1.43E-02	3.98E-06
50000	Formaldehyde	3.31E+03	6.01E-01	3.36E+03	6.15E-01
110543	Hexane	9.71E+02	3.22E-01	1.01E+03	3.32E-01
302012	Hydrazine	1.10E-02	3.06E-06	1.14E-02	3.17E-06
7647010	Hydrogen Chloride	3.22E+01	8.96E-03	3.34E+01	9.29E-03
67630	Isopropyl Alcohol	3.31E+01	9.21E-03	3.44E+01	9.55E-03
67561	Methanol	8.63E+02	2.40E-01	8.95E+02	2.49E-01
107982	1-Methoxy-2-propanol	3.29E+01	6.20E-01	3.29E+01	6.20E-01
75092	Methylene Chloride	6.03E+02	1.67E-01	6.25E+02	1.74E-01
91203	Naphthalene	3.71E+00	5.10E-04	3.71E+00	5.13E-04
1151	PAH (excluding napthalene)	2.52E+00	3.15E-04	2.52E+00	3.16E-04
127184	Perchloroethylene	7.47E-01	1.14E-04	7.53E-01	1.16E-04
75569	Propylene Oxide	7.98E+01	9.10E-03	7.98E+01	9.10E-03
110861	Pyridine	1.83E+00	5.09E-04	1.90E+00	5.28E-04
108883	Toluene	5.12E+02	4.41E-01	5.14E+02	4.42E-01
79016	Trichloroethylene	2.78E+00	1.00E-01	2.78E+00	1.00E-01
121448	Triethylamine	6.20E+00	1.72E-03	6.43E+00	1.79E-03
95636	Trimethylbenzene, 1,2,4-	3.16E+01	2.65E-01	3.16E+01	2.65E-01
75014	Vinyl Chloride	3.94E-01	4.50E-05	3.94E-01	4.50E-05
1330207	Xylenes	3.40E+02	4.26E-01	3.43E+02	4.27E-01

¹ Diesel Exhaust (particulates) are also referred to as diesel particulate matter (DPM)

Table 3-2. Emission Rates By Source Type

				Emissio		
Emission Source	CAS		2007 Baselir	ne Scenario	LRDP An Scen	
Description	Number	Substance	(lbs/yr)	(lbs/hr)	(lbs/yr)	(lbs/hr)
Turbines - Co	generation P	lant				
	75070	Acetaldehyde	1.10E+02	1.26E-02	1.10E+02	1.26E-02
	107028	Acrolein	1.76E+01	2.00E-03	1.76E+01	2.00E-03
	7664417	Ammonia	2.46E+04	2.80E+00	2.46E+04	2.80E+00
	71432	Benzene	3.80E+01	5.64E-02	3.80E+01	4.35E-03
	106990	Butadiene, 1,3-	1.18E+00	1.35E-04	1.18E+00	1.35E-04
	56235	Carbon Tetrachloride	4.44E-01	5.06E-05	4.44E-01	5.06E-05
	75092	Chloroform	3.46E-01	3.94E-05	3.46E-01	3.94E-05
	100414	Ethylbenzene	8.78E+01	8.04E-02	8.78E+01	1.00E-02
	50000	Formaldehyde	1.95E+03	1.11E-01	1.95E+03	2.22E-01
	127184	Methylene Chloride	5.68E-01	6.48E-05	5.68E-01	6.48E-05
	91203	Naphthalene	3.58E+00	2.05E-04	3.58E+00	4.10E-04
	1151	PAHs (excluding Naphthalene)	2.48E+00	1.41E-04	2.48E+00	2.82E-04
	79016	Perchloroethylene	6.16E-01	7.04E-05	6.16E-01	7.04E-05
	75569	Propylene Oxide	7.98E+01	4.55E-03	7.98E+01	9.10E-03
	108883	Toluene	3.85E+02	4.01E-01	3.85E+02	4.41E-02
	67663	Trichloroethylene	4.68E-01	2.67E-05	4.68E-01	5.34E-05
	75014	Vinyl Chloride	3.94E-01	2.25E-05	3.94E-01	4.50E-05
	1330207	Xylenes	1.84E+02	3.88E-01	1.84E+02	2.09E-02
Gasoline Loa		Aylenes	1.012.02	0.002 01	1.012.02	1 2.002 02
	71432	Benzene	8.98E+00	5.39E-02	8.98E+00	5.39E-02
	100414	Ethylbenzene	1.26E+01	7.54E-02	1.26E+01	7.54E-02
	110543	Hexane	8.98E+00	5.39E-02	8.98E+00	5.39E-02
	108883	Toluene	6.28E+01	3.77E-01	6.28E+01	3.77E-01
	95636	Trimethylbenzene, 1,2,4-	2.24E+01	1.35E-01	2.24E+01	1.35E-01
	1330207	Xylenes	6.28E+01	3.77E-01	6.28E+01	3.77E-01
Boilers (all)	1000201	Aylones	0.202.01	0.772 01	0.202.01	0.112 0
Bollers (ull)	75070	Acetaldehyde	1.29E+00	6.60E-04	1.32E+00	6.93E-04
	107028	Acrolein	9.17E-01	4.85E-04	9.48E-01	5.13E-04
	7664417	Ammonia	1.34E+03	1.07E+00	1.38E+03	1.10E+0
	71432	Benzene	2.40E+00	1.23E-03	2.47E+00	1.29E-03
	100414	Ethylbenzene	2.85E+00	1.46E-03	2.47E+00 2.93E+00	1.53E-03
	50000	Formaldehyde	5.09E+00	2.62E-03	5.24E+00	2.75E-03
		· · · · · · · · · · · · · · · · · · ·				
	110543 91203	Hexane Naphthalene	1.89E+00 1.26E-01	9.63E-04 1.00E-04	1.94E+00 1.30E-01	1.01E-03 1.03E-04
	1151	PAH (excluding naphthalene)	4.20E-01	3.34E-05	4.31E-02	3.45E-0
		· · · · · · · · · · · · · · · · · · ·				
	108883	Toluene	1.10E+01	5.65E-03	1.13E+01	5.92E-03
ICEo (all)	1330207	Xylenes	8.15E+00	4.19E-03	8.38E+00	4.40E-03
ICEs (all)	0004	Discal Exhaust (nexticulates)	4.40=.00	4.60=.04	4.475.00	1 555.0
Spray Booth	9901	Diesel Exhaust (particulates)	1.16E+02	1.62E+01	1.17E+02	1.55E+0

Table 3-2. Emission Rates By Source Type

				Emissio	n Rate		
Emission Source	CAS		2007 Baselir		LRDP Amendment Scenario		
Description	Number	Substance	(lbs/yr)	(lbs/hr)	(lbs/yr)	(lbs/hr)	
	107982	1-Methoxy-2-propanol	2.16E+00	1.00E-01	2.16E+00	1.00E-01	
	79016	Trichloroethylene	9.20E+00	1.30E-01	9.20E+00	1.30E-01	
	95636	Trimethylbenzene, 1,2,4-	3.29E+01	6.20E-01	3.29E+01	6.20E-01	
Laboratories	(all)						
	75058	Acetonitrile	1.12E+02	3.11E-02	1.35E+02	3.74E-02	
	71432	Benzene	1.94E+01	5.38E-03	2.36E+01	6.54E-03	
	7726956	Bromine Compounds	1.24E+02	3.45E-02	1.24E+02	3.45E-02	
	75650	Butyl Alcohol, Tert-	5.19E-01	1.44E-04	5.32E-01	1.48E-04	
	56235	Carbon Tetrachloride	2.99E-01	8.29E-05	3.25E+01	9.01E-03	
	108907	Chlorobenzene	8.53E-01	2.37E-04	3.67E+01	1.02E-02	
	67663	Chloroform	1.18E+02	3.28E-02	1.18E+02	3.29E-02	
	106467	Dichlorobenzene, p-	3.42E-01	9.50E-05	3.42E-01	9.50E-05	
	68122	Dimethylformamide	1.36E+01	3.78E-03	1.43E+01	3.98E-03	
	123911	Dioxane, 1,4-	8.53E+00	2.37E-03	8.54E+00	2.37E-03	
	106898	Epichlorohydrin	5.50E-04	1.53E-07	1.07E-03	2.96E-07	
	107062	Ethylene Dichloride	1.38E-02	3.84E-06	1.99E+00	5.53E-04	
	50000	Formaldehyde	1.35E+03	3.76E-01	1.35E+03	3.76E-01	
	110543	Hexane	9.60E+02	2.67E-01	9.60E+02	2.67E-01	
	302012	Hydrazine	1.10E-02	3.06E-06	3.18E+00	8.83E-04	
	7647010	Hydrogen Chloride	3.22E+01	8.96E-03	3.69E+01	1.02E-02	
	67630	Isopropyl Alcohol	3.31E+01	9.21E-03	3.75E+01	1.04E-02	
	67561	Methanol	8.63E+02	2.40E-01	8.64E+02	2.40E-01	
	75092	Methylene Chloride	6.02E+02	1.67E-01	6.02E+02	1.67E-01	
	127184	Perchloroethylene	1.79E-01	4.97E-05	1.79E-01	4.98E-05	
	110861	Pyridine	1.83E+00	5.09E-04	2.06E+00	5.73E-04	
	108883	Toluene	5.30E+01	1.47E-02	5.30E+01	1.47E-02	
	121448	Triethylamine	6.20E+00	1.72E-03	6.52E+00	1.81E-03	
	1330207	Xylenes	8.50E+01	2.36E-02	8.62E+01	2.39E-02	

Table 3-3. Health Effects Categories for Substances Evaluated in the HRA for Both Scenarios

			Non	cancer
CAS Number	Substance	Cancer	Acute	Chronic
9901	DPM	✓		✓
1151	PAHs, total, w/o individual components	✓		
50000	Formaldehyde	✓	✓	✓
71432	Benzene	✓	✓	√
91203	Naphthalene	✓		✓
106990	1,3-Butadiene	✓		✓
7664417	Ammonia		✓	✓
56235	Carbon tetrachloride	✓	✓	✓
123911	1,4-Dioxane	✓	✓	✓
107062	Ethylene dichloride	✓		✓
79016	Trichloroethylene	✓		✓
75014	Vinyl chloride	✓	✓	
75092	Methylene chloride	✓	✓	✓
108883	Toluene		✓	✓
1330207	Mixed xylenes		✓	✓
67630	Isopropyl alcohol	✓	✓	
100414	Ethyl benzene			✓
67561	Methanol		✓	✓
110543	Hexane			✓
75070	Acetaldehyde	✓		✓
107028	Acrolein		✓	✓
127184	Perchloroethylene	✓	✓	√
107982	1-Methoxy-2-propanol			✓
75058	Acetonitrile		✓	✓
7726956	Bromine compounds		✓	✓
75650	Butyl Alcohol, Tert-		✓	✓
108907	Chlorobenzene		✓	
67663	Chloroform	✓	✓	√
106467	Dichlorobenzene, p-	✓	✓	✓
68122	Dimethylformamide		✓	✓
106898	Epichlorohydrin	✓	✓	✓
302012	Hydrazine	✓	✓	✓
7647010	Hydrogen Chloride		✓	✓
75569	Propylene Oxide	✓	✓	✓
110861	Pyridine		✓	✓
121448	Triethylamine		✓	✓

4.0 **EXPOSURE ASSESSMENT**

The HRA addresses the required exposure pathways for all chemicals included in this study. SCAQMD's Supplemental Guidelines for Preparing Risk Assessments for the Air Toxics Hot Spots Information and Assessment Act (SCAQMD 2005) (SCAQMD Supplemental Guidelines) states that, at a minimum, the HRA must include the following pathways: home grown produce, dermal absorption, soil ingestion, and mother's milk. The exposure assessment process uses the emission estimates derived in the initial steps of the risk assessment and predicts the potential dose of each chemical to individuals in the surrounding population. The exposure assessment model, Hotspots Analysis and Reporting Program (HARP), was developed specifically for conducting risk assessments in compliance with AB 2588. The HARP model was used to estimate adverse health effects in this HRA.

4.1 AIR DISPERSION MODELING

Air dispersion modeling was conducted to determine the pollutant ground-level concentrations at off- and on-campus locations. The emissions at UCLA are released into the atmosphere through point, area, and volume sources. The methods used in modeling TACs from these sources are consistent with procedures outlined in the OEHHA guidelines. Additionally, the modeling methodology meets the EPA and CARB requirements for air quality modeling. The dispersion modeling files are provided in electronic format on the enclosed CD.

4.1.1 Model Selection

The CARB-approved HARP model (version 1.4, build May 2008) was used in this HRA. The HARP model incorporates the Industrial Source Complex Short Term (ISCST3) model to compute downwind dispersion and the EPA-approved Building Profile Input Program (BPIP) to evaluate downwash impacts of buildings and structures.

4.1.2 **Model Input**

The model input includes meteorological data, modeling parameters, modeling receptor grid, and emission source characteristics.

4.1.2.1 Meteorological Data

The SCAQMD has required all facilities to utilize a single year of local meteorological data from the year 1981. It is considered that weather conditions during this time represent worst-case dispersion and, hence, will result in a conservative estimate of impacts.

Data collected at the West Los Angeles monitoring station (surface station I.D. 52158 and upper air station I.D. No. 91919) were selected as the most appropriate data set for the UCLA modeling. West Los Angeles data include measurements of wind speed, wind direction, surface temperature, and stability. Upper air data from near Los Angeles International Airport were used for determining mixing height. The same meteorological data were used in both Scenarios.

4.1.2.2 Model Options and Parameters

Table 4-1 shows the dispersion model input options that were used in the ISCST3 modeling. All options were selected as recommended in the SCAQMD Supplemental Guidelines. The same model options were used in both Scenarios.

4.1.2.3 Modeling Grid

Off- and on-campus receptor locations were used in the modeling. The off-campus receptor locations were identified utilizing grid spacing from the origin of the UCLA campus (i.e., Bruin Plaza). Per the SCAQMD Supplemental Guidelines a grid spacing of 100 meters must be used in order to locate the offcampus maximum impacted receptors. The off- and on-campus discrete receptor locations evaluated were those characterized as sensitive receptors such as hospitals, day care centers, schools, and residential dormitories. The census block receptors were generated from census data contained in the HARP software.

The receptors utilized the UTM coordinate system. The receptor elevations were obtained electronically from the United States Geological Survey 7.5-minute Digital Elevation Model data. The campus boundary receptor locations are presented on Figure 4-1. The off-campus gridded receptor locations are provided on Figure 4-2. The off- and on-campus discrete and sensitive receptor locations are provided on Figure 4-3. Census block locations are shown on Figure 4-4. The same receptors locations were evaluated in both Scenarios.

4.1.2.4 Source Characterization

The emission sources evaluated in the HRA discussed in Section 3.1 were modeled as point, area, and volume sources. The cogeneration gas turbines, boilers, and ICEs were modeled as point sources at their respective locations. The modeled emissions by source and by pollutant for each Scenario are presented in Appendix A. The modeled point source parameters for both Scenarios are presented in Table 4-2. The lab chemical usage was modeled as area sources. The lab chemical usage was modeled from different areas across campus based on the location of the lab. The labs were aggregated, where appropriate, based on their geographic locations. The lab emissions were assumed to be released from the top of the buildings. The modeled area source parameters are presented in Table 4-3. The gasoline dispensing facility was modeled a volume source. The gasoline dispensing facility was modeled at its respective location with a volume representative of where the evaporative emissions would likely originate. The locations of the modeled point, area, and volume sources are presented on Figures 4-5 and 4-6, respectively.

4.1.3 **Deposition Methodology**

A default procedure recommended by SCAQMD and CARB was used to estimate the deposition flux of particulate-borne pollutants on ground surfaces. Under this procedure, a default settling velocity (in meters per second) is multiplied by the ground-level concentration (in µg/m³) to yield a flux term with units of mass per square meter per second. This procedure is a conservative approach which has the primary disadvantage of failing to conserve mass (i.e., pollutant mass assumed to be deposited also stays in the plume), resulting in a double counting of particulate impacts at distant receptors.

The SCAQMD Supplemental Guidelines recommends using a deposition velocity of 0.02 meters per second for all non-inhalation pathways. The 0.02 meters per second value was used in the modeling for this HRA.

4.1.4 **Aerodynamic Wake Effects**

When sources are located near or on buildings or structures, the dispersion of the plume can be influenced by the buildings or structures. Under certain wind speeds, the wake produced on the lee side of the building, known as building downwash, can cause the plume to be pulled toward the ground near the building resulting in higher concentrations close to the building.

The EPA-approved BPIP that is part of the HARP model was used to provide input for the downwash analysis that is performed by ISCST3. BPIP requires the input of building corner coordinates and heights, and stack coordinates. The building heights were provided by UCLA staff, while ArcGIS Version 9.2 was used to generate UTM coordinates to identify building and source locations. Because of the complexity of the stack/building relationships on the UCLA campus, the analysis included all buildings that could potentially influence each point source.

4.2 **MULTIPATHWAY ANALYSIS**

In identifying pathways that could potentially lead to exposure, the type of pollutants emitted, land use in the area, and lifestyle (i.e., urban versus rural or agricultural) must be considered. Consistent with the SCAQMD Supplemental Guidelines, the following pathways have been identified as potential exposure routes for the routine campus-wide emissions:

- ♦ Inhalation;
- ♦ Home grown produce;
- Dermal absorption;
- Soil ingestion; and
- ♦ Mother's milk.

Other pathways listed in the OEHHA guidelines for consideration, such as water ingestion, dairy and beef, and poultry and eggs, were not viable exposure routes for UCLA due to the types of substances emitted and surrounding land use. Table 4-5 presents the substances evaluated in both Scenarios and whether the substances are evaluated for inhalation-only exposure or multipathway exposures.

4.2.1 Inhalation Exposure

Exposure to substances in ambient air occurs through inhalation of both gases and PM. For the purpose of this assessment, particulate emissions are considered to be entirely absorbed in the lungs, yielding a conservative estimate of exposure. In reality, only a fraction of the inhaled particulates would deposit in the lungs and be absorbed. Inhalation exposure for the average adult is determined by multiplying the estimated concentration in air by an average daily inhalation volume specified by the OEHHA guidelines (20 cubic meters of air per day) and dividing that quantity by body weight (assumed to be 70 kilograms).

4.2.2 **Soil Ingestion**

Pollutants emitted in the particulate phase are subject to deposition onto ground surfaces and mixing in the uppermost layer of soil. Soil concentration calculations assume a constant deposition rate onto soil and an even mixing of emissions into the top one centimeter of soil. Loss mechanisms, primarily degradation over time, are considered in estimating the soil concentration of certain organic emissions over the period of interest.

Exposure from incidental ingestion of soil is estimated by multiplying the soil concentration estimate of each substance by a soil ingestion rate specified by the OEHHA guidelines and dividing by the body weight. The soil ingestion rate is an age-weighted value that reflects higher consumption rates for a child and significantly less consumption for an adult.

4.2.3 **Dermal Exposure**

Dermal exposure results when soil containing deposited particulate-borne pollutants contacts the skin and these pollutants are absorbed into the body. The daily exposure rate was calculated by multiplying the soil concentration of each pollutant by an estimate of the exposed skin surface area, amount of soil on the skin, and a chemical-specific absorption rate. The OEHHA guidelines provide default estimates of skin area, soil contact rate, and absorption rate.

4.2.4 Plant Ingestion

Locally grown produce presents a secondary route of exposure to emissions. Exposure via plant ingestion from the consumption of home grown garden produce may be a potential exposure route depending on the extent of the zone of impact (ZOI).

Particulate emissions can accumulate in edible garden produce from direct deposition onto plant surfaces and through absorption by the root system. The calculations for determining the deposition component of the concentration in the produce consider the deposition rate, an interception fraction, and removal of particulates from weathering (i.e., wind, rain, irrigation, etc.). The interception fraction corresponds to the amount of particulate depositing on the garden area that actually contacts exposed edible produce. Concentrations in the produce due to root uptake from the garden soil are estimated by multiplying a root uptake factor, which relates the concentration of a substance in plant tissue to that in soil water, by the estimated soil concentration. Under the OEHHA methodology, root uptake contributes to pollutant concentrations in produce grown above, as well as below, ground. The procedure for estimating soil concentrations is the same as for the soil ingestion pathway, but assumes a 15-centimeter mixing depth (versus a one centimeter mixing depth used for soil ingestion and dermal contact exposure pathways). Human exposure is estimated by multiplying plant concentrations by the daily ingestion rate of garden produce. As required by the OEHHA guidelines, the plant ingestion pathway was included in the analysis within the ZOI.

4.2.5 **Total Exposure**

The total daily exposure for each emitted substance is calculated by summing the individual exposure for each pathway. These total daily exposures are used to assess the potential health risk as presented in Section 5.0. Table 4-5 presents exposure pathways evaluated for each substance in both Scenarios.

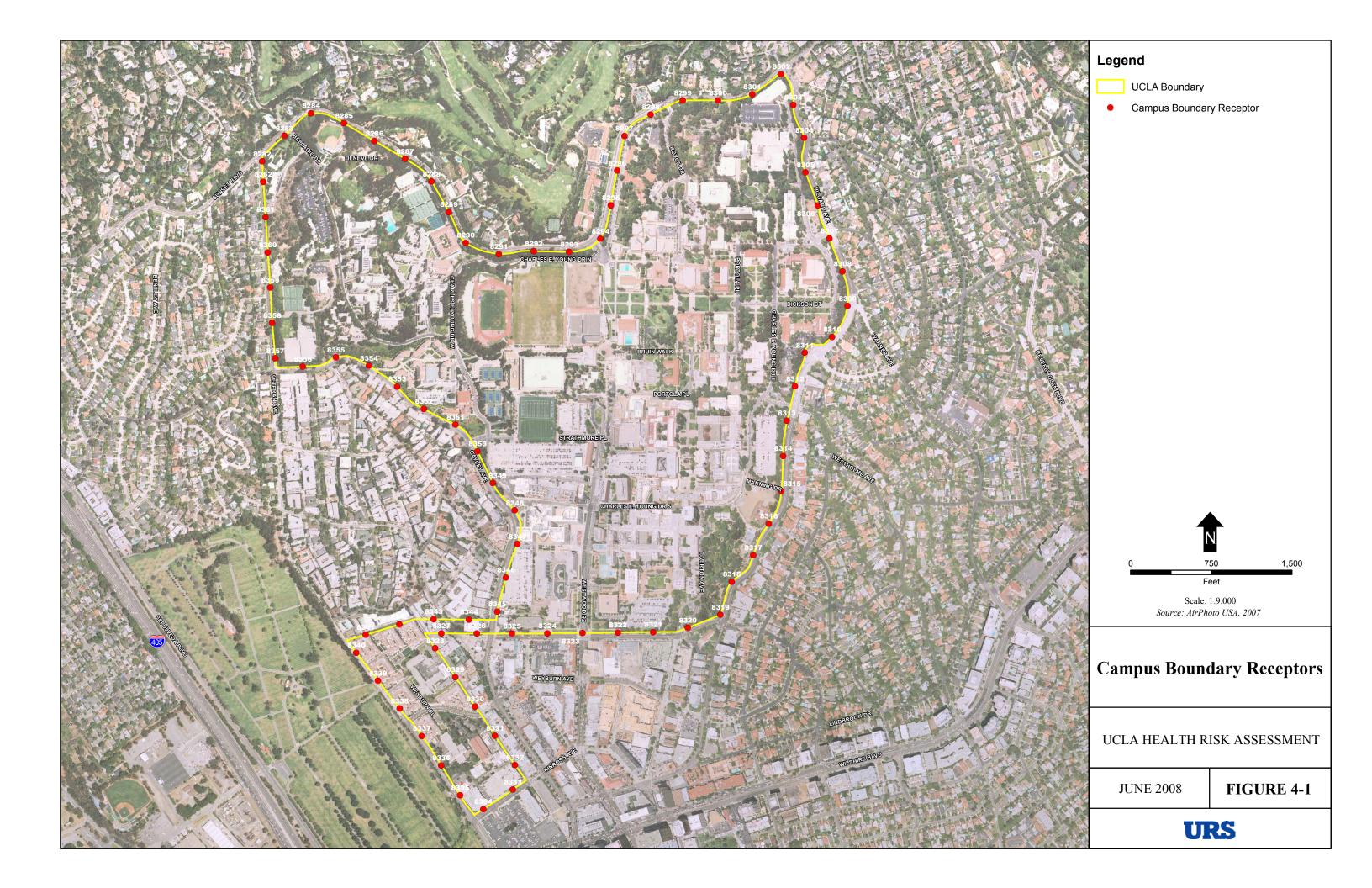
4.3 OFF- AND ON-CAMPUS EXPOSURE

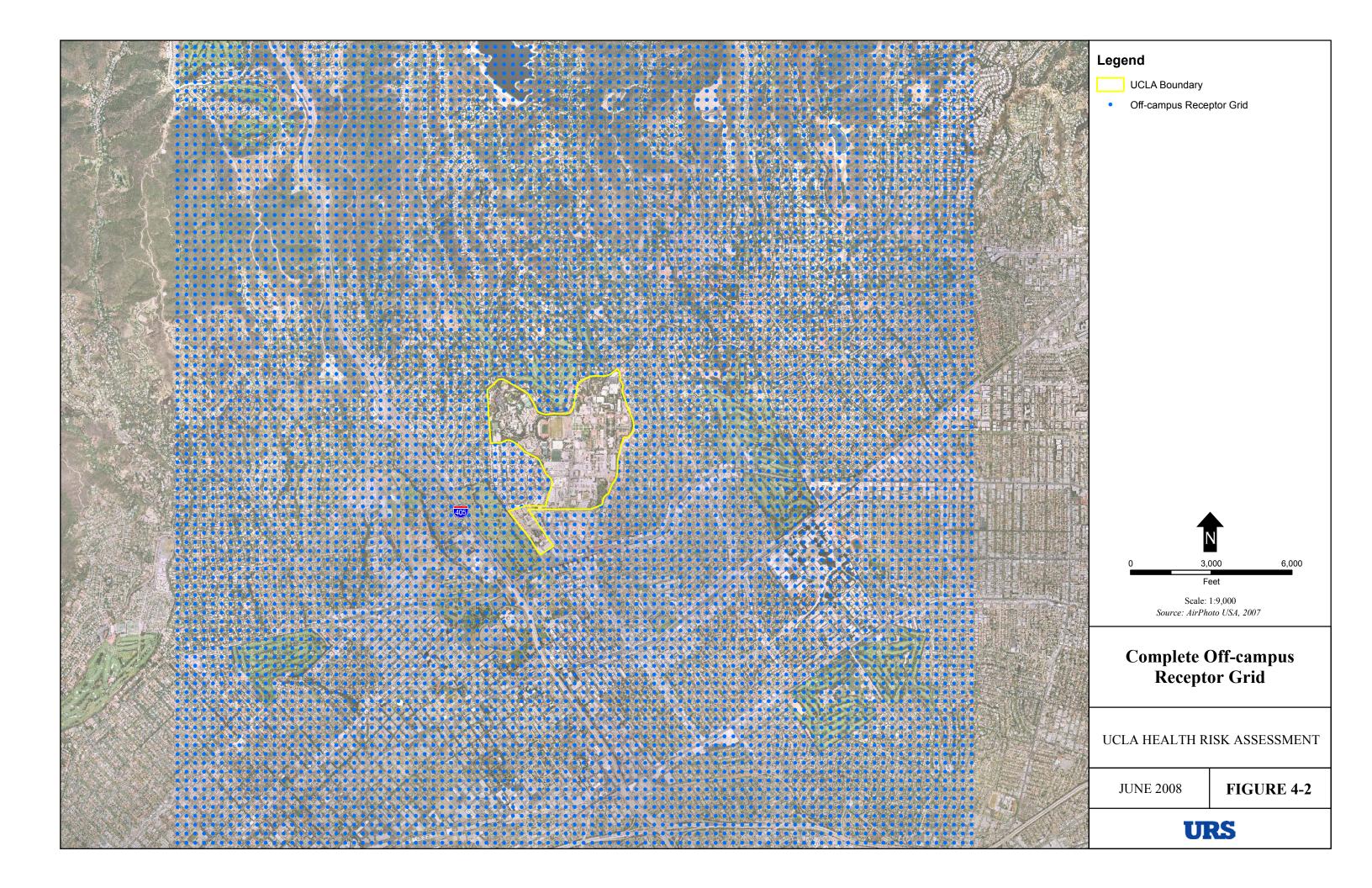
The OEHHA guidelines require the evaluation of potential health impacts from a facility at off-site residences and workplaces. Since the UCLA campus has on-site residential and sensitive receptors including, day care centers, hospitals, student housing, and an elementary school, specific receptors were included to assess the exposure at specific on-campus locations. The off-campus exposure was calculated consistent with OEHHA's exposure and risk calculation guidance for a hypothetical residential maximally exposed individual (MEI). The off-campus MEI is assumed to live at the point of highest toxicityweighted concentration of facility TAC emissions, in a residentially zoned area, for 24 hours per day, 365 days per year, for 70 continuous years. The MEI concept ensures that exposure will not be underestimated because time spent at work, on vacation, commuting locally, or moving from one residence to another would otherwise reduce the actual exposure to emissions from the UCLA campus.

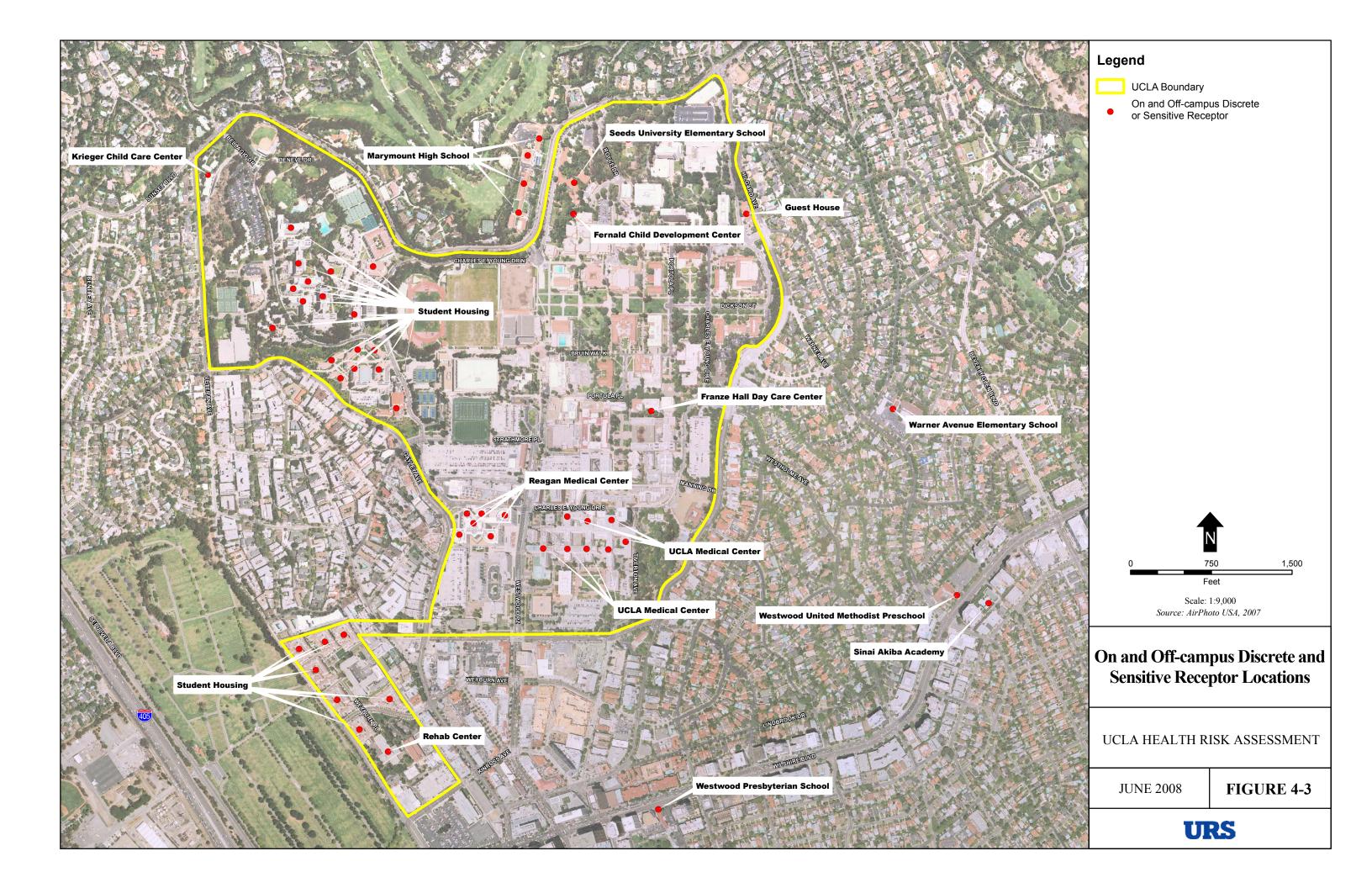
The on-campus exposure was calculated using the same approach as the off-campus exposure calculations, except for adjustments in exposure durations. According to OEHHA guidelines, the HARP results were multiplied by a factor of 9/70 to account for the assumption of a 9-year exposure period at the on-campus locations. An off-campus occupational MEI was not determined since the result is likely to be lower than the residential MEI because exposures occur over a shorter duration and exposure concentrations are lower. An on-campus occupational MEI was not determined since facility worker exposure determination is not required under the OEHHA guidelines and facility worker health and safety is regulated separately.

4.4 **ZONE OF IMPACT**

Under OEHHA and SCAQMD guidelines, the ZOI for the carcinogenic risk assessment of facility emissions encompasses the area surrounded by a one in a million (1.0 x 10⁻⁶) risk isopleth. In addition, the ZOI for the noncarcinogenic risk assessment encompasses the area surrounded by a 1.0 HI isopleth. In this HRA, some of the receptor locations had cancer risks greater than one in one million and, thus, a carcinogenic ZOI was defined. The carcinogenic ZOI extended off-campus approximately 6,500 feet to the east and about 4,000 feet to the north of campus. However, all of the receptors had noncarcinogenic HIs less than 1.0. Thus, a noncarginogenic ZOI was not defined. The location of the carcinogenic ZOI is presented in Section 5.0.


4.5 SENSITIVE RECEPTORS


Sensitive receptors are locations where exposed individuals may be more sensitive to health effects than the general population. OEHHA guidelines define sensitive receptors as hospitals, primary and secondary schools, day care centers, and nursing homes. In this HRA, sensitive receptors were identified within the carcinogenic ZOI by online search engines and site visits. A nine year exposure duration was assumed for sensitive receptors such as schools, and day cares to accurately assess realistic exposure duration. The results for the sensitive receptors are presented in Section 6.0.


Table 4-1. Dispersion Modeling Options Used for the LRDP Amendment HRA

Option Description	ISCST3 Model Option with HARP
Dispersion Coefficients	Urban
Vertical Potential Temperature Gradient (Kelvin/m)	0.02 for E Stability
	0.035 for F Stability
Final Plume Rise	Used
Stack Tip Downwash	Used
Buoyancy – Induced Dispersion	Used
Concentrations During Calms Set	Not Used
Regulatory Default Option	Not Used
Anemometer Height	10.0 meters
Decay Coefficient	0.00
Year of Meteorology Used	1981
SCAQMD MET Designation	West LA

Modeling Options consistent with SCAQMD Supplemental Guidelines requirements

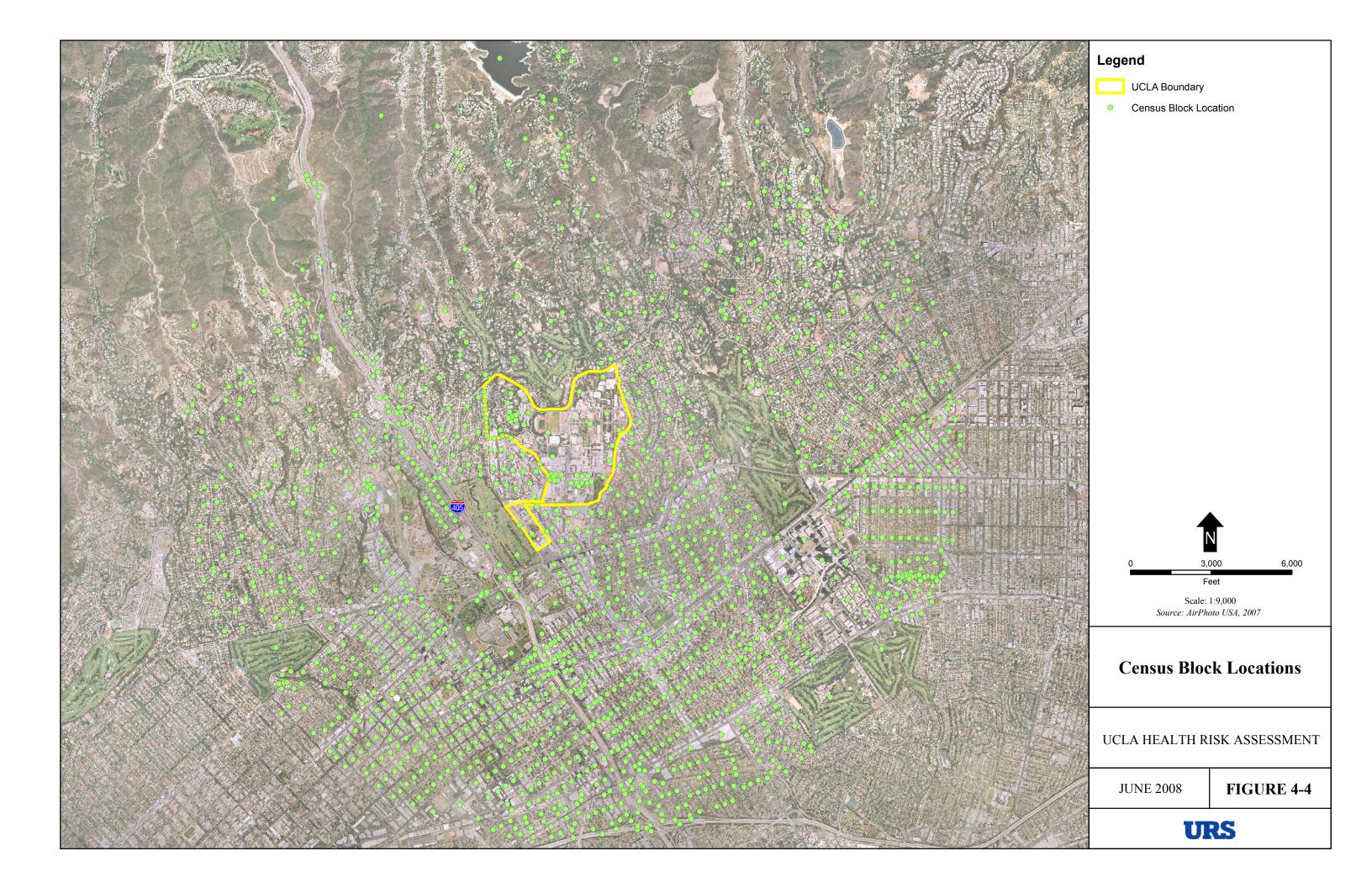


Table 4-2. Modeled Point Source Parameters in the LRDP Amendment HRA for Both Scenarios

			UTM Co	ordinates					
Source ID	Source Type	Location ¹	East (m)	North (m)	Elevation (feet) ²	Stack Height (feet) ¹	Stack Diameter (feet) ¹	Exit Temperature (°F)³	Exit Velocity (ft/min) ³
10001	POINT	Cogeneration Plant Turbine	366551.4111	3770553.818	367.4	124.968	6	230	4060
10002	POINT	Cogeneration Plant Turbine	366562.9438	3770552.029	367.4	124.968	6	230	4060
10004	POINT	Covel Commons Boiler	366201.3119	3771209.783	456.6	52	0.667	350	1376.587
10005	POINT	Covel Commons Boiler	366221.0796	3771207.586	453.9	52	0.667	350	1376.587
10006	POINT	Canyon Point Boiler	366137.4705	3771275.077	458.4	51	0.667	350	1376.587
10007	POINT	Delta Terrace Boiler	366112.2338	3771159.651	482.6	39	0.667	350	1376.587
10008	POINT	Courtside Boiler	366206.9719	3771268.866	455.9	52	0.667	350	1376.587
10009	POINT	Bradley Boiler	366289.3681	3770800.644	409.5	33	0.5	350	1609.375
10010	POINT	Dykstra Hall Boiler	366178.6524	3770881.714	448.1	124	0.5	350	1690.862
10011	POINT	Dykstra Hall Boiler	366239.5991	3770881.261	446.1	124	0.5	350	1690.862
10012	POINT	DeNeve 'C' Bldg Boiler	366216.2291	3770975.658	443.6	72	0.5	350	1690.862
10013	POINT	DeNeve 'C' Bldg Boiler	366221.8004	3770980.672	443.4	72	0.5	350	1690.862
10014	POINT	DeNeve 'D' Bldg Boiler	366172.5869	3770973.429	456.7	72	0.5	350	1690.862
10015	POINT	DeNeve 'D' Bldg Boiler	366165.9012	3770979.744	458.9	72	0.5	350	1690.862
10016	POINT	DeNeve 'E' Bldg Boiler	366103.1307	3770945.201	456.6	72	0.5	350	1690.862
10017	POINT	DeNeve 'E' Bldg Boiler	366096.6308	3770951.33	458.8	72	0.667	350	1359.415
10018	POINT	DeNeve 'F' Bldg Boiler	366117.8019	3770891.902	437.1	72	0.5	350	1690.862
10019	POINT	DeNeve 'F' Bldg Boiler	366122.6304	3770896.731	440.3	72	0.5	350	2052.462
10020	POINT	DeNeve Podium Bldg Boiler	366184.6581	3770919.573	451.9	72	0.5	350	2052.462
10021	POINT	DeNeve Podium Bldg Boiler	366190.2295	3770919.573	450.5	72	0.5	350	2052.462
10022	POINT	DeNeve 'A' Bldg Boiler	366230.7146	3770904.345	447.5	72	0.5	350	1690.862
10023	POINT	DeNeve 'A' Bldg Boiler	366222.1719	3770904.345	449.4	72	0.5	350	1690.862
10024	POINT	DeNeve 'B' Bldg Boiler	366164.0441	3770904.53	450.4	72	0.5	350	1690.862
10025	POINT	DeNeve Kitchen Boiler	366132.1017	3770970.644	462.2	72	0.5	350	1690.862
10026	POINT	DeNeve 'A' Bldg Boiler	366222.729	3770925.516	446.8	72	0.5	350	1690.862
10027	POINT	DeNeve 'B' Bldg Boiler	366166.4584	3770925.702	452.6	72	0.5	350	1690.862
10028	POINT	Sproul Boiler	366209.6611	3771152.023	464.2	118	0.5	350	2052.462
10029	POINT	Hedrick Tower Boiler	365995.1721	3771276.554	531.4	115	0.5	350	1690.862

Table 4-2. Modeled Point Source Parameters in the LRDP Amendment HRA for Both Scenarios

			UTM Co	ordinates					
Source ID	Source Type	Location ¹	East (m)	North (m)	Elevation (feet) ²	Stack Height (feet) 1	Stack Diameter (feet) ¹	Exit Temperature (°F) ³	Exit Velocity (ft/min) ³
10030	POINT	Hedrick Tower Boiler	366014.6981	3771276.554	529.9	115	0.5	350	1690.862
10031	POINT	Hedrick Tower Boiler	366003.6124	3771237.88	528.3	115	0.667	350	1508.235
10032	POINT	Hedrick Tower Boiler	366003.1085	3771201.221	527.8	115	0.667	350	1508.235
10033	POINT	Hedrick Hall Boiler	365978.2915	3771199.08	524.8	115	0.5	350	1690.862
10034	POINT	Hedrick Hall Boiler	365978.4175	3771217.85	530.0	115	0.5	350	1690.862
10035	POINT	Hedrick Hall Boiler	366018.8553	3771218.606	526.8	115	0.667	350	1359.415
10036	POINT	Hedrick Hall Boiler	365950.7031	3771334.502	529.0	115	0.667	350	1359.415
10037	POINT	Hedrick Hall Boiler	365968.4655	3771326.566	527.6	115	0.667	350	1359.415
10038	POINT	Hedrick Hall Boiler	365968.2136	3771320.393	528.6	115	0.667	350	1359.415
10039	POINT	Hedrick Hall Boiler	366023.0124	3771325.936	513.7	115	0.5	350	1156.101
10040	POINT	Rieber Hall Boiler	366072.3984	3771066.905	508.4	115	1	350	1622.107
10041	POINT	Rieber Hall Boiler	366072.3984	3771098.631	508.4	115	1	350	1622.107
10042	POINT	EH&S Facility Boiler	366358.4468	3770672.12	373.9	36	0.5	350	1420.935
10043	POINT	Rehabilitation #1 Boiler	366237.9074	3769858.574	343.3	52	0.5	350	2016.811
10044	POINT	Rehabilitation #2 Boiler	366248.095	3769824.573	335.4	52	0.5	350	2016.811
10045	POINT	SCRC Pk Pool Shwrs #3 Boiler	366049.8133	3771381.213	500.3	16	0.5	350	1344.541
10046	POINT	SCRC-Family #6 Boiler	366035.0206	3771394.807	511.2	16	0.5	350	1935.324
10047	POINT	SCRC-Family #7 Boiler	366061.8075	3771391.608	499.6	16	0.5	350	1935.324
10048	POINT	SCRC- #1 (Olympic) Boiler	366070.6032	3771324.041	496.7	16	0.667	350	1359.415
10049	POINT	SCRC- #2 (Olympic) Boiler	366008.6334	3771372.417	508.4	16	0.667	350	1359.415
10050	POINT	SRL #BLR-3 Boiler	365791.6995	3770999.332	455.0	26	0.5	350	1690.862
10051	POINT	SRL #BLR-4 Boiler	365841.0048	3771032.073	464.5	26	0.5	350	1690.862
10052	POINT	STRB Boiler	366349.4589	3769825.851	329.3	39	0.5	350	2016.811
10053	POINT	UES BLR#4 Boiler	366754.1864	3771453.218	419.8	13	0.667	350	1359.415
10054	POINT	Unex Boiler	366295.9425	3770189.264	363.2	128	0.667	350	1262.109
10055	POINT	Unex Boiler	366306.8204	3770188.769	363.0	128	0.5	350	2240.902
10056	POINT	UES BLR#3 Boiler	366754.1864	3771453.218	419.8	16	0.33	350	1543.321
10057	POINT	Ueberroth #1 Boiler	366463.0325	3770199.278	344.4	42	0.33	350	1543.321
10058	POINT	Rehab. #5 Boiler	366270.9683	3769838.52	338.7	52	0.5	350	1344.541

Table 4-2. Modeled Point Source Parameters in the LRDP Amendment HRA for Both Scenarios

			UTM Co	ordinates					
Source ID	Source Type	Location ¹	East (m)	North (m)	Elevation (feet) ²	Stack Height (feet) 1	Stack Diameter (feet) ¹	Exit Temperature (°F) ³	Exit Velocity (ft/min) ³
10059	POINT	Rehab. #6 Boiler	366271.4151	3769811.938	331.3	52	0.5	350	1344.541
10060	POINT	Warren Hall Boiler	366224.8136	3770061.704	383.8	39	1	350	1755.797
10061	POINT	200 Med Plaza Boiler	366495.4207	3770305.977	351.0	108	1.33	350	1552.591
10062	POINT	200 Med Plaza Boiler	366570.8246	3770394.87	357.5	108	1.33	350	1552.591
10063	POINT	Cogeneration Boiler	366551.4111	3770553.818	367.4	125	6	350	4060
20001	POINT	Sproul South Boiler	366223.237	3771128.246	467.3	50	0.5	350	1787.628
20002	POINT	Sproul South Boiler	366222.9183	3771139.847	467.3	50	0.5	350	1787.628
20003	POINT	Sproul West Boiler	366116.8785	3771051.561	481.0	77	0.5	350	1787.628
20004	POINT	Sproul West Boiler	366119.4042	3771051.561	481.0	77	0.5	350	1787.628
20005	POINT	Upper DeNeve Boiler	366082.1378	3770971.075	472.4	74	0.5	350	1787.628
20006	POINT	Upper DeNeve Boiler	366082.0804	3770974.407	472.4	74	0.5	350	1787.628
20007	POINT	Lower DeNeve Boiler	366025.7972	3770945.842	459.0	60	0.5	350	1787.628
20008	POINT	Lower DeNeve Boiler	366024.9977	3770943.359	459.0	60	0.5	350	1787.628
10064	POINT	Covel Generator	366239.2297	3771190.889	451.5	9	0.416	500	4800
10065	POINT	De Neve Generator	366207.0035	3770841.265	435.6	9	0.5	500	4800
10066	POINT	Hedrick Generator	365968.0431	3771246.829	532.5	8	0.5	500	4800
10067	POINT	Sproul Hall Generator	366209.4357	3771120.356	464.3	10	0.667	500	19.68
10068	POINT	Dykstra Generator	366207.0035	3770861.33	445.9	8	0.5	500	4800
10069	POINT	Rieber Hall Generator	366072.9392	3771108.796	508.9	9	0.5	500	4800
10070	POINT	Reiber N Generator	365965.6109	3771167.175	521.5	10	0.416	500	4800
10071	POINT	Reiber W Generator	366000.9439	3771114.837	511.3	10	0.416	500	4800
10072	POINT	Cogeneration Generator	366580.9492	3770560.35	367.4	50	1	500	4800
10073	POINT	Ackerman Generator	366726.8793	3770950.712	397.9	12	0.833	500	4800
10074	POINT	Young Hall E Generator	367028.468	3770720.265	419.8	7	1	500	4800
10075	POINT	MSB Generator	367041.8449	3770622.978	413.4	12	1.33	500	19.68
10076	POINT	STRB Generator	366343.0572	3769828.778	330.4	13	0.833	500	4800
10077	POINT	UCPD NE Generator	366610.0573	3770576.382	368.8	14	0.833	500	4800
10078	POINT	PS 1 Generator	366451.471	3770300.119	351.0	12	0.667	500	4800
10079	POINT	Gonda Generator	366668.1982	3770576.742	371.7	15	1.167	500	4800

Table 4-2. Modeled Point Source Parameters in the LRDP Amendment HRA for Both Scenarios

			UTM Co	ordinates					
Source ID	Source Type	Location ¹	East (m)	North (m)	Elevation (feet) ²	Stack Height (feet) ¹	Stack Diameter (feet) ¹	Exit Temperature (°F) ³	Exit Velocity (ft/min) ³
10080	POINT	UCLA Med Ctr Generator	366898.5488	3770296.506	387.0	11	1	500	4800
10081	POINT	UCLA Med Ctr Generator	366898.5488	3770296.506	387.0	11	1	500	4800
10082	POINT	UCLA Med Ctr Generator	366898.5488	3770296.506	387.0	11	1	500	4800
10083	POINT	UCLA Med Ctr Generator	366898.5488	3770296.506	387.0	11	1	500	4800
10084	POINT	UCLA Med Ctr Generator	366845.4474	3770515.354	399.1	13	1	500	4800
10085	POINT	Macdonald Lab Generator	366733.1848	3770587.368	379.9	8	1	500	4800
10086	POINT	AGSM South Generator	366838.759	3771248.653	423.9	12	0.833	500	4800
10087	POINT	Seas IV NW Generator	366745.7286	3770750.059	390.5	18	0.833	500	4800
10088	POINT	Campus Wide Generator	366681.6887	3770863.496	395.8	3	0.5	500	4800
10089	POINT	Rehab Cen Generator	366247.5498	3769857.172	342.8	12	0.833	500	4800
10090	POINT	Phys And Astrom Generator	366995.0257	3770930.039	442.8	15	0.667	500	4800
10091	POINT	SRB I (NRB) Generator	366783.4272	3770562.174	387.0	15	0.667	500	4800
10092	POINT	CNSI Generator	366885.5782	3770643.651	423.3	90	2	500	4800
10093	POINT	SRB II Generator	367018.7394	3770547.581	407.9	122	1.833	500	4800
10094	POINT	Rep Hospital 1 Generator	366898.5488	3770296.506	387.0	135	2	500	4800
10095	POINT	Rep Hospital 2 Generator	366898.5488	3770296.506	387.0	135	2	500	4800
10096	POINT	Rep Hospital 3 Generator	366898.5488	3770296.506	387.0	135	2	500	4800
10097	POINT	Rep Hospital 4 Generator	366898.5488	3770296.506	387.0	135	2	500	4800
10098	POINT	Police Station Rep Generator	366610.6278	3770564.482	367.4	75	1.5	500	4800
10099	POINT	Powell / kinsey Generator	366953.6789	3771037.662	449.4	2	0.5	500	4800
10100	POINT	PKS#5,4,7 Generator	366899.5632	3771270.542	442.8	15	1.5	500	19.68
10101	POINT	Eng V Generator	366775.1135	3770809.012	406.8	15	2	500	4800
10102	POINT	Kerckhoff Generator	366785.2513	3770867.411	423.2	9	0.5	500	4800
10103	POINT	Sunset Rec NE Generator	366171.129	3771420.121	486.7	9	0.166	500	19.68
10104	POINT	Boelter III Generator	366833.8946	3770688.646	393.2	2	0.667	500	4800
10105	POINT	Royce NW Generator	366907.1906	3771199.62	440.8	9	0.5	500	4800
10106	POINT	Boelter II 12400 Generator	366849.7037	3770736.682	397.6	40	0.25	500	4800
10107	POINT	Boyer Generator	366949.1955	3770655.808	423.1	10	0.5	500	19.68
10108	POINT	PS 4 Generator	366647.2258	3771156.839	403.4	120	0.667	500	4800

Table 4-2. Modeled Point Source Parameters in the LRDP Amendment HRA for Both Scenarios

			UTM Co	ordinates					
Source ID	Source Type	Location ¹	East (m)	North (m)	Elevation (feet) ²	Stack Height (feet) 1	Stack Diameter (feet) ¹	Exit Temperature (°F) ³	Exit Velocity (ft/min) ³
10109	POINT	SRL N Generator	365817.8567	3771010.301	456.7	20	0.667	500	4800
10110	POINT	Life Sciences Generator	366876.4576	3770543.932	403.4	18	0.5	500	4800
10111	POINT	Franz Hall Generator	366991.9855	3770830.928	429.7	10	0.5	500	19.68
10112	POINT	Math Sciences Generator	366818.6936	3770787.757	414.5	20	0.33	500	4800
10113	POINT	SRL Generator	365817.2487	3770995.708	454.3	20	0.5	500	4800
10114	POINT	PS 8 SE Generator	366605.8106	3770671.854	377.2	7	0.33	500	19.68
10115	POINT	Unix Generator	366300.7624	3770189.716	363.3	25	0.5	500	4800
10116	POINT	Bunche Generator	367071.1631	3771362.654	462.5	15	0.667	500	4800
10117	POINT	LATC Generator	366355.9737	3770922.743	393.6	8	0.416	500	19.68
10118	POINT	Pauley Generator	366541.4265	3770898.421	390.3	6	0.33	500	4800
10119	POINT	Law Library Generator	367311.8155	3771168.391	446.1	8	0.5	500	19.68
10120	POINT	200 Med Plaza Generator	366463.8611	3770331.611	351.0	90	0.667	500	4800
10121	POINT	300 Med Plaza Generator	366540.7833	3770257.786	347.7	48	0.667	500	4800
10122	POINT	200 Med Plaza Generator	366464.8936	3770353.294	354.2	90	0.667	500	4800
10123	POINT	Env Service Building Generator	366357.1898	3770649.124	372.5	10	0.5	500	4800
10124	POINT	Parking Structure 7 Generator	366486.1235	3771209.006	402.5	10	0.416	500	4800
10125	POINT	YRL Generator	367021.7796	3771428.025	465.8	6	0.5	500	4800
10126	POINT	Campus Wide Generator	366681.6887	3770863.496	395.8	3	0.5	500	4800
10127	POINT	Campus Wide Generator	366681.6887	3770863.496	395.8	3	0.33	500	4800
10128	POINT	CHS Generator	366707.4219	3770477.656	370.0	10	0.5	500	4800
10129	POINT	Broad Art Center Generator	367032.7243	3771490.654	469.0	15	0.667	500	4800
10130	POINT	Campus Wide Generator	366681.6887	3770863.496	395.8	3	0.5	500	4800
10131	POINT	Public Policy Generator	367205.4082	3771297.904	462.5	2	0.5	500	4800
10132	POINT	Murphy Hall Generator	367269.8606	3771028.542	428.5	15	0.166	500	4800
10133	POINT	Hilbrom Generator	366236.1922	3770054.898	383.5	8	0.667	500	4800
10134	POINT	Hedrick Tower Generator	365925.4801	3771360.533	534.8	12	0.667	500	4800
10135	POINT	MS Generator	366830.8544	3770807.215	425.7	50	0.5	500	4800
10136	POINT	PKS#3 Generator	367150.6844	3771646.92	481.2	2	0.25	500	4800
10137	POINT	CHS Park Str Generator	366858.0555	3770227.834	379.1	3	0.33	500	4800

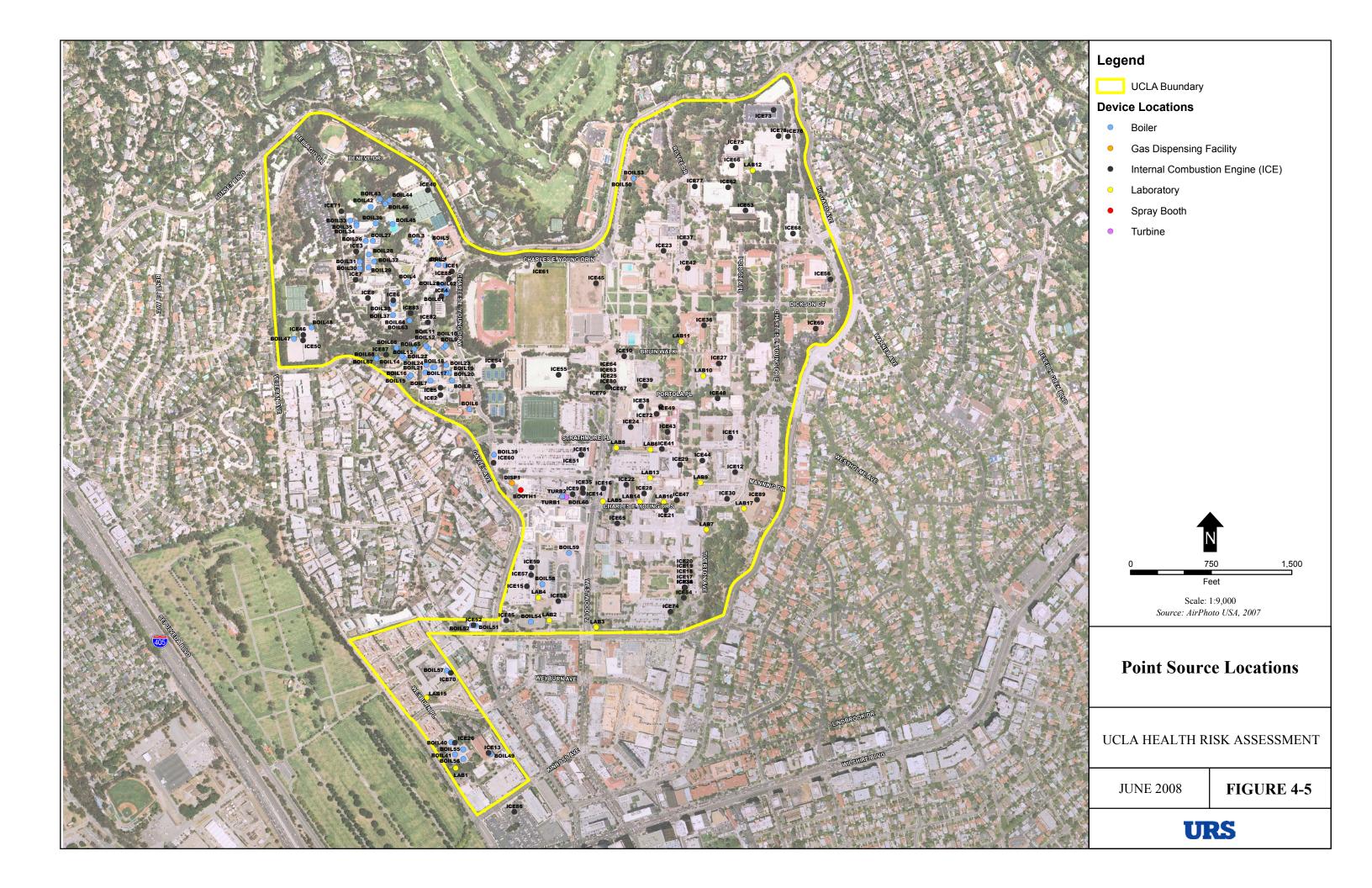
Table 4-2. Modeled Point Source Parameters in the LRDP Amendment HRA for Both Scenarios

			UTM Co	ordinates		_	_		
Source ID	Source Type	Location ¹	East (m)	North (m)	Elevation (feet) ²	Stack Height (feet) 1	Stack Diameter (feet) ¹	Exit Temperature (°F) ³	Exit Velocity (ft/min) ³
10138	POINT	Dicksen Art Generator	367043.0154	3771540.239	472.3	3	0.33	500	4800
10139	POINT	East Melnitz Generator	367191.5759	3771571.861	473.4	3	0.33	500	4800
10140	POINT	Grad School Edu Generator	366927.2052	3771431.124	462.5	3	0.33	500	4800
10141	POINT	Melnitz Hall Generator	367164.8867	3771573.656	475.6	3	0.33	500	4800
10142	POINT	Campus Wide Generator	366681.6887	3770863.496	395.8	3	0.33	500	4800
10143	POINT	Campus Wide Generator	366681.6887	3770863.496	395.8	3	0.33	500	4800
10144	POINT	Park Str 8 Generator	366605.8106	3770671.854	377.2	3	0.33	500	4800
20009	POINT	Sproul South Generator	366171.4179	3771045.879	467.3	13	0.667	500	4800
20010	POINT	Sproul West Generator	366122.0432	3771072.078	481.0	13	0.667	500	4800
20011	POINT	Tiverton Medical Edu Generator	366895.9871	3770267.251	385.0	14	0.667	500	4800
20012	POINT	Outpatient Facility Generator	366393.0179	3770202.966	347.0	19	0.667	500	4800
20013	POINT	Wilshire Corridor Generator	366415.9013	3769662.19	319.0	15	0.667	500	4800
20014	POINT	U&L DeNeve Generator	366052.4462	3770954.492	472.4	15	0.667	500	4800
20015	POINT	Sproul Complex Generator	366230.3653	3771169.567	467.3	15	0.667	500	4800
20016	POINT	Life Science Replacement Generator	367103.8652	3770544.54	407	16	0.667	500	4800

Point source locations provided by UCLA staff

Elevation data provided by USGS digital elevation model.

Exit temperature and velocities assumed based on average values obtained from engine manufacture specification sheets.


Table 4-3. Modeled Area Source Parameters in the UCLA HRA for Both Scenarios

	0		UTM Co	ordinates	Fl	Release	141-	\A/: -141-	AI -
Source ID	Source Type	Location ¹	East (m)	North (m)	Elevation (feet) 2	Height (feet) 1	Length (feet)	Width (feet)	Angle (degrees)
10146	AREA	Rehab Center	366249.82	3769785.99	326	48	309.2	199.5	34.5
10147	AREA	300 Med Plaza	366515.3	3770203.79	344.4	105	187.1	225.8	-1.8
10148	AREA	School of Medicine/Health Sciences	366647.97	3770183.83	344.4	70	1107.2	959.2	0.0
10149	AREA	Morten Medical	366484.12	3770267.83	347.7	100	432.0	387.8	0.0
10150	AREA	Gonda/McDonald	366666.63	3770540.04	370.6	104	215.4	289.1	0.0
10151	AREA	Boelter Hall	366801.7	3770686.81	386	121	455.5	271.3	0.1
10152	AREA	Botany/Biomed	366960.56	3770459.8	393.2	49	418.7	333.2	0.0
10153	AREA	Engineering Bldgs	366704.95	3770692.07	380.5	121	477.5	284.8	-0.2
10154	AREA	Geology/Molecular Science	366943.58	3770592.91	416.9	60	784.7	411.7	0.0
10155	AREA	Knudson Hall/Astronomy	366951.3	3770894.82	439.5	102	217.4	264.0	0.0
10156	AREA	Powell Library	366888.47	3770992.23	443.5	125	258.7	230.6	-0.2
10157	AREA	Macgowan/Melnitz	367091.12	3771476.27	469	36	364.3	367.6	0.0
10158	AREA	CNSI - CoS	366800.32	3770606.15	385.5	102	243.8	285.4	0.0
10159	AREA	Neuro Science Research	366771.37	3770539	385.5	102	214.3	216.0	0.0
10160	AREA	Hillblom/Warren	366168	3769984.31	362.3	36	363.8	336.5	34.3
10161	AREA	Life Science	366839.29	3770537.96	396.9	102	113.9	391.2	0.0
20017	AREA	Life Science Replacement	367066.88	3770519.61	407	73	96.1	192.6	63.3

Area source locations and release heights provided by UCLA staff
Elevation data provided by USGS digital elevation model

Table 4-4. Modeled Volume Source Parameters in the LRDP Amendment HRA for Both Scenarios

			UTM Coordinates		Elevation	Release
Source ID	Source Type	Location	East (m)	North (m)	(feet)	Height (feet)
10003	VOLUME	Gasoline Dispensing	366409	3770592	367.4	12

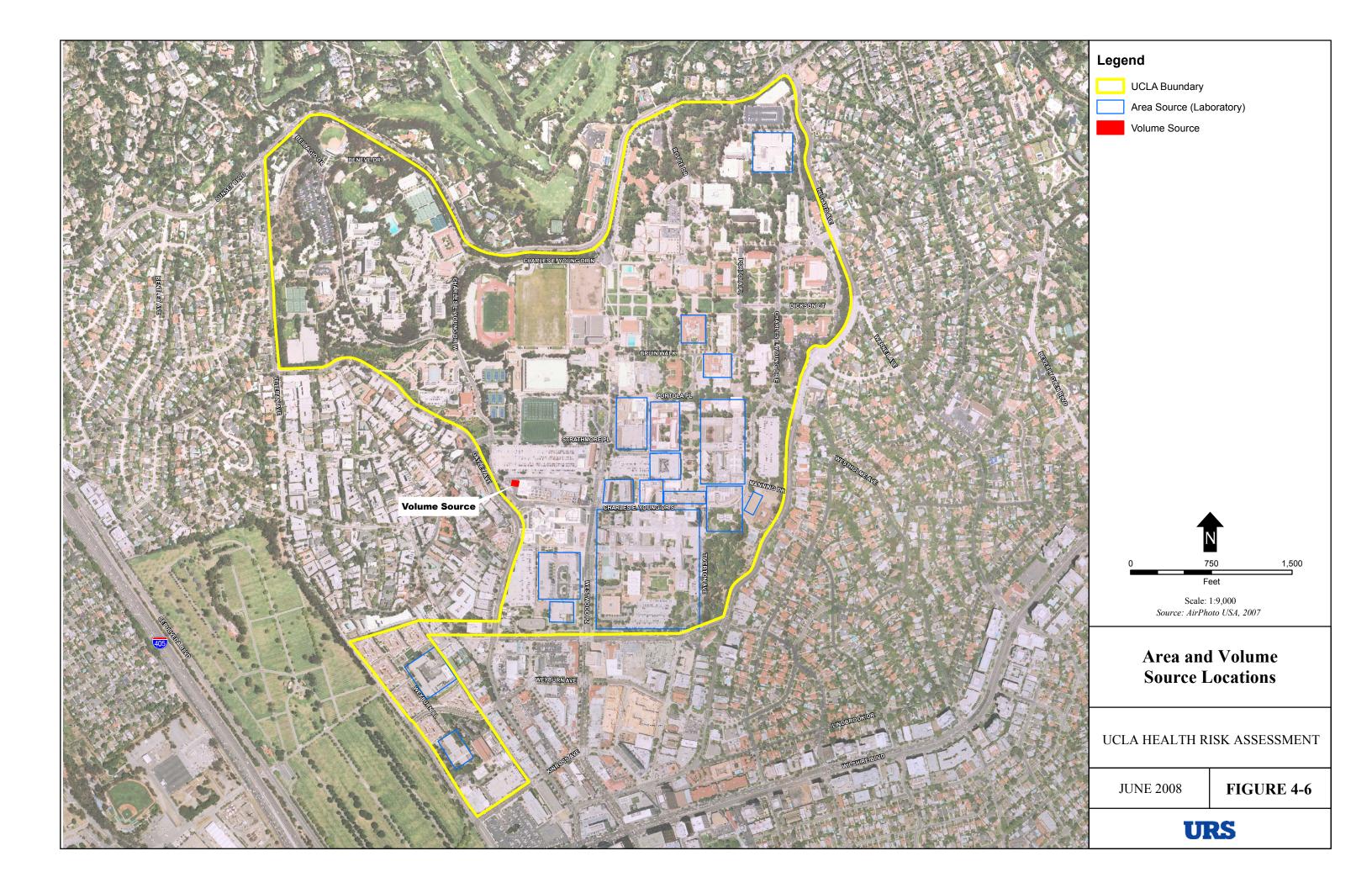


Table 4-5. Exposure Pathways Evaluated for Each Substance in Both Scenarios

CAS Number	Substance	Inhalation	Multipathway
107982	1-Methoxy-2-propanol	✓	
75070	Acetaldehyde	✓	
75058	Acetonitrile	✓	
107028	Acrolein	✓	
7664417	Ammonia	✓	
71432	Benzene	✓	
7726956	Bromine Compounds	✓	
106990	Butadiene, 1,3-	✓	
75650	Butyl Alcohol, Tert-	✓	
56235	Carbon Tetrachloride	✓	
108907	Chlorobenzene	✓	
67663	Chloroform	✓	
106467	Dichlorobenzene, p-	✓	
9901	Diesel Exhaust (particulates)	✓	
68122	Dimethylformamide	✓	
123911	Dioxane, 1,4-	✓	
106898	Epichlorohydrin	✓	
100414	Ethylbenzene	✓	
107062	Ethylene Dichloride	✓	
50000	Formaldehyde	✓	
110543	Hexane	✓	
302012	Hydrazine	✓	
7647010	Hydrogen Chloride	✓	
67630	Isopropyl Alcohol	✓	
67561	Methanol	✓	
75092	Methylene Chloride	✓	
91203	Naphthalene	✓	
1151	PAH (excluding naphthalene)	✓	✓
127184	Perchloroethylene	✓	
75569	Propylene Oxide	✓	
110861	Pyridine	✓	
108883	Toluene	✓	
79016	Trichloroethylene	✓	
121448	Triethylamine	✓	
75014	Vinyl Chloride	✓	
1330207	Xylenes	✓	

5.0 **DOSE-RESPONSE ASSESSMENT**

Dose-response assessment has been defined as "an attempt to describe the expected human response to any given level of an exposure" (Hart and Turturro, 1986). Multiple governmental agencies and scientific organizations, such as the EPA, the National Academy of Sciences, the World Health Organization, and OEHHA, have developed dose-response relationships for numerous chemicals. Dose-response assessment can produce three toxicity factors useful in evaluating potential adverse health effects: cancer slope factors (CSFs) and URFs for carcinogens, chronic noncancer RELs (chronic RELs) for substances producing noncarcinogenic toxic effects over a long-term exposure period, and acute noncancer RELs (acute RELs) for acutely toxic compounds. This HRA used current toxicity factors published by OEHHA and incorporated in the HARP model.

5.1 **CANCER TOXICITY FACTORS**

CSFs represent the potential risk of contracting cancer per dose of carcinogen where dose is in units of milligrams of carcinogen per kilogram of body weight per day. URFs define the theoretical risk of developing cancer as a result of continuous exposure to an airborne concentration of 1 µg/m³ of a carcinogen. URFs are derived from CSFs based on inhalation rate, body weight, and exposure time. The cancer risk resulting from low levels of exposure to a carcinogenic substance cannot be measured directly by either animal or human epidemiology studies. Therefore, mathematical models are used to extrapolate health effects observed in high dose animal studies or relatively high dose human epidemiology studies, to the low doses encountered in the environment. Generally, CSFs determined from extrapolating from high to low doses represent upperbound or worst-case estimates and are often calculated from factors estimated at 95% upper confidence limits. The inherent assumption is that there is no threshold concentration below which exposure does not cause a cancer outcome.

The linearized multi-stage (LMS), low-dose extrapolation model is commonly used by the EPA's Carcinogen Assessment Group and OEHHA to extrapolate data from animal studies to environmental exposure conditions in humans (EPA, 1986; DHS [California Department of Health Services], 1985). The LMS model estimates an upperbound estimate of risk that is consistent with health-conservative theories for mechanisms of carcinogenesis (EPA, 1986). When epidemiology data are used as the basis for estimating a CSF, a variety of models are used. In all cases, the CSFs are based on the assumption that any exposure to a carcinogen contributes to an individual's chance of developing cancer within a lifetime. CSFs and URFs are developed for both inhalation and noninhalation exposure routes. The cancer toxicity factors used in this HRA are presented in Table 5-1 and are the most recent values published by OEHHA and used in the HARP model.

5.2 CHRONIC NONCANCER REFERENCE EXPOSURE LEVELS

Chronic RELs define a dose or exposure concentration at which adverse health effects would be likely if an individual were exposed continuously to that dose over a long-term exposure period. Similar to carcinogens, chronic RELs are derived from animal studies or human epidemiological data and focus on the most sensitive animal or human data set and target organ or system (i.e., liver, kidney, central nervous system, etc.). Different laboratory animals may be used to test the toxicity of a particular substance.

Several different target organs are typically examined. The study yielding the lowest effect level would be used as the basis for developing the chronic REL from animal data. Chronic RELs are used to evaluate exposures to noncarcinogens as well as noncarcinogenic effects from carcinogens and are developed for both inhalation and noninhalation exposure routes. The chronic RELs used in this HRA are presented in Table 5-1 and are the most recent values published by OEHHA and used in the HARP model.

5.3 ACUTE NONCANCER REFERENCE EXPOSURE LEVELS

Acute health effects may result from short-term exposures that typically occur on an infrequent basis. Unlike chronic exposures, criteria for measuring acute health effects have not been standardized. Rather, several approaches may be used to establish allowable one-hour concentrations based on short-term toxicity studies in the literature. The acute RELs used in this HRA are presented in Table 5-1 and are the most recent values published by OEHHA and used in the HARP model.

Table 5-1. Cancer Toxicity Factors and Chronic and Acute Noncancer RELs

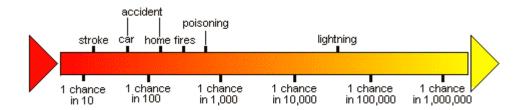
		Cancer Tox	icity Factors	Nonc	Chronic Noncancer REL		
CAS		Inhalation URF	Oral CPF	Inhalation	Oral	REL Inhalation	
Number	Substance	(µg/m³)-1	(mg/kg-d) ⁻¹	(µg/m³)	(mg/kg-d)	(µg/m³)	
107982	1-Methoxy-2-propanol			7.00E+03			
75070	Acetaldehyde	1.00E-02		9.00E+00			
75058	Acetonitrile			2.55E+01		6.70E+03	
107028	Acrolein			6.00E-02		1.90E-01	
7664417	Ammonia			2.00E+02		3.20E+03	
71432	Benzene	2.90E-05		6.00E+01		1.30E+03	
7726956	Bromine Compounds			1.70E+00		6.60E+01	
106990	Butadiene, 1,3-	1.70E-04		2.00E+01			
75650	Butyl Alcohol, Tert-			7.14E+02		3.00E+04	
56235	Carbon Tetrachloride	4.20E-05		4.00E+01		1.90E+03	
108907	Chlorobenzene			1.00E+03			
67663	Chloroform	5.30E-06		3.00E+02		1.50E+02	
106467	Dichlorobenzene, p-	1.10E-05		8.00E+02		6.00E+03	
9901	Diesel Exhaust (particulates)	3.00E-04		5.00E+00			
68122	Dimethylformamide			8.00E+01		3.00E+03	
123911	Dioxane, 1,4-	7.70E-06		3.00E+03		3.00E+03	
106898	Epichlorohydrin	2.30E-05		3.00E+00		1.30E+03	
100414	Ethylbenzene	2.50E-06		2.00E+03			
107062	Ethylene Dichloride	2.10E-05		4.00E+02			
50000	Formaldehyde	6.00E-06		3.00E+00		9.40E+01	
110543	Hexane			7.00E+03		1.76E+04	
302012	Hydrazine	4.90E-04		2.00E-01		1.30E+00	
7647010	Hydrogen Chloride			9.00E+00		2.10E+03	
67630	Isopropyl Alcohol			7.00E+03		3.20E+03	
67561	Methanol			4.00E+03		2.80E+04	
75092	Methylene Chloride	1.00E-06		4.00E+02		1.40E+04	
91203	Naphthalene	3.40E-05		9.00E+00			
1151	PAH (excluding naphthalene)	1.10E-03	1.20E+01				
127184	Perchloroethylene	5.90E-06		3.50E+01		2.00E+04	
75569	Propylene Oxide	3.70E-06		3.00E+01		3.10E+03	
110861	Pyridine			1.50E+00		1.50E+03	
108883	Toluene			3.00E+02		3.70E+04	
79016	Trichloroethylene	2.00E-06		6.00E+02			
121448	Triethylamine			7.00E+00		2.80E+03	
75014	Vinyl Chloride	7.80E-05		2.60E+01		1.80E+05	
1330207	Xylenes			7.00E+02		2.20E+04	

¹ Toxicological values published by the California Environmental Protection Agency, Office of Environmental Health Hazard Assessment (OEHHA) (OEHHA, 2003).

6.0 RISK CHARACTERIZATION

Risk characterization is the final step in the risk assessment process where the results of the exposure and dose-response assessments are combined to estimate the potential for adverse health effects. Risk analysts describe risks numerically in scientific notation, for example 1 x 10⁻⁵, which means that there is one chance in 100,000 of an event occurring. The SCAOMD has established a 10 in a million cancer risk and an HI of 1.0 as the significance criteria for public notification for the AB 2588 program. Cancer risk is defined as the upperbound incremental probability of an individual developing cancer over a lifetime as a result of an exposure to potential carcinogens. The cancer risk level is location-specific and is intended to ensure a sufficient safety margin to prevent a single project or activity from causing a substantial contribution to the overall number of cancer cases in an area.

The conclusions of an HRA must be considered in context. As a general matter, the background probability of an individual contracting cancer in one's lifetime is about 40% or 400,000 in one million; that is, 4 in 10 people will contract cancer in their lifetime. This overall probability of contracting cancer can be influenced by diet, smoking, heredity, chemicals in the environment and the workplace, and other factors.


It should be recognized that when small populations are exposed, population risk estimates may be very small. For example, if 100 people are exposed to an individual lifetime cancer risk of 1 x 10⁻⁵, the expected number of cases is 0.001. For risk assessment purposes, a lifetime of exposure is considered to be 70 years, 365 days a year, 24 hours per day. It should be further recognized that a risk assessment does not calculate the exact risk for all individuals, but a hypothetical risk assuming that all of a series of "worst-case scenario" exposure assumptions apply. The chance that an individual would be exposed to any of these exposure assumptions is small, and for all assumptions even smaller (e.g., 70 years of continuously breathing air at the location of maximum impact). Thus, an individual's actual risk is likely to be significantly over-estimated by the methodology of an HRA.

It is also important to place health risk and the assessment of probability in the context of daily activity. To provide an idea of the size of risks from environmental hazards, the continuum below provides risk statistics for some familiar events:

[&]quot;Guidance for Risk Characterization," EPA Science Policy Council, February, 1995.

Putting Risks in Perspective

Source: "Air Pollution and Health Risk," EPA Publication 450/3-90-022 (1991)

Health effect categories evaluated in this HRA include the following for both the 2007 Baseline and LRDP Amendment Scenarios

- ♦ Lifetime risk of developing cancer;
- Population-wide potential for developing cancer;
- ♦ Potential for chronic or long-term noncancer effects; and
- Potential for acute or short-term noncancer effects.

6.1 CANCER RISK FROM THE 2007 BASELINE SCENARIO

Lifetime cancer risk is defined as the increased chance of contracting cancer over a 70-year period as a result of exposure to a toxic substance or substances. It is the product of the estimated daily exposure of each suspected carcinogen by its respective cancer toxicity factor. The result represents a worst-case or upper bound estimate of cancer risk.

Results of the cancer health effects assessment indicate that all of the cancer risks are less than 10 in one million (1.0 x 10⁻⁵). Cancer risks less than 10 in one million are considered acceptable and do not require public notification in accordance with state and regional guidelines. The lifetime incremental cancer risk as a result of a lifetime exposure to emissions from the routine campus-wide operation of all sources in the 2007 Baseline Scenario was estimated to be 6.3 in one million (6.3 x 10⁻⁶) at the off-campus MEI and 0.90 in one million (0.90 x 10⁻⁶) at the on-campus MEI. The off-campus MEI was located on the fence line east of the campus along Hilgard Avenue east of Parking Structure Two. The on-campus MEI was located in the general area of Franz Hall. A summary of the HRA results for the off- and on-campus MEIs in the 2007 Baseline Scenario is presented in Table 6-1. The locations of the cancer, chronic, and acute noncancer off- and on-campus MEIs in the 2007 Baseline Scenario are presented on Figure 6-1..

The primary source type contributions to the estimated cancer risk at the off-campus MEI were from emergency generators containing diesel-fueled ICEs and laboratory chemical usage. Of the sources modeled, the emergency generators containing diesel-fueled ICEs contributed 62% of the cancer risk followed by campus laboratory chemical usage with 25% of the cancer risk. The source contribution to cancer risk at the off-campus MEI in the 2007 Baseline Scenario is presented in Table 6-2. The primary source type contributions to the estimated cancer risk at the on-campus MEI were from emergency generators containing diesel-fueled ICEs and laboratory chemical usage. Of the sources modeled, the emergency generators containing diesel-fueled ICEs contributed 59% of the cancer risk followed by campus laboratory chemical usage with 27% of the cancer risk. The source contribution to cancer risk at the on-campus MEI in the 2007 Baseline Scenario is presented in Table 6-3. At other off- and on-campus receptor locations, different sources may contribute more significantly as the source-specific contribution is dependent on many variables such as the source to receptor distance, the meteorology, and the release parameters.

The primary chemical contribution to the estimated cancer risk at the off-campus MEI was DPM with approximately 62% of the risk, followed by formaldehyde with approximately 22% of the risk. The chemical contribution to cancer risk at the off-campus MEI in the 2007 Baseline Scenario by substance and by exposure pathway is presented in Table 6-4. The primary chemical contribution to the estimated cancer risk at the on-campus MEI was DPM with approximately 59% of the risk, followed by formaldehyde with approximately 23% of the risk. The chemical contribution to cancer risk at the oncampus MEI in the 2007 Baseline Scenario by substance and by exposure pathway is presented in Table 6-5. At other off- and on-campus receptor locations, different chemicals may contribute more significantly depending on the types of chemicals emitted by the source nearby the receptor. HARP HRA modeling files are provided in electronic format on the enclosed CD due to their volume.

6.2 CANCER BURDEN FROM THE 2007 BASELINE SCENARIO

Population cancer burden is another measure of cancer risk and represents a worst-case estimate of the increased number of cancer cases that might occur in the exposed population as a whole as a result of emissions from routine campus-wide operations. An acceptable burden is 1.0 or less. Burden is estimated by multiplying the cancer risk determined at a specific location by the population residing in that location and summing those results for all populated areas within the carcinogenic ZOI. The extent of the one in a million risk isopleth surrounding the ZOI in the 2007 Baseline Scenario is presented on Figure 6-2. From census data included in the HARP software, the population within the ZOI is 16,936 people. The population was multiplied by the associated risk at each census block to determine the population cancer burden from campus-wide operations. The cancer burden was determined to be 0.04 which suggests that the emissions from routine campus-wide operations in the 2007 Baseline Scenario have a minimal impact on the exposed population.

6.3 Noncancer Health Effects From The 2007 Baseline Scenario

The potential for TAC emissions from routine campus-wide operations to cause both chronic (long-term) and acute (short-term) noncancer health effects was also assessed in this HRA. Guidance published by OEHHA specifies which substances are to be evaluated in the noncancer effects assessment and which organ systems within the body are affected (e.g., liver, kidney, respiratory system, central nervous system, etc.).

Results of the chronic noncancer health effects assessment indicate that all of the HI values for each organ system are less than 1.0. Chronic HI values less than 1.0 indicate that noncancer effects from chronic exposure to emissions from routine campus-wide operations are unlikely. The maximum chronic HI for an organ system was 0.08 at the off-campus MEI and 0.10 at the on-campus MEI. The off-campus MEI was located on the fence line east of campus on Hilgard Avenue, east of Parking Structure Two. The oncampus MEI was located in the general area of Franz Hall. The chronic HI results for the off- and oncampus MEIs in the 2007 Baseline Scenario are presented in Table 6-6.

The primary source type contributions to the estimated chronic noncancer HI at the off-campus MEI was the laboratory chemical usage and the turbines at the cogeneration plant. Of the sources modeled, the laboratory chemical usage contributed 87% of the chronic noncancer HI followed by turbines at the cogeneration plant with 10% of the chronic noncancer HI. The primary source type contributors to the estimated chronic noncancer HI at the on-campus MEI was the laboratory chemical usage and the turbines at the cogeneration plant. Of the sources modeled, the laboratory chemical usage contributed 82% of the chronic noncancer HI followed by turbines at the cogeneration plant with 15% of the chronic noncancer HI. At other off- and on-campus receptor locations, different sources may contribute more significantly as the source-specific contribution is dependent on many variables such as the source to receptor distance, the meteorology, and the release parameters.

The primary chemical contribution to the estimated chronic noncancer HI at the off-campus MEI was formaldehyde with approximately 91% of the chronic noncancer HI, followed by acrolein with approximately 3% of the chronic noncancer HI. The primary chemical contribution to the estimated chronic noncancer HI at the on-campus MEI was formaldehyde with approximately 91% of the chronic noncancer HI, followed by acrolein with approximately 4% of the chronic noncancer HI. At other offand on-campus receptor locations, different chemicals may contribute more significantly depending on the types of chemicals emitted by the source nearby the receptor. HARP HRA modeling files are provided in electronic format on the enclosed CD due to their volume.

6.4 ACUTE NONCANCER HEALTH EFFECTS FROM THE 2007 BASELINE SCENARIO

Results of the acute noncancer health effects assessment indicate that all of the HI values for each organ system are less than 1.0. Acute HI values less than 1.0 indicate that noncancer effects from acute exposure to emissions from routine campus-wide operations are unlikely. The maximum acute HI for an organ system in the 2007 Baseline Scenario was 0.07 at the off-campus MEI and 0.10 at the on-campus MEI. The off-campus MEI was located on the northwest campus fence line across from Sunset Boulevard. The on-campus MEI was located at the northwest campus housing complex. The acute HI results for the offand on-campus MEIs in the 2007 Baseline Scenario are presented in Table 6-7.

The primary source type contributors to the estimated acute noncancer HI at the Off-campus MEI were the boilers and the turbines at the cogeneration plant. Of the sources modeled, boilers contributed 40% of the acute noncancer HI followed by the turbines at the cogeneration plant with 38% of the acute noncancer HI. The primary source type contributors to the estimated acute noncancer HI at the on-campus MEI were the turbines at the cogeneration plant and the boilers. Of the sources modeled, the turbines at the cogeneration plant contributed 49% of the acute noncancer HI followed by the boilers with 31% of the acute noncancer HI. At other off- and on-campus receptor locations, different sources may contribute more significantly as the source-specific contribution is dependent on many variables such as the source to receptor distance, the meteorology, and the release parameters.

The primary chemical contribution to the estimated acute noncancer HI at the off-campus MEI was acrolein with approximately 65% of the acute noncancer HI, followed by formaldehyde with approximately 30% of the acute noncancer HI. The primary chemical contribution to the estimated chronic noncancer HI at the on-campus MEI was acrolein with approximately 68% of the acute noncancer HI, followed by formaldehyde with approximately 26% of the acute noncancer HI. At other off- and oncampus receptor locations, different chemicals may contribute more significantly depending on the types of chemicals emitted by the source nearby the receptor. HARP HRA modeling files are provided in electronic format on the enclosed CD due to their volume.

SENSITIVE RECEPTOR IMPACTS FROM THE 2007 BASELINE SCENARIO 6.5

Seven on- and off-campus sensitive receptors were identified within the carcinogenic ZOI in the 2007 Baseline Scenario. The HRA evaluated the cancer and noncancer health effects at these locations. The results showed that the potential cancer and noncancer health effects at these locations were well below the established health risk thresholds. The results for the sensitive receptors in the 2007 Baseline Scenario are presented in Table 6-16. The locations of the sensitive receptors for the 2007 Baseline Scenario are shown on Figure 4-3.

6.6 SENSITIVE RECEPTOR CANCER RISK FROM THE 2007 BASELINE SCENARIO

Lifetime cancer risk is defined as the increased chance of contracting cancer over a 70-year period as a result of exposure to a toxic substance or substances. It is the product of the estimated daily exposure of each suspected carcinogen by its respective cancer toxicity factor. The result represents a worst-case or upper bound estimate of cancer risk.

Results of the cancer health effects assessment indicate that all of the cancer risks for the sensitive receptor locations are less than 10 in one million (1.0 x 10⁻⁵). Cancer risks less than 10 in one million are considered acceptable and do not require public notification in accordance with state and regional guidelines. The lifetime incremental cancer risk as a result of a lifetime exposure to emissions from the routine campus-wide operation of all sources in the 2007 Baseline Scenario was estimated to be 0.90 in one million (0.9 x 10⁻⁶) at the maximally exposed sensitive receptor (MESR). The MESR was located at the Franz Hall Day Care Center. The cancer risk for the off- and on-campus sensitive receptor locations are presented in Table 6-8.

The primary source type contributions to the estimated cancer risk at the MESR were from emergency generators containing diesel-fueled ICEs and laboratory chemical usage. Of the sources modeled, the emergency generators containing diesel-fueled ICEs contributed 59% of the cancer risk followed by campus laboratory chemical usage with 27% of the cancer risk. At other off- and on-campus sensitive receptor locations, different sources may contribute more significantly as the source-specific contribution is dependent on many variables such as the source to receptor distance, the meteorology, and the release parameters.

The primary chemical contribution to the estimated cancer risk at the MESR was DPM with approximately 59% of the risk, followed by formaldehyde with approximately 23% of the risk. At other off- and on-campus sensitive receptor locations, different chemicals may contribute more significantly

depending on the types of chemicals emitted by the source nearby the sensitive receptor. HARP HRA modeling files are provided in electronic format on the enclosed CD due to their volume.

6.7 SENSITIVE RECEPTOR CHRONIC NONCANCER HEALTH EFFECTS FROM THE 2007 BASELINE **SCENARIO**

The potential for TAC emissions from routine campus-wide operations to cause both chronic (long-term) and acute (short-term) noncancer health effects was also assessed in this HRA. Guidance published by OEHHA specifies which substances are to be evaluated in the noncancer effects assessment and which organ systems within the body are affected (e.g., liver, kidney, respiratory system, central nervous system, etc.).

Results of the chronic noncancer health effects assessment indicate that all of the HI values for the sensitive receptor locations for each organ system are less than 1.0. Chronic HI values less than 1.0 indicate that noncancer effects from chronic exposure to emissions from routine campus-wide operations are unlikely. The maximum chronic HI for an organ system was 0.10 at the MESR. The MESR was located at the Franz Hall Day Care Center. The chronic HI results for the off- and on-campus sensitive receptor locations are presented in Table 6-8.

The primary source type contributions to the estimated chronic noncancer HI at the MESR were from the laboratory chemical usage and the turbines at the cogeneration plant. Of the sources modeled, the laboratory chemical usage contributed 82% of the chronic noncancer HI followed by the turbines at the cogeneration plant with 15% of the chronic noncancer HI. At other off- and on-campus sensitive receptor locations, different sources may contribute more significantly as the source-specific contribution is dependent on many variables such as the source to receptor distance, the meteorology, and the release parameters.

The primary chemical contribution to the estimated chronic noncancer HI at the MESR was formaldehyde with approximately 91% of the chronic noncancer HI followed by acrolein with approximately 4% of the chronic noncancer HI. At other off- and on-campus sensitive receptor locations, different chemicals may contribute more significantly depending on the types of chemicals emitted by the source nearby the sensitive receptor. HARP HRA modeling files are provided in electronic format on the enclosed CD due to their volume.

6.8 SENSITIVE RECEPTOR ACUTE NONCANCER HEALTH EFFECTS FROM THE 2007 BASELINE SCENARIO

Results of the acute noncancer health effects assessment indicate that all of the HI values for each organ system are less than 1.0. Acute HI values less than 1.0 indicate that noncancer effects from acute exposure to emissions from routine campus-wide operations are unlikely. The maximum acute HI for an organ system in the 2007 Baseline Scenario was 0.07 at MESR. The MESR was located at the UCLA Medical Center. The acute HI results for the off- and on-campus sensitive receptor locations in the 2007 Baseline Scenario are presented in Table 6-8.

The primary source type contributions to the estimated acute noncancer HI at the MESR were from the laboratory chemical usage. Of the sources modeled, the laboratory chemical usage contributed 96% of the acute noncancer HI. At other off- and on-campus sensitive receptor locations, different sources may contribute more significantly as the source-specific contribution is dependent on many variables such as the source to receptor distance, the meteorology, and the release parameters.

The primary chemical contribution to the estimated acute noncancer HI at the MESR was formaldehyde with approximately 96% of the acute noncancer HI. At other off- and on-campus sensitive receptor locations, different chemicals may contribute more significantly depending on the types of chemicals emitted by the source nearby the sensitive receptor. HARP HRA modeling files are provided in electronic format on the enclosed CD due to their volume.

6.9 CANCER RISK FROM THE LRDP AMENDMENT SCENARIO

Results of the cancer health effects assessment indicate that all of the cancer risks are less than 10 in one million (1.0 x 10⁻⁵). The lifetime incremental cancer risk as a result of a lifetime exposure to emissions from the routine campus-wide operation of all sources in the LRDP Amendment Scenario was estimated to be 6.4 in one million (6.4 x 10^{-6}) at the off-campus MEI and 0.90 in one million (0.90 x 10^{-6}) at the oncampus MEI. The off-campus MEI was located on the fence line east of campus on Hilgard Avenue, east of Parking Structure Two. The on-campus MEI was located in the general area of Franz Hall. A summary of the HRA results for the off- and on-campus MEIs in the LRDP Amendment Scenario is presented in Table 6-9. The locations of the cancer, chronic, and acute noncancer off- and on-campus MEIs in the LRDP Amendment Scenario are presented on Figure 6-3.

The primary source type contributions to the estimated cancer risk at the off-campus MEI were from emergency generators containing diesel-fueled ICEs and laboratory chemical usage. Of the sources modeled, the emergency generators containing diesel-fueled ICEs contributed 62% of the cancer risk followed by campus laboratory chemical usage with 26% of the cancer risk. The source contribution to cancer risk at the off-campus MEI in the LRDP Amendment Scenario is presented in Table 6-10. The primary source type contributions to the estimated cancer risk at the on-campus MEI were from emergency generators containing diesel-fueled ICEs and laboratory chemical usage. Of the sources modeled, the emergency generators containing diesel-fueled ICEs contributed 59% of the cancer risk followed by campus laboratory chemical usage with 27% of the cancer risk. The source contribution to cancer risk at the on-campus MEI in the LRDP Amendment Scenario is presented in Table 6-11. At other off- and on-campus receptor locations, different sources may contribute more significantly as the sourcespecific contribution is dependent on many variables such as the source to receptor distance, the meteorology, and the release parameters.

The primary chemical contribution to the estimated cancer risk at the off-campus MEI was DPM with approximately 62% of the risk, followed by formaldehyde with approximately 26% of the risk. The chemical contribution to cancer risk at the off-campus MEI in the LRDP Amendment Scenario by substance and by exposure pathway is presented in Table 6-12. The chemical contribution to the estimated cancer risk at the on-campus MEI was DPM with approximately 59% of the risk, followed by formaldehyde at 23% of the cancer risk. The chemical contribution to cancer risk at the on-campus MEI

in the LRDP Amendment Scenario by substance and by exposure pathway is presented in Table 6-13. At other off- and on-campus receptor locations, different chemicals may contribute more significantly depending on the types of chemicals emitted by the source nearby the receptor. HARP HRA modeling files are provided in electronic format on the enclosed CD due to their volume.

6.10 CANCER BURDEN FROM THE LRDP AMENDMENT SCENARIO

The one in a million risk isopleth surrounding the ZOI in the LRDP Amendment Scenario is presented on Figure 6-4. From census data in the HARP software, the population within the ZOI is 17,133. The population was multiplied by the associated risk at each census block to determine the population cancer burden from campus-wide operations. The cancer burden was determined to be 0.04 which suggests that the emissions from routine campus-wide operations in the LRDP Amendment Scenario have a minimal impact on the exposed population.

6.11 NONCANCER HEALTH EFFECTS FROM THE LRDP AMENDMENT SCENARIO

The potential for TAC emissions from routine campus-wide operations to cause both chronic (long-term) and acute (short-term) noncancer health effects was also assessed in this HRA. Guidance published by OEHHA specifies which substances are to be evaluated in the noncancer effects assessment and which organ systems within the body are affected (e.g., liver, kidney, respiratory system, central nervous system, etc.).

Results of the chronic noncancer health effects assessment indicate that all of the HI values for each organ system are less than 1.0. Chronic HI values less than 1.0 indicate that noncancer effects from chronic exposure to emissions from routine campus-wide operations are unlikely. The maximum chronic HI for an organ system was 0.09 at the off-campus MEI and 0.10 at the on-campus MEI. The off-campus MEI was located on the fence line east of campus on Hilgard Avenue, east of Parking Structure Two. The oncampus MEI was located in the general area of Franz Hall. The chronic HI results for the off- and oncampus MEIs in the LRDP Amendment Scenario are presented in Table 6-14.

The primary source type contributions to the estimated chronic noncancer HI at the off-campus MEI was the laboratory chemical usage and the turbines at the cogeneration plant. Of the sources modeled, the laboratory chemical usage contributed 89% of the chronic noncancer HI followed by turbines at the cogeneration plant with 8% of the chronic noncancer HI. The primary source type contributors to the estimated chronic noncancer HI at the on-campus MEI was the laboratory chemical usage and the turbines at the cogeneration plant. Of the sources modeled, the laboratory chemical usage contributed 80% of the chronic noncancer HI followed by turbines at the cogeneration plant with 11% of the chronic noncancer HI. At other off- and on-campus receptor locations, different sources may contribute more significantly as the source-specific contribution is dependent on many variables such as the source to receptor distance, the meteorology, and the release parameters.

The primary chemical contribution to the estimated chronic noncancer HI at the off-campus MEI was formaldehyde with approximately 93% of the chronic noncancer HI, followed by acrolein with approximately 3% of the chronic noncancer HI. The primary chemical contribution to the estimated chronic noncancer HI at the on-campus MEI was formaldehyde with approximately 92% of the chronic

noncancer HI, followed by acrolein with approximately 4% of the chronic noncancer HI. At other offand on-campus receptor locations, different chemicals may contribute more significantly depending on the types of chemicals emitted by the source nearby the receptor. HARP HRA modeling files are provided in electronic format on the enclosed CD due to their volume.

6.12 ACUTE NONCANCER HEALTH EFFECTS FROM THE LRDP AMENDMENT SCENARIO

Results of the acute noncancer health effects assessment indicate that all of the HI values for each organ system are less than 1.0. Acute HI values less than 1.0 indicate that noncancer effects from acute exposure to emissions from routine campus-wide operations are unlikely. The maximum acute HI for an organ system in the 2007 Baseline Scenario was 0.08 at the off-campus MEI and 0.11 at the on-campus MEI. The off-campus MEI was located on the northwest campus fence line across from Sunset Boulevard. The on-campus MEI was located at the northwest campus housing complex. The acute HI results for the offand on-campus MEIs in the LRDP Amendment Scenario are presented in Table 6-15.

The primary source type contributors to the estimated acute noncancer HI at the Off-campus MEI were the boilers and the turbines at the cogeneration plant. Of the sources modeled, boilers contributed 40% of the acute noncancer HI followed by the turbines at the cogeneration plant with 38% of the acute noncancer HI. The primary source type contributors to the estimated acute noncancer HI at the on-campus MEI were the boilers and the turbines at the cogeneration plant. Of the sources modeled, the boilers contributed 53% of the acute noncancer HI followed by the turbines at the cogeneration plant with 28% of the acute noncancer HI. At other off- and on-campus receptor locations, different sources may contribute more significantly as the source-specific contribution is dependent on many variables such as the source to receptor distance, the meteorology, and the release parameters.

The primary chemical contribution to the estimated acute noncancer HI at the off-campus MEI was acrolein with approximately 65% of the acute noncancer HI, followed by formaldehyde with approximately 29% of the acute noncancer HI. The primary chemical contribution to the estimated chronic noncancer HI at the on-campus MEI was acrolein with approximately 70% of the acute noncancer HI, followed by formaldehyde with approximately 24% of the acute noncancer HI. At other off- and oncampus receptor locations, different chemicals may contribute more significantly depending on the types of chemicals emitted by the source nearby the receptor. HARP HRA modeling files are provided in electronic format on the enclosed CD due to their volume.

6.13 SENSITIVE RECEPTOR IMPACTS FROM THE LRDP AMENDMENT SCENARIO

Ten on- and off-campus sensitive receptors were identified within the carcinogenic ZOI in the LRDP Amendment Scenario. The HRA evaluated the cancer and noncancer health effects at these locations. The results showed that the potential cancer and noncancer health effects at these locations were well below the established health risk thresholds. The results for the sensitive receptors in the LRDP Amendment Scenario are presented in Table 6-16. The locations of the sensitive receptors for the LRDP Amendment Scenario are shown on Figure 4-3.

6.14 Sensitive Receptor Cancer Risk From The LRDP Amendment Scenario

Lifetime cancer risk is defined as the increased chance of contracting cancer over a 70-year period as a result of exposure to a toxic substance or substances. It is the product of the estimated daily exposure of each suspected carcinogen by its respective cancer toxicity factor. The result represents a worst-case or upper bound estimate of cancer risk.

Results of the cancer health effects assessment indicate that all of the cancer risks for the sensitive receptor locations are less than 10 in one million (1.0 x 10⁻⁵). Cancer risks less than 10 in one million are considered acceptable and do not require public notification in accordance with state and regional guidelines. The lifetime incremental cancer risk as a result of a lifetime exposure to emissions from the routine campus-wide operation of all sources in the LRDP Amendment Scenario was estimated to be 0.90 in one million (0.9 x 10⁻⁶) at the MESR. The MESR was located at the Franz Hall Day Care Center. The cancer risk for the off- and on-campus sensitive receptor locations are presented in Table 6-16.

The primary source type contributions to the estimated cancer risk at the MESR were from emergency generators containing diesel-fueled ICEs and laboratory chemical usage. Of the sources modeled, the emergency generators containing diesel-fueled ICEs contributed 59% of the cancer risk followed by campus laboratory chemical usage with 27% of the cancer risk. At other off- and on-campus sensitive receptor locations, different sources may contribute more significantly as the source-specific contribution is dependent on many variables such as the source to receptor distance, the meteorology, and the release parameters.

The primary chemical contribution to the estimated cancer risk at the MESR was DPM with approximately 59% of the risk, followed by formaldehyde with approximately 23% of the risk. At other off- and on-campus sensitive receptor locations, different chemicals may contribute more significantly depending on the types of chemicals emitted by the source nearby the sensitive receptor. HARP HRA modeling files are provided in electronic format on the enclosed CD due to their volume.

SENSITIVE RECEPTOR CHRONIC NONCANCER HEALTH EFFECTS FROM THE LRDP 6.15 **AMENDMENT SCENARIO**

The potential for TAC emissions from routine campus-wide operations to cause both chronic (long-term) and acute (short-term) noncancer health effects was also assessed in this HRA. Guidance published by OEHHA specifies which substances are to be evaluated in the noncancer effects assessment and which organ systems within the body are affected (e.g., liver, kidney, respiratory system, central nervous system, etc.).

Results of the chronic noncancer health effects assessment indicate that all of the HI values for the sensitive receptor locations for each organ system are less than 1.0. Chronic HI values less than 1.0 indicate that noncancer effects from chronic exposure to emissions from routine campus-wide operations are unlikely. The maximum chronic HI for an organ system was 0.10 at the MESR. The MESR was located at the Franz Hall Day Care Center. The chronic HI results for the off- and on-campus sensitive receptor locations are presented in Table 6-16.

The primary source type contributions to the estimated chronic noncancer HI at the MESR were from the laboratory chemical usage and the turbines at the cogeneration plant. Of the sources modeled, the laboratory chemical usage contributed 80% of the chronic noncancer HI followed by the turbines at the cogeneration plant with 11% of the chronic noncancer HI. At other off- and on-campus sensitive receptor locations, different sources may contribute more significantly as the source-specific contribution is dependent on many variables such as the source to receptor distance, the meteorology, and the release parameters.

The primary chemical contribution to the estimated chronic noncancer HI at the MESR was formaldehyde with approximately 92% of the chronic noncancer HI followed by acrolein with approximately 4% of the chronic noncancer HI. At other off- and on-campus sensitive receptor locations, different chemicals may contribute more significantly depending on the types of chemicals emitted by the source nearby the sensitive receptor. HARP HRA modeling files are provided in electronic format on the enclosed CD due to their volume.

Sensitive Receptor Acute Noncancer Health Effects From The LRDP **AMENDMENT SCENARIO**

Results of the acute noncancer health effects assessment indicate that all of the HI values for each organ system are less than 1.0. Acute HI values less than 1.0 indicate that noncancer effects from acute exposure to emissions from routine campus-wide operations are unlikely. The maximum acute HI for an organ system in the 2007 Baseline Scenario was 0.08 at MESR. The MESR was located at the UCLA Medical Center. The acute HI results for the off- and on-campus sensitive receptor locations in the 2007 Baseline Scenario are presented in Table 6-16.

The primary source type contributions to the estimated acute noncancer HI at the MESR were from the laboratory chemical usage. Of the sources modeled, the laboratory chemical usage contributed 96% of the acute noncancer HI. At other off- and on-campus sensitive receptor locations, different sources may contribute more significantly as the source-specific contribution is dependent on many variables such as the source to receptor distance, the meteorology, and the release parameters.

The primary chemical contribution to the estimated acute noncancer HI at the MESR was formaldehyde with approximately 96% of the acute noncancer HI. At other off- and on-campus sensitive receptor locations, different chemicals may contribute more significantly depending on the types of chemicals emitted by the source nearby the sensitive receptor. HARP HRA modeling files are provided in electronic format on the enclosed CD due to their volume.

Table 6-1. Summary of HRA Results for the Off- and On-campus MEIs in the 2007 Baseline Scenario

		Significance	Receptor	r Location	
	Result	Threshold ¹	East (m)	North (m)	Receptor Description
Off-campus	MEI				
Cancer Risk	6.3 x 10 ⁻⁶	10 x 10 ⁻⁶	367196	3770768	Fence line east of campus on Hilgard Avenue east of Parking Structure Two
Chronic HI	0.08	1.0	367196	3770768	Fence line east of campus on Hilgard Avenue east of Parking Structure Two
Acute HI	0.07	1.0	366114	3771509	Fence line northwest campus across from Sunset Boulevard
On-campus	MEI ¹				
Cancer Risk	8.9 x 10 ⁻⁷	10 x 10-6	367000	3770800	General area of Franz Hall
Chronic HI	0.10	1.0	367000	3770800	General area of Franz Hall
Acute HI	0.10	1.0	366069	3771124	Northwest campus housing complex

Significance threshold provided in SCAQMD Supplemental Guidelines for Preparing Risk Assessments (SCAQMD, 2005)

Cancer risk adjusted for 9-year exposure period based on Air Toxic Hot Spots Program Risk Assessment Guidelines (OEHHA 2003)

Table 6-2. Source Contribution to Cancer Risk at the Off-Campus MEI in the 2007 Baseline Scenario

			Cancer Risk by Ex	posure Pathway			
Source I.D.	Source Description	Inhalation	Dermal Absorption	Soil Ingestion	Produce Ingestion	TOTAL Cancer Risk	% of TOTAL
10084	ICE, 1750 BHP, UCLA Med Ctr	1.0E-06	0.0E+00	0.0E+00	0.0E+00	1.0E-06	16.43%
10075	ICE, 1323 BHP, MSB	8.4E-07	0.0E+00	0.0E+00	0.0E+00	8.4E-07	13.25%
10154	Laboratory Chemical Usage	7.5E-07	0.0E+00	0.0E+00	0.0E+00	7.5E-07	11.80%
10002	Turbine, Cogen	6.2E-08	1.2E-07	1.9E-08	1.6E-07	3.6E-07	5.72%
10001	Turbine, Cogen	6.2E-08	1.2E-07	1.8E-08	1.6E-07	3.6E-07	5.67%
10074	ICE, 1750 BHP, Young Hall E	3.4E-07	0.0E+00	0.0E+00	0.0E+00	3.4E-07	5.31%
10148	Laboratory Chemical Usage	3.0E-07	0.0E+00	0.0E+00	0.0E+00	3.0E-07	4.76%
10088	ICE, 2514 BHP, Campus Wide	2.7E-07	0.0E+00	0.0E+00	0.0E+00	2.7E-07	4.20%
10152	Laboratory Chemical Usage	2.3E-07	0.0E+00	0.0E+00	0.0E+00	2.3E-07	3.60%
10087	ICE, 1095 BHP, Seas IV NW	1.6E-07	0.0E+00	0.0E+00	0.0E+00	1.6E-07	2.50%
10107	ICE, 390 BHP, Boyer	9.3E-08	0.0E+00	0.0E+00	0.0E+00	9.3E-08	1.48%
10110	ICE, 250 BHP, Life Sciences	7.6E-08	0.0E+00	0.0E+00	0.0E+00	7.6E-08	1.20%
10104	ICE, 443 BHP, Boelter III	7.2E-08	0.0E+00	0.0E+00	0.0E+00	7.2E-08	1.14%
10067	ICE, 724 BHP, Sproul Hall	6.8E-08	0.0E+00	0.0E+00	0.0E+00	6.8E-08	1.07%
10153	Laboratory Chemical Usage	6.2E-08	0.0E+00	0.0E+00	0.0E+00	6.2E-08	0.98%
10161	Laboratory Chemical Usage	6.0E-08	0.0E+00	0.0E+00	0.0E+00	6.0E-08	0.94%
10085	ICE, 890 BHP, Macdonald Lab	5.5E-08	0.0E+00	0.0E+00	0.0E+00	5.5E-08	0.87%
10111	ICE, 166 BHP, Franz Hall	5.5E-08	0.0E+00	0.0E+00	0.0E+00	5.5E-08	0.87%
10150	Laboratory Chemical Usage	5.4E-08	0.0E+00	0.0E+00	0.0E+00	5.4E-08	0.85%
10072	ICE, 2220 BHP, Cogen	5.3E-08	0.0E+00	0.0E+00	0.0E+00	5.3E-08	0.83%
10077	ICE, 553 BHP, UCPD NE	5.1E-08	0.0E+00	0.0E+00	0.0E+00	5.1E-08	0.81%
10120	ICE, 1095 BHP, 200 Med Plaza	4.9E-08	0.0E+00	0.0E+00	0.0E+00	4.9E-08	0.77%
10122	ICE, 1095 BHP, 200 Med Plaza	4.8E-08	0.0E+00	0.0E+00	0.0E+00	4.8E-08	0.75%
10086	ICE, 1490 BHP, AGSM South	4.2E-08	0.0E+00	0.0E+00	0.0E+00	4.2E-08	0.67%
10158	Laboratory Chemical Usage	4.2E-08	0.0E+00	0.0E+00	0.0E+00	4.2E-08	0.66%
10106	ICE, 166 BHP, Boelter II 12400	3.7E-08	0.0E+00	0.0E+00	0.0E+00	3.7E-08	0.59%
10155	Laboratory Chemical Usage	3.2E-08	0.0E+00	0.0E+00	0.0E+00	3.2E-08	0.51%
10159	Laboratory Chemical Usage	3.2E-08	0.0E+00	0.0E+00	0.0E+00	3.2E-08	0.50%
10080	ICE, 1260 BHP, UCLA Med Ctr	3.1E-08	0.0E+00	0.0E+00	0.0E+00	3.1E-08	0.49%

Table 6-2. Source Contribution to Cancer Risk at the Off-Campus MEI in the 2007 Baseline Scenario

			Cancer Risk by Ex	posure Pathway			
Source I.D.	Source Description	Inhalation	Dermal Absorption	Soil Ingestion	Produce Ingestion	TOTAL Cancer Risk	% of TOTAL
10081	ICE, 1260 BHP, UCLA Med Ctr	3.1E-08	0.0E+00	0.0E+00	0.0E+00	3.1E-08	0.49%
10082	ICE, 1310 BHP, UCLA Med Ctr	3.1E-08	0.0E+00	0.0E+00	0.0E+00	3.1E-08	0.49%
10083	ICE, 1310 BHP, UCLA Med Ctr	3.1E-08	0.0E+00	0.0E+00	0.0E+00	3.1E-08	0.49%
10151	Laboratory Chemical Usage	3.1E-08	0.0E+00	0.0E+00	0.0E+00	3.1E-08	0.49%
10068	ICE, 320 BHP, Dykstra	3.1E-08	0.0E+00	0.0E+00	0.0E+00	3.1E-08	0.48%
10091	ICE, 2000 BHP, SRB I (NRB)	3.0E-08	0.0E+00	0.0E+00	0.0E+00	3.0E-08	0.47%
10078	ICE, 750 BHP, PS 1	2.9E-08	0.0E+00	0.0E+00	0.0E+00	2.9E-08	0.46%
10073	ICE, 746 BHP, Ackerman	2.6E-08	0.0E+00	0.0E+00	0.0E+00	2.6E-08	0.41%
10102	ICE, 377 BHP, Kerckhoff	1.9E-08	0.0E+00	0.0E+00	0.0E+00	1.9E-08	0.30%
10076	ICE, 668 BHP, STRB	1.9E-08	0.0E+00	0.0E+00	0.0E+00	1.9E-08	0.30%
10003	Gasoline Dispensing	1.8E-08	0.0E+00	0.0E+00	0.0E+00	1.8E-08	0.29%
10114	ICE, 168 BHP, PS 8 SE	1.7E-08	0.0E+00	0.0E+00	0.0E+00	1.7E-08	0.27%
10101	ICE, 3057 BHP, Eng V	1.7E-08	0.0E+00	0.0E+00	0.0E+00	1.7E-08	0.26%
10130	ICE, 155 BHP, Campus Wide	1.6E-08	0.0E+00	0.0E+00	0.0E+00	1.6E-08	0.26%
10079	ICE, 1850 BHP, Gonda	1.6E-08	0.0E+00	0.0E+00	0.0E+00	1.6E-08	0.25%
10123	ICE, 535 BHP, Env Service Building	1.5E-08	0.0E+00	0.0E+00	0.0E+00	1.5E-08	0.24%
10098	ICE, 1881 BHP, Police Station Rep	1.3E-08	0.0E+00	0.0E+00	0.0E+00	1.3E-08	0.20%
10112	ICE, 60 BHP, Math Sciences	1.1E-08	0.0E+00	0.0E+00	0.0E+00	1.1E-08	0.18%
10160	Laboratory Chemical Usage	1.1E-08	0.0E+00	0.0E+00	0.0E+00	1.1E-08	0.17%
10064	ICE, 335 BHP, Covel	1.1E-08	0.0E+00	0.0E+00	0.0E+00	1.1E-08	0.17%
10094	ICE, 2000 BHP, Rep Hospital 1	1.0E-08	0.0E+00	0.0E+00	0.0E+00	1.0E-08	0.16%
10095	ICE, 2000 BHP, Rep Hospital 2	1.0E-08	0.0E+00	0.0E+00	0.0E+00	1.0E-08	0.16%
10096	ICE, 2000 BHP, Rep Hospital 3	1.0E-08	0.0E+00	0.0E+00	0.0E+00	1.0E-08	0.16%
10097	ICE, 2000 BHP, Rep Hospital 4	1.0E-08	0.0E+00	0.0E+00	0.0E+00	1.0E-08	0.16%
10062	Boiler, 12.5MMBTU, 200 Med Plaza	1.0E-09	3.7E-09	5.5E-10	4.7E-09	1.0E-08	0.16%
10069	ICE, 320 BHP, Rieber Hall	9.9E-09	0.0E+00	0.0E+00	0.0E+00	9.9E-09	0.16%
10066	ICE, 440 BHP, Hedrick	9.8E-09	0.0E+00	0.0E+00	0.0E+00	9.8E-09	0.15%
10118	ICE, 135 BHP, Pauley	9.6E-09	0.0E+00	0.0E+00	0.0E+00	9.6E-09	0.15%
10061	Boiler, 12.5MMBTU, 200 Med Plaza	9.3E-10	3.3E-09	4.9E-10	4.2E-09	8.9E-09	0.14%

Table 6-2. Source Contribution to Cancer Risk at the Off-Campus MEI in the 2007 Baseline Scenario

			Cancer Risk by Ex	posure Pathway			
Source I.D.	Source Description	Inhalation	Dermal Absorption	Soil Ingestion	Produce Ingestion	TOTAL Cancer Risk	% of TOTAL
10105	ICE, 235 BHP, Royce NW	7.7E-09	0.0E+00	0.0E+00	0.0E+00	7.7E-09	0.12%
10146	Laboratory Chemical Usage	6.6E-09	0.0E+00	0.0E+00	0.0E+00	6.6E-09	0.10%
10128	ICE, 277 BHP, CHS	6.3E-09	0.0E+00	0.0E+00	0.0E+00	6.3E-09	0.10%
10108	ICE, 519 BHP, PS 4	6.2E-09	0.0E+00	0.0E+00	0.0E+00	6.2E-09	0.10%
10132	ICE, 370 BHP, Murphy Hall	6.0E-09	0.0E+00	0.0E+00	0.0E+00	6.0E-09	0.10%
10115	ICE, 107 BHP, Unix	6.0E-09	0.0E+00	0.0E+00	0.0E+00	6.0E-09	0.09%
10144	ICE, 50 BHP, Park Str 8	6.0E-09	0.0E+00	0.0E+00	0.0E+00	6.0E-09	0.09%
10093	ICE, 2000 BHP, SRB II	5.9E-09	0.0E+00	0.0E+00	0.0E+00	5.9E-09	0.09%
10117	ICE, 135 BHP, LATC	5.6E-09	0.0E+00	0.0E+00	0.0E+00	5.6E-09	0.09%
10121	ICE, 335 BHP, 300 Med Plaza	5.5E-09	0.0E+00	0.0E+00	0.0E+00	5.5E-09	0.09%
10142	ICE, 50 BHP, Campus Wide	5.5E-09	0.0E+00	0.0E+00	0.0E+00	5.5E-09	0.09%
10143	ICE, 50 BHP, Campus Wide	5.5E-09	0.0E+00	0.0E+00	0.0E+00	5.5E-09	0.09%
10137	ICE, 50 BHP, CHS Park Str	4.9E-09	0.0E+00	0.0E+00	0.0E+00	4.9E-09	0.08%
10126	ICE, 216 BHP, Campus Wide	4.9E-09	0.0E+00	0.0E+00	0.0E+00	4.9E-09	0.08%
10071	ICE, 635 BHP, Reiber W	4.8E-09	0.0E+00	0.0E+00	0.0E+00	4.8E-09	0.08%
10124	ICE, 317 BHP, Parking Structure 7	4.2E-09	0.0E+00	0.0E+00	0.0E+00	4.2E-09	0.07%
10060	Boiler, 5.23MMBtu, Warren Hall	5.3E-10	1.5E-09	2.2E-10	1.9E-09	4.1E-09	0.06%
10070	ICE, 635 BHP, Reiber N	4.1E-09	0.0E+00	0.0E+00	0.0E+00	4.1E-09	0.06%
10100	ICE, 3622 BHP, PKS#5,4,7	4.1E-09	0.0E+00	0.0E+00	0.0E+00	4.1E-09	0.06%
10133	ICE, 550 BHP, Hilbrom	4.1E-09	0.0E+00	0.0E+00	0.0E+00	4.1E-09	0.06%
10099	ICE, 755 BHP, Powell / kinsey	3.9E-09	0.0E+00	0.0E+00	0.0E+00	3.9E-09	0.06%
10092	ICE, 2000 BHP, CNSI	3.6E-09	0.0E+00	0.0E+00	0.0E+00	3.6E-09	0.06%
10109	ICE, 377 BHP, SRL N	3.5E-09	0.0E+00	0.0E+00	0.0E+00	3.5E-09	0.06%
10089	ICE, 635 BHP, Rehab Cen	3.4E-09	0.0E+00	0.0E+00	0.0E+00	3.4E-09	0.05%
10119	ICE, 370 BHP, Law Library	3.1E-09	0.0E+00	0.0E+00	0.0E+00	3.1E-09	0.05%
10113	ICE, 168 BHP, SRL	2.9E-09	0.0E+00	0.0E+00	0.0E+00	2.9E-09	0.05%
10125	ICE, 260 BHP, YRL	2.9E-09	0.0E+00	0.0E+00	0.0E+00	2.9E-09	0.05%
10135	ICE, 325 BHP, MS	2.8E-09	0.0E+00	0.0E+00	0.0E+00	2.8E-09	0.04%
10065	ICE, 415 BHP, De Neve	2.6E-09	0.0E+00	0.0E+00	0.0E+00	2.6E-09	0.04%

Table 6-2. Source Contribution to Cancer Risk at the Off-Campus MEI in the 2007 Baseline Scenario

			Cancer Risk by Ex	posure Pathway			
Source I.D.	Source Description	Inhalation	Dermal Absorption	Soil Ingestion	Produce Ingestion	TOTAL Cancer Risk	% of TOTAL
10131	ICE, 201 BHP, Public Policy	2.5E-09	0.0E+00	0.0E+00	0.0E+00	2.5E-09	0.04%
10157	Laboratory Chemical Usage	2.2E-09	0.0E+00	0.0E+00	0.0E+00	2.2E-09	0.03%
10149	Laboratory Chemical Usage	2.0E-09	0.0E+00	0.0E+00	0.0E+00	2.0E-09	0.03%
10063	Boiler, 224MMBTU, Cogen Plant	1.1E-10	7.9E-10	1.2E-10	1.0E-09	2.0E-09	0.03%
10090	ICE, 910 BHP, Phys And Astrom	1.5E-09	0.0E+00	0.0E+00	0.0E+00	1.5E-09	0.02%
10147	Laboratory Chemical Usage	1.5E-09	0.0E+00	0.0E+00	0.0E+00	1.5E-09	0.02%
10042	Boiler, 1.058MMBtu, EH&S Facility	1.6E-10	4.3E-10	6.5E-11	5.5E-10	1.2E-09	0.02%
10127	ICE, 490 BHP, Campus Wide	1.2E-09	0.0E+00	0.0E+00	0.0E+00	1.2E-09	0.02%
10134	ICE, 157 BHP, Hedrick Tower	1.1E-09	0.0E+00	0.0E+00	0.0E+00	1.1E-09	0.02%
10116	ICE, 100 BHP, Bunche	1.1E-09	0.0E+00	0.0E+00	0.0E+00	1.1E-09	0.02%
10043	Boiler, 1.5MMBtu, Rehabilitation #1	1.3E-10	3.6E-10	5.4E-11	4.6E-10	1.0E-09	0.02%
10044	Boiler, 1.5MMBtu, Rehabilitation #2	1.3E-10	3.6E-10	5.4E-11	4.5E-10	9.9E-10	0.02%
10052	Boiler, 1.5MMBtu, STRB	1.2E-10	3.3E-10	4.9E-11	4.1E-10	9.1E-10	0.01%
10103	ICE, 66 BHP, Sunset Rec NE	8.6E-10	0.0E+00	0.0E+00	0.0E+00	8.6E-10	0.01%
10055	Boiler, 1.67MMBtu, Unex	1.1E-10	2.9E-10	4.4E-11	3.7E-10	8.1E-10	0.01%
10054	Boiler, 1.674MMBtu, Unex	1.0E-10	2.9E-10	4.3E-11	3.6E-10	8.0E-10	0.01%
10058	Boiler, 1MMBtu, Rehab. #5	8.8E-11	2.5E-10	3.7E-11	3.1E-10	6.8E-10	0.01%
10140	ICE, 50 BHP, Grad School Edu	6.5E-10	0.0E+00	0.0E+00	0.0E+00	6.5E-10	0.01%
10059	Boiler, 1MMBtu, Rehab. #6	7.5E-11	2.1E-10	3.1E-11	2.7E-10	5.8E-10	0.01%
10053	Boiler, 1.8MMBtu, UES BLR#4	7.2E-11	2.0E-10	3.0E-11	2.5E-10	5.5E-10	0.01%
10057	Boiler, 0.5MMBtu, Ueberroth #1	6.5E-11	1.8E-10	2.7E-11	2.3E-10	5.0E-10	0.01%
10138	ICE, 50 BHP, Dicksen Art	4.6E-10	0.0E+00	0.0E+00	0.0E+00	4.6E-10	0.01%
10141	ICE, 50 BHP, Melnitz Hall	3.9E-10	0.0E+00	0.0E+00	0.0E+00	3.9E-10	0.01%
10139	ICE, 50 BHP, East Melnitz	3.8E-10	0.0E+00	0.0E+00	0.0E+00	3.8E-10	0.01%
10050	Boiler, 1.26MMBtu, SRL #BLR-3	4.7E-11	1.3E-10	2.0E-11	1.7E-10	3.6E-10	0.01%
10051	Boiler, 1.26MMBtu, SRL #BLR-4	4.3E-11	1.2E-10	1.8E-11	1.5E-10	3.3E-10	0.01%
	TOTAL FROM LISTED SOURCES ¹	5.7E-06	2.6E-07	3.9E-08	3.3E-07	6.3E-06	99.88%
	TOTAL FROM ALL EVALUATED SOURCES	5.7E-06	2.6E-07	3.9E-08	3.3E-07	6.3E-06	100.00%

Table 6-2. Source Contribution to Cancer Risk at the Off-Campus MEI in the 2007 Baseline Scenario

			Cancer Risk by Exposure Pathway				
					Produce	TOTAL	% of
Source I.D.	Source Description	Inhalation	Dermal Absorption	Soil Ingestion	Ingestion	Cancer Risk	TOTAL

¹ Only sources contributing 0.01% or more to the risk are listed. Listed sources contribute to 99.88% of the total risk from all evaluated sources.

Table 6-3. Source Contribution to Cancer Risk at the On-Campus MEI in the 2007 Baseline Scenario

			Cancer Risk by E	xposure Pathway ²			
Source I.D.	Source Description	Inhalation	Dermal Absorption	Soil Ingestion	Produce Ingestion	TOTAL Cancer Risk	% of TOTAL
10084	ICE, 1750 BHP, UCLA Med Ctr	1.2E-07	0.0E+00	0.0E+00	0.0E+00	1.2E-07	13.70%
10154	Laboratory Chemical Usage	1.2E-07	0.0E+00	0.0E+00	0.0E+00	1.2E-07	13.53%
10088	ICE, 2514 BHP, Campus Wide	6.8E-08	0.0E+00	0.0E+00	0.0E+00	6.8E-08	7.57%
10002	Turbine, Cogen	1.0E-08	2.0E-08	3.0E-09	2.6E-08	5.9E-08	6.65%
10001	Turbine, Cogen	1.0E-08	2.0E-08	3.0E-09	2.5E-08	5.9E-08	6.55%
10087	ICE, 1095 BHP, Seas IV NW	3.7E-08	0.0E+00	0.0E+00	0.0E+00	3.7E-08	4.16%
10104	ICE, 443 BHP, Boelter III	3.3E-08	0.0E+00	0.0E+00	0.0E+00	3.3E-08	3.67%
10148	Laboratory Chemical Usage	3.1E-08	0.0E+00	0.0E+00	0.0E+00	3.1E-08	3.48%
10075	ICE, 1323 BHP, MSB	2.8E-08	0.0E+00	0.0E+00	0.0E+00	2.8E-08	3.11%
10107	ICE, 390 BHP, Boyer	1.9E-08	0.0E+00	0.0E+00	0.0E+00	1.9E-08	2.07%
10085	ICE, 890 BHP, Macdonald Lab	1.7E-08	0.0E+00	0.0E+00	0.0E+00	1.7E-08	1.96%
10150	Laboratory Chemical Usage	1.6E-08	0.0E+00	0.0E+00	0.0E+00	1.6E-08	1.76%
10111	ICE, 166 BHP, Franz Hall	1.4E-08	0.0E+00	0.0E+00	0.0E+00	1.4E-08	1.60%
10153	Laboratory Chemical Usage	1.4E-08	0.0E+00	0.0E+00	0.0E+00	1.4E-08	1.58%
10158	Laboratory Chemical Usage	1.4E-08	0.0E+00	0.0E+00	0.0E+00	1.4E-08	1.58%
10106	ICE, 166 BHP, Boelter II 12400	1.4E-08	0.0E+00	0.0E+00	0.0E+00	1.4E-08	1.55%
10077	ICE, 553 BHP, UCPD NE	1.3E-08	0.0E+00	0.0E+00	0.0E+00	1.3E-08	1.48%
10074	ICE, 1750 BHP, Young Hall E	1.3E-08	0.0E+00	0.0E+00	0.0E+00	1.3E-08	1.43%
10072	ICE, 2220 BHP, Cogen	1.2E-08	0.0E+00	0.0E+00	0.0E+00	1.2E-08	1.39%
10152	Laboratory Chemical Usage	1.2E-08	0.0E+00	0.0E+00	0.0E+00	1.2E-08	1.37%
10067	ICE, 724 BHP, Sproul Hall	1.2E-08	0.0E+00	0.0E+00	0.0E+00	1.2E-08	1.34%
10122	ICE, 1095 BHP, 200 Med Plaza	1.0E-08	0.0E+00	0.0E+00	0.0E+00	1.0E-08	1.13%
10120	ICE, 1095 BHP, 200 Med Plaza	9.9E-09	0.0E+00	0.0E+00	0.0E+00	9.9E-09	1.10%
10151	Laboratory Chemical Usage	9.1E-09	0.0E+00	0.0E+00	0.0E+00	9.1E-09	1.02%
10110	ICE, 250 BHP, Life Sciences	8.7E-09	0.0E+00	0.0E+00	0.0E+00	8.7E-09	0.97%
10091	ICE, 2000 BHP, SRB I (NRB)	8.3E-09	0.0E+00	0.0E+00	0.0E+00	8.3E-09	0.93%
10159	Laboratory Chemical Usage	8.2E-09	0.0E+00	0.0E+00	0.0E+00	8.2E-09	0.92%
10161	Laboratory Chemical Usage	5.9E-09	0.0E+00	0.0E+00	0.0E+00	5.9E-09	0.66%
10078	ICE, 750 BHP, PS 1	5.9E-09	0.0E+00	0.0E+00	0.0E+00	5.9E-09	0.66%

Table 6-3. Source Contribution to Cancer Risk at the On-Campus MEI in the 2007 Baseline Scenario

			Cancer Risk by E	Exposure Pathway ²			
Source I.D.	Source Description	Inhalation	Dermal Absorption	Soil Ingestion	Produce Ingestion	TOTAL Cancer Risk	% of TOTAL
10068	ICE, 320 BHP, Dykstra	5.6E-09	0.0E+00	0.0E+00	0.0E+00	5.6E-09	0.62%
10073	ICE, 746 BHP, Ackerman	5.4E-09	0.0E+00	0.0E+00	0.0E+00	5.4E-09	0.61%
10079	ICE, 1850 BHP, Gonda	4.4E-09	0.0E+00	0.0E+00	0.0E+00	4.4E-09	0.49%
10130	ICE, 155 BHP, Campus Wide	4.2E-09	0.0E+00	0.0E+00	0.0E+00	4.2E-09	0.47%
10114	ICE, 168 BHP, PS 8 SE	4.1E-09	0.0E+00	0.0E+00	0.0E+00	4.1E-09	0.46%
10102	ICE, 377 BHP, Kerckhoff	3.9E-09	0.0E+00	0.0E+00	0.0E+00	3.9E-09	0.43%
10086	ICE, 1490 BHP, AGSM South	3.6E-09	0.0E+00	0.0E+00	0.0E+00	3.6E-09	0.40%
10003	Gasoline Dispensing	3.5E-09	0.0E+00	0.0E+00	0.0E+00	3.5E-09	0.40%
10112	ICE, 60 BHP, Math Sciences	3.5E-09	0.0E+00	0.0E+00	0.0E+00	3.5E-09	0.39%
10123	ICE, 535 BHP, Env Service Building	2.9E-09	0.0E+00	0.0E+00	0.0E+00	2.9E-09	0.32%
10098	ICE, 1881 BHP, Police Station Rep	2.8E-09	0.0E+00	0.0E+00	0.0E+00	2.8E-09	0.32%
10080	ICE, 1260 BHP, UCLA Med Ctr	2.2E-09	0.0E+00	0.0E+00	0.0E+00	2.2E-09	0.25%
10081	ICE, 1260 BHP, UCLA Med Ctr	2.2E-09	0.0E+00	0.0E+00	0.0E+00	2.2E-09	0.25%
10082	ICE, 1310 BHP, UCLA Med Ctr	2.2E-09	0.0E+00	0.0E+00	0.0E+00	2.2E-09	0.25%
10083	ICE, 1310 BHP, UCLA Med Ctr	2.2E-09	0.0E+00	0.0E+00	0.0E+00	2.2E-09	0.25%
10155	Laboratory Chemical Usage	2.1E-09	0.0E+00	0.0E+00	0.0E+00	2.1E-09	0.24%
10118	ICE, 135 BHP, Pauley	2.1E-09	0.0E+00	0.0E+00	0.0E+00	2.1E-09	0.24%
10076	ICE, 668 BHP, STRB	2.1E-09	0.0E+00	0.0E+00	0.0E+00	2.1E-09	0.23%
10062	Boiler, 12.5MMBTU, 200 Med Plaza	2.1E-10	7.5E-10	1.1E-10	9.5E-10	2.0E-09	0.23%
10064	ICE, 335 BHP, Covel	1.9E-09	0.0E+00	0.0E+00	0.0E+00	1.9E-09	0.21%
10101	ICE, 3057 BHP, Eng V	1.7E-09	0.0E+00	0.0E+00	0.0E+00	1.7E-09	0.19%
10160	Laboratory Chemical Usage	1.6E-09	0.0E+00	0.0E+00	0.0E+00	1.6E-09	0.18%
10061	Boiler, 12.5MMBTU, 200 Med Plaza	1.7E-10	6.0E-10	8.9E-11	7.6E-10	1.6E-09	0.18%
10066	ICE, 440 BHP, Hedrick	1.5E-09	0.0E+00	0.0E+00	0.0E+00	1.5E-09	0.17%
10069	ICE, 320 BHP, Rieber Hall	1.5E-09	0.0E+00	0.0E+00	0.0E+00	1.5E-09	0.17%
10128	ICE, 277 BHP, CHS	1.5E-09	0.0E+00	0.0E+00	0.0E+00	1.5E-09	0.16%
10142	ICE, 50 BHP, Campus Wide	1.5E-09	0.0E+00	0.0E+00	0.0E+00	1.5E-09	0.16%
10143	ICE, 50 BHP, Campus Wide	1.5E-09	0.0E+00	0.0E+00	0.0E+00	1.5E-09	0.16%
10144	ICE, 50 BHP, Park Str 8	1.4E-09	0.0E+00	0.0E+00	0.0E+00	1.4E-09	0.15%
10126	ICE, 216 BHP, Campus Wide	1.2E-09	0.0E+00	0.0E+00	0.0E+00	1.2E-09	0.14%

Table 6-3. Source Contribution to Cancer Risk at the On-Campus MEI in the 2007 Baseline Scenario

			Cancer Risk by E	xposure Pathway ²			
Source I.D.	Source Description	Inhalation	Dermal Absorption	Soil Ingestion	Produce Ingestion	TOTAL Cancer Risk	% of TOTAL
10117	ICE, 135 BHP, LATC	1.1E-09	0.0E+00	0.0E+00	0.0E+00	1.1E-09	0.12%
10115	ICE, 107 BHP, Unix	1.1E-09	0.0E+00	0.0E+00	0.0E+00	1.1E-09	0.12%
10132	ICE, 370 BHP, Murphy Hall	1.0E-09	0.0E+00	0.0E+00	0.0E+00	1.0E-09	0.12%
10108	ICE, 519 BHP, PS 4	9.5E-10	0.0E+00	0.0E+00	0.0E+00	9.5E-10	0.11%
10121	ICE, 335 BHP, 300 Med Plaza	8.7E-10	0.0E+00	0.0E+00	0.0E+00	8.7E-10	0.10%
10124	ICE, 317 BHP, Parking Structure 7	8.4E-10	0.0E+00	0.0E+00	0.0E+00	8.4E-10	0.09%
10146	Laboratory Chemical Usage	7.8E-10	0.0E+00	0.0E+00	0.0E+00	7.8E-10	0.09%
10071	ICE, 635 BHP, Reiber W	7.3E-10	0.0E+00	0.0E+00	0.0E+00	7.3E-10	0.08%
10105	ICE, 235 BHP, Royce NW	7.1E-10	0.0E+00	0.0E+00	0.0E+00	7.1E-10	0.08%
10133	ICE, 550 BHP, Hilbrom	6.8E-10	0.0E+00	0.0E+00	0.0E+00	6.8E-10	0.08%
10060	Boiler, 5.23MMBtu, Warren Hall	8.8E-11	2.5E-10	3.7E-11	3.1E-10	6.8E-10	0.08%
10094	ICE, 2000 BHP, Rep Hospital 1	6.3E-10	0.0E+00	0.0E+00	0.0E+00	6.3E-10	0.07%
10095	ICE, 2000 BHP, Rep Hospital 2	6.3E-10	0.0E+00	0.0E+00	0.0E+00	6.3E-10	0.07%
10096	ICE, 2000 BHP, Rep Hospital 3	6.3E-10	0.0E+00	0.0E+00	0.0E+00	6.3E-10	0.07%
10097	ICE, 2000 BHP, Rep Hospital 4	6.3E-10	0.0E+00	0.0E+00	0.0E+00	6.3E-10	0.07%
10070	ICE, 635 BHP, Reiber N	6.2E-10	0.0E+00	0.0E+00	0.0E+00	6.2E-10	0.07%
10109	ICE, 377 BHP, SRL N	5.6E-10	0.0E+00	0.0E+00	0.0E+00	5.6E-10	0.06%
10092	ICE, 2000 BHP, CNSI	5.5E-10	0.0E+00	0.0E+00	0.0E+00	5.5E-10	0.06%
10119	ICE, 370 BHP, Law Library	5.1E-10	0.0E+00	0.0E+00	0.0E+00	5.1E-10	0.06%
10065	ICE, 415 BHP, De Neve	4.8E-10	0.0E+00	0.0E+00	0.0E+00	4.8E-10	0.05%
10113	ICE, 168 BHP, SRL	4.6E-10	0.0E+00	0.0E+00	0.0E+00	4.6E-10	0.05%
10100	ICE, 3622 BHP, PKS#5,4,7	4.5E-10	0.0E+00	0.0E+00	0.0E+00	4.5E-10	0.05%
10089	ICE, 635 BHP, Rehab Cen	4.1E-10	0.0E+00	0.0E+00	0.0E+00	4.1E-10	0.05%
10135	ICE, 325 BHP, MS	4.0E-10	0.0E+00	0.0E+00	0.0E+00	4.0E-10	0.05%
10149	Laboratory Chemical Usage	3.7E-10	0.0E+00	0.0E+00	0.0E+00	3.7E-10	0.04%
10137	ICE, 50 BHP, CHS Park Str	3.6E-10	0.0E+00	0.0E+00	0.0E+00	3.6E-10	0.04%
10125	ICE, 260 BHP, YRL	3.1E-10	0.0E+00	0.0E+00	0.0E+00	3.1E-10	0.03%
10127	ICE, 490 BHP, Campus Wide	3.1E-10	0.0E+00	0.0E+00	0.0E+00	3.1E-10	0.03%
10063	Boiler, 224MMBTU, Cogen Plant	1.6E-11	1.1E-10	1.7E-11	1.4E-10	2.9E-10	0.03%
10099	ICE, 755 BHP, Powell / kinsey	2.6E-10	0.0E+00	0.0E+00	0.0E+00	2.6E-10	0.03%

Table 6-3. Source Contribution to Cancer Risk at the On-Campus MEI in the 2007 Baseline Scenario

			Cancer Risk by E	xposure Pathway ²			
Source I.D.	Source Description	Inhalation	Dermal Absorption	Soil Ingestion	Produce Ingestion	TOTAL Cancer Risk	% of TOTAL
10042	Boiler, 1.058MMBtu, EH&S Facility	2.9E-11	8.1E-11	1.2E-11	1.0E-10	2.3E-10	0.03%
10147	Laboratory Chemical Usage	2.1E-10	0.0E+00	0.0E+00	0.0E+00	2.1E-10	0.02%
10134	ICE, 157 BHP, Hedrick Tower	1.6E-10	0.0E+00	0.0E+00	0.0E+00	1.6E-10	0.02%
10103	ICE, 66 BHP, Sunset Rec NE	1.5E-10	0.0E+00	0.0E+00	0.0E+00	1.5E-10	0.02%
10055	Boiler, 1.67MMBtu, Unex	1.9E-11	5.2E-11	7.7E-12	6.5E-11	1.4E-10	0.02%
10054	Boiler, 1.674MMBtu, Unex	1.8E-11	5.1E-11	7.6E-12	6.5E-11	1.4E-10	0.02%
10157	Laboratory Chemical Usage	1.4E-10	0.0E+00	0.0E+00	0.0E+00	1.4E-10	0.02%
10093	ICE, 2000 BHP, SRB II	1.3E-10	0.0E+00	0.0E+00	0.0E+00	1.3E-10	0.01%
10043	Boiler, 1.5MMBtu, Rehabilitation #1	1.6E-11	4.5E-11	6.7E-12	5.7E-11	1.2E-10	0.01%
10044	Boiler, 1.5MMBtu, Rehabilitation #2	1.5E-11	4.2E-11	6.3E-12	5.3E-11	1.2E-10	0.01%
10052	Boiler, 1.5MMBtu, STRB	1.3E-11	3.5E-11	5.3E-12	4.5E-11	9.8E-11	0.01%
10116	ICE, 100 BHP, Bunche	8.7E-11	0.0E+00	0.0E+00	0.0E+00	8.7E-11	0.01%
10057	Boiler, 0.5MMBtu, Ueberroth #1	1.1E-11	3.0E-11	4.5E-12	3.8E-11	8.4E-11	0.01%
10140	ICE, 50 BHP, Grad School Edu	8.0E-11	0.0E+00	0.0E+00	0.0E+00	8.0E-11	0.01%
10058	Boiler, 1MMBtu, Rehab. #5	1.0E-11	2.8E-11	4.3E-12	3.6E-11	7.9E-11	0.01%
10131	ICE, 201 BHP, Public Policy	7.0E-11	0.0E+00	0.0E+00	0.0E+00	7.0E-11	0.01%
10059	Boiler, 1MMBtu, Rehab. #6	8.5E-12	2.4E-11	3.5E-12	3.0E-11	6.6E-11	0.01%
10090	ICE, 910 BHP, Phys And Astrom	6.2E-11	0.0E+00	0.0E+00	0.0E+00	6.2E-11	0.01%
10050	Boiler, 1.26MMBtu, SRL #BLR-3	7.5E-12	2.1E-11	3.2E-12	2.7E-11	5.8E-11	0.01%
10053	Boiler, 1.8MMBtu, UES BLR#4	7.5E-12	2.1E-11	3.1E-12	2.6E-11	5.8E-11	0.01%
10145	Spray Booth, CSB I	5.4E-11	0.0E+00	0.0E+00	0.0E+00	5.4E-11	0.01%
10051	Boiler, 1.26MMBtu, SRL #BLR-4	6.8E-12	1.9E-11	2.8E-12	2.4E-11	5.3E-11	0.01%
10138	ICE, 50 BHP, Dicksen Art	4.9E-11	0.0E+00	0.0E+00	0.0E+00	4.9E-11	0.01%
10048	Boiler, 1.8MMBtu, SCRC-#1 (Olympic)	6.3E-12	1.8E-11	2.6E-12	2.2E-11	4.9E-11	0.01%
10009	Boiler, 1.2MMBtu, Bradley	6.0E-12	1.7E-11	2.5E-12	2.1E-11	4.7E-11	0.01%
	TOTAL FROM LISTED SOURCES ¹	7.9E-07	4.3E-08	6.4E-09	5.4E-08	8.9E-07	99.96%
	TOTAL FROM ALL EVALUATED SOURCES	7.9E-07	4.3E-08	6.4E-09	5.4E-08	8.9E-07	100.00%

¹ Only sources contributing 0.01% or more to the risk are listed. Listed sources contribute to 99.96% of the total risk from all evaluated sources.

² Cancer risk adjusted for a 9-year exposure period consistent with OEHHA guidelines

Table 6-4. Cancer Risk at the Off-campus MEI by Substance and by Exposure Pathway in the 2007 Baseline Scenario

			Cancer Risk by Ex	posure Pathway			
Substance	CAS	Inhalation	Dermal Absorption	Soil Ingestion	Produce Ingestion	TOTAL Cancer Risk	% of TOTAL ¹
Diesel Exhaust (particulates)	9901	3.9E-06	0.0E+00	0.0E+00	0.0E+00	3.9E-06	62.26%
Formaldehyde	50000	1.4E-06	0.0E+00	0.0E+00	0.0E+00	1.4E-06	21.96%
PAH (excluding napthalene)	1151	2.0E-08	2.6E-07	3.9E-08	3.3E-07	6.5E-07	10.29%
Benzene	71432	1.2E-07	0.0E+00	0.0E+00	0.0E+00	1.2E-07	1.82%
Chloroform	67663	1.0E-07	0.0E+00	0.0E+00	0.0E+00	1.0E-07	1.63%
Methylene Chloride	75092	9.7E-08	0.0E+00	0.0E+00	0.0E+00	9.7E-08	1.52%
Dioxane, 1,4-	123911	1.1E-08	0.0E+00	0.0E+00	0.0E+00	1.1E-08	0.17%
Hydrazine	302012	8.6E-09	0.0E+00	0.0E+00	0.0E+00	8.6E-09	0.14%
Ethylbenzene	100414	3.8E-09	0.0E+00	0.0E+00	0.0E+00	3.8E-09	0.06%
Acetaldehyde	75070	2.5E-09	0.0E+00	0.0E+00	0.0E+00	2.5E-09	0.04%
Propylene Oxide	75569	2.2E-09	0.0E+00	0.0E+00	0.0E+00	2.2E-09	0.04%
Carbon Tetrachloride	56235	2.2E-09	0.0E+00	0.0E+00	0.0E+00	2.2E-09	0.03%
Butadiene, 1,3-	106990	1.5E-09	0.0E+00	0.0E+00	0.0E+00	1.5E-09	0.02%
Naphthalene	91203	1.0E-09	0.0E+00	0.0E+00	0.0E+00	1.0E-09	0.02%
Dichlorobenzene, p-	106467	6.3E-10	0.0E+00	0.0E+00	0.0E+00	6.3E-10	0.01%
Total Risk from all listed substance		5.7E-06	2.6E-07	3.9E-08	3.3E-07	6.3E-06	100.0%
Total Risk from all evaluated substance		5.7E-06	2.6E-07	3.9E-08	3.3E-07	6.3E-06	100.0%

¹ Substances contributing less than 0.01% to the total risk are not listed.

Table 6-5. Cancer Risk at the On-campus MEI by Substance and by Exposure Pathway in the 2007 Baseline Scenario

			Cancer Risk by I	Exposure Pathway	y ²		
Substance	CAS	Inhalation	Dermal Absorption	Soil Ingestion	Produce Ingestion	TOTAL Cancer Risk	% of TOTAL
Diesel Exhaust (particulates)	9901	5.3E-07	0.0E+00	0.0E+00	0.0E+00	5.3E-07	59.14%
Formaldehyde	50000	2.1E-07	0.0E+00	0.0E+00	0.0E+00	2.1E-07	23.02%
PAH (excluding napthalene)	1151	3.2E-09	4.3E-08	6.4E-09	5.4E-08	1.1E-07	11.94%
Benzene	71432	1.8E-08	0.0E+00	0.0E+00	0.0E+00	1.8E-08	2.00%
Chloroform	67663	1.5E-08	0.0E+00	0.0E+00	0.0E+00	1.5E-08	1.68%
Methylene Chloride	75092	1.4E-08	0.0E+00	0.0E+00	0.0E+00	1.4E-08	1.58%
Dioxane, 1,4-	123911	1.5E-09	0.0E+00	0.0E+00	0.0E+00	1.5E-09	0.17%
Hydrazine	302012	1.3E-09	0.0E+00	0.0E+00	0.0E+00	1.3E-09	0.14%
Ethylbenzene	100414	6.9E-10	0.0E+00	0.0E+00	0.0E+00	6.9E-10	0.08%
Acetaldehyde	75070	4.0E-10	0.0E+00	0.0E+00	0.0E+00	4.0E-10	0.05%
Propylene Oxide	75569	3.6E-10	0.0E+00	0.0E+00	0.0E+00	3.6E-10	0.04%
Carbon Tetrachloride	56235	3.2E-10	0.0E+00	0.0E+00	0.0E+00	3.2E-10	0.04%
Butadiene, 1,3-	106990	2.5E-10	0.0E+00	0.0E+00	0.0E+00	2.5E-10	0.03%
Naphthalene	91203	1.7E-10	0.0E+00	0.0E+00	0.0E+00	1.7E-10	0.02%
Dichlorobenzene, p-	106467	9.2E-11	0.0E+00	0.0E+00	0.0E+00	9.2E-11	0.01%
Trichloroethylene	79016	5.6E-11	0.0E+00	0.0E+00	0.0E+00	5.6E-11	0.01%
Total Risk from all listed source	ces ¹	7.9E-07	4.3E-08	6.4E-09	5.4E-08	8.9E-07	100.0%
Total Risk from all evaluated s	sources	7.9E-07	4.3E-08	6.4E-09	5.4E-08	8.9E-07	100.0%

¹ Substances contributing less than 0.01% to the total risk are not listed.

² Cancer risk adjusted for a 9-year exposure period consistent with OEHHA guidelines

Table 6-6. Chronic Noncancer Hazard Index at the Off- and On-Campus MEIs in the 2007 **Baseline Scenario**

			Chronic Haza	Chronic Hazard Quotients		
Target Organ	Substance	CAS	Off-Campus	On-Campus		
CV	Methylene Chloride	75092	2.38E-04	2.72E-04		
	Dioxane, 1,4-	123911	4.49E-07	5.13E-07		
	Total Chronic HI		2.38E-04	2.73E-04		
CNS	Benzene	71432	6.63E-05	7.99E-05		
	Toluene	108883	5.16E-05	6.52E-05		
	Xylenes	1330207	2.71E-05	3.33E-05		
	Carbon Tetrachloride	56235	1.26E-06	1.45E-06		
	Methylene Chloride	75092	2.38E-04	2.72E-04		
	Trichloroethylene	79016	2.35E-07	3.56E-07		
	Hexane	110543	2.18E-05	2.49E-05		
	Dichlorobenzene, p-	106467	6.76E-08	7.71E-08		
	Total Chronic HI		4.06E-04	4.77E-04		
DEVEL	Benzene	71432	6.63E-05	7.99E-05		
	Toluene	108883	5.16E-05	6.52E-05		
	Ethylbenzene	100414	7.61E-07	1.06E-06		
	Chloroform	67663	6.21E-05	7.10E-05		
	Carbon Tetrachloride	56235	1.26E-06	1.45E-06		
	Methanol	67561	3.41E-05	3.89E-05		
	Isopropyl Alcohol	67630	7.48E-07	8.54E-07		
	Total Chronic HI		2.17E-04	2.58E-04		
ENDO	Ethylbenzene	100414	7.61E-07	1.06E-06		
	Hydrazine	302012	8.71E-06	9.94E-06		
	Total Chronic HI		9.47E-06	1.10E-05		
EYE	Formaldehyde	50000	7.62E-02	8.77E-02		
	Acrolein	107028	2.62E-03	3.36E-03		
	Trichloroethylene	79016	2.35E-07	3.56E-07		
	Epichlorohydrin	106898	2.90E-08	3.31E-08		
	Triethylamine	121448	4.90E-06	5.60E-06		
	Total Chronic HI	-	7.88E-02	9.11E-02		
GILV	Ethylbenzene	100414	7.61E-07	1.06E-06		
-	Chloroform	67663	6.21E-05	7.10E-05		
	Perchloroethylene	127184	9.28E-07	1.07E-06		
	Carbon Tetrachloride	56235	1.26E-06	1.45E-06		
	1-Methoxy-2-propanol	107982	2.97E-07	4.52E-07		
	Hydrazine	302012	8.71E-06	9.94E-06		
	Ethylene Dichloride	107062	5.45E-09	6.23E-09		
	Dioxane, 1,4-	123911	4.49E-07	5.13E-07		
	Dimethylformamide	68122	2.69E-05	3.07E-05		
	Dichlorobenzene, p-	106467	6.76E-08	7.71E-08		
	Chlorobenzene	108907	1.35E-07	1.54E-07		
	TOTAL	10001	1.02E-04	1.16E-04		

Table 6-6. Chronic Noncancer Hazard Index at the Off- and On-Campus MEIs in the 2007 **Baseline Scenario**

			Chronic Haza	rd Quotients
Target Organ	Substance	CAS	Off-Campus	On-Campus
KIDN	Ethylbenzene	100414	7.61E-07	1.06E-06
	Chloroform	67663	6.21E-05	7.10E-05
	Perchloroethylene	127184	9.28E-07	1.07E-06
	Isopropyl Alcohol	67630	7.48E-07	8.54E-07
	Dioxane, 1,4-	123911	4.49E-07	5.13E-07
	Dichlorobenzene, p-	106467	6.76E-08	7.71E-08
	Chlorobenzene	108907	1.35E-07	1.54E-07
	Total Chronic HI		6.52E-05	7.47E-05
REPRO	Butadiene, 1,3-	106990	4.38E-07	5.57E-07
	Chlorobenzene	108907	1.35E-07	1.54E-07
	Total Chronic HI		5.73E-07	7.11E-07
RESP	Propylene Oxide	75569	1.97E-05	2.50E-05
	Toluene	108883	5.16E-05	6.52E-05
	Naphthalene	91203	3.29E-06	4.20E-06
	Formaldehyde	50000	7.62E-02	8.77E-02
	Acetaldehyde	75070	9.44E-05	1.20E-04
	Acrolein	107028	2.62E-03	3.36E-03
	Ammonia	7664417	1.08E-03	1.38E-03
	Xylenes	1330207	2.71E-05	3.33E-05
	Diesel Exhaust (particulates)	9901	2.47E-03	2.58E-03
	Hydrogen Chloride	7647010	5.66E-04	6.47E-04
	Epichlorohydrin	106898	2.90E-08	3.31E-08
	Dimethylformamide	68122	2.69E-05	3.07E-05
	Dichlorobenzene, p-	106467	6.76E-08	7.71E-08
	Total Chronic HI		8.32E-02	9.59E-02
BLOOD	Benzene	71432	6.63E-05	7.99E-05
	Total Chronic HI		6.63E-05	7.99E-05

CNS - Central Nervous System

CV - Cardiovascular System

DEVEL - Development System

ENDO – Endocrine System

GILV – Alimentary System IMMUN – Immune System

KIDN – Kidneys

REPRO - Reproductive System

RESP – Respiratory System

Table 6-7. Acute Noncancer Hazard Index at the Off- and On-Campus MEIs in the 2007 Baseline Scenario

			Acute Haza	Acute Hazard Quotients		
Target Organ	Substance	CAS	Off-Campus	On-Campus		
CNS	Toluene	108883	9.46E-05	1.79E-04		
	Vinyl Chloride	75014	5.13E-10	5.55E-10		
	Chloroform	67663	3.24E-04	4.60E-04		
	Perchloroethylene	127184	1.66E-08	1.95E-08		
	Methylene Chloride	75092	4.77E-05	5.92E-05		
	Carbon Tetrachloride	56235	8.43E-08	1.13E-07		
	Methanol	67561	3.42E-05	4.24E-05		
	Triethylamine	121448	2.46E-06	3.05E-06		
	Total Acute HI		5.03E-04	7.44E-04		
DEVEL	Benzene	71432	1.16E-04	3.74E-04		
	Propylene Oxide	75569	6.02E-06	6.52E-06		
	Toluene	108883	9.46E-05	1.79E-04		
	Chloroform	67663	3.24E-04	4.60E-04		
	Carbon Tetrachloride	56235	8.43E-08	1.13E-07		
	Total Acute HI		5.41E-04	1.02E-03		
EYE	Propylene Oxide	75569	6.02E-06	6.52E-06		
	Toluene	108883	9.46E-05	1.79E-04		
	Formaldehyde	50000	2.11E-02	2.56E-02		
	Acrolein	107028	4.62E-02	6.79E-02		
	Ammonia	7664417	3.77E-03	5.32E-03		
	Xylenes	1330207	1.58E-04	3.00E-04		
	Vinyl Chloride	75014	5.13E-10	5.55E-10		
	Perchloroethylene	127184	1.66E-08	1.95E-08		
	Isopropyl Alcohol	67630	1.15E-05	1.42E-05		
	Hydrogen Chloride	7647010	1.70E-05	2.11E-05		
	Epichlorohydrin	106898	4.69E-10	5.82E-10		
	Triethylamine	121448	2.46E-06	3.05E-06		
	Dioxane, 1,4-	123911	3.16E-06	3.91E-06		
	Total Acute HI		7.14E-02	9.93E-02		
GILV	Carbon Tetrachloride	56235	8.43E-08	1.13E-07		
	Total Acute HI		8.43E-08	1.13E-07		
IMMUN	Benzene	71432	1.16E-04	3.74E-04		
	Formaldehyde	50000	2.11E-02	2.56E-02		
	Total Acute HI		2.12E-02	2.60E-02		
REPRO	Benzene	71432	1.16E-04	3.74E-04		
	Propylene Oxide	75569	6.02E-06	6.52E-06		
	Toluene	108883	9.46E-05	1.79E-04		
	Chloroform	67663	3.24E-04	4.60E-04		
	Carbon Tetrachloride	56235	8.43E-08	1.13E-07		
	Total Acute HI		5.41E-04	1.02E-03		
RESP	Propylene Oxide	75569	6.02E-06	6.52E-06		

Table 6-7. Acute Noncancer Hazard Index at the Off- and On-Campus MEIs in the 2007 Baseline Scenario

			Acute Haza	rd Quotients
Target Organ	Substance	CAS	Off-Campus	On-Campus
	Toluene	108883	9.46E-05	1.79E-04
	Formaldehyde	50000	2.11E-02	2.56E-02
	Acrolein	107028	4.62E-02	6.79E-02
	Ammonia	7664417	3.77E-03	5.32E-03
	Xylenes	1330207	1.58E-04	3.00E-04
	Vinyl Chloride	75014	5.13E-10	5.55E-10
	Perchloroethylene	127184	1.66E-08	1.95E-08
	Isopropyl Alcohol	67630	1.15E-05	1.42E-05
	Hydrogen Chloride	7647010	1.70E-05	2.11E-05
	Epichlorohydrin	106898	4.69E-10	5.82E-10
	Dioxane, 1,4-	123911	3.16E-06	3.91E-06
	Total Acute HI		7.14E-02	9.93E-02
BLOOD	Benzene	71432	1.16E-04	3.74E-04
	Total Acute HI		1.16E-04	3.74E-04

CNS - Central Nervous System

CV - Cardiovascular System

DEVEL - Development System

ENDO – Endocrine System

GILV – Alimentary System

IMMUN – Immune System

KIDN - Kidneys

REPRO - Reproductive System

RESP - Respiratory System

Table 6-8. Summary of HRA Results for the Sensitive Receptors within the ZOI in the 2007 Baseline Scenario									
	UTM Coordinates Health Risks ¹								
Description	East (m)	North (m)	Cancer	Chronic HI	Acute HI				
Warner Avenue Elementary School	367684	3770806	2.3E-07	0.02	0.04				
Seeds University Elementary School	366782	3771446	2.6E-07	0.01	0.06				
Fernald Child Development Center	366780	3771357	2.8E-07	0.01	0.06				
Marymount High School	366624	3771361	3.0E-07	0.01	0.05				
Medical Center	366887	3770491	3.5E-07	0.06	0.07				
Reagan Medical Center	366586	3770505	2.1E-07	0.02	0.06				
Franz Hall Day Care Center	367000	3770800	9.0E-07	0.10	0.07				

¹ Cancer risk adjusted for 9-year exposure period consistent with OEHHA guidelines

Table 6-9. Summary of HRA Results for the Off- and On-campus MEIs in the LRDP Amendment **Scenario**

		Significance	Receptor Location		
	Result	Threshold ¹	East (m)	North (m)	Receptor Description
Off-campus	MEI				
Cancer Risk	6.4 x 10 ⁻⁶	10 x 10 ⁻⁶	367196	3770768	Fence line east of campus on Hilgard Avenue east of Parking Structure Two
Chronic HI	0.09	1.0	367186	3770669	Fence line east of campus on Hilgard Avenue east of Parking Structure Two
Acute HI	0.08	1.0	366114	3771509	Fence line northwest campus across from Sunset Boulevard
On-campus	MEI ¹				
Cancer Risk	9.0 x 10 ⁻⁷	10 x 10 ⁻⁶	367000	3770800	General Area of Franz Hall
Chronic HI	0.10	1.0	367000	3770800	General area of Franz Hall
Acute HI	0.11	1.0	366069	3771124	Northwest campus housing complex

¹ Significance threshold provided in SCAQMD Supplemental Guidelines for Preparing Risk Assessments (SCAQMD, 2005)

² Cancer risk adjusted for 9-year exposure period consistent with OEHHA guidelines

			Cancer Risk by Exposure Pathway ²				
			Dermal		Produce	TOTAL	
Source I.D.	Source Description	Inhalation	Absorption	Soil Ingestion	Ingestion	Cancer Risk	% of TOTAL
10084	ICE, 1750 BHP, UCLA Med Ctr	1.0E-06	0.0E+00	0.0E+00	0.0E+00	1.0E-06	16.22%
10075	ICE, 1323 BHP, MSB	8.4E-07	0.0E+00	0.0E+00	0.0E+00	8.4E-07	13.09%
10154	Laboratory Chemical Usage	7.5E-07	0.0E+00	0.0E+00	0.0E+00	7.5E-07	11.65%
10002	Gas Turbine	6.2E-08	1.2E-07	1.9E-08	1.6E-07	3.6E-07	5.65%
10001	Gas Turbine	6.2E-08	1.2E-07	1.8E-08	1.6E-07	3.6E-07	5.60%
10074	ICE, 1750 BHP, Young Hall E	3.4E-07	0.0E+00	0.0E+00	0.0E+00	3.4E-07	5.24%
10148	Laboratory Chemical Usage	3.0E-07	0.0E+00	0.0E+00	0.0E+00	3.0E-07	4.70%
10088	ICE, 2514 BHP, Campus Wide	2.7E-07	0.0E+00	0.0E+00	0.0E+00	2.7E-07	4.15%
10152	Laboratory Chemical Usage	2.3E-07	0.0E+00	0.0E+00	0.0E+00	2.3E-07	3.56%
10087	ICE, 1095 BHP, Seas IV NW	1.6E-07	0.0E+00	0.0E+00	0.0E+00	1.6E-07	2.46%
10107	ICE, 390 BHP, Boyer	9.3E-08	0.0E+00	0.0E+00	0.0E+00	9.3E-08	1.46%
10110	ICE, 250 BHP, Life Sciences	7.6E-08	0.0E+00	0.0E+00	0.0E+00	7.6E-08	1.18%
10104	ICE, 443 BHP, Boelter III	7.2E-08	0.0E+00	0.0E+00	0.0E+00	7.2E-08	1.12%
10067	ICE, 724 BHP, Sproul Hall	6.8E-08	0.0E+00	0.0E+00	0.0E+00	6.8E-08	1.06%
10153	Laboratory Chemical Usage	6.2E-08	0.0E+00	0.0E+00	0.0E+00	6.2E-08	0.96%
10161	Laboratory Chemical Usage	6.0E-08	0.0E+00	0.0E+00	0.0E+00	6.0E-08	0.93%
10085	ICE, 890 BHP, Macdonald Lab	5.5E-08	0.0E+00	0.0E+00	0.0E+00	5.5E-08	0.86%
10111	ICE, 166 BHP, Franz Hall	5.5E-08	0.0E+00	0.0E+00	0.0E+00	5.5E-08	0.86%
10150	Laboratory Chemical Usage	5.4E-08	0.0E+00	0.0E+00	0.0E+00	5.4E-08	0.84%
10072	ICE, 2220 BHP, Cogen	5.3E-08	0.0E+00	0.0E+00	0.0E+00	5.3E-08	0.82%
10077	ICE, 553 BHP, UCPD NE	5.1E-08	0.0E+00	0.0E+00	0.0E+00	5.1E-08	0.80%
20017	Laboratory Chemical Usage	5.1E-08	0.0E+00	0.0E+00	0.0E+00	5.1E-08	0.79%
10120	ICE, 1095 BHP, 200 Med Plaza	4.9E-08	0.0E+00	0.0E+00	0.0E+00	4.9E-08	0.76%
10122	ICE, 1095 BHP, 200 Med Plaza	4.8E-08	0.0E+00	0.0E+00	0.0E+00	4.8E-08	0.74%
10086	ICE, 1490 BHP, AGSM South	4.2E-08	0.0E+00	0.0E+00	0.0E+00	4.2E-08	0.66%
10158	Laboratory Chemical Usage	4.2E-08	0.0E+00	0.0E+00	0.0E+00	4.2E-08	0.65%
10106	ICE, 166 BHP, Boelter II 12400	3.7E-08	0.0E+00	0.0E+00	0.0E+00	3.7E-08	0.58%
10155	Laboratory Chemical Usage	3.2E-08	0.0E+00	0.0E+00	0.0E+00	3.2E-08	0.50%
10159	Laboratory Chemical Usage	3.2E-08	0.0E+00	0.0E+00	0.0E+00	3.2E-08	0.50%
10080	ICE, 1260 BHP, UCLA Med Ctr	3.1E-08	0.0E+00	0.0E+00	0.0E+00	3.1E-08	0.49%

			Cancer Risk by E	xposure Pathway ²			
			Dermal		Produce	TOTAL	
Source I.D.	Source Description	Inhalation	Absorption	Soil Ingestion	Ingestion	Cancer Risk	% of TOTAL
10081	ICE, 1260 BHP, UCLA Med Ctr	3.1E-08	0.0E+00	0.0E+00	0.0E+00	3.1E-08	0.49%
10082	ICE, 1310 BHP, UCLA Med Ctr	3.1E-08	0.0E+00	0.0E+00	0.0E+00	3.1E-08	0.49%
10083	ICE, 1310 BHP, UCLA Med Ctr	3.1E-08	0.0E+00	0.0E+00	0.0E+00	3.1E-08	0.49%
10151	Laboratory Chemical Usage	3.1E-08	0.0E+00	0.0E+00	0.0E+00	3.1E-08	0.48%
10068	ICE, 320 BHP, Dykstra	3.1E-08	0.0E+00	0.0E+00	0.0E+00	3.1E-08	0.48%
10091	ICE, 2000 BHP, SRB I (NRB)	3.0E-08	0.0E+00	0.0E+00	0.0E+00	3.0E-08	0.47%
10078	ICE, 750 BHP, PS 1	2.9E-08	0.0E+00	0.0E+00	0.0E+00	2.9E-08	0.46%
10073	ICE, 746 BHP, Ackerman	2.6E-08	0.0E+00	0.0E+00	0.0E+00	2.6E-08	0.41%
10102	ICE, 377 BHP, Kerckhoff	1.9E-08	0.0E+00	0.0E+00	0.0E+00	1.9E-08	0.30%
10076	ICE, 668 BHP, STRB	1.9E-08	0.0E+00	0.0E+00	0.0E+00	1.9E-08	0.29%
10003	Gasoline Dispensing	1.8E-08	0.0E+00	0.0E+00	0.0E+00	1.8E-08	0.29%
10114	ICE, 168 BHP, PS 8 SE	1.7E-08	0.0E+00	0.0E+00	0.0E+00	1.7E-08	0.27%
10101	ICE, 3057 BHP, Eng V	1.7E-08	0.0E+00	0.0E+00	0.0E+00	1.7E-08	0.26%
10130	ICE, 155 BHP, Campus Wide	1.6E-08	0.0E+00	0.0E+00	0.0E+00	1.6E-08	0.26%
10079	ICE, 1850 BHP, Gonda	1.6E-08	0.0E+00	0.0E+00	0.0E+00	1.6E-08	0.24%
10123	ICE, 535 BHP, Env Service Building	1.5E-08	0.0E+00	0.0E+00	0.0E+00	1.5E-08	0.24%
20016	ICE, 500 BHP, LSR	1.3E-08	0.0E+00	0.0E+00	0.0E+00	1.3E-08	0.20%
10098	ICE, 1881 BHP, Police Station Rep.	1.3E-08	0.0E+00	0.0E+00	0.0E+00	1.3E-08	0.20%
10112	ICE, 94 BHP, Math Sciences	1.1E-08	0.0E+00	0.0E+00	0.0E+00	1.1E-08	0.17%
10160	Laboratory Chemical Usage	1.1E-08	0.0E+00	0.0E+00	0.0E+00	1.1E-08	0.17%
10064	ICE, 335 BHP, Covel	1.1E-08	0.0E+00	0.0E+00	0.0E+00	1.1E-08	0.17%
10094	ICE, 2000 BHP, Rep Hospital 1	1.0E-08	0.0E+00	0.0E+00	0.0E+00	1.0E-08	0.16%
10095	ICE, 2000 BHP, Rep Hospital 2	1.0E-08	0.0E+00	0.0E+00	0.0E+00	1.0E-08	0.16%
10096	ICE, 2000 BHP, Rep Hospital 3	1.0E-08	0.0E+00	0.0E+00	0.0E+00	1.0E-08	0.16%
10097	ICE, 2000 BHP, Rep Hospital 4	1.0E-08	0.0E+00	0.0E+00	0.0E+00	1.0E-08	0.16%
10062	Boiler, 12.5MMBTU, 200 Med Plaza	1.0E-09	3.7E-09	5.5E-10	4.7E-09	1.0E-08	0.16%
10069	ICE, 320 BHP, Rieber Hall	9.9E-09	0.0E+00	0.0E+00	0.0E+00	9.9E-09	0.15%
10066	ICE, 440 BHP, Hedrick	9.8E-09	0.0E+00	0.0E+00	0.0E+00	9.8E-09	0.15%
10118	ICE, 135 BHP, Pauley	9.6E-09	0.0E+00	0.0E+00	0.0E+00	9.6E-09	0.15%
10061	Boiler, 12.5MMBTU, 200 Med Plaza	9.3E-10	3.3E-09	4.9E-10	4.2E-09	8.9E-09	0.14%

	Table 6-10. Source Contribution to Cancer Risk at the Off-Campus MEI in the LRDP Amendment Scenario										
			Cancer Risk by E	xposure Pathway ²							
Source I.D.	Source Description	Inhalation	Dermal Absorption	Soil Ingestion	Produce Ingestion	TOTAL Cancer Risk	% of TOTAL				
10105	ICE, 235 BHP, Royce NW	7.7E-09	0.0E+00	0.0E+00	0.0E+00	7.7E-09	0.12%				
10146	Laboratory Chemical Usage	6.6E-09	0.0E+00	0.0E+00	0.0E+00	6.6E-09	0.10%				
10128	ICE, 277 BHP, CHS	6.3E-09	0.0E+00	0.0E+00	0.0E+00	6.3E-09	0.10%				
10108	ICE, 519 BHP, PS 4	6.2E-09	0.0E+00	0.0E+00	0.0E+00	6.2E-09	0.10%				
TOTAL FROM LISTED SOURCES ¹		5.6E-06	2.5E-07	3.8E-08	3.2E-07	6.2E-06	97.40%				
TOTAL FROM ALL EVALUATED SOURCES		5.8E-06	2.6E-07	3.9E-08	3.3E-07	6.4E-06	100.00%				

¹ Only sources contributing 0.1% or more to the risk are listed. Listed sources contribute to 97.4% of the total risk from all evaluated sources.

Table 6-11. Source Contribution to Cancer Risk at the On-Campus MEI in the LRDP Amendment Scenario

			Cancer Risk by	Exposure Pathway	1		
Source I.D.	Source Description	Inhalation	Dermal Absorption	Soil Ingestion	Produce Ingestion	TOTAL Cancer Risk	% of TOTAL
10084	ICE, 1750 BHP, UCLA Med Ctr	1.2E-07	0.0E+00	0.0E+00	0.0E+00	1.2E-07	13.62%
10154	Laboratory Chemical Usage	1.2E-07	0.0E+00	0.0E+00	0.0E+00	1.2E-07	13.45%
10088	ICE, 2514 BHP, Campus Wide	6.8E-08	0.0E+00	0.0E+00	0.0E+00	6.8E-08	7.53%
10002	Turbine, Cogen	1.0E-08	2.0E-08	3.0E-09	2.6E-08	5.9E-08	6.61%
10001	Turbine, Cogen	1.0E-08	2.0E-08	3.0E-09	2.5E-08	5.9E-08	6.51%
10087	ICE, 1095 BHP, Seas IV NW	3.7E-08	0.0E+00	0.0E+00	0.0E+00	3.7E-08	4.13%
10104	ICE, 443 BHP, Boelter III	3.3E-08	0.0E+00	0.0E+00	0.0E+00	3.3E-08	3.65%
10148	Laboratory Chemical Usage	3.1E-08	0.0E+00	0.0E+00	0.0E+00	3.1E-08	3.46%
10075	ICE, 1323 BHP, MSB	2.8E-08	0.0E+00	0.0E+00	0.0E+00	2.8E-08	3.09%
10107	ICE, 390 BHP, Boyer	1.9E-08	0.0E+00	0.0E+00	0.0E+00	1.9E-08	2.06%
10085	ICE, 890 BHP, Macdonald Lab	1.7E-08	0.0E+00	0.0E+00	0.0E+00	1.7E-08	1.95%
10150	Laboratory Chemical Usage	1.6E-08	0.0E+00	0.0E+00	0.0E+00	1.6E-08	1.75%
10111	ICE, 166 BHP, Franz Hall	1.4E-08	0.0E+00	0.0E+00	0.0E+00	1.4E-08	1.59%
10153	Laboratory Chemical Usage	1.4E-08	0.0E+00	0.0E+00	0.0E+00	1.4E-08	1.57%
10158	Laboratory Chemical Usage	1.4E-08	0.0E+00	0.0E+00	0.0E+00	1.4E-08	1.57%
10106	ICE, 166 BHP, Boelter II 12400	1.4E-08	0.0E+00	0.0E+00	0.0E+00	1.4E-08	1.55%
10077	ICE, 553 BHP, UCPD NE	1.3E-08	0.0E+00	0.0E+00	0.0E+00	1.3E-08	1.47%
10074	ICE, 1750 BHP, Young Hall E	1.3E-08	0.0E+00	0.0E+00	0.0E+00	1.3E-08	1.42%
10072	ICE, 2220 BHP, Cogen	1.2E-08	0.0E+00	0.0E+00	0.0E+00	1.2E-08	1.38%
10152	Laboratory Chemical Usage	1.2E-08	0.0E+00	0.0E+00	0.0E+00	1.2E-08	1.36%
10067	ICE, 724 BHP, Sproul Hall	1.2E-08	0.0E+00	0.0E+00	0.0E+00	1.2E-08	1.33%
10122	ICE, 1095 BHP, 200 Med Plaza	1.0E-08	0.0E+00	0.0E+00	0.0E+00	1.0E-08	1.12%
10120	ICE, 1095 BHP, 200 Med Plaza	9.9E-09	0.0E+00	0.0E+00	0.0E+00	9.9E-09	1.10%
10151	Laboratory Chemical Usage	9.1E-09	0.0E+00	0.0E+00	0.0E+00	9.1E-09	1.01%
10110	ICE, 250 BHP, Life Sciences	8.7E-09	0.0E+00	0.0E+00	0.0E+00	8.7E-09	0.96%
10091	ICE, 2000 BHP, SRB I (NRB)	8.3E-09	0.0E+00	0.0E+00	0.0E+00	8.3E-09	0.92%
10159	Laboratory Chemical Usage	8.2E-09	0.0E+00	0.0E+00	0.0E+00	8.2E-09	0.91%
10161	Laboratory Chemical Usage	5.9E-09	0.0E+00	0.0E+00	0.0E+00	5.9E-09	0.66%
10078	ICE, 750 BHP, PS 1	5.9E-09	0.0E+00	0.0E+00	0.0E+00	5.9E-09	0.66%

Table 6-11. Source Contribution to Cancer Risk at the On-Campus MEI in the LRDP Amendment Scenario

			Cancer Risk by	Exposure Pathway	1		
Source I.D.	Source Description	Inhalation	Dermal Absorption	Soil Ingestion	Produce Ingestion	TOTAL Cancer Risk	% of TOTAL
10068	ICE, 320 BHP, Dykstra	5.6E-09	0.0E+00	0.0E+00	0.0E+00	5.6E-09	0.62%
10073	ICE, 746 BHP, Ackerman	5.4E-09	0.0E+00	0.0E+00	0.0E+00	5.4E-09	0.61%
10079	ICE, 1850 BHP, Gonda	4.4E-09	0.0E+00	0.0E+00	0.0E+00	4.4E-09	0.49%
10130	ICE, 155 BHP, Campus Wide	4.2E-09	0.0E+00	0.0E+00	0.0E+00	4.2E-09	0.46%
10114	ICE, 168 BHP, PS 8 SE	4.1E-09	0.0E+00	0.0E+00	0.0E+00	4.1E-09	0.46%
10102	ICE, 377 BHP, Kerckhoff	3.9E-09	0.0E+00	0.0E+00	0.0E+00	3.9E-09	0.43%
10086	ICE, 1490 BHP, AGSM South	3.6E-09	0.0E+00	0.0E+00	0.0E+00	3.6E-09	0.40%
10003	Gasoline Dispensing	3.5E-09	0.0E+00	0.0E+00	0.0E+00	3.5E-09	0.39%
10112	ICE, 60 BHP, Math Sciences	3.5E-09	0.0E+00	0.0E+00	0.0E+00	3.5E-09	0.39%
10123	ICE, 535 BHP, Env Service Building	2.9E-09	0.0E+00	0.0E+00	0.0E+00	2.9E-09	0.32%
10098	ICE, 1881 BHP, Police Station Rep	2.8E-09	0.0E+00	0.0E+00	0.0E+00	2.8E-09	0.31%
20017	Laboratory Chemical Usage	2.6E-09	0.0E+00	0.0E+00	0.0E+00	2.6E-09	0.29%
10080	ICE, 1260 BHP, UCLA Med Ctr	2.2E-09	0.0E+00	0.0E+00	0.0E+00	2.2E-09	0.25%
10081	ICE, 1260 BHP, UCLA Med Ctr	2.2E-09	0.0E+00	0.0E+00	0.0E+00	2.2E-09	0.25%
10082	ICE, 1310 BHP, UCLA Med Ctr	2.2E-09	0.0E+00	0.0E+00	0.0E+00	2.2E-09	0.25%
10083	ICE, 1310 BHP, UCLA Med Ctr	2.2E-09	0.0E+00	0.0E+00	0.0E+00	2.2E-09	0.25%
10155	Laboratory Chemical Usage	2.1E-09	0.0E+00	0.0E+00	0.0E+00	2.1E-09	0.24%
10118	ICE, 135 BHP, Pauley	2.1E-09	0.0E+00	0.0E+00	0.0E+00	2.1E-09	0.24%
10076	ICE, 668 BHP, STRB	2.1E-09	0.0E+00	0.0E+00	0.0E+00	2.1E-09	0.23%
10062	Boiler, 12.5MMBTU, 200 Med Plaza	2.1E-10	7.5E-10	1.1E-10	9.5E-10	2.0E-09	0.23%
10064	ICE, 335 BHP, Covel	1.9E-09	0.0E+00	0.0E+00	0.0E+00	1.9E-09	0.21%
10101	ICE, 3057 BHP, Eng V	1.7E-09	0.0E+00	0.0E+00	0.0E+00	1.7E-09	0.19%
10160	Laboratory Chemical Usage	1.6E-09	0.0E+00	0.0E+00	0.0E+00	1.6E-09	0.18%
10061	Boiler, 12.5MMBTU, 200 Med Plaza	1.7E-10	6.0E-10	8.9E-11	7.6E-10	1.6E-09	0.18%
10066	ICE, 440 BHP, Hedrick	1.5E-09	0.0E+00	0.0E+00	0.0E+00	1.5E-09	0.17%
10069	ICE, 320 BHP, Rieber Hall	1.5E-09	0.0E+00	0.0E+00	0.0E+00	1.5E-09	0.17%
10128	ICE, 277 BHP, CHS	1.5E-09	0.0E+00	0.0E+00	0.0E+00	1.5E-09	0.16%
10142	ICE, 50 BHP, Campus Wide	1.5E-09	0.0E+00	0.0E+00	0.0E+00	1.5E-09	0.16%
10143	ICE, 50 BHP, Campus Wide	1.5E-09	0.0E+00	0.0E+00	0.0E+00	1.5E-09	0.16%
10144	ICE, 50 BHP, Park Str 8	1.4E-09	0.0E+00	0.0E+00	0.0E+00	1.4E-09	0.15%

Table 6-11. Source Contribution to Cancer Risk at the On-Campus MEI in the LRDP Amendment Scenario

			Cancer Risk by	1			
Source I.D.	Source Description	Inhalation	Dermal Absorption	Soil Ingestion	Produce Ingestion	TOTAL Cancer Risk	% of TOTAL
10126	ICE, 216 BHP, Campus Wide	1.2E-09	0.0E+00	0.0E+00	0.0E+00	1.2E-09	0.14%
10117	ICE, 135 BHP, LATC	1.1E-09	0.0E+00	0.0E+00	0.0E+00	1.1E-09	0.12%
10115	ICE, 107 BHP, Unix	1.1E-09	0.0E+00	0.0E+00	0.0E+00	1.1E-09	0.12%
10132	ICE, 370 BHP, Murphy Hall	1.0E-09	0.0E+00	0.0E+00	0.0E+00	1.0E-09	0.12%
10108	ICE, 519 BHP, PS 4	9.5E-10	0.0E+00	0.0E+00	0.0E+00	9.5E-10	0.11%
10121	ICE, 335 BHP, 300 Med Plaza	8.7E-10	0.0E+00	0.0E+00	0.0E+00	8.7E-10	0.10%
TOTAL FROM LIS	TOTAL FROM LISTED SOURCES ²		4.2E-08	6.2E-09	5.3E-08	8.8E-07	97.91%
TOTAL FROM AL	TOTAL FROM ALL EVALUATED SOURCES		4.3E-08	6.4E-09	5.4E-08	9.0E-07	100.00%

¹ Cancer risk adjusted for 9-year exposure period consistent with OEHHA guidelines

² Only sources contributing 0.1% or more to the risk are listed. Listed sources contribute to 97.91% of the total risk from all evaluated sources.

Table 6-12. Cancer Risk at the Off-campus MEI by Substance and by Exposure Pathway in the LRDP Amendment Scenario

			Cancer Risk by Ex	cposure Pathway		TOTAL Cancer	
Substance	CAS	Inhalation	Dermal Absorption	Soil Ingestion	Produce Ingestion	Risk	% of TOTAL ¹
Diesel Exhaust (particulates)	9901	4.0E-06	0.0E+00	0.0E+00	0.0E+00	4.0E-06	61.93%
Formaldehyde	50000	1.4E-06	0.0E+00	0.0E+00	0.0E+00	1.4E-06	22.31%
PAH (excluding naphthalene)	1151	2.0E-08	2.6E-07	3.9E-08	3.3E-07	6.5E-07	10.17%
Benzene	71432	1.2E-07	0.0E+00	0.0E+00	0.0E+00	1.2E-07	1.84%
Chloroform	67663	1.1E-07	0.0E+00	0.0E+00	0.0E+00	1.1E-07	1.65%
Methylene Chloride	75092	1.0E-07	0.0E+00	0.0E+00	0.0E+00	1.0E-07	1.55%
Dioxane, 1,4-	123911	1.1E-08	0.0E+00	0.0E+00	0.0E+00	1.1E-08	0.17%
Hydrazine	302012	8.8E-09	0.0E+00	0.0E+00	0.0E+00	8.8E-09	0.14%
Ethylbenzene	100414	3.8E-09	0.0E+00	0.0E+00	0.0E+00	3.8E-09	0.06%
Acetaldehyde	75070	2.5E-09	0.0E+00	0.0E+00	0.0E+00	2.5E-09	0.04%
Carbon Tetrachloride	56235	2.3E-09	0.0E+00	0.0E+00	0.0E+00	2.3E-09	0.04%
Propylene Oxide	75569	2.2E-09	0.0E+00	0.0E+00	0.0E+00	2.2E-09	0.03%
Butadiene, 1,3-	106990	1.5E-09	0.0E+00	0.0E+00	0.0E+00	1.5E-09	0.02%
Naphthalene	91203	1.0E-09	0.0E+00	0.0E+00	0.0E+00	1.0E-09	0.02%
Dichlorobenzene, p-	106467	6.5E-10	0.0E+00	0.0E+00	0.0E+00	6.5E-10	0.01%
Total risk from all listed source	es	5.8E-06	2.6E-07	3.9E-08	3.3E-07	6.4E-06	100.00%
Total risk from all evaluated so	Total risk from all evaluated sources		2.6E-07	3.9E-08	3.3E-07	6.4E-06	100.00%

¹ Substances contributing less than 0.01% to the total risk are not listed.

Table 6-13. Cancer Risk at the On-campus MEI by Substance and by Exposure Pathway in the LRDP Amendment Scenario

			Cancer Risk by Exp	osure Pathway ²		TOTAL Cancer	% of
Substance	CAS	Inhalation	Dermal Absorption	Soil Ingestion	Produce Ingestion	Risk	TOTAL ¹
Diesel Exhaust (particulates)	9901	5.31E-07	0.00E+00	0.00E+00	0.00E+00	5.31E-07	59.08%
Formaldehyde	50000	2.08E-07	0.00E+00	0.00E+00	0.00E+00	2.08E-07	23.17%
PAH (excluding napthalene)	1151	3.23E-09	4.28E-08	6.42E-09	5.44E-08	1.07E-07	11.89%
Benzene	71432	1.80E-08	0.00E+00	0.00E+00	0.00E+00	1.80E-08	2.00%
Chloroform	67663	1.52E-08	0.00E+00	0.00E+00	0.00E+00	1.52E-08	1.69%
Methylene Chloride	75092	1.43E-08	0.00E+00	0.00E+00	0.00E+00	1.43E-08	1.59%
Dioxane, 1,4-	123911	1.57E-09	0.00E+00	0.00E+00	0.00E+00	1.57E-09	0.17%
Hydrazine	302012	1.27E-09	0.00E+00	0.00E+00	0.00E+00	1.27E-09	0.14%
Ethylbenzene	100414	6.89E-10	0.00E+00	0.00E+00	0.00E+00	6.89E-10	0.08%
Acetaldehyde	75070	4.04E-10	0.00E+00	0.00E+00	0.00E+00	4.04E-10	0.04%
Carbon Tetrachloride	56235	3.63E-10	0.00E+00	0.00E+00	0.00E+00	3.63E-10	0.04%
Propylene Oxide	75569	3.28E-10	0.00E+00	0.00E+00	0.00E+00	3.28E-10	0.04%
Butadiene, 1,3-	106990	2.48E-10	0.00E+00	0.00E+00	0.00E+00	2.48E-10	0.03%
Naphthalene	91203	1.70E-10	0.00E+00	0.00E+00	0.00E+00	1.70E-10	0.02%
Dichlorobenzene, p-	106467	9.28E-11	0.00E+00	0.00E+00	0.00E+00	9.28E-11	0.01%
Trichloroethylene	79016	5.57E-11	0.00E+00	0.00E+00	0.00E+00	5.57E-11	0.01%
Total Risk from all listed sour	rces	7.95E-07	4.28E-08	6.42E-09	5.44E-08	8.99E-07	100.00%
Total Risk from all evaluated	sources	7.95E-07	4.28E-08	6.42E-09	5.44E-08	8.99E-07	100.00%

¹ Substances contributing less than 0.01% to the total risk are not listed.

² Cancer risk adjusted for 9-year exposure period consistent with OEHHA guidelines

Table 6-14. Chronic Noncancer Hazard Index at the Off- and On-Campus MEIs in the LRDP **Amendment Scenario**

			Chronic Haza	ard Quotients
Target Organ	Substance	CAS Number	Off-Campus	On-Campus
CV	Methylene Chloride	75092	2.53E-04	2.75E-04
	Dioxane, 1,4-	123911	4.77E-07	5.19E-07
	Total Chronic HI		2.53E-04	2.76E-04
CNS	Benzene	71432	6.93E-05	8.06E-05
	Toluene	108883	5.27E-05	6.55E-05
	Xylenes	1330207	2.84E-05	3.36E-05
	Carbon Tetrachloride	56235	1.32E-06	1.47E-06
	Methylene Chloride	75092	2.53E-04	2.75E-04
	Trichloroethylene	79016	2.57E-07	3.56E-07
	Hexane	110543	2.31E-05	2.51E-05
	Dichlorobenzene, p-	106467	7.17E-08	7.80E-08
	Total Chronic HI		4.28E-04	4.82E-04
DEVEL	Benzene	71432	6.93E-05	8.06E-05
	Ethylbenzene	100414	6.93E-05	1.06E-06
	Toluene	108883	5.27E-05	6.55E-05
	Carbon Tetrachloride	56235	1.32E-06	1.47E-06
	Chloroform	67663	6.59E-05	7.17E-05
	Isopropyl Alcohol	67630	7.94E-07	8.63E-07
	Methanol	67561	3.62E-05	3.94E-05
	Total Chronic HI		2.96E-04	2.61E-04
ENDO	Ethylbenzene	100414	7.35E-07	1.06E-06
	Hydrazine	302012	9.24E-06	1.01E-05
	Total Chronic HI		9.98E-06	1.12E-05
EYE	Formaldehyde	50000	7.96E-02	8.86E-02
	Acrolein	107028	2.18E-03	3.37E-03
	Trichloroethylene	79016	2.57E-07	3.56E-07
	Triethylamine	121448	5.20E-06	5.66E-06
	Epichlorohydrin	106898	3.07E-08	3.34E-08
	Total Chronic HI		8.18E-02	9.20E-02
GILV	Ethylbenzene	100414	7.35E-07	1.06E-06
	Carbon Tetrachloride	56235	1.32E-06	1.47E-06
	Perchloroethylene	127184	9.54E-07	1.08E-06
	Chloroform	67663	6.59E-05	7.17E-05
	Hydrazine	302012	9.24E-06	1.01E-05
	Dioxane, 1,4-	123911	4.77E-07	5.19E-07
	Dimethylformamide	68122	2.85E-05	3.10E-05
	Dichlorobenzene, p-	106467	7.17E-08	7.80E-08
	Chlorobenzene	108907	1.43E-07	1.56E-07
	Ethylene Dichloride	107062	5.79E-09	6.30E-09
	1-Methoxy-2-propanol	107982	3.27E-07	4.52E-07
	Total Chronic HI		1.08E-04	1.18E-04
KIDN	Ethylbenzene	100414	7.35E-07	1.06E-06

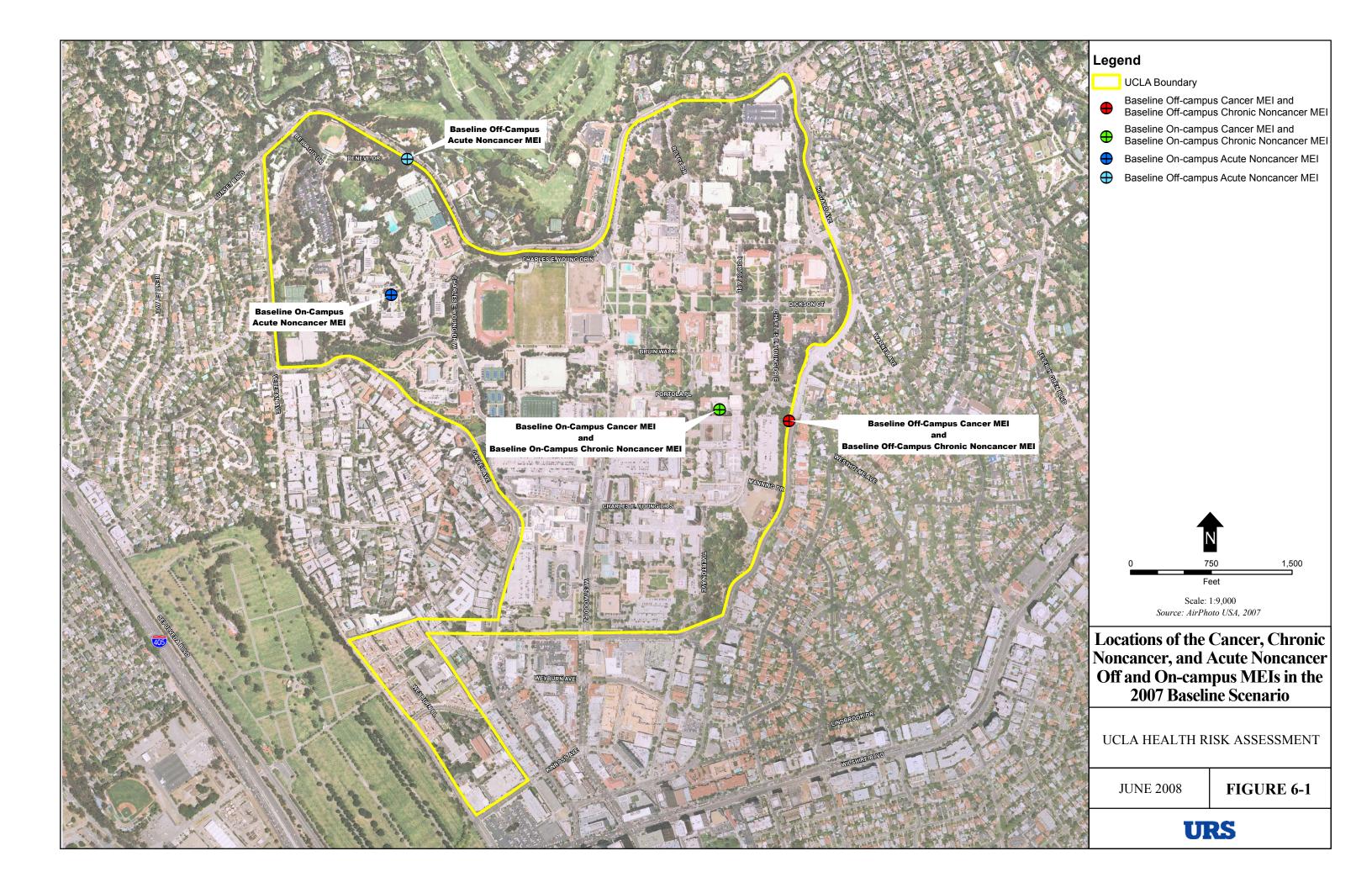
Table 6-14. Chronic Noncancer Hazard Index at the Off- and On-Campus MEIs in the LRDP **Amendment Scenario**

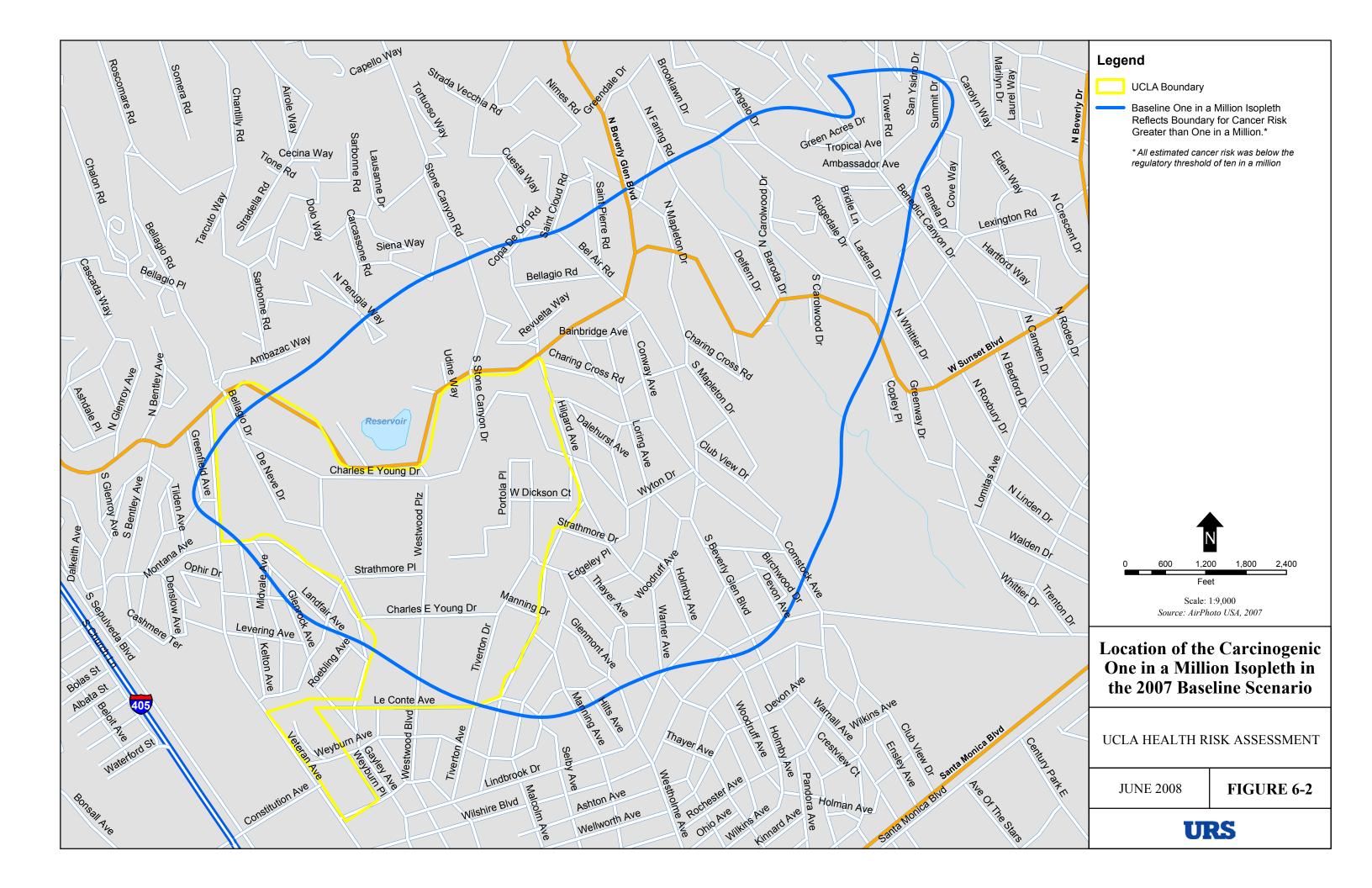
			Chronic Haza	ard Quotients
Target Organ	Substance	CAS Number	Off-Campus	On-Campus
	Perchloroethylene	127184	9.54E-07	1.08E-06
	Chloroform	67663	6.59E-05	7.17E-05
	Isopropyl Alcohol	67630	7.94E-07	8.63E-07
	Dioxane, 1,4-	123911	4.77E-07	5.19E-07
	Dichlorobenzene, p-	106467	7.17E-08	7.80E-08
	Chlorobenzene	108907	1.43E-07	1.56E-07
	Total Chronic HI		6.91E-05	7.55E-05
REPRO	Butadiene, 1,3-	106990	3.54E-07	5.57E-07
	Chlorobenzene	108907	1.43E-07	1.56E-07
	Total Chronic HI		4.97E-07	7.13E-07
RESP	Diesel Exhaust (particulates)	9901	2.22E-03	2.60E-03
	Ammonia	7664417	8.93E-04	1.38E-03
	Formaldehyde	50000	7.96E-02	8.86E-02
	Naphthalene	91203	2.71E-06	4.21E-06
	Propylene Oxide	75569	1.59E-05	2.50E-05
	Toluene	108883	5.27E-05	6.55E-05
	Acrolein	107028	2.18E-03	3.37E-03
	Acetaldehyde	75070	7.70E-05	1.20E-04
	Xylenes	1330207	2.84E-05	3.36E-05
	Hydrogen Chloride	7647010	6.01E-04	6.54E-04
	Epichlorohydrin	106898	3.07E-08	3.34E-08
	Dimethylformamide	68122	2.85E-05	3.10E-05
	Dichlorobenzene, p-	106467	7.17E-08	7.80E-08
	Total Chronic HI		8.57E-02	9.69E-02
BLOOD	Benzene	71432	6.93E-05	8.06E-05
	Total Chronic HI		6.93E-05	8.06E-05

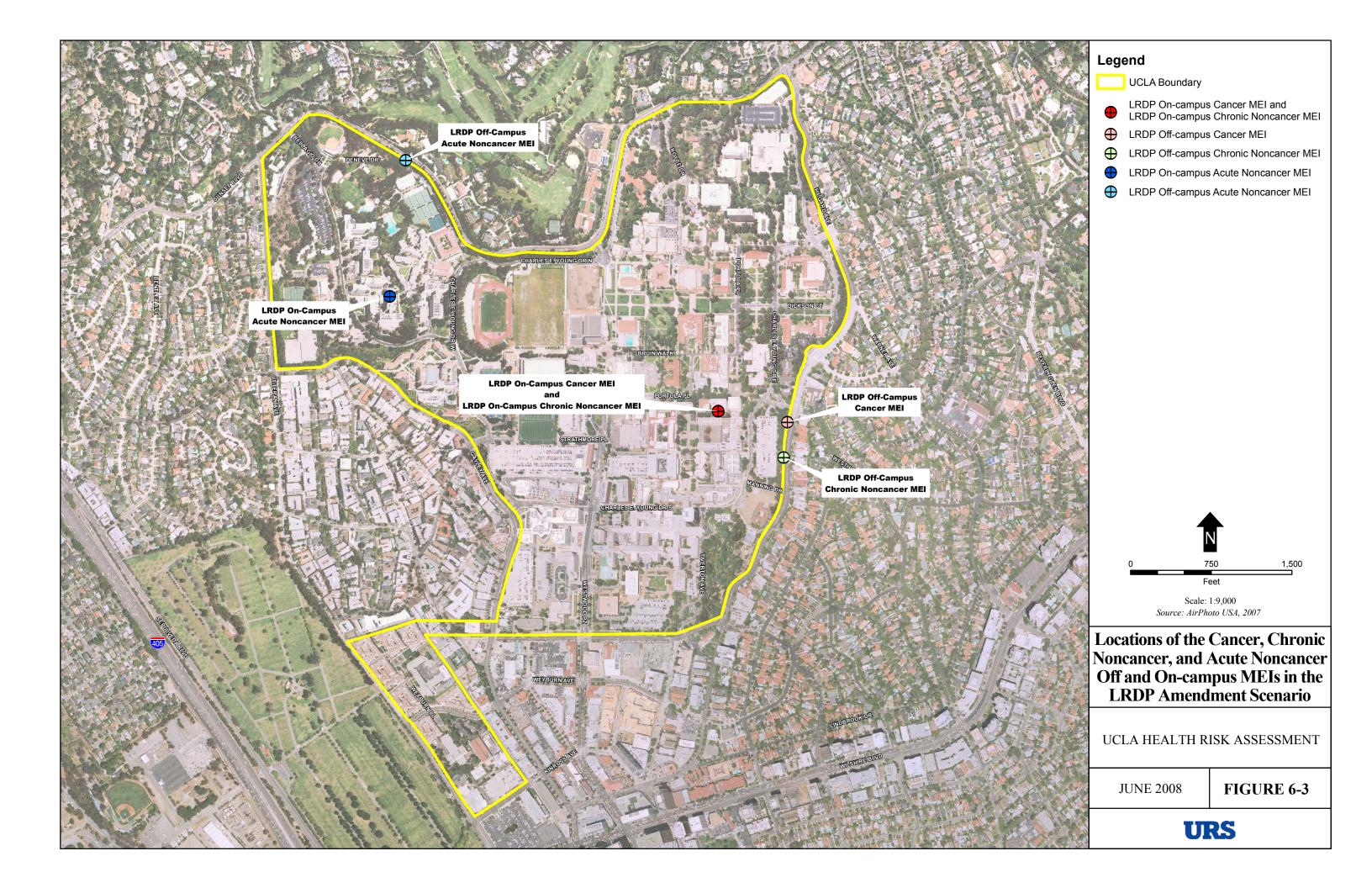
Table 6-15. Acute Noncancer Hazard Index at the Off- and On-Campus MEIs in the LRDP Amendment Scenario

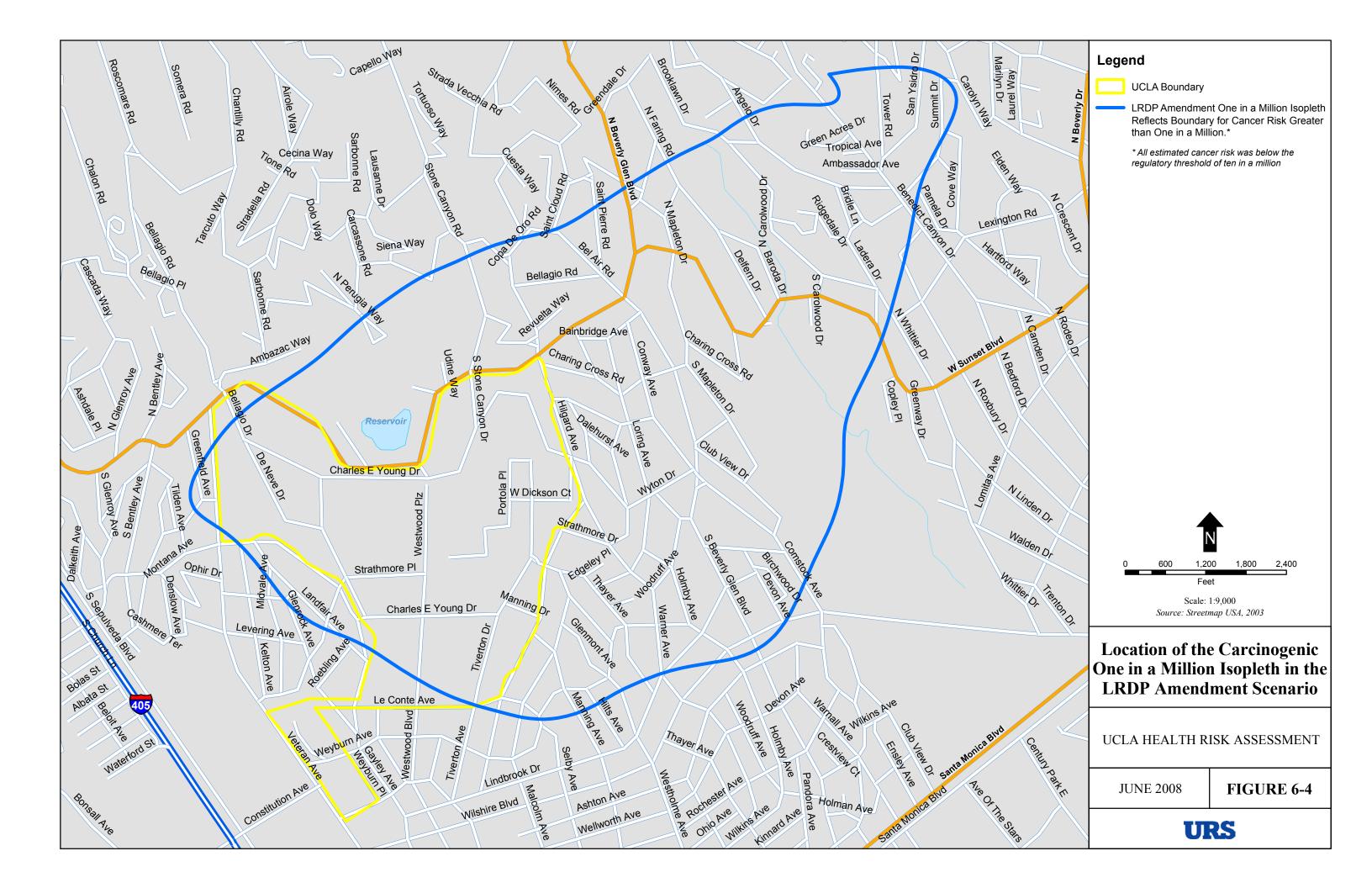
			Acute Hazard	Quotients
Target Organ	Substance	CAS Number	Off-Campus	On- Campus
CNS	Toluene	108883	9.48E-05	1.80E-0
CNS	Carbon Tetrachloride	56235	9.46E-05 8.62E-08	1.00E-0
				-
	Methylene Chloride	75092	4.94E-05	6.12E-0
	Perchloroethylene	127184	1.69E-08	1.99E-0
	Chloroform	67663	3.33E-04	4.75E-0
	Vinyl Chloride	75014	5.13E-10	5.55E-1
	Methanol	67561	3.53E-05	4.38E-0
	Triethylamine	121448	2.54E-06	3.15E-0
	Total Acute HI		5.15E-04	7.63E-0
DEVEL	Benzene	71432	1.17E-04	3.76E-0
	Propylene Oxide	75569	6.02E-06	6.52E-0
	Toluene	108883	9.48E-05	1.80E-0
	Carbon Tetrachloride	56235	8.62E-08	1.16E-0
	Chloroform	67663	3.33E-04	4.75E-0
	Total Acute HI		5.51E-04	1.04E-0
EYE	Ammonia	7664417	3.96E-03	6.02E-0
	Formaldehyde	50000	2.17E-02	2.64E-0
	Propylene Oxide	75569	6.02E-06	6.52E-0
	Toluene	108883	9.48E-05	1.80E-0
	Acrolein	107028	4.88E-02	7.78E-0
	Xylenes	1330207	1.58E-04	3.01E-0
	Perchloroethylene	127184	1.69E-08	1.99E-0
	Vinyl Chloride	75014	5.13E-10	5.55E-1
	Hydrogen Chloride	7647010	1.76E-05	2.18E-0
	Isopropyl Alcohol	67630	1.19E-05	1.47E-0
	Dioxane, 1,4-	123911	3.26E-06	4.05E-0
	Triethylamine	121448	2.54E-06	3.15E-0
	Epichlorohydrin	106898	4.85E-10	6.02E-1
	Total Acute HI		7.48E-02	1.11E-0
GILV	Carbon Tetrachloride	56235	8.62E-08	1.16E-0
	Total Acute HI		8.62E-08	1.16E-0
IMMUN	Benzene	71432	1.17E-04	3.76E-0
	Formaldehyde	50000	2.17E-02	2.64E-0
	Total Acute HI	00000	2.18E-02	2.68E-0
REPRO	Benzene	71432	1.17E-04	3.76E-0
1121110	Propylene Oxide	75569	6.02E-06	6.52E-0
	Toluene	108883	9.48E-05	1.80E-0
	Carbon Tetrachloride	56235	8.62E-08	1.16E-0
	Chloroform	67663	3.33E-04	4.75E-0
	Total Acute HI	07003	5.51E-04	1.04E-0
RESP	Ammonia	7664417	3.96E-03	6.02E-0

Table 6-15. Acute Noncancer Hazard Index at the Off- and On-Campus MEIs in the LRDP **Amendment Scenario**


			Acute Hazard Quotients		
Target Organ	Substance	CAS Number	Off-Campus	On- Campus	
	Formaldehyde	50000	2.17E-02	2.64E-02	
	Propylene Oxide	75569	6.02E-06	6.52E-06	
	Toluene	108883	9.48E-05	1.80E-04	
	Acrolein	107028	4.88E-02	7.78E-02	
	Xylenes	1330207	1.58E-04	3.01E-04	
	Perchloroethylene	127184	1.69E-08	1.99E-08	
	Vinyl Chloride	75014	5.13E-10	5.55E-10	
	Hydrogen Chloride	7647010	1.76E-05	2.18E-05	
	Isopropyl Alcohol	67630	1.19E-05	1.47E-05	
	Dioxane, 1,4-	123911	3.26E-06	4.05E-06	
	Epichlorohydrin	106898	4.85E-10	6.02E-10	
	Total Acute HI		7.48E-02	1.11E-01	
BLOOD	Benzene	71432	1.17E-04	3.76E-04	
	Total Acute HI		1.17E-04	3.76E-04	


Table 6-16. Summary of HRA Results for the Sensitive Receptors within the ZOI in the LRDP Amendment Scenario


	UTM Co	ordinates	Health Risks			
Description	East (m)	North (m)	Cancer	Chronic HI	Acute HI	
Warner Avenue Elementary School	367684	3770806	2.4E-07	0.03	0.04	
Seeds University Elementary School	366782	3771446	2.6E-07	0.01	0.06	
Fernald Child Development Center	366780	3771357	2.8E-07	0.01	0.06	
Marymount High School	366624	3771361	3.0E-07	0.01	0.06	
Medical Center	366887	3770491	3.6E-07	0.07	0.08	
Reagan Medical Center	366586	3770505	2.2E-07	0.02	0.06	
Franz Hall Day Care Center	367000	3770800	9.0E-07	0.10	0.07	


¹ Cancer risk adjusted for 9-year exposure period consistent with OEHHA guidelines

7.0 UNCERTAINTIES

Predictions of future health risks related to UCLA activities entails uncertainties because of gaps in scientific knowledge in the practice of exposure and risk assessment, as well as the need to simplify some aspects of the process for a manageable computational effort. In general, there are model and data uncertainties with respect to the assumed emissions, dispersion modeling, characteristics of the potentially exposed populations, and toxicological factors.

Because risk assessments are so often performed to set some regulatory limit on exposure for the protection of public health, the assumptions of risk assessments have tended to overestimate rather than underestimate risk. The methodologies used in this risk assessment followed the "point estimate" approach described in the OEHHA guidelines (OEHHA, 2003). Point estimate risk values are based on a central tendency approach combined with 95% upper confidence limit exposure factors to arrive at single point health risk estimates believed to be conservative upperbound estimates (OEHHA, 2003). Sometimes, risk assessments follow a "stochastic approach," presenting ranges of health risk rather than single numerical values to better convey the actual uncertainties involved. The OEHHA guidance offers alternative stochastic approaches to defining exposure factors that provide for a quantitative or semiquantitative treatment of the risk estimate variability. For this HRA, the standard "first tier" regulatory approach of employing health-protective "point estimate" assumptions was used to provide a degree of maximum protection on environmental values. The resulting health risk predictions should be viewed as maximum estimates of the actual health risks. Although the assessment process includes assumptions that may individually either overestimate or underestimate impact, as described below, on balance, health risk impacts are probably overestimated by a substantial margin.

7.1 **EMISSION ESTIMATES**

Emission estimates could be in error due to limits in source specific data. This bias could be toward underestimation or overestimation for any given source. Conservative (i.e., overpredictive) assumptions were applied where possible in the estimation of emissions. However, it is possible that all sources of emissions or emission constituents from routine campus operations were not identified. This could lead to an underestimation of risk. On the other hand, it is believed that all emission sources representing a significant emissions potential have been included in the HRA.

In most health risk assessments, calculated health risks are dominated by only a handful of the evaluated emission constituents. The TACs evaluated in this HRA include common chemicals addressed in most health risk assessments, and are likely representative of the highest emitted TACs at UCLA. Therefore, omission of substances from the HRA is unlikely to lead to a substantial underestimation of health risks.

Finally, the emission estimation methodologies that were used could result in underestimation or overestimation of emissions for any given TAC. For example, the emission estimates for many of the combustion sources are based on actual fuel usage information supplied by UCLA. These data were assumed to be representative of typical annual operations, and could be higher or lower for any operation in any given year. EPA and CARB emission factors used by regulatory agencies, such as the SCAQMD,

were applied to the annual fuel use data and rated equipment capacities to arrive at emission estimates. These factors on balance tend to overestimate rather than underestimate potential emissions.

In summary, there are factors in the estimation of emissions that could lead to underestimation or overestimation of health risks. It is believed that the compounds chosen for analysis in this HRA are likely to have characterized the substantial majority of potential health risks, and that the emission calculation procedures used are not likely to have caused a significant underestimation of risk, and may well represent an overestimation.

7.2 AIR DISPERSION MODELING

In general, EPA-approved dispersion models, such as the one used in this risk assessment within the HARP model, tend to overpredict concentrations rather than underpredict them. For example, all chemical emissions are assumed not to be transformed in the atmosphere. For certain pollutants, conversion to less toxic forms may occur sufficiently fast to reduce concentrations from the conservative model predictions. Moreover, these models use assumptions about plume dispersion that tend to overpredict concentrations. In the modeling for this HRA, it was necessary to group multiple sources together (e.g., all laboratory emissions were grouped by buildings and modeled as area sources rather than many stacks), which tends to overestimate risks because emissions are concentrated into a single low-buoyancy plume rather than in several higher-buoyancy plumes. Finally, while particulate matter settling is assumed, this is not factored into downwind concentration calculations. This leads to "double counting" and overprediction of concentrations.

7.3 EXPOSURE ASSESSMENT

The most important uncertainties concern the definitions of exposed populations and their exposure characteristics. The choice of a 70-year exposure period at residential exposure locations for lifetime risk estimates is very conservative in the sense that no person will actually spend 24 hours a day, 365 days a year over a 70-year period at exactly the point of highest toxicity-weighted annual average air concentrations. The average period of U.S. residency at any one location is about 9 years, and the 90th percentile of residency (typically used by the EPA in "reasonable maximum exposure" estimates) is about 30 years.

For short-term exposure, there is also likely overprediction because the analysis assumed that all campus operations involving the use of chemicals of short-term concern will occur at maximum hourly emission rates all at the same time and that the peak impacts of each source are collocated.

7.4 Dose Response Assessment

All estimates of cancer toxicity and non-cancer toxicity for the HRA are consistent with OEHHA guidelines, and are among the most conservative compilations of toxicity information available. Toxicity estimates are derived either from observations in humans or from projection of information derived from experiments with laboratory animals. Human data are obviously more relevant for health risk assessments, but are often uncertain because of the difficulty of estimating exposures associated with the health effect of interest, because of insufficient numbers of people studied, because relatively high

occupational exposures must be extrapolated to low environmental exposures, or because the population studied may be more or less susceptible than the population as a whole. Cancer risk coefficients from human data are typically considered best estimates and are applied without safety factors. As discussed previously, cancer risk is typically considered proportional to pollutant concentration at any level of exposure (i.e., a linear, no-threshold model), which is conservative at low environmental doses. For noncancer effects, the lowest exposure known to cause effects in humans is usually divided by uncertainty or safety factors to account for variations in susceptibility and other factors. When toxicity estimates come from animal data, they usually involve extra safety factors to account for possibly greater sensitivity in humans, and the less-than-human-lifetime observations in animals.

Overall, the toxicity assumptions and criteria used in this risk assessment are biased toward overestimating risk.

8.0 REFERENCES

- CARB. The California Almanac of Emissions and Air Quality 2005 Edition. http://www.arb.ca.gov/agd/almanac/almanac05/almanac.05.htm. 2005.
- CARB. Risk Reduction Plan to Reduce Particulate Matter Emissions from Diesel-Fueled Engines and Vehicles. Stationary Source Division and Mobile Source Division. October 2000.
- EPA. Industrial Source Complex (ISC) Dispersion Model User's Guide, Volume 1. EPA-454/B-95-003a, 1995.
- OEHHA. The Air Toxics Hot Spots Program Guidance Manual for Preparation of Health Risk Assessments. August 2003.
- SCAQMD. Telephone communication with Tom Chico of SCAQMD. May 20, 2008.
- SCAQMD. Office of Stationary Source Compliance. Supplemental Guidelines for Preparing Risk Assessments to Comply with the Air Toxics "Hot Spots" Information and Assessment Act (AB 2588). July 2005.
- SCAQMD. Multiple Air Toxics Exposure Study in the South Coast Air Basin (MATES-II). March 2000.

Stanford University. Biology Chemistry Quadrangle Project. March 1989

Appendix A Emissions Estimates

UCLA Toxic Emissions - 2007 Baseline Scenario.xls Gas Turbines, Hr - NG (lb/hr)

				1			
				Name:	TURB1	TURB2	
				Number:	10001	10002	
				Equipment:	Gas Turbine	Gas Turbine	
				Location:	Cogen	Cogen	
				Size (mmbtu/hr):	234	234	Total
		Emission Factor ^a		SCAQMD Permit:	F00255	F00070	Emissions
CAS	Pollutant	(lbs/mmcf fuel burned)		Hourly Usage ^b (mmcf):	0.154	0.154	(lb/hr)
75070	Acetaldehyde	4.08E-02			6.28E-03	6.28E-03	1.26E-02
107028	Acrolein	6.53E-03			1.00E-03	1.00E-03	2.01E-03
7664417	Ammonia	9.10E+00			1.40E+00	1.40E+00	2.80E+00
71432	Benzene	1.22E-02			1.88E-03	1.88E-03	3.75E-03
106990	Butadiene, 1,3-	4.39E-04			6.75E-05	6.75E-05	1.35E-04
100414	Ethylbenzene	3.26E-02			5.02E-03	5.02E-03	1.00E-02
50000	Formaldehyde	7.24E-01			1.11E-01	1.11E-01	2.23E-01
91203	Naphthalene	1.33E-03			2.05E-04	2.05E-04	4.09E-04
1151	PAH (excluding Naphthalene) ^b	9.18E-04			1.41E-04	1.41E-04	2.83E-04
75569	Propylene Oxide	2.96E-02			4.55E-03	4.55E-03	9.11E-03
108883	Toluene	1.33E-01			2.05E-02	2.05E-02	4.09E-02
1330207	Xylenes	6.53E-02			1.00E-02	1.00E-02	2.01E-02
^a South Coa	ast Air Quality Management Distri	ct Supplemental Reporting	Procedures for				
AB2588	Facilities Table B-1 Emission Fac	tors for Turbines - Natural (Gas Combustion				
^b PAH (card	cinogenic) = Total PAH - Naphthal	ene					
^c Based on	annual natural gas usage divided	by 8760 hr/yr					

UCLA Toxic Emissions - 2007 Baseline Scenario.xls Gas Turbines, Yr - NG (lb/yr)

1	T			1			
				Name:	TURB1	TURB2	
				Number:	10001	10002	
				Equipment:	Gas Turbine	Gas Turbine	
				Location:	Cogen	Cogen	
				Size (mmbtu/hr):	234	234	Total
		Emission Factor ^{a,b}		SCAQMD Permit:	F00255	F00070	Emissions
CAS	Pollutant	(lbs/mmcf fuel burned)		Annual Usage ^c (mmcf):	1347.9	1347.9	(lb/yr)
75070	Acetaldehyde	4.08E-02			5.50E+01	5.50E+01	1.10E+02
107028	Acrolein	6.53E-03			8.80E+00	8.80E+00	1.76E+01
7664417	Ammonia	9.10E+00			1.23E+04	1.23E+04	2.45E+04
71432	Benzene	1.22E-02			1.64E+01	1.64E+01	3.29E+01
106990	Butadiene, 1,3-	4.39E-04			5.92E-01	5.92E-01	1.18E+00
100414	Ethylbenzene	3.26E-02			4.39E+01	4.39E+01	8.79E+01
50000	Formaldehyde	7.24E-01			9.76E+02	9.76E+02	1.95E+03
91203	Naphthalene	1.33E-03			1.79E+00	1.79E+00	3.59E+00
1151	PAH (excluding Naphthalene) ^b	9.18E-04			1.24E+00	1.24E+00	2.47E+00
75569	Propylene Oxide	2.96E-02			3.99E+01	3.99E+01	7.98E+01
108883	Toluene	1.33E-01			1.79E+02	1.79E+02	3.59E+02
1330207	Xylenes	6.53E-02			8.80E+01	8.80E+01	1.76E+02
^a South Coa	ast Air Quality Management Distri	ct Supplemental Reporting	Procedures for				
AB2588	Facilities Table B-1 Emission Fac	tors for Turbines - Natural (Gas Combustion				
^b PAH (card	cinogenic) = Total PAH - Naphthal	ene					
°Source: A	nnual Air Emission Report for 200	06/2007 submitted to SCAQ	MD				

UCLA Toxic Emissions - 2007 Baseline Scenario.xls Gas Turbines, Hr - LFG (lb/hr)

			Name:	TURB1	TURB2	
			Number:	10001	10002	
			Equipment:	Gas Turbine	Gas Turbine	
			Location:	Cogen	Cogen	
			Size (mmbtu/hr):	234	234	Total
		Emission Factor ^{a,b}	SCAQMD Permit:	F00255	F00070	Emissions
CAS	Pollutant	(lbs/mmcf fuel burned)	Hourly Usage ^c (mmcf):	0.035	0.035	(lb/hr)
71432	Benzene	8.40E-03		2.96E-04	2.96E-04	5.91E-04
56235	Carbon Tetrachloride	7.20E-04		2.53E-05	2.53E-05	5.07E-05
75092	Chloroform	5.60E-04		1.97E-05	1.97E-05	3.94E-05
127184	Methylene Chloride	9.20E-04		3.24E-05	3.24E-05	6.48E-05
79016	Perchloroethylene	1.00E-03		3.52E-05	3.52E-05	7.04E-05
108883	Toluene	4.40E-02		1.55E-03	1.55E-03	3.10E-03
67663	Trichloroethylene	7.60E-04		2.67E-05	2.67E-05	5.35E-05
75014	Vinyl Chloride	6.40E-04		2.25E-05	2.25E-05	4.50E-05
1330207	Xylenes	1.24E-02		4.36E-04	4.36E-04	8.73E-04
^a South Co	ast Air Quality Management Distri	ict Supplemental Reporting	Procedures for			
AB2588	Facilities Table B-6 Emission Fac	ctors for Turbines - Landfill (Gas Combustion			
^b Based or	n annual landfill gas usage divided	by 8760 hr/yr				

UCLA Toxic Emissions - 2007 Baseline Scenario.xls Gas Turbines, Yr - LFG (lb/yr)

			Managa	TUDD4	TUDDO	
			Name:	TURB1	TURB2	
			Number:	10001	10002	
			Equipment:	Gas Turbine	Gas Turbine	
			Location:	Cogen	Cogen	
			Size (mmbtu/hr):	234	234	Total
		Emission Factor ^a	SCAQMD Permit:	F00255	F00070	Emissions
CAS	Pollutant	(lbs/mmcf fuel burned)	Annual Usage ^b (mmcf):	308.3	308.3	(lb/yr)
71432	Benzene	8.40E-03		2.59E+00	2.59E+00	5.18E+00
56235	Carbon Tetrachloride	7.20E-04		2.22E-01	2.22E-01	4.44E-01
75092	Chloroform	5.60E-04		1.73E-01	1.73E-01	3.45E-01
127184	Methylene Chloride	9.20E-04		2.84E-01	2.84E-01	5.67E-01
79016	Perchloroethylene	1.00E-03		3.08E-01	3.08E-01	6.17E-01
108883	Toluene	4.40E-02		1.36E+01	1.36E+01	2.71E+01
67663	Trichloroethylene	7.60E-04		2.34E-01	2.34E-01	4.69E-01
75014	Vinyl Chloride	6.40E-04		1.97E-01	1.97E-01	3.95E-01
1330207	Xylenes	1.24E-02		3.82E+00	3.82E+00	7.65E+00
^a South Co	ast Air Quality Management Di	strict Supplemental Reporting	Procedures for			
AB2588	Facilities Table B-6 Emission	Factors for Turbines - Landfill (Gas Combustion			
bSource: A	Annual Air Emission Report for	2006/2007 submitted to SCAC	QMD			

UCLA Toxic Emissions - 2007 Baseline Scenario.xls Gasoline Loading-Dispensing, Hr (lb/hr)

			Name:	DISP1	
			Number:	10003	
			Equipment:	Gasoline Disp	
			Location:	Fleet Services	
			Tank Size (Mgal):		Total
		Emission Factor ^{a,b,c}	SCAQMD Permit:	N8863	Emissions
CAS	Pollutant	(lbs/Mgal throughput)	Hourly Throughput ^d (Mgal):	1.9	(lb/hr)
71432	Benzene	2.81E-02		5.39E-02	5.39E-02
100414	Ethylbenzene	3.93E-02		7.54E-02	7.54E-02
110543	Hexane	2.81E-02		5.39E-02	5.39E-02
108883	Toluene	1.96E-01		3.77E-01	3.77E-01
95636	Trimethylbenzene, 1,2,4-	7.01E-02		1.35E-01	1.35E-01
1330207	Xylenes	1.96E-01		3.77E-01	3.77E-01
^a Default SCAQMD Emissi	on Factor for Gasoline Dispensing	=	1.8	lbs/Mgal	
^b AP-42 Loading Loss Emi	ssion Factor (LLEF)= (12.46 * S * P * N	1 * / T)*(1-(eff/100))	1.005	lbs/Mgal	
Where:					
Variable Name	Description of Variable		Gasoline Variable	Units of Variable	
LLEF =	Loading Loss Emission Factor			lbs/1000 gal	
12.46 =	Loading Loss Equation Constant		12.46	dimensionless	
S =	Submerged Loading Constant		1	dimensionless	
P =	True Liquid Vapor Pressure		6.6	psia	
M =	Vapor Molecular Weight		66	lb/lb-mole	
T =	Bulk Liquid Temperature		540	°R (°F+460)	
eff =	Vapor Recovery Control Efficiency		90	percent	
Gasoline speciation base	 ed on SCAQMD Supplemental Instruction	ns for liquid storage tanks -	Annendix 3		
Benzene		lbs/lbs	i i i i i i i i i i i i i i i i i i i		
Hexane		lbs/lbs			
Toluene		lbs/lbs			
Ethylbenzene		lbs/lbs			
m-Xylene		lbs/lbs			
1,2,4-Trimethylbenzene		lbs/lbs			
^d 8 nozzles x 6 gal/min x 4					

UCLA Toxic Emissions - 2007 Baseline Scenario.xls Gasoline Loading-Dispensing, Yr (lb/yr)

				DIOD4	
			Name:	DISP1	
			Number:		
			Equipment:		
			Location:	Fleet Services	
			Tank Size (Mgal):	10	Total
		Emission Factor ^{a,b,c}	SCAQMD Permit:	N8863	Emissions
CAS	Pollutant	(lbs/Mgal)	Annual Throughput ^d (Mgal):	320.0	(lb/yr)
71432	Benzene	2.81E-02		8.98E+00	8.98E+00
100414	Ethylbenzene	3.93E-02		1.26E+01	1.26E+01
110543	Hexane	2.81E-02		8.98E+00	8.98E+00
108883	Toluene	1.96E-01		6.28E+01	6.28E+01
95636	Trimethylbenzene, 1,2,4-	7.01E-02		2.24E+01	2.24E+01
1330207	Xylenes	1.96E-01		6.28E+01	6.28E+01
	on Factor for Gasoline Dispensing ^a		1.8	lbs/Mgal	
•	ssion Factor (LLEF)= (12.46 * S * P * N	M * / T)*(1-(eff/100)) ^b	1.005	lbs/Mgal	
Where:					
Variable Name	Description of Variable		Gasoline Variable		
	Loading Loss Emission Factor			lbs/1000 gal	
	Loading Loss Equation Constant			dimensionless	
	Submerged Loading Constant			dimensionless	
	True Liquid Vapor Pressure			psia	
	Vapor Molecular Weight			lb/lb-mole	
	Bulk Liquid Temperature			°R (°F+460)	
eff =	Vapor Recovery Control Efficiency		90	percent	
-					
^c Gasoline speciation based	on SCAQMD Supplemental Instructions fo		k 3		
Benzene		lbs/lbs			
Hexane	0.01	lbs/lbs			
Toluene	0.07	lbs/lbs			
Ethylbenzene	0.014	lbs/lbs			
m-Xylene	0.07	lbs/lbs			
1,2,4-Trimethylbenzene	0.025	lbs/lbs			
dSource: Annual Air Emis	sion Report for 2006/2007 submitted to	o SCAQMD			

		1						
			Name:	BOIL1	BOIL2	BOIL3	BOIL4	
			Number:	10004	10005	10006	10007	
			Equipment:	Boiler	Boiler	Boiler	Boiler	
			Location:	Covel Commons	Covel Commons	Canyon Point	Delta Terrace	
		Emission Factor ^a	Size (MMBTU/hr):	1.8256	1.8256	1.8256	1.8256	
		(lbs/mmcf fuel burned)	SCAQMD Permit:	EXEMPT	EXEMPT	EXEMPT	EXEMPT	
CAS	Pollutant	(Boilers < 10 MMBTU/HR)	Hourly Usage ^b (mmcf):	0.0018	0.0018	0.0018	0.0018	
75070	Acetaldehyde	0.0043		7.70E-06	7.70E-06	7.70E-06	7.70E-06	
107028	Acrolein	0.0027		4.83E-06	4.83E-06	4.83E-06	4.83E-06	
7664417	Ammonia	3.2		5.73E-03	5.73E-03	5.73E-03	5.73E-03	
71432	Benzene	0.008		1.43E-05	1.43E-05	1.43E-05	1.43E-05	
100414	Ethylbenzene	0.0095		1.70E-05	1.70E-05	1.70E-05	1.70E-05	
50000	Formaldehyde	0.017		3.04E-05	3.04E-05	3.04E-05	3.04E-05	
110543	Hexane	0.0063		1.13E-05	1.13E-05	1.13E-05	1.13E-05	
91203	Naphthalene	0.0003		5.37E-07	5.37E-07	5.37E-07	5.37E-07	
1151	PAH (excluding napthalene)	0.0001		1.79E-07	1.79E-07	1.79E-07	1.79E-07	
108883	Toluene	0.0366		6.55E-05	6.55E-05	6.55E-05	6.55E-05	
1330207	Xylenes	0.0272		4.87E-05	4.87E-05	4.87E-05	4.87E-05	
^a South Coast Air Quality Management District Supplemental Reporting Procedures for								
AB2588 Facilities Table B-1 Emission Factors for Boilers - Natural Gas Combustion								
^b Based on	size of boiler divided by heating	value for natural gas, 1020 BT	U/scf					

	T				1	1			I I
			Name:	BOIL5	BOIL6	BOIL7	BOIL8	BOIL9	BOIL10
			Number:	10008	10009	10010	10011	10012	10013
			Equipment:	Boiler	Boiler	Boiler	Boiler	Boiler	Boiler
			Location:	Courtside	Bradley	Dykstra Hall	Dykstra Hall	DeNeve 'C' Bldg	DeNeve 'C' Bldg
		Emission Factor ^a	Size (MMBTU/hr):	1.8256	1.2000	1.2600	1.2600	1.2600	1.2600
		(lbs/mmcf fuel burned)	SCAQMD Permit:	EXEMPT	EXEMPT	EXEMPT	EXEMPT	EXEMPT	EXEMPT
CAS	Pollutant	(Boilers < 10 MMBTU/HR)	Hourly Usage ^b (mmcf):	0.0018	0.0012	0.0012	0.0012	0.0012	0.0012
75070	Acetaldehyde	0.0043		7.70E-06	5.06E-06	5.31E-06	5.31E-06	5.31E-06	5.31E-06
107028	Acrolein	0.0027		4.83E-06	3.18E-06	3.34E-06	3.34E-06	3.34E-06	3.34E-06
7664417	Ammonia	3.2		5.73E-03	3.76E-03	3.95E-03	3.95E-03	3.95E-03	3.95E-03
71432	Benzene	0.008		1.43E-05	9.41E-06	9.88E-06	9.88E-06	9.88E-06	9.88E-06
100414	Ethylbenzene	0.0095		1.70E-05	1.12E-05	1.17E-05	1.17E-05	1.17E-05	1.17E-05
50000	Formaldehyde	0.017		3.04E-05	2.00E-05	2.10E-05	2.10E-05	2.10E-05	2.10E-05
110543	Hexane	0.0063		1.13E-05	7.41E-06	7.78E-06	7.78E-06	7.78E-06	7.78E-06
91203	Naphthalene	0.0003		5.37E-07	3.53E-07	3.71E-07	3.71E-07	3.71E-07	3.71E-07
1151	PAH (excluding napthalene)	0.0001		1.79E-07	1.18E-07	1.24E-07	1.24E-07	1.24E-07	1.24E-07
108883	Toluene	0.0366		6.55E-05	4.31E-05	4.52E-05	4.52E-05	4.52E-05	4.52E-05
1330207	Xylenes	0.0272		4.87E-05	3.20E-05	3.36E-05	3.36E-05	3.36E-05	3.36E-05
^a South Coa	ast Air Quality Management Distri	ocedures for							
AB2588	Facilities Table B-1 Emission Fac	etors for Boilers - Natural Gas	Combustion						
^b Based on	size of boiler divided by heating v	value for natural gas, 1020 BT	U/scf						

				500.44	500.46	500.40	500.44
			Name:	BOIL11	BOIL12	BOIL13	BOIL14
			Number:	10014	10015	10016	10017
			Equipment:	Boiler	Boiler	Boiler	Boiler
			Location:	DeNeve 'D' Bldg	DeNeve 'D' Bldg	DeNeve 'E' Bldg	DeNeve 'E' Bldg
		Emission Factor ^a	Size (MMBTU/hr):	1.2600	1.2600	1.2600	1.8000
		(lbs/mmcf fuel burned)	SCAQMD Permit:	EXEMPT	EXEMPT	EXEMPT	EXEMPT
CAS	Pollutant	(Boilers < 10 MMBTU/HR)	Hourly Usage ^b (mmcf):	0.0012	0.0012	0.0012	0.0018
75070	Acetaldehyde	0.0043		5.31E-06	5.31E-06	5.31E-06	7.59E-06
107028	Acrolein	0.0027		3.34E-06	3.34E-06	3.34E-06	4.76E-06
7664417	Ammonia	3.2		3.95E-03	3.95E-03	3.95E-03	5.65E-03
71432	Benzene	0.008		9.88E-06	9.88E-06	9.88E-06	1.41E-05
100414	Ethylbenzene	0.0095		1.17E-05	1.17E-05	1.17E-05	1.68E-05
50000	Formaldehyde	0.017		2.10E-05	2.10E-05	2.10E-05	3.00E-05
110543	Hexane	0.0063		7.78E-06	7.78E-06	7.78E-06	1.11E-05
91203	Naphthalene	0.0003		3.71E-07	3.71E-07	3.71E-07	5.29E-07
1151	PAH (excluding napthalene)	0.0001		1.24E-07	1.24E-07	1.24E-07	1.76E-07
108883	Toluene	0.0366		4.52E-05	4.52E-05	4.52E-05	6.46E-05
		0.0272		3.36E-05	3.36E-05	3.36E-05	4.80E-05
^a South Coa	ast Air Quality Management Distri	ct Supplemental Reporting Pro	ocedures for				
AB2588	Facilities Table B-1 Emission Fac	tors for Boilers - Natural Gas	Combustion				
^b Based on	size of boiler divided by heating v	alue for natural gas, 1020 BT	U/scf				

		Name:	BOIL15	BOIL16	BOIL17	BOIL18	BOIL19	BOIL20
		Number:	10018	10019	10020	10021	10022	10023
		Equipment:	Boiler	Boiler	Boiler	Boiler	Boiler	Boiler
		Location:	DeNeve 'F' Bldg	DeNeve 'F' Bldg	DeNeve Podium Bldg	DeNeve Podium Bldg	DeNeve 'A' Bldg	DeNeve 'A' Bldg
	Emission Factor ^a	Size (MMBTU/hr):	1.2600	1.5300	1.5300	1.5300	1.2600	1.2600
	(lbs/mmcf fuel burned)	SCAQMD Permit:	EXEMPT	EXEMPT	EXEMPT	EXEMPT	EXEMPT	EXEMPT
Pollutant	(Boilers < 10 MMBTU/HR)	Hourly Usage ^b (mmcf):	0.0012	0.0015	0.0015	0.0015	0.0012	0.0012
Acetaldehyde	0.0043		5.31E-06	6.45E-06	6.45E-06	6.45E-06	5.31E-06	5.31E-06
Acrolein	0.0027		3.34E-06	4.05E-06	4.05E-06	4.05E-06	3.34E-06	3.34E-06
Ammonia	3.2		3.95E-03	4.80E-03	4.80E-03	4.80E-03	3.95E-03	3.95E-03
Benzene	0.008		9.88E-06	1.20E-05	1.20E-05	1.20E-05	9.88E-06	9.88E-06
Ethylbenzene	0.0095		1.17E-05	1.43E-05	1.43E-05	1.43E-05	1.17E-05	1.17E-05
Formaldehyde	0.017		2.10E-05	2.55E-05	2.55E-05	2.55E-05	2.10E-05	2.10E-05
Hexane	0.0063		7.78E-06	9.45E-06	9.45E-06	9.45E-06	7.78E-06	7.78E-06
Naphthalene	0.0003		3.71E-07	4.50E-07	4.50E-07	4.50E-07	3.71E-07	3.71E-07
PAH (excluding napthalene)	0.0001		1.24E-07	1.50E-07	1.50E-07	1.50E-07	1.24E-07	1.24E-07
Toluene	0.0366		4.52E-05	5.49E-05	5.49E-05	5.49E-05	4.52E-05	4.52E-05
Xylenes	0.0272		3.36E-05	4.08E-05	4.08E-05	4.08E-05	3.36E-05	3.36E-05
st Air Quality Management Distri	ct Supplemental Reporting Pro	ocedures for						
Facilities Table B-1 Emission Fac	tors for Boilers - Natural Gas	Combustion						
size of boiler divided by heating v	ralue for natural gas, 1020 BT	U/scf						
	Acetaldehyde Acrolein Ammonia Benzene Ethylbenzene Formaldehyde Hexane Naphthalene PAH (excluding napthalene) Toluene Xylenes st Air Quality Management Distri-	Pollutant (Ibs/mmcf fuel burned) Acetaldehyde 0.0043 Acrolein 0.0027 Ammonia 3.2 Benzene 0.008 Ethylbenzene 0.0095 Formaldehyde 0.017 Hexane 0.0063 Naphthalene 0.0003 PAH (excluding napthalene) 0.0001 Toluene 0.0366 Xylenes 0.0272 st Air Quality Management District Supplemental Reporting Practilities Table B-1 Emission Factors for Boilers - Natural Gas	Number: Equipment: Location: Emission Factor Size (MMBTU/hr): (Ibs/mmcf fuel burned) SCAQMD Permit: Pollutant (Boilers < 10 MMBTU/HR) Hourly Usage (mmcf): Acetaldehyde 0.0043 Acrolein 0.0027 Ammonia 3.2 Benzene 0.008 Ethylbenzene 0.0095 Formaldehyde 0.017 Hexane 0.0063 Naphthalene 0.0003 PAH (excluding napthalene) 0.0001 Toluene 0.0366	Number: 10018 Equipment: Boiler Location: DeNeve 'F' Bldg	Number: 10018 10019	Number: 10018 10019 10020	Number: Equipment: Equipment: Boiler Boilers For Botlers	Number: 10018 10019 10020 10021 10022 10021 10022 Equipment Boiler Boil

			Name:	BOIL21	BOIL22	BOIL23	BOIL24	BOIL25	BOIL26
			Number:	10024	10025	10026	10027	10028	10029
			Equipment:	Boiler	Boiler	Boiler	Boiler	Boiler	Boiler
			Location:	DeNeve 'B' Bldg	DeNeve Kitchen	DeNeve 'A' Bldg	DeNeve 'B' Bldg	Sproul	Hedrick Tower
		Emission Factor ^a	Size (MMBTU/hr):	1.2600	1.2600	1.2600	1.2600	1.5300	1.2600
		(lbs/mmcf fuel burned)	SCAQMD Permit:	EXEMPT	EXEMPT	EXEMPT	EXEMPT	EXEMPT	EXEMPT
CAS	Pollutant	(Boilers < 10 MMBTU/HR)	Hourly Usage ^b (mmcf):	0.0012	0.0012	0.0012	0.0012	0.0015	0.0012
75070	Acetaldehyde	0.0043		5.31E-06	5.31E-06	5.31E-06	5.31E-06	6.45E-06	5.31E-06
107028	Acrolein	0.0027		3.34E-06	3.34E-06	3.34E-06	3.34E-06	4.05E-06	3.34E-06
7664417	Ammonia	3.2		3.95E-03	3.95E-03	3.95E-03	3.95E-03	4.80E-03	3.95E-03
71432	Benzene	0.008		9.88E-06	9.88E-06	9.88E-06	9.88E-06	1.20E-05	9.88E-06
100414	Ethylbenzene	0.0095		1.17E-05	1.17E-05	1.17E-05	1.17E-05	1.43E-05	1.17E-05
50000	Formaldehyde	0.017		2.10E-05	2.10E-05	2.10E-05	2.10E-05	2.55E-05	2.10E-05
110543	Hexane	0.0063		7.78E-06	7.78E-06	7.78E-06	7.78E-06	9.45E-06	7.78E-06
91203	Naphthalene	0.0003		3.71E-07	3.71E-07	3.71E-07	3.71E-07	4.50E-07	3.71E-07
1151	PAH (excluding napthalene)	0.0001		1.24E-07	1.24E-07	1.24E-07	1.24E-07	1.50E-07	1.24E-07
108883	Toluene	0.0366		4.52E-05	4.52E-05	4.52E-05	4.52E-05	5.49E-05	4.52E-05
1330207	Xylenes	0.0272		3.36E-05	3.36E-05	3.36E-05	3.36E-05	4.08E-05	3.36E-05
South Coa	ast Air Quality Management Distri	ct Supplemental Reporting Pro	ocedures for						
AB2588	Facilities Table B-1 Emission Fac	tors for Boilers - Natural Gas	Combustion						
^b Based on	size of boiler divided by heating v	alue for natural gas, 1020 BT	U/scf						

			Name:	BOIL27	BOIL28	BOIL29	BOIL30	BOIL31	BOIL32
			Number:	10030	10031	10032	10033	10034	10035
			Equipment:	Boiler	Boiler	Boiler	Boiler	Boiler	Boiler
			Location:						Hedrick Hall
		Fi i F		Hedrick Tower	Hedrick Tower	Hedrick Tower	Hedrick Hall	Hedrick Hall	
		Emission Factor ^a	Size (MMBTU/hr):	1.2600	1.9990	1.9990	1.2600	1.2600	1.8000
		(lbs/mmcf fuel burned)	SCAQMD Permit:	EXEMPT	EXEMPT	EXEMPT	EXEMPT	EXEMPT	EXEMPT
CAS	Pollutant	(Boilers < 10 MMBTU/HR)	Hourly Usage ^b (mmcf):	0.0012	0.0020	0.0020	0.0012	0.0012	0.0018
75070	Acetaldehyde	0.0043		5.31E-06	8.43E-06	8.43E-06	5.31E-06	5.31E-06	7.59E-06
107028	Acrolein	0.0027		3.34E-06	5.29E-06	5.29E-06	3.34E-06	3.34E-06	4.76E-06
7664417	Ammonia	3.2		3.95E-03	6.27E-03	6.27E-03	3.95E-03	3.95E-03	5.65E-03
71432	Benzene	0.008		9.88E-06	1.57E-05	1.57E-05	9.88E-06	9.88E-06	1.41E-05
100414	Ethylbenzene	0.0095		1.17E-05	1.86E-05	1.86E-05	1.17E-05	1.17E-05	1.68E-05
50000	Formaldehyde	0.017		2.10E-05	3.33E-05	3.33E-05	2.10E-05	2.10E-05	3.00E-05
110543	Hexane	0.0063		7.78E-06	1.23E-05	1.23E-05	7.78E-06	7.78E-06	1.11E-05
91203	Naphthalene	0.0003		3.71E-07	5.88E-07	5.88E-07	3.71E-07	3.71E-07	5.29E-07
1151	PAH (excluding napthalene)	0.0001		1.24E-07	1.96E-07	1.96E-07	1.24E-07	1.24E-07	1.76E-07
108883	Toluene	0.0366		4.52E-05	7.17E-05	7.17E-05	4.52E-05	4.52E-05	6.46E-05
1330207	Xylenes	0.0272		3.36E-05	5.33E-05	5.33E-05	3.36E-05	3.36E-05	4.80E-05
^a South Co	ast Air Quality Management Distr	ict Supplemental Reporting Pro	ocedures for						
AB2588	Facilities Table B-1 Emission Fac	ctors for Boilers - Natural Gas	Combustion						
^b Based on	size of boiler divided by heating	value for natural gas, 1020 BT	U/scf						

			Name:	BOIL33	BOIL34	BOIL35	BOIL36	BOIL37	BOIL38	
			Number:	10036	10037	10038	10039	10040	10041	
			Equipment:	Boiler	Boiler	Boiler	Boiler	Boiler	Boiler	
			Location:	Hedrick Hall	Hedrick Hall	Hedrick Hall	Hedrick Hall	Rieber Hall	Rieber Hall	
		Emission Factor ^a	Size (MMBTU/hr):	1.8000	1.8000	1.8000	0.8600	4.83	4.83	Total
		(lbs/mmcf fuel burned)	SCAQMD Permit:	EXEMPT	EXEMPT	EXEMPT	EXEMPT	D79674	D79675	Emissions
CAS	Pollutant	(Boilers < 10 MMBTU/HR)	Hourly Usage ^b (mmcf):	0.0018	0.0018	0.0018	0.0008	0.0047	0.0047	(lb/hr)
75070	Acetaldehyde	0.0043		7.59E-06	7.59E-06	7.59E-06	3.63E-06	2.04E-05	2.04E-05	2.64E-04
107028	Acrolein	0.0027		4.76E-06	4.76E-06	4.76E-06	2.28E-06	1.28E-05	1.28E-05	1.97E-01
7664417	Ammonia	3.2		5.65E-03	5.65E-03	5.65E-03	2.70E-03	1.52E-02	1.52E-02	1.97E-01
71432	Benzene	0.008		1.41E-05	1.41E-05	1.41E-05	6.75E-06	3.79E-05	3.79E-05	4.91E-04
100414	Ethylbenzene	0.0095		1.68E-05	1.68E-05	1.68E-05	8.01E-06	4.50E-05	4.50E-05	5.83E-04
50000	Formaldehyde	0.017		3.00E-05	3.00E-05	3.00E-05	1.43E-05	8.05E-05	8.05E-05	1.04E-03
110543	Hexane	0.0063		1.11E-05	1.11E-05	1.11E-05	5.31E-06	2.98E-05	2.98E-05	3.87E-04
91203	Naphthalene	0.0003		5.29E-07	5.29E-07	5.29E-07	2.53E-07	1.42E-06	1.42E-06	1.84E-05
1151	PAH (excluding napthalene)	0.0001		1.76E-07	1.76E-07	1.76E-07	8.43E-08	4.74E-07	4.74E-07	6.14E-06
108883	Toluene	0.0366		6.46E-05	6.46E-05	6.46E-05	3.09E-05	1.73E-04	1.73E-04	2.25E-03
1330207	Xylenes	0.0272		4.80E-05	4.80E-05	4.80E-05	2.29E-05	1.29E-04	1.29E-04	1.67E-03
^a South Coa	ast Air Quality Management Distri	ct Supplemental Reporting Pro	ocedures for							
AB2588 Facilities Table B-1 Emission Factors for Boilers - Natural Gas Combustion										
Based on	size of boiler divided by heating v	value for natural gas, 1020 BT								

			I							1
			Name:	BOIL1	BOIL2	BOIL3	BOIL4	BOIL5	BOIL6	BOIL7
			Number:	10004	10005	10006	10007	10008	10009	10010
			Equipment:	Boiler	Boiler	Boiler	Boiler	Boiler	Boiler	Boiler
			Location:	Covel Commons	Covel Commons	Canyon Point	Delta Terrace	Courtside	Bradley	Dykstra Hall
		Emission Factor ^a	Size (MMBTU/hr):	1.8256	1.8256	1.8256	1.8256	1.8256	1.2000	1.2600
		(lbs/mmcf fuel burned)	SCAQMD Permit:	EXEMPT	EXEMPT	EXEMPT	EXEMPT	EXEMPT	EXEMPT	EXEMPT
CAS	Pollutant	(Boilers < 10 MMBTU/HR	Annual Usage ^{b,c} (mmcf):	2.0044	2.0044	2.0044	2.0044	2.0044	1.3175	1.3834
75070	Acetaldehyde	0.0043		8.62E-03	8.62E-03	8.62E-03	8.62E-03	8.62E-03	5.67E-03	5.95E-03
107028	Acrolein	0.0027		5.41E-03	5.41E-03	5.41E-03	5.41E-03	5.41E-03	3.56E-03	3.74E-03
7664417	Ammonia	3.2		6.41E+00	6.41E+00	6.41E+00	6.41E+00	6.41E+00	4.22E+00	4.43E+00
71432	Benzene	0.008		1.60E-02	1.60E-02	1.60E-02	1.60E-02	1.60E-02	1.05E-02	1.11E-02
100414	Ethylbenzene	0.0095		1.90E-02	1.90E-02	1.90E-02	1.90E-02	1.90E-02	1.25E-02	1.31E-02
50000	Formaldehyde	0.017		3.41E-02	3.41E-02	3.41E-02	3.41E-02	3.41E-02	2.24E-02	2.35E-02
110543	Hexane	0.0063		1.26E-02	1.26E-02	1.26E-02	1.26E-02	1.26E-02	8.30E-03	8.72E-03
91203	Naphthalene	0.0003		6.01E-04	6.01E-04	6.01E-04	6.01E-04	6.01E-04	3.95E-04	4.15E-04
1151	PAH (excluding napthalene)	0.0001		2.00E-04	2.00E-04	2.00E-04	2.00E-04	2.00E-04	1.32E-04	1.38E-04
108883	Toluene	0.0366		7.34E-02	7.34E-02	7.34E-02	7.34E-02	7.34E-02	4.82E-02	5.06E-02
1330207	Xylenes	0.0272		5.45E-02	5.45E-02	5.45E-02	5.45E-02	5.45E-02	3.58E-02	3.76E-02
^a South Coas	st Air Quality Management District Supple	emental Reporting Procedu	res for							
AB2588 F	acilities Table B-1 Emission Factors for E	Boilers - Natural Gas Comb	ustion							
^b Source: An	nual Air Emission Report for 2006/2007	submitted to SCAQMD								
^c Usage distr	ribution (MMscf) provided by Enviromenta	al Programs Manager Davi	d Ott 4/21/2008							
	Distribution (MMscf)	68.78	North Campus							
	Distribution (MMscf)	237	Facilities							
	Distribution (MMscf)	114.4	Cogeneration							
Total MMBTU/hr of boilers at north campus 62.646										
Total MMBTU/hr of boilers at facilities 53.932										
Total MMBT	Total MMBTU/hr of boilers at cogeneration plant 224							-		

			Name:	BOIL8	BOIL9	BOIL10	BOIL11	BOIL12	BOIL13
			Number:	10011	10012	10013	10014	10015	10016
			Equipment:	Boiler	Boiler	Boiler	Boiler	Boiler	Boiler
			Location:	Dykstra Hall	DeNeve 'C' Bldg	DeNeve 'C' Bldg	DeNeve 'D' Bldg	DeNeve 'D' Bldg	DeNeve 'E' Bldg
		Emission Factor ^a	Size (MMBTU/hr):	1.2600	1.2600	1.2600	1.2600	1.2600	1,2600
		(lbs/mmcf fuel burned)	SCAQMD Permit:	EXEMPT	EXEMPT	EXEMPT	EXEMPT	EXEMPT	EXEMPT
CAS	Pollutant	(Boilers < 10 MMBTU/HR	Annual Usage ^{b,c} (mmcf):	1.3834	1.3834	1.3834	1.3834	1.3834	1.3834
75070	Acetaldehyde	0.0043		5.95E-03	5.95E-03	5.95E-03	5.95E-03	5.95E-03	5.95E-03
107028	Acrolein	0.0027		3.74E-03	3.74E-03	3.74E-03	3.74E-03	3.74E-03	3.74E-03
7664417	Ammonia	3.2		4.43E+00	4.43E+00	4.43E+00	4.43E+00	4.43E+00	4.43E+00
71432	Benzene	0.008		1.11E-02	1.11E-02	1.11E-02	1.11E-02	1.11E-02	1.11E-02
100414	Ethylbenzene	0.0095		1.31E-02	1.31E-02	1.31E-02	1.31E-02	1.31E-02	1.31E-02
50000	Formaldehyde	0.017		2.35E-02	2.35E-02	2.35E-02	2.35E-02	2.35E-02	2.35E-02
110543	Hexane	0.0063		8.72E-03	8.72E-03	8.72E-03	8.72E-03	8.72E-03	8.72E-03
91203	Naphthalene	0.0003		4.15E-04	4.15E-04	4.15E-04	4.15E-04	4.15E-04	4.15E-04
1151	PAH (excluding napthalene)	0.0001		1.38E-04	1.38E-04	1.38E-04	1.38E-04	1.38E-04	1.38E-04
108883	Toluene	0.0366		5.06E-02	5.06E-02	5.06E-02	5.06E-02	5.06E-02	5.06E-02
1330207	Xylenes	0.0272		3.76E-02	3.76E-02	3.76E-02	3.76E-02	3.76E-02	3.76E-02
^a South Coa	st Air Quality Management District Supple	emental Reporting Procedu	res for						
AB2588 F	Facilities Table B-1 Emission Factors for E	Boilers - Natural Gas Comb	ustion						
^b Source: Ar	nnual Air Emission Report for 2006/2007	submitted to SCAQMD							
^c Usage dist	ribution (MMscf) provided by Enviroment	al Programs Manager David	Ott 4/21/2008						
	Distribution (MMscf)	68.78	North Campus						
	Distribution (MMscf)	237	Facilities						
	Distribution (MMscf)	114.4	Cogeneration						
Total MMB	ΓU/hr of boilers at north campus	62.646							
Total MMB	ΓU/hr of boilers at facilities	53.932							
Total MMB	ΓU/hr of boilers at cogeneration plant	224							

		T		
			Name:	BOIL14
			Number:	10017
			Equipment:	Boiler
			Location:	DeNeve 'E' Bldg
		Emission Factor ^a	Size (MMBTU/hr):	1.8000
		(lbs/mmcf fuel burned)	SCAQMD Permit:	EXEMPT
CAS	Pollutant	(Boilers < 10 MMBTU/HR)	Annual Usage ^{b,c} (mmcf):	1.9762
75070	Acetaldehyde	0.0043		8.50E-03
107028	Acrolein	0.0027		5.34E-03
7664417	Ammonia	3.2		6.32E+00
71432	Benzene	0.008		1.58E-02
100414	Ethylbenzene	0.0095		1.88E-02
50000	Formaldehyde	0.017		3.36E-02
110543	Hexane	0.0063		1.25E-02
91203	Naphthalene	0.0003		5.93E-04
1151	PAH (excluding napthalene)	0.0001		1.98E-04
108883	Toluene	0.0366		7.23E-02
1330207	Xylenes	0.0272		5.38E-02
^a South Coa	st Air Quality Management District Supple	emental Reporting Procedu	res for	
AB2588 I	Facilities Table B-1 Emission Factors for E	Boilers - Natural Gas Combu	ustion	
^b Source: A	nnual Air Emission Report for 2006/2007	submitted to SCAQMD		
^c Usage dis	ribution (MMscf) provided by Enviroment	al Programs Manager David	I Ott 4/21/2008	
	Distribution (MMscf)	68.78	North Campus	
	Distribution (MMscf)	237	Facilities	
	Distribution (MMscf)	114.4	Cogeneration	
Total MMB	ΓU/hr of boilers at north campus	62.646		
Total MMB	ΓU/hr of boilers at facilities	53.932		
Total MMB	ΓU/hr of boilers at cogeneration plant	224		

			Name:	BOIL15	BOIL16	BOIL17	BOIL18	BOIL19	BOIL20	BOIL21
										_
			Number:	10018 Boiler	10019 Boiler	10020 Boiler	10021 Boiler	10022	10023 Boiler	10024
			Equipment:					Boiler		Boiler
		a			DeNeve 'F' Bldg				·	
		Emission Factor ^a	Size (MMBTU/hr):	1.2600	1.5300	1.5300	1.5300	1.2600	1.2600	1.2600
		(lbs/mmcf fuel burned)	SCAQMD Permit:	EXEMPT	EXEMPT	EXEMPT	EXEMPT	EXEMPT	EXEMPT	EXEMPT
CAS	Pollutant	(Boilers < 10 MMBTU/HR)	Annual Usage ^{b,c} (mmcf):	1.3834	1.6798	1.6798	1.6798	1.3834	1.3834	1.3834
75070	Acetaldehyde	0.0043		5.95E-03	7.22E-03	7.22E-03	7.22E-03	5.95E-03	5.95E-03	5.95E-03
107028	Acrolein	0.0027		3.74E-03	4.54E-03	4.54E-03	4.54E-03	3.74E-03	3.74E-03	3.74E-03
7664417	Ammonia	3.2		4.43E+00	5.38E+00	5.38E+00	5.38E+00	4.43E+00	4.43E+00	4.43E+00
71432	Benzene	0.008		1.11E-02	1.34E-02	1.34E-02	1.34E-02	1.11E-02	1.11E-02	1.11E-02
100414	Ethylbenzene	0.0095		1.31E-02	1.60E-02	1.60E-02	1.60E-02	1.31E-02	1.31E-02	1.31E-02
50000	Formaldehyde	0.017		2.35E-02	2.86E-02	2.86E-02	2.86E-02	2.35E-02	2.35E-02	2.35E-02
110543	Hexane	0.0063		8.72E-03	1.06E-02	1.06E-02	1.06E-02	8.72E-03	8.72E-03	8.72E-03
91203	Naphthalene	0.0003		4.15E-04	5.04E-04	5.04E-04	5.04E-04	4.15E-04	4.15E-04	4.15E-04
1151	PAH (excluding napthalene)	0.0001		1.38E-04	1.68E-04	1.68E-04	1.68E-04	1.38E-04	1.38E-04	1.38E-04
108883	Toluene	0.0366		5.06E-02	6.15E-02	6.15E-02	6.15E-02	5.06E-02	5.06E-02	5.06E-02
1330207	Xylenes	0.0272		3.76E-02	4.57E-02	4.57E-02	4.57E-02	3.76E-02	3.76E-02	3.76E-02
^a South Coa	ast Air Quality Management District Sup	oplemental Reporting Procedur	res for							
AB2588	Facilities Table B-1 Emission Factors for	or Boilers - Natural Gas Combu	stion							
^b Source: A	nnual Air Emission Report for 2006/200	07 submitted to SCAQMD								
^c Usage dis	tribution (MMscf) provided by Environe	ental Programs Manager David	Ott 4/21/2008							
	Distribution (MMscf)	68.78	North Campus							
	Distribution (MMscf)	237	Facilities							
	Distribution (MMscf)	114.4	Cogeneration							
	, ,									
Total MMB	TU/hr of boilers at north campus	62.646								
Total MMB	TU/hr of boilers at facilities	53.932								
Total MMB	TU/hr of boilers at cogeneration plant	224								

	1	1								T.
			Name:	BOIL22	BOIL23	BOIL24	BOIL25	BOIL26	BOIL27	BOIL28
			Number:	10025	10026	10027	10028	10029	10030	10031
			Equipment:	Boiler	Boiler	Boiler	Boiler	Boiler	Boiler	Boiler
			Location:	DeNeve Kitchen	DeNeve 'A' Bldg	DeNeve 'B' Bldg	Sproul	Hedrick Tower	Hedrick Tower	Hedrick Tower
		Emission Factor ^a	Size (MMBTU/hr):	1.2600	1.2600	1.2600	1.5300	1.2600	1.2600	1.9990
		(lbs/mmcf fuel burned)	SCAQMD Permit:	EXEMPT	EXEMPT	EXEMPT	EXEMPT	EXEMPT	EXEMPT	EXEMPT
CAS	Pollutant	(Boilers < 10 MMBTU/HR)	Annual Usage ^{b,c} (mmcf):	1.3834	1.3834	1.3834	1.6798	1.3834	1.3834	2.1947
75070	Acetaldehyde	0.0043		5.95E-03	5.95E-03	5.95E-03	7.22E-03	5.95E-03	5.95E-03	9.44E-03
107028	Acrolein	0.0027		3.74E-03	3.74E-03	3.74E-03	4.54E-03	3.74E-03	3.74E-03	5.93E-03
7664417	Ammonia	3.2		4.43E+00	4.43E+00	4.43E+00	5.38E+00	4.43E+00	4.43E+00	7.02E+00
71432	Benzene	0.008		1.11E-02	1.11E-02	1.11E-02	1.34E-02	1.11E-02	1.11E-02	1.76E-02
100414	Ethylbenzene	0.0095		1.31E-02	1.31E-02	1.31E-02	1.60E-02	1.31E-02	1.31E-02	2.08E-02
50000	Formaldehyde	0.017		2.35E-02	2.35E-02	2.35E-02	2.86E-02	2.35E-02	2.35E-02	3.73E-02
110543	Hexane	0.0063		8.72E-03	8.72E-03	8.72E-03	1.06E-02	8.72E-03	8.72E-03	1.38E-02
91203	Naphthalene	0.0003		4.15E-04	4.15E-04	4.15E-04	5.04E-04	4.15E-04	4.15E-04	6.58E-04
1151	PAH (excluding napthalene)	0.0001		1.38E-04	1.38E-04	1.38E-04	1.68E-04	1.38E-04	1.38E-04	2.19E-04
108883	Toluene	0.0366		5.06E-02	5.06E-02	5.06E-02	6.15E-02	5.06E-02	5.06E-02	8.03E-02
1330207	Xylenes	0.0272		3.76E-02	3.76E-02	3.76E-02	4.57E-02	3.76E-02	3.76E-02	5.97E-02
^a South Coa	ast Air Quality Management District Suppl	lemental Reporting Procedu	res for							
AB2588	Facilities Table B-1 Emission Factors for	Boilers - Natural Gas Combu	ustion							
^b Source: A	nnual Air Emission Report for 2006/2007	submitted to SCAQMD								
^c Usage dis	tribution (MMscf) provided by Enviroment	tal Programs Manager David	I Ott 4/21/2008							
	Distribution (MMscf)	68.78	North Campus							
	Distribution (MMscf)	237	Facilities							
	Distribution (MMscf)	114.4	Cogeneration							
Total MMB	TU/hr of boilers at north campus	62.646								
Total MMB	TU/hr of boilers at facilities	53.932								
Total MMB	TU/hr of boilers at cogeneration plant	224								

			Name:	BOIL29	BOIL30	BOIL31	BOIL32	BOIL33	BOIL34	BOIL35
			Number:	10032	10033	10034	10035	10036	10037	10038
			Equipment:	Boiler	Boiler	Boiler	Boiler	Boiler	Boiler	Boiler
			Location:	Hedrick Tower	Hedrick Hall					
		Emission Factor ^a	Size (MMBTU/hr):	1.9990	1.2600	1.2600	1.8000	1.8000	1.8000	1.8000
		(lbs/mmcf fuel burned)	SCAQMD Permit:	EXEMPT	EXEMPT	EXEMPT	EXEMPT	EXEMPT	EXEMPT	EXEMPT
CAS	Pollutant	(Boilers < 10 MMBTU/HR)	Annual Usage ^{b,c} (mmcf):	2.1947	1.3834	1.3834	1.9762	1.9762	1.9762	1.9762
75070	Acetaldehyde	0.0043		9.44E-03	5.95E-03	5.95E-03	8.50E-03	8.50E-03	8.50E-03	8.50E-03
107028	Acrolein	0.0027		5.93E-03	3.74E-03	3.74E-03	5.34E-03	5.34E-03	5.34E-03	5.34E-03
7664417	Ammonia	3.2		7.02E+00	4.43E+00	4.43E+00	6.32E+00	6.32E+00	6.32E+00	6.32E+00
71432	Benzene	0.008		1.76E-02	1.11E-02	1.11E-02	1.58E-02	1.58E-02	1.58E-02	1.58E-02
100414	Ethylbenzene	0.0095		2.08E-02	1.31E-02	1.31E-02	1.88E-02	1.88E-02	1.88E-02	1.88E-02
50000	Formaldehyde	0.017		3.73E-02	2.35E-02	2.35E-02	3.36E-02	3.36E-02	3.36E-02	3.36E-02
110543	Hexane	0.0063		1.38E-02	8.72E-03	8.72E-03	1.25E-02	1.25E-02	1.25E-02	1.25E-02
91203	Naphthalene	0.0003		6.58E-04	4.15E-04	4.15E-04	5.93E-04	5.93E-04	5.93E-04	5.93E-04
1151	PAH (excluding napthalene)	0.0001		2.19E-04	1.38E-04	1.38E-04	1.98E-04	1.98E-04	1.98E-04	1.98E-04
108883	Toluene	0.0366		8.03E-02	5.06E-02	5.06E-02	7.23E-02	7.23E-02	7.23E-02	7.23E-02
1330207	Xylenes	0.0272		5.97E-02	3.76E-02	3.76E-02	5.38E-02	5.38E-02	5.38E-02	5.38E-02
^a South Coa	ast Air Quality Management District Sup	oplemental Reporting Procedur	es for							
AB2588	Facilities Table B-1 Emission Factors for	or Boilers - Natural Gas Combu	stion							
^b Source: A	nnual Air Emission Report for 2006/200	07 submitted to SCAQMD								
^c Usage dis	tribution (MMscf) provided by Envirome	ental Programs Manager David	Ott 4/21/2008							
	Distribution (MMscf)	68.78	North Campus							
	Distribution (MMscf)	237	Facilities							
	Distribution (MMscf)	114.4	Cogeneration							
Total MMB	TU/hr of boilers at north campus	62.646								
Total MMB	TU/hr of boilers at facilities	53.932								
Total MMB	TU/hr of boilers at cogeneration plant	224								

			Name:	BOIL36	BOIL37	BOIL38	
			Number:	10039	10040	10041	
			Equipment:	Boiler	Boiler	Boiler	
			Location:	Hedrick Hall	Rieber Hall	Rieber Hall	
		Emission Factor ^a	Size (MMBTU/hr):	0.8600	4.83	4.83	Total
		(lbs/mmcf fuel burned)	SCAQMD Permit:	EXEMPT	D79674	D79675	Emissions
CAS	Pollutant	(Boilers < 10 MMBTU/HR)	Annual Usage ^{b,c} (mmcf):	0.9442	5.3029	5.3029	(lb/hr)
75070	Acetaldehyde	0.0043		4.06E-03	2.28E-02	2.28E-02	2.96E-01
107028	Acrolein	0.0027		2.55E-03	1.43E-02	1.43E-02	1.86E-01
7664417	Ammonia	3.2		3.02E+00	1.70E+01	1.70E+01	2.20E+02
71432	Benzene	0.008		7.55E-03	4.24E-02	4.24E-02	5.50E-01
100414	Ethylbenzene	0.0095		8.97E-03	5.04E-02	5.04E-02	6.53E-01
50000	Formaldehyde	0.017		1.61E-02	9.01E-02	9.01E-02	1.17E+00
110543	Hexane	0.0063		5.95E-03	3.34E-02	3.34E-02	4.33E-01
91203	Naphthalene	0.0003		2.83E-04	1.59E-03	1.59E-03	2.06E-02
1151	PAH (excluding napthalene)	0.0001		9.44E-05	5.30E-04	5.30E-04	6.88E-03
108883	Toluene	0.0366		3.46E-02	1.94E-01	1.94E-01	2.52E+00
1330207	Xylenes	0.0272		2.57E-02	1.44E-01	1.44E-01	1.87E+00
^a South Coa	ast Air Quality Management District Suppl	emental Reporting Procedu	res for				
AB2588	Facilities Table B-1 Emission Factors for I	Boilers - Natural Gas Combu	ustion				
^b Source: A	nnual Air Emission Report for 2006/2007	submitted to SCAQMD					
^c Usage dis	tribution (MMscf) provided by Enviroment	al Programs Manager David	I Ott 4/21/2008				
	Distribution (MMscf)	68.78	North Campus				
	Distribution (MMscf)	237	Facilities				
	Distribution (MMscf)	114.4	Cogeneration				
Total MMB	TU/hr of boilers at north campus	62.646					
Total MMB	TU/hr of boilers at facilities	53.932					
Total MMB	TU/hr of boilers at cogeneration plant	224					

				Name:	BOIL39	BOIL40	BOIL41	BOIL42	BOIL43
				Number:	10042	10043	10044	10045	10046
				Equipment:	Boiler	Boiler	Boiler	Boiler	Boiler
				Location:	EH&S Facility	Rehabilitation #1	Rehabilitation #2	SCRC #3	SCRC #6
		Emission Factor ^a	Emission Factor ^a	Size (MMBTU/hr):	1.058	1.500	1.500	1.000	1.440
		(lbs/mmcf fuel burned)	(lbs/mmcf fuel burned)	SCAQMD Permit:	EXEMPT	EXEMPT	EXEMPT	EXEMPT	EXEMPT
CAS	Pollutant	(Boilers < 10 MMBTU/HR)	(Boilers 10 - 100 MMBTU/HR)	Hourly Usage ^b (mmcf):	0.0010	0.0015	0.0015	0.0010	0.0014
75070	Acetaldehyde	0.0043	0.0031		4.46E-06	6.32E-06	6.32E-06	4.22E-06	6.07E-06
107028	Acrolein	0.0027	0.0027		2.80E-06	3.97E-06	3.97E-06	2.65E-06	3.81E-06
7664417	Ammonia	3.2	3.2		3.32E-03	4.71E-03	4.71E-03	3.14E-03	4.52E-03
71432	Benzene	0.008	0.0058		8.30E-06	1.18E-05	1.18E-05	7.84E-06	1.13E-05
100414	Ethylbenzene	0.0095	0.0069		9.85E-06	1.40E-05	1.40E-05	9.31E-06	1.34E-05
50000	Formaldehyde	0.017	0.0123		1.76E-05	2.50E-05	2.50E-05	1.67E-05	2.40E-05
110543	Hexane	0.0063	0.0046		6.53E-06	9.26E-06	9.26E-06	6.18E-06	8.89E-06
91203	Naphthalene	0.0003	0.0003		3.11E-07	4.41E-07	4.41E-07	2.94E-07	4.24E-07
1151	PAH (excluding napthalene)	0.0001	0.0001		1.04E-07	1.47E-07	1.47E-07	9.80E-08	1.41E-07
108883	Toluene	0.0366	0.0265		3.80E-05	5.38E-05	5.38E-05	3.59E-05	5.17E-05
1330207	Xylenes	0.0272	0.0197		2.82E-05	4.00E-05	4.00E-05	2.67E-05	3.84E-05
^a South Co	ast Air Quality Management Distri	ct Supplemental Reporting Pro	cedures for						
AB2588	Facilities Table B-1 Emission Fac	tors for Boilers - Natural Gas C	Combustion						
^b Based on	size of boiler divided by heating v	alue for natural gas, 1020 BTL	J/scf						

					DOI! 44	DOI! 45	DOI! 40	DOI! 47	DOIL 10	DOI! 10
				Name:	BOIL44	BOIL45	BOIL46	BOIL47	BOIL48	BOIL49
				Number:	10047	10048	10049	10050	10051	10052
				Equipment:	Boiler	Boiler	Boiler	Boiler	Boiler	Boiler
				Location:	SCRC #7	SCRC #1	SCRC #2	SRL #BLR-3	SRL #BLR-4	STRB
		Emission Factor ^a	Emission Factor ^a	Size (MMBTU/hr):	1.440	1.800	1.800	1.260	1.260	1.500
		(lbs/mmcf fuel burned)	(lbs/mmcf fuel burned)	SCAQMD Permit:	EXEMPT	EXEMPT	EXEMPT	EXEMPT	EXEMPT	EXEMPT
CAS	Pollutant	(Boilers < 10 MMBTU/HR)	(Boilers 10 - 100 MMBTU/HR)	Hourly Usage ^b (mmcf):	0.0014	0.0018	0.0018	0.0012	0.0012	0.0015
75070	Acetaldehyde	0.0043	0.0031		6.07E-06	7.59E-06	7.59E-06	5.31E-06	5.31E-06	6.32E-06
107028	Acrolein	0.0027	0.0027		3.81E-06	4.76E-06	4.76E-06	3.34E-06	3.34E-06	3.97E-06
7664417	Ammonia	3.2	3.2		4.52E-03	5.65E-03	5.65E-03	3.95E-03	3.95E-03	4.71E-03
71432	Benzene	0.008	0.0058		1.13E-05	1.41E-05	1.41E-05	9.88E-06	9.88E-06	1.18E-05
100414	Ethylbenzene	0.0095	0.0069		1.34E-05	1.68E-05	1.68E-05	1.17E-05	1.17E-05	1.40E-05
50000	Formaldehyde	0.017	0.0123		2.40E-05	3.00E-05	3.00E-05	2.10E-05	2.10E-05	2.50E-05
110543	Hexane	0.0063	0.0046		8.89E-06	1.11E-05	1.11E-05	7.78E-06	7.78E-06	9.26E-06
91203	Naphthalene	0.0003	0.0003		4.24E-07	5.29E-07	5.29E-07	3.71E-07	3.71E-07	4.41E-07
1151	PAH (excluding napthalene)	0.0001	0.0001		1.41E-07	1.76E-07	1.76E-07	1.24E-07	1.24E-07	1.47E-07
108883	Toluene	0.0366	0.0265		5.17E-05	6.46E-05	6.46E-05	4.52E-05	4.52E-05	5.38E-05
1330207	Xylenes	0.0272	0.0197		3.84E-05	4.80E-05	4.80E-05	3.36E-05	3.36E-05	4.00E-05
^a South Coa	ast Air Quality Management Distric	ct Supplemental Reporting Pro	cedures for							
AB2588	Facilities Table B-1 Emission Faci	tors for Boilers - Natural Gas C	Combustion							
^b Based on	size of boiler divided by heating v	alue for natural gas, 1020 BTL	J/scf							

				Name:	BOIL50	BOIL51	BOIL52	BOIL53	BOIL54	BOIL55
				Number:	10053	10054	10055	10056	10057	10058
				Equipment:	Boiler	Boiler	Boiler	Boiler	Boiler	Boiler
				Location:	UES BLR #4	Unex	Unex	UES BLR#3	Ueberroth #1	Rehab. #5
		Emission Factor ^a	Emission Factor ^a	Size (MMBTU/hr):	1.800	1.674	1.670	0.500	0.500	1.000
		(lbs/mmcf fuel burned)	(lbs/mmcf fuel burned)	SCAQMD Permit:	EXEMPT	EXEMPT	EXEMPT	EXEMPT	EXEMPT	EXEMPT
CAS	Pollutant	(Boilers < 10 MMBTU/HR)	(Boilers 10 - 100 MMBTU/HR)	Hourly Usage ^b (mmcf):	0.0018	0.0016	0.0016	0.0005	0.0005	0.0010
75070	Acetaldehyde	0.0043	0.0031		7.59E-06	7.06E-06	7.04E-06	2.11E-06	2.11E-06	4.22E-06
107028	Acrolein	0.0027	0.0027		4.76E-06	4.43E-06	4.42E-06	1.32E-06	1.32E-06	2.65E-06
7664417	Ammonia	3.2	3.2		5.65E-03	5.25E-03	5.24E-03	1.57E-03	1.57E-03	3.14E-03
71432	Benzene	0.008	0.0058		1.41E-05	1.31E-05	1.31E-05	3.92E-06	3.92E-06	7.84E-06
100414	Ethylbenzene	0.0095	0.0069		1.68E-05	1.56E-05	1.56E-05	4.66E-06	4.66E-06	9.31E-06
50000	Formaldehyde	0.017	0.0123		3.00E-05	2.79E-05	2.78E-05	8.33E-06	8.33E-06	1.67E-05
110543	Hexane	0.0063	0.0046		1.11E-05	1.03E-05	1.03E-05	3.09E-06	3.09E-06	6.18E-06
91203	Naphthalene	0.0003	0.0003		5.29E-07	4.92E-07	4.91E-07	1.47E-07	1.47E-07	2.94E-07
1151	PAH (excluding napthalene)	0.0001	0.0001		1.76E-07	1.64E-07	1.64E-07	4.90E-08	4.90E-08	9.80E-08
108883	Toluene	0.0366	0.0265		6.46E-05	6.01E-05	5.99E-05	1.79E-05	1.79E-05	3.59E-05
1330207	Xylenes	0.0272	0.0197		4.80E-05	4.46E-05	4.45E-05	1.33E-05	1.33E-05	2.67E-05
^a South Co	ast Air Quality Management Distri	ct Supplemental Reporting Pro	cedures for							
AB2588	Facilities Table B-1 Emission Fac	tors for Boilers - Natural Gas C	ombustion							
^b Based on	size of boiler divided by heating v	alue for natural gas, 1020 BTU	l/scf							

	T.								
				Name:	BOIL56	BOIL57	BOIL58	BOIL59	
				Number:	10059	10060	10061	10062	
				Equipment:	Boiler	Boiler	Boiler	Boiler	
				Location:	Rehab. #6	Warren Hall	200 Med Plaza	200 Med Plaza	
		Emission Factor ^a	Emission Factor ^a	Size (MMBTU/hr):	1.000	5.23	12.5	12.5	Total
		(lbs/mmcf fuel burned)	(lbs/mmcf fuel burned)	SCAQMD Permit:	EXEMPT	D71042	D71162	D71165	Emissions
CAS	Pollutant	(Boilers < 10 MMBTU/HR)	(Boilers 10 - 100 MMBTU/HR)	Hourly Usage ^b (mmcf):	0.0010	0.0051	0.0123	0.0123	(lb/hr)
75070	Acetaldehyde	0.0043	0.0031		4.22E-06	2.20E-05	3.80E-05	3.80E-05	1.98E-04
107028	Acrolein	0.0027	0.0027		2.65E-06	1.38E-05	3.31E-05	3.31E-05	1.43E-04
7664417	Ammonia	3.2	3.2		3.14E-03	1.64E-02	3.92E-02	3.92E-02	1.69E-01
71432	Benzene	0.008	0.0058		7.84E-06	4.10E-05	7.11E-05	7.11E-05	3.69E-04
100414	Ethylbenzene	0.0095	0.0069		9.31E-06	4.87E-05	8.46E-05	8.46E-05	4.39E-04
50000	Formaldehyde	0.017	0.0123		1.67E-05	8.72E-05	1.51E-04	1.51E-04	7.84E-04
110543	Hexane	0.0063	0.0046		6.18E-06	3.23E-05	5.64E-05	5.64E-05	2.91E-04
91203	Naphthalene	0.0003	0.0003		2.94E-07	1.54E-06	3.68E-06	3.68E-06	1.59E-05
1151	PAH (excluding napthalene)	0.0001	0.0001		9.80E-08	5.13E-07	1.23E-06	1.23E-06	5.29E-06
108883	Toluene	0.0366	0.0265		3.59E-05	1.88E-04	3.25E-04	3.25E-04	1.69E-03
1330207	Xylenes	0.0272	0.0197		2.67E-05	1.39E-04	2.41E-04	2.41E-04	1.25E-03
^a South Coa	ast Air Quality Management Distri	ct Supplemental Reporting Pro	cedures for						
AB2588	Facilities Table B-1 Emission Fac	tors for Boilers - Natural Gas C	Combustion						
^b Based on	size of boiler divided by heating v	alue for natural gas, 1020 BTU	J/scf						

				Name:	BOIL39	BOIL40	BOIL41	BOIL42
				Number:	10042	10043	10044	10045
				Equipment:	Boiler	Boiler	Boiler	Boiler
				Location:	EH&S Facility	Rehabilitation #1	Rehabilitation #2	SCRC #3
		Emission Factor ^a	Emission Factor ^a	Size (MMBTU/hr):	1.058	1.500	1.500	1.000
		(lbs/mmcf fuel burned)	(lbs/mmcf fuel burned)	SCAQMD Permit:	EXEMPT	EXEMPT	EXEMPT	EXEMPT
CAS	Pollutant	(Boilers < 10 MMBTU/HR)	(Boilers 10 - 100 MMBTU/HR)	Annual Usage ^{b,c} (mmcf):	4.6	6.6	6.6	4.4
75070	Acetaldehyde	0.0043	0.0031		2.00E-02	2.83E-02	2.83E-02	1.89E-02
107028	Acrolein	0.0027	0.0027		1.26E-02	1.78E-02	1.78E-02	1.19E-02
7664417	Ammonia	3.2	3.2		1.49E+01	2.11E+01	2.11E+01	1.41E+01
71432	Benzene	0.008	0.0058		3.72E-02	5.27E-02	5.27E-02	3.52E-02
100414	Ethylbenzene	0.0095	0.0069		4.42E-02	6.26E-02	6.26E-02	4.17E-02
50000	Formaldehyde	0.017	0.0123		7.90E-02	1.12E-01	1.12E-01	7.47E-02
110543	Hexane	0.0063	0.0046		2.93E-02	4.15E-02	4.15E-02	2.77E-02
91203	Naphthalene	0.0003	0.0003		1.39E-03	1.98E-03	1.98E-03	1.32E-03
1151	PAH (excluding napthalene)	0.0001	0.0001		4.65E-04	6.59E-04	6.59E-04	4.39E-04
108883	Toluene	0.0366	0.0265		1.70E-01	2.41E-01	2.41E-01	1.61E-01
1330207	Xylenes	0.0272	0.0197		1.26E-01	1.79E-01	1.79E-01	1.20E-01
^a South Co	ast Air Quality Management District Supplement	ental Reporting Procedures for	•					
AB2588	Facilities Table B-1 Emission Factors for Boil	ers - Natural Gas Combustion						
^b Source: A	Annual Air Emission Report for 2006/2007 sub	mitted to SCAQMD						
^c Usage dis	stribution (MMscf) provided by Enviromental F	Programs Manager David Ott 4	/21/2008					
	Distribution (MMscf)	68.78		North Campus				
	Distribution (MMscf)	237		Facilities				
	Distribution (MMscf)	114.4		Cogeneration				
Total MMI	BTU/hr of boilers at north campus	62.646						
Total MMI	BTU/hr of boilers at facilities	53.932		_			_	
Total MMI	BTU/hr of boilers at cogeneration plant	224						

		T	T						
				Name:	BOIL43	BOIL44	BOIL45	BOIL46	BOIL47
				Number:	10046	10047	10048	10049	10050
				Equipment:	Boiler	Boiler	Boiler	Boiler	Boiler
				Location:	SCRC #6	SCRC #7	SCRC #1	SCRC #2	SRL #BLR-3
		Emission Factor ^a	Emission Factor ^a	Size (MMBTU/hr):	1.440	1.440	1.800	1.800	1.260
		(lbs/mmcf fuel burned)	(lbs/mmcf fuel burned)	SCAQMD Permit:	EXEMPT	EXEMPT	EXEMPT	EXEMPT	EXEMPT
CAS	Pollutant	(Boilers < 10 MMBTU/HR)	(Boilers 10 - 100 MMBTU/HR)	Annual Usage ^{b,c} (mmcf):	6.3	6.3	7.9	7.9	5.5
75070	Acetaldehyde	0.0043	0.0031		2.72E-02	2.72E-02	3.40E-02	3.40E-02	2.38E-02
107028	Acrolein	0.0027	0.0027		1.71E-02	1.71E-02	2.14E-02	2.14E-02	1.49E-02
7664417	Ammonia	3.2	3.2		2.02E+01	2.02E+01	2.53E+01	2.53E+01	1.77E+01
71432	Benzene	0.008	0.0058		5.06E-02	5.06E-02	6.33E-02	6.33E-02	4.43E-02
100414	Ethylbenzene	0.0095	0.0069		6.01E-02	6.01E-02	7.51E-02	7.51E-02	5.26E-02
50000	Formaldehyde	0.017	0.0123		1.08E-01	1.08E-01	1.34E-01	1.34E-01	9.41E-02
110543	Hexane	0.0063	0.0046		3.99E-02	3.99E-02	4.98E-02	4.98E-02	3.49E-02
91203	Naphthalene	0.0003	0.0003		1.90E-03	1.90E-03	2.37E-03	2.37E-03	1.66E-03
1151	PAH (excluding napthalene)	0.0001	0.0001		6.33E-04	6.33E-04	7.91E-04	7.91E-04	5.54E-04
108883	Toluene	0.0366	0.0265		2.32E-01	2.32E-01	2.90E-01	2.90E-01	2.03E-01
1330207	Xylenes	0.0272	0.0197		1.72E-01	1.72E-01	2.15E-01	2.15E-01	1.51E-01
^a South Co	ast Air Quality Management District Supplem	ental Reporting Procedures for	r						
AB2588	Facilities Table B-1 Emission Factors for Boi	lers - Natural Gas Combustion							
^b Source: A	Annual Air Emission Report for 2006/2007 sub	omitted to SCAQMD							
^c Usage dis	stribution (MMscf) provided by Enviromental F	Programs Manager David Ott 4	1/21/2008						
	Distribution (MMscf)	68.78		North Campus					
	Distribution (MMscf)	237		Facilities					
	Distribution (MMscf)	114.4		Cogeneration					
Total MMI	BTU/hr of boilers at north campus	62.646							
	BTU/hr of boilers at facilities	53.932							
	BTU/hr of boilers at cogeneration plant	224							

	T	T							1	
				Name:	BOIL48	BOIL49	BOIL50	BOIL51	BOIL52	BOIL53
				Number:	10051	10052	10053	10054	10055	10056
				Equipment:	Boiler	Boiler	Boiler	Boiler	Boiler	Boiler
				Location:	SRL #BLR-4	STRB	UES BLR#4	Unex	Unex	UES BLR#3
		Emission Factor ^a	Emission Factor ^a	Size (MMBTU/hr):	1.260	1.500	1.800	1.674	1.670	0.500
		(lbs/mmcf fuel burned)	(lbs/mmcf fuel burned)	SCAQMD Permit:	EXEMPT	EXEMPT	EXEMPT	EXEMPT	EXEMPT	EXEMPT
CAS	Pollutant	(Boilers < 10 MMBTU/HR)	(Boilers 10 - 100 MMBTU/HR)	Annual Usage ^{b,c} (mmcf):	5.5	6.6	7.9	7.4	7.3	2.2
75070	Acetaldehyde	0.0043	0.0031		2.38E-02	2.83E-02	3.40E-02	3.16E-02	3.16E-02	9.45E-03
107028	Acrolein	0.0027	0.0027		1.49E-02	1.78E-02	2.14E-02	1.99E-02	1.98E-02	5.93E-03
7664417	Ammonia	3.2	3.2		1.77E+01	2.11E+01	2.53E+01	2.35E+01	2.35E+01	7.03E+00
71432	Benzene	0.008	0.0058		4.43E-02	5.27E-02	6.33E-02	5.89E-02	5.87E-02	1.76E-02
100414	Ethylbenzene	0.0095	0.0069		5.26E-02	6.26E-02	7.51E-02	6.99E-02	6.97E-02	2.09E-02
50000	Formaldehyde	0.017	0.0123		9.41E-02	1.12E-01	1.34E-01	1.25E-01	1.25E-01	3.74E-02
110543	Hexane	0.0063	0.0046		3.49E-02	4.15E-02	4.98E-02	4.63E-02	4.62E-02	1.38E-02
91203	Naphthalene	0.0003	0.0003		1.66E-03	1.98E-03	2.37E-03	2.21E-03	2.20E-03	6.59E-04
1151	PAH (excluding napthalene)	0.0001	0.0001		5.54E-04	6.59E-04	7.91E-04	7.36E-04	7.34E-04	2.20E-04
108883	Toluene	0.0366	0.0265		2.03E-01	2.41E-01	2.90E-01	2.69E-01	2.69E-01	8.04E-02
1330207	Xylenes	0.0272	0.0197		1.51E-01	1.79E-01	2.15E-01	2.00E-01	2.00E-01	5.98E-02
^a South Co	ast Air Quality Management District Suppleme	ental Reporting Procedures for	•							
AB2588	Facilities Table B-1 Emission Factors for Boil	ers - Natural Gas Combustion								
^b Source: A	Annual Air Emission Report for 2006/2007 sub	mitted to SCAQMD								
^c Usage di	stribution (MMscf) provided by Enviromental F	Programs Manager David Ott 4	/21/2008							
	Distribution (MMscf)	68.78		North Campus						
	Distribution (MMscf)	237		Facilities						
	Distribution (MMscf)	114.4		Cogeneration						
Total MMI	BTU/hr of boilers at north campus	62.646								
Total MMI	BTU/hr of boilers at facilities	53.932								
Total MMI	BTU/hr of boilers at cogeneration plant	224								

Number: 10057 10058 10059 10060 10058 10059 10060 10058 10059 10060 10058 10059 10060 10058 10059 10060 10058 10059 10060 10058 10059 10060 10058 10059 10060 10058 10059 10060 10058 10059 10060 10058 10059 10060 10058 10059 10060 10058 10059 10060 10058 10059 10058 10059 10060 10058 10059 10060 10058 10059 10058 10059 10060 10058 10059 10058 10059 10060 10058 10059 10060 10058 10059 10060 10058 10059 10060 10058 10059 10060 10058 10059 10060 10058 10059 10060 10058 10059 10060 10058 10059 10060 10058 10059 10060 10058 10059 10060 10058 10059 10060 10058 10059 10060 10058 10059 10060 10058 10059 10060 10058 10059 10060 10058 10059 10		T					1			
Equipment: Location: Boiler Boile					Name:	BOIL54	BOIL55	BOIL56	BOIL57	BOIL58
Location: Loca					Number:	10057	10058	10059	10060	10061
Emission Factor* Emission Factor* Emission Factor* Size (MMBTU/hr): 0.550 1.000 1.000 5.23 12					Equipment:	Boiler	Boiler	Boiler	Boiler	Boiler
CAS Pollutant (Bollers < 10 MMBTU/HR) (Boilers 10 - 100 MM					Location:	Ueberroth #1	Rehab. #5	Rehab. #6	Warren Hall	200 Med Plaza
CAS Pollutant (Boilers < 10 MMBTU/HR) (Boilers 10 - 100 MMBTU/HR) Annual Usage** (mmcf): 2.2 4.4 4.4 23.0 5.75070 Acetaldehyde 0.0043 0.0031 9.45E-03 1.89E-02 1.89E-02 9.88E-02 1.70 107028 Acrolein 0.0027 0.0027 5.93E-03 1.19E-02 1.19E-02 6.21E-02 1.48 7664417 Ammonia 3.2 3.2 3.2 7.03E+00 1.41E+01 1.41E+01 7.35E+01 1.76 1.76 1.76 1.76 1.76 1.76 1.76 1.7			Emission Factor ^a	Emission Factor ^a	Size (MMBTU/hr):	0.500	1.000	1.000	5.23	12.5
75070 Acetaldehyde			(lbs/mmcf fuel burned)	(lbs/mmcf fuel burned)	SCAQMD Permit:	EXEMPT	EXEMPT	EXEMPT	D71042	D71162
107028 Acrolein 0.0027 0.0027 0.0027 5.93E-03 1.19E-02 6.21E-02 1.48	CAS	Pollutant	(Boilers < 10 MMBTU/HR)	(Boilers 10 - 100 MMBTU/HR)	Annual Usage ^{b,c} (mmcf):	2.2	4.4	4.4	23.0	54.9
7.03E+00	75070	Acetaldehyde	0.0043	0.0031		9.45E-03	1.89E-02	1.89E-02	9.88E-02	1.70E-01
Time	107028	Acrolein	0.0027	0.0027		5.93E-03	1.19E-02	1.19E-02	6.21E-02	1.48E-01
100414 Ethylbenzene	7664417	Ammonia	3.2	3.2		7.03E+00	1.41E+01	1.41E+01	7.35E+01	1.76E+02
South Coast Air Quality Management District Supplemental Reporting Procedures for AB2588 Facilities Table B-1 Emission Report for 2006/2007 submitted to SCAQMD Script of MMscf) Script of Mathematics Script of MMscf) Script of MMscf) Script of Mathematics Script of MMscf) Script of MMscf) Script of Mathematics Script of MMscf) Script of MMscf of MMsc	71432	Benzene	0.008	0.0058		1.76E-02	3.52E-02	3.52E-02	1.84E-01	3.19E-01
1.10543 Hexane	100414	Ethylbenzene	0.0095	0.0069		2.09E-02	4.17E-02	4.17E-02	2.18E-01	3.79E-01
91203 Naphthalene	50000	Formaldehyde	0.017	0.0123		3.74E-02	7.47E-02	7.47E-02	3.91E-01	6.76E-01
1.151 PAH (excluding napthalene) 0.0001 0.0001 0.0001 2.20E-04 4.39E-04 4.39E-04 2.30E-03 5.49 1.08883 Toluene 0.0366 0.0265 8.04E-02 1.61E-01 1.61E-01 8.41E-01 1.46 1.330207 Xylenes 0.0272 0.0197 5.98E-02 1.20E-01 1.20E-01 6.25E-01 1.08 1.20E-01 1	110543	Hexane	0.0063	0.0046		1.38E-02	2.77E-02	2.77E-02	1.45E-01	2.53E-01
108883 Toluene	91203	Naphthalene	0.0003	0.0003		6.59E-04	1.32E-03	1.32E-03	6.89E-03	1.65E-02
1330207 Xylenes 0.0272 0.0197 5.98E-02 1.20E-01 1.20E-01 6.25E-01 1.08 ^a South Coast Air Quality Management District Supplemental Reporting Procedures for AB2588 Facilities Table B-1 Emission Factors for Boilers - Natural Gas Combustion ^b Source: Annual Air Emission Report for 2006/2007 submitted to SCAQMD ^c Usage distribution (MMscf) provided by Enviromental Programs Manager David Ott 4/21/2008 Distribution (MMscf) 68.78 Distribution (MMscf) 237 Facilities	1151	PAH (excluding napthalene)	0.0001	0.0001		2.20E-04	4.39E-04	4.39E-04	2.30E-03	5.49E-03
a South Coast Air Quality Management District Supplemental Reporting Procedures for AB2588 Facilities Table B-1 Emission Factors for Boilers - Natural Gas Combustion b Source: Annual Air Emission Report for 2006/2007 submitted to SCAQMD c Usage distribution (MMscf) provided by Environmental Programs Manager David Ott 4/21/2008 Distribution (MMscf) 68.78 Distribution (MMscf) 237 North Campus Facilities	108883	Toluene	0.0366	0.0265		8.04E-02	1.61E-01	1.61E-01	8.41E-01	1.46E+00
AB2588 Facilities Table B-1 Emission Factors for Boilers - Natural Gas Combustion b Source: Annual Air Emission Report for 2006/2007 submitted to SCAQMD c Usage distribution (MMscf) provided by Environmental Programs Manager David Ott 4/21/2008 Distribution (MMscf) 68.78 Distribution (MMscf) 237 Facilities	1330207	Xylenes	0.0272	0.0197		5.98E-02	1.20E-01	1.20E-01	6.25E-01	1.08E+00
bSource: Annual Air Emission Report for 2006/2007 submitted to SCAQMD culsage distribution (MMscf) provided by Environmental Programs Manager David Ott 4/21/2008 Distribution (MMscf) 68.78 Distribution (MMscf) 237 Facilities	^a South Coa	ast Air Quality Management District Suppleme	ental Reporting Procedures for	•						
CUsage distribution (MMscf) provided by Environmental Programs Manager David Ott 4/21/2008 Distribution (MMscf) 68.78 Distribution (MMscf) 237 Facilities	AB2588	Facilities Table B-1 Emission Factors for Boil	ers - Natural Gas Combustion							
Distribution (MMscf) 68.78 North Campus Distribution (MMscf) 237 Facilities	^b Source: A	nnual Air Emission Report for 2006/2007 sub	mitted to SCAQMD							
Distribution (MMscf) 237 Facilities	^c Usage dis	tribution (MMscf) provided by Enviromental F	Programs Manager David Ott 4	/21/2008						
		Distribution (MMscf)	68.78		North Campus					
Distribution (MMscf) 114.4 Cogeneration		Distribution (MMscf)	237		Facilities					
		Distribution (MMscf)	114.4		Cogeneration					
Total MMBTU/hr of boilers at north campus 62.646	Total MME	tal MMBTU/hr of boilers at north campus 62.646								
Total MMBTU/hr of boilers at facilities 53.932	Total MME	BTU/hr of boilers at facilities	53.932							
Total MMBTU/hr of boilers at cogeneration plant 224	Total MME	BTU/hr of boilers at cogeneration plant	224							

		I	I	T.		
				Name:	BOIL59	
				Number:	10062	
				Equipment:	Boiler	
				Location:	200 Med Plaza	
		Emission Factor ^a	Emission Factor ^a	Size (MMBTU/hr):	12.5	Total
		(lbs/mmcf fuel burned)	(lbs/mmcf fuel burned)	SCAQMD Permit:	D71165	Emissions
CAS	Pollutant	(Boilers < 10 MMBTU/HR)	(Boilers 10 - 100 MMBTU/HR)	Annual Usage ^{b,c} (mmcf):	54.9	(lb/hr)
75070	Acetaldehyde	0.0043	0.0031		1.70E-01	8.87E-01
107028	Acrolein	0.0027	0.0027		1.48E-01	6.40E-01
7664417	Ammonia	3.2	3.2		1.76E+02	7.58E+02
71432	Benzene	0.008	0.0058		3.19E-01	1.65E+00
100414	Ethylbenzene	0.0095	0.0069		3.79E-01	1.97E+00
50000	Formaldehyde	0.017	0.0123		6.76E-01	3.51E+00
110543	Hexane	0.0063	0.0046		2.53E-01	1.31E+00
91203	Naphthalene	0.0003	0.0003		1.65E-02	7.11E-02
1151	PAH (excluding napthalene)	0.0001	0.0001		5.49E-03	2.37E-02
108883	Toluene	0.0366	0.0265		1.46E+00	7.56E+00
1330207	Xylenes	0.0272	0.0197		1.08E+00	5.62E+00
^a South Co	ast Air Quality Management District Suppleme	ental Reporting Procedures for	•			
AB2588	Facilities Table B-1 Emission Factors for Boil	ers - Natural Gas Combustion				
^b Source: <i>A</i>	Annual Air Emission Report for 2006/2007 sub	mitted to SCAQMD				
^c Usage dis	stribution (MMscf) provided by Enviromental F	Programs Manager David Ott 4	/21/2008			
	Distribution (MMscf)	68.78		North Campus		
	Distribution (MMscf)	237		Facilities		
	Distribution (MMscf)	114.4		Cogeneration		
Total MME	BTU/hr of boilers at north campus	62.646				
Total MME	BTU/hr of boilers at facilities	53.932				
Total MME	BTU/hr of boilers at cogeneration plant	224				

1	T				ı
			Name:	BOIL60	
			Number:	10063	
			Equipment:	Boiler	
			Location:	Cogen	
		Emission Factor ^a	Size (MMBTU/hr):	224	Total
		(lbs/mmcf fuel burned)	SCAQMD Permit:	F01220	Emissions
CAS	Pollutant	(Boilers > 100 MMBTU/HR)	Hourly Usage ^c (mmcf):	0.2196	(lb/hr)
75070	Acetaldehyde	0.0009		1.98E-04	1.98E-04
107028	Acrolein	0.0008		1.76E-04	1.76E-04
7664417	Ammonia	3.2		7.03E-01	7.03E-01
71432	Benzene	0.0017		3.73E-04	3.73E-04
100414	Ethylbenzene	0.002		4.39E-04	4.39E-04
50000	Formaldehyde	0.0036		7.91E-04	7.91E-04
110543	Hexane	0.0013		2.85E-04	2.85E-04
91203	Naphthalene	0.0003		6.59E-05	6.59E-05
1151	PAH (excluding napthalene)	0.0001		2.20E-05	2.20E-05
108883	Toluene	0.0078		1.71E-03	1.71E-03
1330207	Xylenes	0.0058		1.27E-03	1.27E-03
^a South Co	ast Air Quality Management Distr	rict Supplemental Reporting Pro	ocedures for		
AB2588	Facilities Table B-1 Emission Fa	ctors for Boilers - Natural Gas (Combustion		
^b Based on	size of boiler divided by heating	value for natural gas, 1020 BTL	J/scf		

			Name:	BOIL60	
			Number:	10063	
			Equipment:	Boiler	
			Location:	Cogen	
		Emission Factor ^a	Size (MMBTU/hr):	224	Total
		(lbs/mmcf fuel burned)	SCAQMD Permit:	F01220	Emissions
CAS	Pollutant	(Boilers > 100 MMBTU/HR)	Annual Usage ^{b,c} (mmcf):	114.4	(lb/yr)
75070	Acetaldehyde	0.0009		1.03E-01	1.03E-01
107028	Acrolein	0.0008		9.15E-02	9.15E-02
7664417	Ammonia	3.2		3.66E+02	3.66E+02
71432	Benzene	0.0017		1.94E-01	1.94E-01
100414	Ethylbenzene	0.002		2.29E-01	2.29E-01
50000	Formaldehyde	0.0036		4.12E-01	4.12E-01
110543	Hexane	0.0013		1.49E-01	1.49E-01
91203	Naphthalene	0.0003		3.43E-02	3.43E-02
1151	PAH (excluding napthalene)	0.0001		1.14E-02	1.14E-02
108883	Toluene	0.0078		8.92E-01	8.92E-01
1330207	Xylenes	0.0058		6.64E-01	6.64E-01
^a South Co	oast Air Quality Management District Sup	oplemental Reporting Procedur	es for		
AB2588	Facilities Table B-1 Emission Factors for	or Boilers - Natural Gas Combu	stion		
^b Source: A	Annual Air Emission Report for 2006/200	7 submitted to SCAQMD			
^c Usage di	stribution (MMscf) provided by Envirome	ental Programs Manager David	Ott 4/21/2008		
	Distribution (MMscf)	68.78	North Campus		
	Distribution (MMscf)	237	Facilities		
	Distribution (MMscf)	114.4	Cogeneration		
Total MM	BTU/hr of boilers at the north campus	62.646			
Total MM	BTU/hr of boilers at facilities	53.932			
Total MM	BTU/hr of boilers at cogeneration plant	224			

			Name:	ICE1	ICE2	ICE3	ICE4	ICE5	ICE6	ICE7	ICE8	
			Number:	10064	10065	10066	10067	10068	10069	10070	10071	
			Equipment:	ICE, Em Gen								
			Location:	Covel	De Neve	Hedrick	Sproul Hall	Dykstra	Rieber Hall	Reiber N	Reiber W	
			Size (bhp):	335	415	440	724	320	320	635	635	Total
			SCAQMD Permit:	D38196	F36980	F38570	F38571	F38572	F38573	F82410	F82411	Emissions
			Hourly Usage ^a (Mgal):	0.0052	0.0064	0.0068	0.0112	0.0050	0.0050	0.0098	0.0098	(lb/yr)
CAS	Pollutant ^b		Emission Factor ^c (Ibs/Mgal)	8.9008	0.7121	11.3931	22.7861	11.3931	11.3931	2.8483	2.8483	
9901	Diesel Exhaust (particulates)			4.62E-02	4.57E-03	7.76E-02	2.55E-01	5.64E-02	5.64E-02	2.80E-02	2.80E-02	4.97E-01
Est Hourly F	uel Consumption (gal/hr):			5.186	6.424	6.811	11.208	4.954	4.954	9.830	9.830	
Est Load Fac	etor:			0.250	0.250	0.250	0.250	0.250	0.250	0.250	0.250	
Manufacture	Diesel PM Emission Factor (g/bhp-hr):			0.25	0.02	0.32	0.64	0.32	0.32	0.08	0.08	
Converted D	iesel PM Emission Factor (lbs/Mgal):			8.901	0.712	11.393	22.786	11.393	11.393	2.848	2.848	
Default SCA	QMD (lbs/Mgal)	33.5	lbs/Mgal									
^a Hourly usag	e based on fuel comsumption (gal/hr) of er	ngine										
bIn reference	to guidance provided in apprendix D of Oh	НЕА,	Tom Chico of SCAQMD									
said in a pho	one conversation 20 May 2008 that diesel I	PM rep	resents the sole toxicity									
from diesel	combustion in ICEs and should be the only	chemi	cal quantified for diesel ICEs									
in SCAQME	HRAs											
^c Diesel PM e	mission factors obtained from manufactue	specit	fication sheets;									
when speci	ficion sheets were not available, referred to	defau	It SCADMD emission factors									

			Name:	ICE1	ICE2	ICE3	ICE4	ICE5	ICE6	ICE7	ICE8	
			Number:	10064	10065	10066	10067	10068	10069	10070	10071	
			Equipment:	ICE, Em Gen								
			Location:	Covel	De Neve	Hedrick	Sproul Hall	Dykstra	Rieber Hall	Reiber N	Reiber W	
			Size (bhp):	335	415	440	724	320	320	635	635	Total
			SCAQMD Permit:	D38196	F36980	F38570	F38571	F38572	F38573	F82410	F82411	Emissions
			Annual Usage ^{a,b,c} (Mgal):	0.248	0.307	0.325	0.535	0.236	0.236	0.469	0.469	(lb/yr)
CAS	Pollutant ^d		Emission Factor ^e (lbs/Mgal)	8.901	0.712	11.393	22.786	11.393	11.393	2.848	2.848	
9901	Diesel Exhaust (particulates)			2.20E+00	2.18E-01	3.70E+00	1.22E+01	2.69E+00	2.69E+00	1.34E+00	1.34E+00	26.4
Est Annual F	Fuel Usage (gal/yr):			247.6	306.7	325.2	535.0	236.5	236.5	469.3	469.3	2,826.0
Est Hourly F	uel Consumption (gal/hr):			5.2	6.4	6.8	11.2	5.0	5.0	9.8	9.8	59.2
Est Annual I	Hourly Usage (hr/yr):			47.7	47.7	47.7	47.7	47.7	47.7	47.7	47.7	381.9
Est Load Fa	ctor:			0.250	0.250	0.250	0.250	0.250	0.250	0.25	0.25	
Manufacture	r Diesel PM Emission Factor (g/b	hp-hr):		0.25	0.02	0.32	0.64	0.32	0.32	0.08	0.08	
Converted D	iesel PM Emission Factor (lbs/Mg	gal):		8.90	0.71	11.39	22.79	11.39	11.39	2.85	2.85	
Default SCA	QMD (lbs/Mgal)	33.5	lbs/Mgal									
^a Annual usa	ge estimated based on engine siz	e and rep	orted diesel usage									
^b Diesel usag	e reported on the 2006/2007 SCA	AQMD Ar	nual Air Emission Report									
^c Usage distr	ibution (gal) provided by Envirome	ental Pro	grams Manager David Ott 4/21/20	80								
dIn reference	to guidance provided in apprend	lix D of O	HHEA, Tom Chico of SCAQMD									
said in a ph	one conversation 20 May 2008 th	at diesel	PM represents the sole toxicity									
from diesel	combustion in ICEs and should be	e the only	chemical quantified for diesel ICI	Es								
in SCAQMI	HRAs											
E Diesel PM	emission factors obtained from m	anufactu	rer specification sheets;									
when spec	ificion sheets were not available,	referred t	o default SCADMD emission factor	ors								
Distribution	(gal):	2,826	North Campus									
Distribution	(gal):	8,750	Facilities									
Distribution	(gal):	11,576	Total									
Total bhp of	ICE's at the North Campus	3,824										
Total bhp of	ICE's at Facilities	56,944										

					1		
Name	ICE9	ICE10	ICE11	ICE12	ICE13	ICE14	ICE15
Number	10072	10073	10074	10075	10076	10077	10078
Equipment	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen
Location	Cogen	Ackerman	Young Hall E	MSB	STRB	UCPD NE	PS 1
Size (bhp):	2220	746	1750	1323	668	553	750
SCAQMD Permit	D75643	D89196	D88255	F00371	F11549	F23691	F2943
Hourly Usage ^a (Mgal):	0.1031	0.0115	0.0271	0.0205	0.0103	0.0086	0.0116
CAS Pollutant ^b Emission Factor ^c (Ibs/Mgal)	3.5603	21.3620	33.5000	18.1577	21.3620	30.9749	17.8017
901 Diesel Exhaust (particulates)	3.67E-01	2.47E-01	9.08E-01	3.72E-01	2.21E-01	2.65E-01	2.07E-01
Est Hourly Fuel Consumption (gal/hr):	103.100	11.5	27.1	20.5	10.3	8.6	11.6
Est Load Factor:	0.750	0.25	0.25	0.25	0.25	0.25	0.25
Est Load Factor × bhp	1665.0	186.5	437.5	330.75	167	138.25	187.5
Manufacturer Diesel PM Emission Factor (g/bhp-hr)	0.1	0.6	NA	0.51	0.6	0.87	0.5
Converted Diesel PM Emission Factor (lbs/Mgal)	3.560	21.362	NA	18.158	21.362	30.975	17.802
Default SCAQMD (lbs/Mgal) 33.5 lbs/Mgal							
Hourly usage based on fuel comsumption (gal/hr) of engine							
In reference to guidance provided in apprendix D of OHHEA, Tom Chico of SCAQMD							
said in a phone conversation 20 May 2008 that diesel PM represents the sole toxicity							
from diesel combustion in ICEs and should be the only chemical quantified for diesel ICEs							
in SCAQMD HRAs							
Diesel PM emission factors obtained from manufactuer specification sheets;							
when specificion sheets were not available, referred to default SCADMD emission factors							

		Name:	ICE16	ICE17	ICE18	ICE19	ICE20	ICE21	ICE22
		Number:	10079	10080	10081	10082	10083	10084	10085
		Equipment:	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen
		Location:	Gonda	UCLA Med Ctr	Macdonald Lab				
		Size (bhp):	1850	1260	1260	1310	1310	1750	890
		SCAQMD Permit:	F9960	D78147	D78148	D78149	D78150	D79963	D48280
		Hourly Usage ^a (Mgal):	0.0286	0.0585	0.0585	0.0608	0.0608	0.0813	0.0138
CAS Pollutant ^b		Emission Factor ^c (lbs/Mgal)	2.8483	2.5634	2.5634	2.4655	2.4655	33.5000	16.0215
9901 Diesel Exhaust (particulates)			8.16E-02	1.50E-01	1.50E-01	1.50E-01	1.50E-01	2.72E+00	2.21E-01
Est Hourly Fuel Consumption (gal/hr):			28.6	58.5	58.5	60.8	60.8	81.3	13.8
Est Load Factor:			0.25	0.75	0.75	0.75	0.75	0.75	0.25
Est Load Factor × bhp			462.5	945	945	982.5	982.5	1312.5	222.5
Manufacturer Diesel PM Emission Factor (g/bhp	o-hr)		0.08	0.15	0.15	0.15	0.15	NA	0.45
Converted Diesel PM Emission Factor (lbs/Mgal)		2.848	2.563	2.563	2.466	2.466	NA	16.021
Default SCAQMD (lbs/Mgal)	33.5	lbs/Mgal							
^a Hourly usage based on fuel comsumption (gal/h	nr) of engine								
^b In reference to guidance provided in apprendix	D of OHHEA, Tom Chico	of SCAQMD							
said in a phone conversation 20 May 2008 that	diesel PM represents the	sole toxicity							
from diesel combustion in ICEs and should be t	he only chemical quantified	d for diesel ICEs							
in SCAQMD HRAs									
^c Diesel PM emission factors obtained from man	ufactuer specification shee	ets;							
when specificion sheets were not available, ref	erred to default SCADMD	emission factors							

				, ,				
	Name:	ICE23	ICE24	ICE25	ICE26	ICE27	ICE28	ICE29
	Number:	10086	10087	10088	10089	10090	10091	10092
	Equipment:	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen				
	Location:	AGSM South	Seas IV NW	Campus Wide	Rehab Cen	Phys And Astrom	SRB I (NRB)	CNSI
	Size (bhp):	1490	1095	2514	635	910	2000	2000
	SCAQMD Permit:	D87699	D99790	F37551	F52213	F58406	F56614	F71101
	Hourly Usage ^a (Mgal):	0.0231	0.0170	0.0389	0.0098	0.0141	0.0310	0.0310
CAS Pollutant ^b	Emission Factor ^c (lbs/Mgal)	33.5000	33.5000	33.5000	3.9164	1.0681	2.6702	2.6702
9901 Diesel Exhaust (particulates)		7.73E-01	5.68E-01	1.30E+00	3.85E-02	1.50E-02	8.27E-02	8.27E-02
Est Hourly Fuel Consumption (gal/hr):		23.1	17.0	38.9	9.8	14.1	31.0	31.0
Est Load Factor:		0.25	0.25	0.25	0.25	0.25	0.25	0.25
Est Load Factor × bhp		372.5	273.75	628.5	158.75	227.5	500	500
Manufacturer Diesel PM Emission Factor (g/bhp	p-hr)	NA	NA	NA	0.11	0.03	0.075	0.075
Converted Diesel PM Emission Factor (lbs/Mga	1)	NA	NA	NA	3.916	1.068	2.670	2.670
Default SCAQMD (lbs/Mgal)	33.5 lbs/Mgal							
^a Hourly usage based on fuel comsumption (gal/h	hr) of engine							
^b In reference to guidance provided in apprendix	D of OHHEA, Tom Chico of SCAQMD							
said in a phone conversation 20 May 2008 that	diesel PM represents the sole toxicity							
from diesel combustion in ICEs and should be t	the only chemical quantified for diesel ICEs							
in SCAQMD HRAs								
^c Diesel PM emission factors obtained from man	ufactuer specification sheets;							
when specificion sheets were not available, ref	ferred to default SCADMD emission factors							

	Name:	ICE30	ICE31	ICE32	ICE33	ICE34	ICE35	ICE36
	Number:	10093	10094	10095	10096	10097	10098	10099
	Equipment:	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen
	Location:	SRB II	Rep Hospital 1	Rep Hospital 2	Rep Hospital 3	Rep Hospital 4	Police Station Rep	Powell / kinsey
	Size (bhp):	2000	2000	2000	2000	2000	1881	755
	SCAQMD Permit:	F71100	F78903	F78904	F78905	F78906	F90961	F82412
	Hourly Usage ^a (Mgal):	0.0310	0.0929	0.0929	0.0929	0.0929	0.0291	0.0117
CAS Pollutant ^b	Emission Factor ^c (lbs/Mgal)	2.6702	2.6702	2.6702	2.6702	2.6702	5.3405	2.6702
9901 Diesel Exhaust (particulates)		8.27E-02	2.48E-01	2.48E-01	2.48E-01	2.48E-01	1.56E-01	3.12E-02
5.11 1.5 10 11 (11)			00.0	20.0	20.0	00.0	00.4	44 =
Est Hourly Fuel Consumption (gal/hr):		31.0	92.9	92.9	92.9	92.9	29.1	11.7
Est Load Factor:		0.25	0.75	0.75	0.75	0.75	0.25	0.25
Est Load Factor × bhp		500	1500	1500	1500	1500	470.25	188.75
Manufacturer Diesel PM Emission Factor (g/bhp-hr)		0.075	0.075	0.075	0.075	0.075	0.15	0.075
Converted Diesel PM Emission Factor (lbs/Mgal)		2.670	2.670	2.670	2.670	2.670	5.340	2.670
Default SCAQMD (lbs/Mgal) 33.5	lbs/Mgal							
^a Hourly usage based on fuel comsumption (gal/hr) of engine								
^b In reference to guidance provided in apprendix D of OHHEA, Tom Chico	of SCAQMD							
said in a phone conversation 20 May 2008 that diesel PM represents the	sole toxicity							
from diesel combustion in ICEs and should be the only chemical quantifie	d for diesel ICEs							
in SCAQMD HRAs								
^c Diesel PM emission factors obtained from manufactuer specification shee								
when specificion sheets were not available, referred to default SCADMD	emission factors							

	1					1				T.	
			Name:	ICE37	ICE38	ICE39	ICE40	ICE41	ICE42	ICE43	ICE44
			Number:	10100	10101	10102	10103	10104	10105	10106	10107
			Equipment:	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen
			Location:	PKS#5,4,7	Eng V	Kerckhoff	Sunset Rec NE	Boelter III	Royce NW	Boelter II 12400	Boyer
			Size (bhp):	3622	3057	377	66	443	235	166	390
			SCAQMD Permit:	Subitted2	Subitted3	F37887	D88184	D89155	D98768	D98801	F00370
			Hourly Usage ^a (Mgal):	0.0561	0.0473	0.0058	0.0010	0.0069	0.0036	0.0026	0.0060
CAS	Pollutant ^b		Emission Factor ^c (lbs/Mgal)	1.2817	4.2724	19.5818	33.5000	24.5663	33.5000	33.5000	17.0896
9901	Diesel Exhaust (particulates)			7.19E-02	2.02E-01	1.14E-01	3.42E-02	1.68E-01	1.22E-01	8.61E-02	1.03E-01
Est Hour	y Fuel Consumption (gal/hr):			56.1	47.3	5.8	1.0	6.9	3.6	2.6	6.0
Est Load	Factor:			0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
Est Load	Factor × bhp			905.5	764.25	94.25	16.5	110.75	58.75	41.5	97.5
Manufact	urer Diesel PM Emission Factor (g/bh	o-hr)		0.036	0.12	0.55	NA	0.69	NA	NA	0.48
Converte	d Diesel PM Emission Factor (lbs/Mga	l)		1.282	4.272	19.582	NA	24.566	NA	NA	17.090
Default S	CAQMD (lbs/Mgal)	33.5	lbs/Mgal								
^a Hourly u	 sage based on fuel comsumption (gal/	hr) of engine									
bln refere	nce to guidance provided in apprendix	D of OHHEA, Tom Chico	of SCAQMD								
said in a	phone conversation 20 May 2008 that	diesel PM represents the	sole toxicity								
from diesel combustion in ICEs and should be the only chemical quantified for diesel ICEs											
in SCAC	MD HRAs										
^c Diesel P	M emission factors obtained from man	ets;									
when sp	pecificion sheets were not available, re	ferred to default SCADMD	emission factors								

									1	1	1
			Name:	ICE45	ICE46	ICE47	ICE48	ICE49	ICE50	ICE51	ICE52
			Number:	10108	10109	10110	10111	10112	10113	10114	10115
			Equipment:	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen
			Location:	PS 4	SRL N	Life Sciences	Franz Hall	Math Sciences	SRL	PS 8 SE	Unix
			Size (bhp):	519	377	250	166	60	168	168	107
			SCAQMD Permit:	F17312	F2279	F23692	F37922	F39010	F4681	F4806	F4808
			Hourly Usage ^a (Mgal):	0.0080	0.0058	0.0039	0.0026	0.0009	0.0026	0.0026	0.0017
CAS	Pollutant ^b		Emission Factor ^c (lbs/Mgal)	33.5000	19.9379	33.5000	33.5000	33.5000	33.5000	33.5000	33.5000
9901	Diesel Exhaust (particulates)			2.69E-01	1.16E-01	1.30E-01	8.61E-02	3.11E-02	8.71E-02	8.71E-02	5.55E-02
Est Hourly	Fuel Consumption (gal/hr):			8.0	5.8	3.9	2.6	0.9	2.6	2.6	1.7
Est Load F	actor:			0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
Est Load F	actor × bhp			129.75	94.25	62.5	41.5	15	42	42	26.75
Manufactu	rer Diesel PM Emission Factor (g/bhp	o-hr)		NA	0.56	NA	NA	NA	NA	NA	NA
Converted	Diesel PM Emission Factor (lbs/Mgal	l)		NA	19.938	NA	NA	NA	NA	NA	NA
Default SC	AQMD (lbs/Mgal)	33.5	lbs/Mgal								
^a Hourly us	age based on fuel comsumption (gal/h	hr) of engine									
^b In referen	ce to guidance provided in apprendix	D of OHHEA, Tom Chico	of SCAQMD								
said in a p	phone conversation 20 May 2008 that	diesel PM represents the	sole toxicity								
from diese	el combustion in ICEs and should be t	the only chemical quantifie	d for diesel ICEs								
in SCAQN	ID HRAs										
^c Diesel PM	emission factors obtained from man	ufactuer specification shee	ets;								
when spe	cificion sheets were not available, ref	ferred to default SCADMD	emission factors								

	T				1				1
		Name:	ICE53	ICE54	ICE55	ICE56	ICE57	ICE58	ICE59
		Number:	10116	10117	10118	10119	10120	10121	10122
		Equipment:	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen				
		Location:	Bunche	LATC	Pauley	Law Library	200 Med Plaza	300 Med Plaza	200 Med Plaza
		Size (bhp):	100	135	135	370	1095	335	1095
		SCAQMD Permit:	F5266	F5268	F5269	F5492	D77804	D77805	D77806
		Hourly Usage ^a (Mgal):	0.0015	0.0021	0.0021	0.0057	0.0170	0.0052	0.0170
CAS	Pollutant ^b	Emission Factor ^c (lbs/Mgal)	33.5000	33.5000	33.5000	33.5000	33.5000	6.7646	33.5000
9901	Diesel Exhaust (particulates)		5.19E-02	7.00E-02	7.00E-02	1.92E-01	5.68E-01	3.51E-02	5.68E-01
Est Hourly	/ Fuel Consumption (gal/hr):		1.5	2.1	2.1	5.7	17.0	5.2	17.0
Est Load	Factor:		0.25	0.25	0.25	0.25	0.25	0.25	0.25
Est Load	Factor × bhp		25	33.75	33.75	92.5	273.75	83.75	273.75
Manufacti	urer Diesel PM Emission Factor (g/bh	p-hr)	NA	NA	NA	NA	NA	0.19	NA
Converted	d Diesel PM Emission Factor (lbs/Mga	al)	NA	NA	NA	NA	NA	6.765	NA
Default So	CAQMD (lbs/Mgal)	33.5 lbs/Mgal							
^a Hourly us	age based on fuel comsumption (gal/	hr) of engine							
^b In referer	nce to guidance provided in apprendix	D of OHHEA, Tom Chico of SCAQMD							
said in a	phone conversation 20 May 2008 that	t diesel PM represents the sole toxicity							
from dies	el combustion in ICEs and should be	the only chemical quantified for diesel ICEs							
in SCAQ	MD HRAs								
^c Diesel Pl	M emission factors obtained from man	nufactuer specification sheets;							
when sp	ecificion sheets were not available, re	ferred to default SCADMD emission factors							

				10500	10504	10500	10500	10504	IOFOF	10500
-			Name:	ICE60	ICE61	ICE62	ICE63	ICE64	ICE65	ICE66
			Number:	10123	10124	10125	10126	10127	10128	10129
			Equipment:	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen
			Location:	Env Service Building	Parking Structure 7	YRL	Campus Wide	Campus Wide	CHS	Broad Art Center
			Size (bhp):	535	317	260	216	490	277	490
			SCAQMD Permit:	F49789	F52215	F52214	F37549	F58435	F62618	F58436
			Hourly Usage ^a (Mgal):	0.0083	0.0049	0.0040	0.0033	0.0076	0.0043	0.0076
CAS	Pollutant ^b		Emission Factor ^c (lbs/Mgal)	14.2413	14.2413	33.5000	7.1207	0.7121	4.9845	0.7121
9901	Diesel Exhaust (particulates)			1.18E-01	6.99E-02	1.35E-01	2.38E-02	5.40E-03	2.14E-02	5.40E-03
Est Hourly	Fuel Consumption (gal/hr):			8.3	4.9	4.0	3.3	7.6	4.3	7.6
Est Load F	•			0.25	0.25	0.25	0.25	0.25	0.25	0.25
Est Load F	actor × bhp			133.75	79.25	65	54	122.5	69.25	122.5
Manufactu	rer Diesel PM Emission Factor (g/bh	p-hr)		0.4	0.4	NA	0.2	0.02	0.14	0.02
Converted	Diesel PM Emission Factor (lbs/Mga	ıl)		14.241	14.241	NA	7.121	0.712	4.984	0.712
Default SC	AQMD (lbs/Mgal)	33.5	lbs/Mgal							
^a Hourly us	age based on fuel comsumption (gal/	hr) of engine								
^b In referen	ce to guidance provided in apprendix	D of OHHEA, Tom Chico	of SCAQMD							
said in a p	phone conversation 20 May 2008 that	t diesel PM represents the	sole toxicity							
from diese	el combustion in ICEs and should be	the only chemical quantifie	d for diesel ICEs							
in SCAQN	ID HRAs									
^c Diesel PM	l emission factors obtained from mar	ufactuer specification shee	ets;							
when spe	ecificion sheets were not available, re	ferred to default SCADMD	emission factors							

	1	1			1		1			
		Name:	ICE67	ICE68	ICE69	ICE70	ICE71	ICE72	ICE73	ICE74
		Number:	10130	10131	10132	10133	10134	10135	10136	10137
		Equipment:	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen
		Location:	Campus Wide	Public Policy	Murphy Hall	Hilbrom	Hedrick Tower	MS	PKS#3	CHS Park Str
		Size (bhp):	155	201	370	550	157	325	65	50
		SCAQMD Permit:	F37540	F4805	F4983	F73384	F73157	F89260	submitted1	Exempt1
		Hourly Usage ^a (Mgal):	0.0024	0.0031	0.0057	0.0085	0.0024	0.0050	0.0010	0.0008
CAS Pollutant ^b		Emission Factor ^c (Ibs/Mgal)	33.5000	33.5000	33.5000	4.9845	33.5000	3.5603	4.9845	33.5000
9901 Diesel Exhaust (particulates)			8.04E-02	1.04E-01	1.92E-01	4.24E-02	8.14E-02	1.79E-02	5.02E-03	2.59E-02
Est Hourly Fuel Consumption (gal/hr):			2.4	3.1	5.7	8.5	2.4	5.0	1.0	0.8
Est Load Factor:			0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
Est Load Factor × bhp			38.75	50.25	92.5	137.5	39.25	81.25	16.25	12.5
Manufacturer Diesel PM Emission Factor (g/bh	p-hr)		NA	NA	NA	0.14	NA	0.1	0.14	NA
Converted Diesel PM Emission Factor (lbs/Mga	al)		NA	NA	NA	4.984	NA	3.560	4.984	NA
Default SCAQMD (lbs/Mgal)	33.5	lbs/Mgal								
^a Hourly usage based on fuel comsumption (gal/	hr) of engine									
^b In reference to guidance provided in apprendix	D of OHHEA, Tom Chico	of SCAQMD								
said in a phone conversation 20 May 2008 that	t diesel PM represents the	sole toxicity								
from diesel combustion in ICEs and should be	the only chemical quantifie	d for diesel ICEs								
in SCAQMD HRAs										
^c Diesel PM emission factors obtained from man	nufactuer specification shee	ets;								
when specificion sheets were not available, re	ferred to default SCADMD	emission factors								

			Name:	ICE75	ICE76	ICE77	ICE78	ICE79	ICE80	ICE81	
			Number:	10138	10139	10140	10141	10142	10143	10144	
			Equipment:	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	
			Location:	Dicksen Art	East Melnitz	Grad School Edu	Melnitz Hall	Campus Wide	Campus Wide	Park Str 8	
			Size (bhp):	50	50	50	50	50	50	50	Total
			SCAQMD Permit:	Exempt2	Exempt3	Exempt4	Exempt5	Exempt6	Exempt7	Exempt8	Emissions
			Hourly Usage ^a (Mgal):	0.0008	0.0008	0.0008	0.0008	0.0008	0.0008	0.0008	(lb/yr)
CAS	Pollutant ^b		Emission Factor ^c (lbs/Mgal)	33.5000	33.5000	33.5000	33.5000	33.5000	33.5000	33.5000	
9901	Diesel Exhaust (particulates)			2.59E-02	2.59E-02	2.59E-02	2.59E-02	2.59E-02	2.59E-02	2.59E-02	1.44E+01
Est Hourl	y Fuel Consumption (gal/hr):			0.8	0.8	0.8	0.8	0.8	0.8	0.8	
Est Load	Factor:			0.25	0.25	0.25	0.25	0.25	0.25	0.25	
Est Load	Factor × bhp			12.5	12.5	12.5	12.5	12.5	12.5	12.5	
Manufact	urer Diesel PM Emission Factor (g/bh	o-hr)		NA	NA	NA	NA	NA	NA	NA	
Converte	d Diesel PM Emission Factor (lbs/Mga	l)		NA	NA	NA	NA	NA	NA	NA	
Default S	CAQMD (lbs/Mgal)	33.5	lbs/Mgal								
^a Hourly u	sage based on fuel comsumption (gal/	hr) of engine									
^b In refere	nce to guidance provided in apprendix	D of OHHEA, Tom Chico	of SCAQMD								
said in a	phone conversation 20 May 2008 that	diesel PM represents the	sole toxicity								
from dies	sel combustion in ICEs and should be	the only chemical quantifie	d for diesel ICEs								
in SCAC	MD HRAs										
^c Diesel P	M emission factors obtained from man	ufactuer specification shee	ets;								
when sp	ecificion sheets were not available, re	ferred to default SCADMD	emission factors								

		Name:	ICE9	ICE10	ICE11	ICE12	ICE13	ICE14	ICE15	ICE16
		Number:	10072	10073	10074	10075	10076	10077	10078	10079
		Equipment:	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen
		Location:	Cogen	Ackerman	Young Hall E	MSB	STRB	UCPD NE	PS 1	Gonda
		Size (bhp):	2220	746	1750	1323	668	553	750	1850
		SCAQMD Permit:	D75643	D89196	D88255	F00371	F11549	F23691	F2943	F9960
		Annual Usage ^{a,b,c} (Mgal):	0.624	0.070	0.164	0.124	0.063	0.052	0.070	0.173
CAS Pollutant ^d		Emission Factor ^e (lbs/Mgal)	3.560	21.362	33.500	18.158	21.362	30.975	17.802	2.848
9901 Diesel Exhaust (particulates)			2.22E+00	1.49E+00	5.49E+00	2.25E+00	1.34E+00	1.60E+00	1.25E+00	4.94E-01
Est Annual Fuel Usage (gal/yr):			624.04	69.90	163.97	123.96	62.59	51.82	70.27	173.34
Est Hourly Fuel Consumption (gal/hr):			103.100	11.5	27.1	20.5	10.3	8.6	11.6	28.6
Est Annual Hourly Usage (hr/yr):			6.053	6.05	6.05	6.05	6.05	6.05	6.05	6.05
Est Load Factor:			0.750	0.25	0.25	0.25	0.25	0.25	0.25	0.25
Est Load Factor × bhp			1665	187	438	331	167	138	188	463
Manufacturer Diesel PM Emission Factor (g/bhp-hr)			0.1	0.6	NA	0.51	0.6	0.87	0.5	0.08
Converted Diesel PM Emission Factor (lbs/Mgal)			3.560	21.362	NA	18.158	21.362	30.975	17.802	2.848
Default SCAQMD (lbs/Mgal)	33.5	lbs/Mgal								
^a Annual usage estimated based on engine size and repo	rted diesel usage									
^b Diesel usage reported on the 2006/2007 SCAQMD Ann	ual Air Emission I	Report								
^c Usage distribution (gal) provided by Enviromental Progr	ams Manager Da	vid Ott 4/21/2008								
^d In reference to guidance provided in apprendix D of OH	HEA, Tom Chico	of SCAQMD								
said in a phone conversation 20 May 2008 that diesel P	M represents the	sole toxicity								
from diesel combustion in ICEs and should be the only of	hemical quantifie	d for diesel ICEs								
in SCAQMD HRAs										
E Diesel PM emission factors obtained from manufacture	r specification sh	eets;								
when specificion sheets were not available, referred to	default SCADMD	emission factors								
Distribution (gal):	2,826	North Campus								
Distribution (gal):		Facilities								
Distribution (gal):	11,576									
Total bhp of ICE's at the North Campus	3,824									
Total bhp of ICE's at Facilities	59,164									

		Name:	ICE17	ICE18	ICE19	ICE20	ICE21	ICE22	ICE23
		Number:	10080	10081	10082	10083	10084	10085	10086
		Equipment:	ICE, Em Gen	ICE, Em Gen					
		Location:	UCLA Med Ctr	Macdonald Lab	AGSM South				
		Size (bhp):	1260	1260	1310	1310	1750	890	1490
		SCAQMD Permit:	D78147	D78148	D78149	D78150	D79963	D48280	D87699
		Annual Usage ^{a,b,c} (Mgal):	0.354	0.354	0.368	0.368	0.492	0.083	0.140
CAS	Pollutant ^d	Emission Factor ^e (lbs/Mgal)	2.563	2.563	2.466	2.466	33.500	16.021	33.500
9901	Diesel Exhaust (particulates)		9.08E-01	9.08E-01	9.08E-01	9.08E-01	1.65E+01	1.34E+00	4.68E+00
Est Annual	Fuel Usage (gal/yr):		354.18	354.18	368.24	368.24	491.92	83.39	139.61
Est Hourly	Fuel Consumption (gal/hr):		58.5	58.5	60.8	60.8	81.3	13.8	23.1
Est Annual	Hourly Usage (hr/yr):		6.05	6.05	6.05	6.05	6.05	6.05	6.05
Est Load F	actor:		0.75	0.75	0.75	0.75	0.75	0.25	0.25
Est Load F	actor × bhp		945	945	983	983	1313	223	373
Manufactui	rer Diesel PM Emission Factor (g/bhp-hr)		0.15	0.15	0.15	0.15	NA	0.45	NA
Converted	Diesel PM Emission Factor (lbs/Mgal)		2.563	2.563	2.466	2.466	NA	16.021	NA
Default SC	AQMD (lbs/Mgal)	33.5 lbs/Mgal							
	age estimated based on engine size and repor	9							
	age reported on the 2006/2007 SCAQMD Annu	·							
	tribution (gal) provided by Enviromental Progra	•							
	ce to guidance provided in apprendix D of OHI	-							
	hone conversation 20 May 2008 that diesel PN								
	el combustion in ICEs and should be the only cl	hemical quantified for diesel ICEs							
in SCAQN									
	1 emission factors obtained from manufacturer	,							
when spe	cificion sheets were not available, referred to c	default SCADMD emission factors							
D:	(D	0.000 N. II. O							
Distribution	10 /	2,826 North Campus							
Distribution	10 /	8,750 Facilities							
Distribution	n (gal):	11,576 Total							
Total bhp o	of ICE's at the North Campus	3,824							
	of ICE's at Facilities	59,164							

	Name:	ICE24	ICE25	ICE26	ICE27	ICE28	ICE29	ICE30
	Number:	10087	10088	10089	10090	10091	10092	10093
	Equipment:	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen
	Location:		Campus Wide	Rehab Cen	Phys And Astrom	SRB I (NRB)	CNSI	SRB II
	Size (bhp):	1095	2514	635	910	2000	2000	2000
	SCAQMD Permit:	D99790	F37551	F52213	F58406	F56614	F71101	F71100
	Annual Usage ^{a,b,c} (Mgal):	0.103	0.236	0.059	0.085	0.187	0.187	0.187
CAS Pollutant ^d	Emission Factor ^e (Ibs/Mgal)	33.500	33.500	3.916	1.068	2.670	2.670	2.670
9901 Diesel Exhaust (particulates)		3.44E+00	7.89E+00	2.33E-01	9.11E-02	5.00E-01	5.00E-01	5.00E-01
Est Annual Fuel Usage (gal/yr):		102.60	235.56	59.50	85.27	187.40	187.40	187.40
Est Hourly Fuel Consumption (gal/hr):		17.0	38.9	9.8	14.1	31.0	31.0	31.0
Est Annual Hourly Usage (hr/yr):		6.05	6.05	6.05	6.05	6.05	6.05	6.05
Est Load Factor:		0.25	0.25	0.25	0.25	0.25	0.25	0.25
Est Load Factor × bhp		274	629	159	228	500	500	500
Manufacturer Diesel PM Emission Factor (g/bhp-hr)		NA	NA	0.11	0.03	0.075	0.075	0.075
Converted Diesel PM Emission Factor (lbs/Mgal)		NA	NA	3.916	1.068	2.670	2.670	2.670
Default SCAQMD (lbs/Mgal)	33.5 lbs/Mgal							
^a Annual usage estimated based on engine size and repo	orted diesel usage							
^b Diesel usage reported on the 2006/2007 SCAQMD Ann	nual Air Emission Report							
^c Usage distribution (gal) provided by Enviromental Progr	rams Manager David Ott 4/21/2008							
dIn reference to guidance provided in apprendix D of OF	HEA, Tom Chico of SCAQMD							
said in a phone conversation 20 May 2008 that diesel F	M represents the sole toxicity							
from diesel combustion in ICEs and should be the only	chemical quantified for diesel ICEs							
in SCAQMD HRAs								
E Diesel PM emission factors obtained from manufacture	er specification sheets;							
when specificion sheets were not available, referred to	default SCADMD emission factors							
Distribution (gal):	2,826 North Campus							
Distribution (gal):	8,750 Facilities							
Distribution (gal):	11,576 Total							
Total bhp of ICE's at the North Campus	3,824							
Total bhp of ICE's at Facilities	59,164							

		Т				ı				
			Name:	ICE31	ICE32	ICE33	ICE34	ICE35	ICE36	ICE37
			Number:	10094	10095	10096	10097	10098	10099	10100
			Equipment:	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen				
			Location:	Rep Hospital 1	Rep Hospital 2	Rep Hospital 3	Rep Hospital 4	Police Station Rep	Powell / kinsey	PKS#5,4,7
			Size (bhp):	2000	2000	2000	2000	1881	755	3622
			SCAQMD Permit:	F78903	F78904	F78905	F78906	F90961	F82412	Subitted2
			Annual Usage ^{a,b,c} (Mgal):	0.562	0.562	0.562	0.562	0.176	0.071	0.339
CAS	Pollutant ^d		Emission Factor ^e (lbs/Mgal)	2.670	2.670	2.670	2.670	5.340	2.670	1.282
9901	Diesel Exhaust (particulates)			1.50E+00	1.50E+00	1.50E+00	1.50E+00	9.41E-01	1.89E-01	4.35E-01
Est Annual F	 Fuel Usage (gal/yr):			562.19	562.19	562.19	562.19	176.25	70.74	339.38
	ruel Consumption (gal/hr):			92.9	92.9	92.9	92.9	29.1	11.7	56.1
-	Hourly Usage (hr/yr):			6.05	6.05	6.05	6.05	6.05	6.05	6.05
Est Load Fa				0.75	0.75	0.75	0.75	0.25	0.25	0.25
Est Load Fa				1500	1500	1500	1500	470	189	906
	er Diesel PM Emission Factor (g/bhp-hr)			0.075	0.075	0.075	0.075	0.15	0.075	0.036
	Diesel PM Emission Factor (lbs/Mgal)			2.670	2.670	2.670	2.670	5.340	2.670	1.282
	QMD (lbs/Mgal)	33.5	lbs/Mgal	2.070	2.070	2.070	2.070	3.040	2.070	1.202
Doladii Oor	(IDO/NIGEI)	00.0	ibo/Wigar							
^a Annual usa	ge estimated based on engine size and repo	rted diesel usage								
^b Diesel usag	e reported on the 2006/2007 SCAQMD Ann	ual Air Emission F	Report							
^c Usage distr	ibution (gal) provided by Enviromental Progr	ams Manager Da	vid Ott 4/21/2008							
dIn reference	e to guidance provided in apprendix D of OH	HEA, Tom Chico	of SCAQMD							
said in a ph	one conversation 20 May 2008 that diesel P	M represents the	sole toxicity							
from diesel	combustion in ICEs and should be the only of	chemical quantifie	d for diesel ICEs							
in SCAQMI	HRAs									
^E Diesel PM	emission factors obtained from manufacture	r specification she	eets;							
when spec	ificion sheets were not available, referred to	default SCADMD	emission factors							
Distribution	(gal):	2,826	North Campus							
Distribution	(gal):	8,750	Facilities							
Distribution	(gal):	11,576	Total							
Total bhp of	ICE's at the North Campus	3,824								
Total bhp of	ICE's at Facilities	59,164								

		Name:	ICE38	ICE39	ICE40	ICE41	ICE42	ICE43	ICE44
		Number:	10101	10102	10103	10104	10105	10106	10107
		Equipment:	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen
		Location:	Eng V	Kerckhoff	Sunset Rec NE	Boelter III	Royce NW	Boelter II 12400	Boyer
		Size (bhp):	3057	377	66	443	235	166	390
		SCAQMD Permit:	Subitted3	F37887	D88184	D89155	D98768	D98801	F00370
		Annual Usage ^{a,b,c} (Mgal):	0.286	0.035	0.006	0.042	0.022	0.016	0.037
CAS	Pollutant ^d	Emission Factor ^e (lbs/Mgal)	4.272	19.582	33.500	24.566	33.500	33.500	17.090
9901	Diesel Exhaust (particulates)		1.22E+00	6.92E-01	2.07E-01	1.02E+00	7.38E-01	5.21E-01	6.24E-01
Est Annual	Fuel Usage (gal/yr):		286.44	35.32	6.18	41.51	22.02	15.55	36.54
Est Hourly I	Fuel Consumption (gal/hr):		47.3	5.8	1.0	6.9	3.6	2.6	6.0
Est Annual	Hourly Usage (hr/yr):		6.05	6.05	6.05	6.05	6.05	6.05	6.05
Est Load Fa	actor:		0.25	0.25	0.25	0.25	0.25	0.25	0.25
Est Load Fa	actor × bhp		764	94	17	111	59	42	98
Manufactur	er Diesel PM Emission Factor (g/bhp-hr)		0.12	0.55	NA	0.69	NA	NA	0.48
Converted	Diesel PM Emission Factor (lbs/Mgal)		4.272	19.582	NA	24.566	NA	NA	17.090
Default SC/	AQMD (lbs/Mgal) 33.5	lbs/Mgal							
^a Annual usa	ge estimated based on engine size and reported diesel usage								
^b Diesel usa	ge reported on the 2006/2007 SCAQMD Annual Air Emission F	Report							
^c Usage dist	ribution (gal) provided by Enviromental Programs Manager Dav	vid Ott 4/21/2008							
dIn referenc	e to guidance provided in apprendix D of OHHEA, Tom Chico	of SCAQMD							
said in a pl	none conversation 20 May 2008 that diesel PM represents the	sole toxicity							
from diese	combustion in ICEs and should be the only chemical quantified	d for diesel ICEs							
in SCAQM	D HRAs								
E Diesel PM	emission factors obtained from manufacturer specification she	eets;							
when spec	efficion sheets were not available, referred to default SCADMD	emission factors							
Distribution		North Campus							
Distribution	(gal): 8,750	Facilities							
Distribution	(gal): 11,576	Total							
Total bhp o	f ICE's at the North Campus 3,824								
Total bhp o	f ICE's at Facilities 59,164								

		Name:	ICE45	ICE46	ICE47	ICE48	ICE49	ICE50	ICE51
		Number:	10108	10109	10110	10111	10112	10113	10114
		Equipment:	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen
		Location:	PS 4	SRL N	Life Sciences	Franz Hall	Math Sciences	SRL	PS 8 SE
		Size (bhp):	519	377	250	166	60	168	168
		SCAQMD Permit:	F17312	F2279	F23692	F37922	F39010	F4681	F4806
		Annual Usage ^{a,b,c} (Mgal):	0.049	0.035	0.023	0.016	0.006	0.016	0.016
CAS	Pollutant ^d	Emission Factor ^e (lbs/Mgal)	33.500	19.938	33.500	33.500	33.500	33.500	33.500
9901	Diesel Exhaust (particulates)		1.63E+00	7.04E-01	7.85E-01	5.21E-01	1.88E-01	5.27E-01	5.27E-01
Est Annual	Fuel Usage (gal/yr):		48.63	35.32	23.42	15.55	5.62	15.74	15.74
Est Hourly F	Fuel Consumption (gal/hr):		8.0	5.8	3.9	2.6	0.9	2.6	2.6
Est Annual	Hourly Usage (hr/yr):		6.05	6.05	6.05	6.05	6.05	6.05	6.05
Est Load Fa	ictor:		0.25	0.25	0.25	0.25	0.25	0.25	0.25
Est Load Fa	ictor × bhp		130	94	63	42	15	42	42
Manufacture	er Diesel PM Emission Factor (g/bhp-hr)		NA	0.56	NA	NA	NA	NA	NA
Converted [Diesel PM Emission Factor (lbs/Mgal)		NA	19.938	NA	NA	NA	NA	NA
Default SCA	QMD (lbs/Mgal) 33.5	lbs/Mgal							
	ge estimated based on engine size and reported diesel usage								
^b Diesel usa	ge reported on the 2006/2007 SCAQMD Annual Air Emission F	Report							
	ribution (gal) provided by Enviromental Programs Manager Dav								
dIn referenc	e to guidance provided in apprendix D of OHHEA, Tom Chico	of SCAQMD							
said in a ph	one conversation 20 May 2008 that diesel PM represents the	sole toxicity							
from diesel	combustion in ICEs and should be the only chemical quantified	d for diesel ICEs							
in SCAQMI									
E Diesel PM	emission factors obtained from manufacturer specification she	eets;							
when spec	ificion sheets were not available, referred to default SCADMD	emission factors							
Distribution		North Campus							
Distribution	,	Facilities							
Distribution	(gal): 11,576	Total							
	ICE's at the North Campus 3,824								
Total bhp of	ICE's at Facilities 59,164								

		T	l I		1	I			1	1
			Name:	ICE52	ICE53	ICE54	ICE55	ICE56	ICE57	ICE58
			Number:	10115	10116	10117	10118	10119	10120	10121
			Equipment:	ICE, Em Gen	ICE, Em Gen					
			Location:	Unix	Bunche	LATC	Pauley	Law Library	200 Med Plaza	300 Med Plaza
			Size (bhp):	107	100	135	135	370	1095	335
			SCAQMD Permit:	F4808	F5266	F5268	F5269	F5492	D77804	D77805
			Annual Usage ^{a,b,c} (Mgal):	0.010	0.009	0.013	0.013	0.035	0.103	0.031
CAS	Pollutant ^d		Emission Factor ^e (lbs/Mgal)	33.500	33.500	33.500	33.500	33.500	33.500	6.765
9901	Diesel Exhaust (particulates)			3.36E-01	3.14E-01	4.24E-01	4.24E-01	1.16E+00	3.44E+00	2.12E-01
Fat Americal	Fuel Heave (relian)			10.03	9.37	12.65	12.65	34.67	102.60	31.39
	Fuel Usage (gal/yr):							5.7		
	Fuel Consumption (gal/hr):			1.7 6.05	1.5 6.05	2.1 6.05	2.1 6.05	6.05	17.0 6.05	5.2 6.05
	Hourly Usage (hr/yr):									
Est Load Fa				0.25 27	0.25 25	0.25 34	0.25	0.25	0.25	0.25
Est Load Fa						_	34	93	274	84
	er Diesel PM Emission Factor (g/bhp-hr)			NA	NA	NA	NA	NA	NA	0.19
	Diesel PM Emission Factor (lbs/Mgal)			NA	NA	NA	NA	NA	NA	6.765
Default SCA	AQMD (lbs/Mgal)	33.5	lbs/Mgal							
a										
	ge estimated based on engine size and repo									
	ge reported on the 2006/2007 SCAQMD Annu									
	ribution (gal) provided by Enviromental Progr									
	e to guidance provided in apprendix D of OH	•								
	none conversation 20 May 2008 that diesel P									
	combustion in ICEs and should be the only of	hemical quantifie	d for diesel ICEs							
in SCAQM										
E Diesel PM	emission factors obtained from manufacture	r specification she	eets;							
when spec	sificion sheets were not available, referred to	default SCADMD	emission factors							
Distribution	(gal):	,	North Campus							
Distribution	(gal):	8,750	Facilities							
Distribution	(gal):	11,576	Total							
Total bbs =	ICE's at the North Campus	3,824								
		,								
i otal bnp o	f ICE's at Facilities	59,164								

		Name:	ICE59	ICE60	ICE61	ICE62	ICE63	ICE64	ICE65
		Number:	10122	10123	10124	10125	10126	10127	10128
		Equipment:		ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen
			200 Med Plaza	Env Service Building	Parking Structure 7	YRL	Campus Wide	Campus Wide	CHS
		Size (bhp):	1095	535	317	260	216	490	277
		SCAQMD Permit:	D77806	F49789	F52215	F52214	F37549	F58435	F62618
		Annual Usage ^{a,b,c} (Mgal):	0.103	0.050	0.030	0.024	0.020	0.046	0.026
CAS	Pollutant ^d	Emission Factor ^e (Ibs/Mgal)	33.500	14.241	14.241	33.500	7.121	0.712	4.984
9901	Diesel Exhaust (particulates)	Linission ractor (ibs/mgar)	3.44E+00	7.14E-01	4.23E-01	8.16E-01	1.44E-01	3.27E-02	1.29E-01
3301	Diesei Exitaust (particulates)		3.44L+00	7.14L-01	4.23L-01	0.10L-01	1.446-01	3.27L-02	1.292-01
Est Annual F	uel Usage (gal/yr):		102.60	50.13	29.70	24.36	20.24	45.91	25.95
Est Hourly F	uel Consumption (gal/hr):		17.0	8.3	4.9	4.0	3.3	7.6	4.3
Est Annual H	lourly Usage (hr/yr):		6.05	6.05	6.05	6.05	6.05	6.05	6.05
Est Load Fac	ctor:		0.25	0.25	0.25	0.25	0.25	0.25	0.25
Est Load Fac	ctor × bhp		274	134	79	65	54	123	69
Manufacture	r Diesel PM Emission Factor (g/bhp-hr)		NA	0.4	0.4	NA	0.2	0.02	0.14
Converted D	iesel PM Emission Factor (lbs/Mgal)		NA	14.241	14.241	NA	7.121	0.712	4.984
Default SCA	QMD (lbs/Mgal) 33.5	lbs/Mgal							
^a Annual usag	ge estimated based on engine size and reported diesel usage								
^b Diesel usag	e reported on the 2006/2007 SCAQMD Annual Air Emission F	Report							
^c Usage distri	bution (gal) provided by Enviromental Programs Manager Dav	vid Ott 4/21/2008							
dIn reference	to guidance provided in apprendix D of OHHEA, Tom Chico	of SCAQMD							
said in a pho	one conversation 20 May 2008 that diesel PM represents the	sole toxicity							
from diesel	combustion in ICEs and should be the only chemical quantifie	d for diesel ICEs							
in SCAQMD	HRAs								
E Diesel PM	emission factors obtained from manufacturer specification she	eets;							
when speci	ficion sheets were not available, referred to default SCADMD	emission factors							
Distribution (gal): 2,826	North Campus							
Distribution (gal): 8,750	Facilities							
Distribution (gal): 11,576	Total							
Total bhp of	ICE's at the North Campus 3,824								
Total bhp of	ICE's at Facilities 59,164								

		1	1	1		I			I	I
		Name:	ICE66	ICE67	ICE68	ICE69	ICE70	ICE71	ICE72	ICE73
		Number:	10129	10130	10131	10132	10133	10134	10135	10136
		Equipment:		ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen
		Location:	Broad Art Center	Campus Wide	Public Policy	Murphy Hall	Hilbrom	Hedrick Tower	MS	PKS#3
		Size (bhp):	490	155	201	370	550	157	325	65
		SCAQMD Permit:	F58436	F37540	F4805	F4983	F73384	F73157	F89260	submitted1
		Annual Usage ^{a,b,c} (Mgal):	0.046	0.015	0.019	0.035	0.052	0.015	0.030	0.006
CAS	Pollutant ^d	Emission Factor ^e (lbs/Mgal)	0.712	33.500	33.500	33.500	4.984	33.500	3.560	4.984
9901	Diesel Exhaust (particulates)		3.27E-02	4.87E-01	6.31E-01	1.16E+00	2.57E-01	4.93E-01	1.08E-01	3.04E-02
	Fuel Usage (gal/yr):		45.91	14.52	18.83	34.67	51.53	14.71	30.45	6.09
	Fuel Consumption (gal/hr):		7.6	2.4	3.1	5.7	8.5	2.4	5.0	1.0
	Hourly Usage (hr/yr):		6.05	6.05	6.05	6.05	6.05	6.05	6.05	6.05
Est Load F			0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
Est Load F			123	39	50	93	138	39	81	16
	er Diesel PM Emission Factor (g/bhp-hr)		0.02	NA	NA	NA	0.14	NA	0.1	0.14
	Diesel PM Emission Factor (lbs/Mgal)		0.712	NA	NA	NA	4.984	NA	3.560	4.984
Default SC	AQMD (lbs/Mgal) 33.5	lbs/Mgal								
_										
	age estimated based on engine size and reported diesel usage									
	ge reported on the 2006/2007 SCAQMD Annual Air Emission	<u>'</u>								
^c Usage dist	ribution (gal) provided by Enviromental Programs Manager Da	vid Ott 4/21/2008								
dIn reference	e to guidance provided in apprendix D of OHHEA, Tom Chico	of SCAQMD								
said in a p	hone conversation 20 May 2008 that diesel PM represents the	sole toxicity								
from diese	I combustion in ICEs and should be the only chemical quantifie	ed for diesel ICEs								
in SCAQM	D HRAs									
E Diesel PM	l emission factors obtained from manufacturer specification sh	eets;								
when spe	cificion sheets were not available, referred to default SCADMD	emission factors								
Distribution	(gal): 2,826	North Campus								
Distribution	(gal): 8,750	Facilities								
Distribution	(gal): 11,576	Total								
Total bhp o	f ICE's at the North Campus 3,824									
Total bhp c	f ICE's at Facilities 59,164									

		1	T	I							1
			Name:		ICE75	ICE76	ICE77	ICE78	ICE79	ICE80	ICE81
			Number:		10138	10139	10140	10141	10142	10143	10144
			Equipment:		ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen
			Location:	CHS Park Str	Dicksen Art	East Melnitz	Grad School Edu	Melnitz Hall	Campus Wide	Campus Wide	Park Str 8
			Size (bhp):	50	50	50	50	50	50	50	50
			SCAQMD Permit:	- 1	Exempt2	Exempt3	Exempt4	Exempt5	Exempt6	Exempt7	Exempt8
			Annual Usage ^{a,b,c} (Mgal):	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
CAS	Pollutant ^d		Emission Factor ^e (Ibs/Mgal)	33.500	33.500	33.500	33.500	33.500	33.500	33.500	33.500
9901	Diesel Exhaust (particulates)			1.57E-01	1.57E-01	1.57E-01	1.57E-01	1.57E-01	1.57E-01	1.57E-01	1.57E-01
Est Annual	Fuel Usage (gal/yr):			4.68	4.68	4.68	4.68	4.68	4.68	4.68	4.68
	Fuel Consumption (gal/hr):			0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8
	Hourly Usage (hr/yr):			6.05	6.05	6.05	6.05	6.05	6.05	6.05	6.05
Est Load F				0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
	actor × bhp			13	13	13	13	13	13	13	13
Manufactu	rer Diesel PM Emission Factor (g/bhp-hr)			NA	NA	NA	NA	NA	NA	NA	NA
	Diesel PM Emission Factor (lbs/Mgal)			NA	NA	NA	NA	NA	NA	NA	NA
	AQMD (lbs/Mgal)	33.5	lbs/Mgal								
	, , ,										
^a Annual us	age estimated based on engine size and repo	orted diesel usage									
^b Diesel usa	ge reported on the 2006/2007 SCAQMD Ann	ual Air Emission F	Report								
^c Usage dis	tribution (gal) provided by Enviromental Progr	ams Manager Da	vid Ott 4/21/2008								
dIn reference	ce to guidance provided in apprendix D of OH	IHEA, Tom Chico	of SCAQMD								
said in a p	hone conversation 20 May 2008 that diesel P	M represents the	sole toxicity								
from diese	el combustion in ICEs and should be the only of	chemical quantifie	d for diesel ICEs								
in SCAQM	ID HRAs										
E Diesel PN	1 emission factors obtained from manufacture	er specification she	eets;								
when spe	cificion sheets were not available, referred to	default SCADMD	emission factors								
Distribution	ı (gal):	2,826	North Campus								
Distribution	n (gal):	8,750	Facilities								
Distribution	ı (gal):	11,576	Total								
Total bhp o	of ICE's at the North Campus	3,824									
Total bhp o	of ICE's at Facilities	59,164									

			Name:	
			Number:	
			Equipment:	
			Location:	
			Size (bhp):	Total
			SCAQMD Permit:	Emissions
			Annual Usage ^{a,b,c} (Mgal):	(lb/yr)
CAS	Pollutant ^d		Emission Factor ^e (Ibs/Mgal)	
9901	Diesel Exhaust (particulates)			87.1
Est Annual	Fuel Usage (gal/yr):			8,126
Est Hourly I	Fuel Consumption (gal/hr):			1,343
Est Annual	Hourly Usage (hr/yr):			436
Est Load Fa	actor:			
Est Load Fa	actor × bhp			
Manufactur	er Diesel PM Emission Factor (g/bhp-hr)			
Converted	Diesel PM Emission Factor (lbs/Mgal)			
Default SC/	AQMD (lbs/Mgal)	33.5	lbs/Mgal	
^a Annual usa	age estimated based on engine size and rep	orted diesel usage		
^b Diesel usa	ge reported on the 2006/2007 SCAQMD And	nual Air Emission	Report	
^c Usage dist	ribution (gal) provided by Enviromental Prog	rams Manager Da	avid Ott 4/21/2008	
dIn referenc	e to guidance provided in apprendix D of Ol	HEA, Tom Chico	of SCAQMD	
said in a pl	hone conversation 20 May 2008 that diesel F	PM represents the	sole toxicity	
from diese	I combustion in ICEs and should be the only	chemical quantifie	ed for diesel ICEs	
in SCAQM	D HRAs			
^E Diesel PM	emission factors obtained from manufacture	er specification sh	eets;	
when spec	cificion sheets were not available, referred to	default SCADMD	emission factors	
Distribution	(gal):	2,826	North Campus	
Distribution	(gal):	8,750	Facilities	
Distribution	(gal):	11,576	Total	
Total bhp o	f ICE's at the North Campus	3,824		
· ·	f ICE's at Facilities	59,164		

UCLA Toxic Emissions - 2007 Baseline Scenario.xls Spray Booth, Hr (lb/hr)

		Name:		BOOTH1		BOOTH1		BOOTH1
		Number:		10145		10145		10145
		Equipment:		Spray Booth, CSB I	S	oray Booth, CSB I		Spray Booth, CSB I
		SCAQMD Permit:		D44160		D44160		D44160
		Manufacturer		Varathane Elite		Polystar		Ultrastar
		Product ^a :		Finish		Lacquer Primer		Lacquer Sealer
		Density (lb/gal):		8.5902		11.259		8.5068
		Hourly Usage (gal) ^b :		0.75		0.75		0.75
				Emissions		Emissions		Emissions
CAS	Pollutant		Wt %	(lb/yr)	Wt %	(lbs/yr)	Wt %	(lbs/yr)
107982	1-Methoxy-2-propanol		0.00	0.00	2.00	0.17	4.00	0.26
79016	Trichloroethylene		1.50	0.10	0.00	0.00	0.00	0.00
95636	Trimethylbenzene, 1,2,4-		0.00	0.00	0.00	0.00	1.00	0.06
^a Product	data based on MSDS							
^b Assume	d max hourly usage of 3 gallons	per						
hour bas	sed on daily material record keep	oing logs						
^c Emissio	ns based on a worst case compo	osite material						

UCLA Toxic Emissions - 2007 Baseline Scenario.xls Spray Booth, Hr (lb/hr)

	T .					
		Name:		BOOTH1		BOOTH1
		Number:		10145		10145 ^c
		Equipment:		Spray Booth, CSB I		Spray Booth, CSB I
		SCAQMD Permit:		D44160		D44160
		Manufacturer		Ultrastar		Worst Case
		Product ^a :		Lacquer Finish		Composite
		Density (lb/gal):		8.5902		8.59
		Hourly Usage (gal) ^b :		0.75		3
				Emissions		Emissions
CAS	Pollutant		Wt %	(lbs/yr)	Wt %	(lbs/yr)
107982	1-Methoxy-2-propanol		3.00	0.19	4.00	1.03
79016	Trichloroethylene		0.00	0.00	1.50	0.39
95636	Trimethylbenzene, 1,2,4-		1.00	0.06	1.00	0.26
^a Product	data based on MSDS					
^b Assume	d max hourly usage of 3 gallons	per				
hour bas	sed on daily material record kee	ping logs				
^c Emissio	ns based on a worst case comp	osite material	·			

UCLA Toxic Emissions - 2007 Baseline Scenario.xls Spray Booth, Yr (lb/hr)

		Name:		BOOTH1		BOOTH1
		Number:		10145		10145
				Spray Booth,		Spray Booth,
		Equipment:		CSB I		CSB I
		SCAQMD Permit:		D44160		D44160
		Manufacturer		Varathane Elite		Polystar
		Product ^a :		Finish		Lacquer Primer
		Density (lb/gal):		8.590		11.259
		Annual Usage (gal):		16.75		6.25
				Emissions		Emissions
CAS	Pollutant		Wt %	lb/yr	Wt %	lb/yr
107982	1-Methoxy-2-propanol		0	0.00	2	1.41
79016	Trichloroethylene		1.5	2.16	0	0.00
95636	Trimethylbenzene, 1,2,4-		0	0.00	0	0.00
^a Product of	data based on MSDS					

UCLA Toxic Emissions - 2007 Baseline Scenario.xls Spray Booth, Yr (lb/hr)

		Name:		BOOTH1		BOOTH1		BOOTH1
		Number:		10145		10145		
		Equipment:		Spray Booth, CSB I		Spray Booth, CSB I		
		SCAQMD Permit:		D44160		D44160		
		Manufacturer		Ultrastar		Ultrastar	Total	
		Product ^a :		Lacquer Sealer		Lacquer Finish	Usage/Emissions	
		Density (lb/gal):		8.507		8.590	(gal/yr)	
		Annual Usage (gal):		45.5		62	130.5	1
				Emissions		Emissions	Emissions	
CAS	Pollutant		Wt %	lb/yr	Wt %	lb/yr	lb/yr	lb/gal
107982	1-Methoxy-2-propanol		4	15.48	3.00	15.98	32.87	0.25
79016	Trichloroethylene		0	0.00	0.00	0.00	2.16	0.02
95636	Trimethylbenzene, 1,2,4-		1	3.87	1.00	5.33	9.20	0.07
^a Product	data based on MSDS							

	Nar	ne: LAB1	LAB2	LAB3	LAB3	LAB3	LAB3	LAB3	LAB3	LAB3	LAB3
	Numb	er: 10146	10147	10148	10148	10148	10148	10148	10148	10148	10148
	Buildi	ng: REHAB CENTER	MED PLZA 300	CYCLOTRN BIO	DENTISTRY	DORIS STEIN	FACTOR	JULES STEIN	M DAVIES CC	PARKG ST CHS	PUBLIC HLTH
	Wet Floor Space (f	t²): 19720	2929	1050	29702	1580	38753	5575	10018	10568	15610
	Stat	us: Existing	Existing	Existing	Existing	Existing	Existing	Existing	Existing	Existing	Existing
CAS	Chemical Emissions ^a (lbs)										
75058	Acetonitrile 111.99	6.18E-04	9.18E-05	3.29E-05	9.31E-04	4.95E-05	1.21E-03	1.75E-04	3.14E-04	3.31E-04	4.89E-04
71432	Benzene 19.38	1.07E-04	1.59E-05	5.70E-06	1.61E-04	8.57E-06	2.10E-04	3.02E-05	5.43E-05	5.73E-05	8.47E-05
7726956	Bromine Compounds 124.16	6.85E-04	1.02E-04	3.65E-05	1.03E-03	5.49E-05	1.35E-03	1.94E-04	3.48E-04	3.67E-04	5.42E-04
75650	Butyl Alcohol, Tert- 0.52	2.87E-06	4.26E-07	1.53E-07	4.32E-06	2.30E-07	5.64E-06	8.11E-07	1.46E-06	1.54E-06	2.27E-06
56235	Carbon Tetrachloride 0.30	1.65E-06	2.45E-07	8.77E-08	2.48E-06	1.32E-07	3.24E-06	4.66E-07	8.37E-07	8.83E-07	1.30E-06
108907	Chlorobenzene 0.85	4.71E-06	7.00E-07	2.51E-07	7.09E-06	3.77E-07	9.26E-06	1.33E-06	2.39E-06	2.52E-06	3.73E-06
67663	Chloroform 117.97	6.51E-04	9.67E-05	3.47E-05	9.81E-04	5.22E-05	1.28E-03	1.84E-04	3.31E-04	3.49E-04	5.15E-04
106467	Dichlorobenzene, p- 0.34	1.89E-06	2.80E-07	1.00E-07	2.84E-06	1.51E-07	3.71E-06	5.34E-07	9.59E-07	1.01E-06	1.49E-06
68122	Dimethylformamide 13.60	7.50E-05	1.11E-05	4.00E-06	1.13E-04	6.01E-06	1.47E-04	2.12E-05	3.81E-05	4.02E-05	5.94E-05
123911	Dioxane, 1,4-	4.71E-05	7.00E-06	2.51E-06	7.10E-05	3.77E-06	9.26E-05	1.33E-05	2.39E-05	2.52E-05	3.73E-05
106898	Epichlorohydrin 0.00	3.04E-09	4.51E-10	1.62E-10	4.57E-09	2.43E-10	5.97E-09	8.58E-10	1.54E-09	1.63E-09	2.40E-09
107062	Ethylene Dichloride 0.01	7.62E-08	1.13E-08	4.06E-09	1.15E-07	6.10E-09	1.50E-07	2.15E-08	3.87E-08	4.08E-08	6.03E-08
50000	Formaldehyde 1355	7.48E-03	1.11E-03	3.98E-04	1.13E-02	5.99E-04	1.47E-02	2.11E-03	3.80E-03	4.01E-03	5.92E-03
110543	Hexane 960.00	5.30E-03	7.87E-04	2.82E-04	7.98E-03	4.25E-04	1.04E-02	1.50E-03	2.69E-03	2.84E-03	4.19E-03
302012	Hydrazine 0.01	6.08E-08	9.03E-09	3.24E-09	9.16E-08	4.87E-09	1.19E-07	1.72E-08	3.09E-08	3.26E-08	4.81E-08
7647010	Hydrogen Chloride 32.24	1.78E-04	2.64E-05	9.47E-06	2.68E-04	1.43E-05	3.50E-04	5.03E-05	9.04E-05	9.54E-05	1.41E-04
67630	Isopropyl Alcohol 33.15	1.83E-04	2.72E-05	9.74E-06	2.76E-04	1.47E-05	3.60E-04	5.17E-05	9.29E-05	9.80E-05	1.45E-04
67561	Methanol 862.76	4.76E-03	7.07E-04	2.54E-04	7.17E-03	3.82E-04	9.36E-03	1.35E-03	2.42E-03	2.55E-03	3.77E-03
75092	Methylene Chloride 602.52	3.33E-03	4.94E-04	1.77E-04	5.01E-03	2.66E-04	6.54E-03	9.40E-04	1.69E-03	1.78E-03	2.63E-03
127184	Perchloroethylene 0.18	9.87E-07	1.47E-07	5.25E-08	1.49E-06	7.91E-08	1.94E-06	2.79E-07	5.01E-07	5.29E-07	7.81E-07
110861	Pyridine 1.83	1.01E-05	1.50E-06	5.39E-07	1.52E-05	8.11E-07	1.99E-05	2.86E-06	5.14E-06	5.42E-06	8.01E-06
108883	Toluene 52.99	2.92E-04	4.34E-05	1.56E-05	4.41E-04	2.34E-05	5.75E-04	8.27E-05	1.49E-04	1.57E-04	2.32E-04
121448	Triethylamine 6.20	3.42E-05	5.09E-06	1.82E-06	5.16E-05	2.74E-06	6.73E-05	9.68E-06	1.74E-05	1.84E-05	2.71E-05
1330207	Xylenes 84.99	4.69E-04	6.97E-05	2.50E-05	7.07E-04	3.76E-05	9.22E-04	1.33E-04	2.38E-04	2.51E-04	3.71E-04
^a Source: U	ICLA Laboratory Purchase Records January to December 2007										·

		Name:	LAB3	LAB3	LAB3	LAB3	LAB3	LAB3	LAB3	LAB3	LAB3	LAB4
		Number:	10148	10148	10148	10148	10148	10148	10148	10148	10148	10149
		Building:	CLINICAL RES	VIVARIUM	700 WWPLAZA	BRAIN MAPPNG	BRAIN RSCH	CYCLOTRN ADD	HEALTH SCI	REED RESRCH	SEMEL INST	MORTON MED
		Wet Floor Space (ft ²):	3836	8931	8598	251	28075	744	96291	14503	11131	3863
		Status:	Existing	Existing	Existing	Existing	Existing	Existing	Existing	Existing	Existing	Existing
CAS	Chemical	Emissions ^a (lbs)										
75058	Acetonitrile	111.99	1.20E-04	2.80E-04	2.70E-04	7.87E-06	8.80E-04	2.33E-05	3.02E-03	4.55E-04	3.49E-04	1.21E-04
71432	Benzene	19.38	2.08E-05	4.84E-05	4.66E-05	1.36E-06	1.52E-04	4.04E-06	5.22E-04	7.87E-05	6.04E-05	2.10E-05
7726956	Bromine Compounds	124.16	1.33E-04	3.10E-04	2.99E-04	8.72E-06	9.76E-04	2.59E-05	3.35E-03	5.04E-04	3.87E-04	1.34E-04
75650	Butyl Alcohol, Tert-	0.52	5.58E-07	1.30E-06	1.25E-06	3.65E-08	4.08E-06	1.08E-07	1.40E-05	2.11E-06	1.62E-06	5.62E-07
56235	Carbon Tetrachloride	0.30	3.21E-07	7.46E-07	7.18E-07	2.10E-08	2.35E-06	6.22E-08	8.05E-06	1.21E-06	9.30E-07	3.23E-07
108907	Chlorobenzene	0.85	9.16E-07	2.13E-06	2.05E-06	5.99E-08	6.71E-06	1.78E-07	2.30E-05	3.46E-06	2.66E-06	9.23E-07
67663	Chloroform	117.97	1.27E-04	2.95E-04	2.84E-04	8.29E-06	9.27E-04	2.46E-05	3.18E-03	4.79E-04	3.68E-04	1.28E-04
106467	Dichlorobenzene, p-	0.34	3.67E-07	8.55E-07	8.23E-07	2.40E-08	2.69E-06	7.12E-08	9.22E-06	1.39E-06	1.07E-06	3.70E-07
68122	Dimethylformamide	13.60	1.46E-05	3.40E-05	3.27E-05	9.55E-07	1.07E-04	2.83E-06	3.66E-04	5.52E-05	4.24E-05	1.47E-05
123911	Dioxane, 1,4-	8.53	9.16E-06	2.13E-05	2.05E-05	6.00E-07	6.71E-05	1.78E-06	2.30E-04	3.46E-05	2.66E-05	9.23E-06
106898	Epichlorohydrin	0.00	5.91E-10	1.37E-09	1.32E-09	3.86E-11	4.32E-09	1.15E-10	1.48E-08	2.23E-09	1.71E-09	5.95E-10
107062	Ethylene Dichloride	0.01	1.48E-08	3.45E-08	3.32E-08	9.70E-10	1.08E-07	2.87E-09	3.72E-07	5.60E-08	4.30E-08	1.49E-08
50000	Formaldehyde	1355	1.45E-03	3.39E-03	3.26E-03	9.52E-05	1.06E-02	2.82E-04	3.65E-02	5.50E-03	4.22E-03	1.47E-03
110543	Hexane	960.00	1.03E-03	2.40E-03	2.31E-03	6.74E-05	7.54E-03	2.00E-04	2.59E-02	3.90E-03	2.99E-03	1.04E-03
302012	Hydrazine	0.01	1.18E-08	2.75E-08	2.65E-08	7.74E-10	8.66E-08	2.29E-09	2.97E-07	4.47E-08	3.43E-08	1.19E-08
7647010	Hydrogen Chloride	32.24	3.46E-05	8.06E-05	7.76E-05	2.26E-06	2.53E-04	6.71E-06	8.69E-04	1.31E-04	1.00E-04	3.49E-05
67630	Isopropyl Alcohol	33.15	3.56E-05	8.29E-05	7.98E-05	2.33E-06	2.60E-04	6.90E-06	8.93E-04	1.35E-04	1.03E-04	3.58E-05
67561	Methanol	862.76	9.26E-04	2.16E-03	2.08E-03	6.06E-05	6.78E-03	1.80E-04	2.33E-02	3.50E-03	2.69E-03	9.33E-04
75092	Methylene Chloride	602.52	6.47E-04	1.51E-03	1.45E-03	4.23E-05	4.73E-03	1.25E-04	1.62E-02	2.45E-03	1.88E-03	6.51E-04
127184	Perchloroethylene	0.18	1.92E-07	4.47E-07	4.30E-07	1.26E-08	1.40E-06	3.72E-08	4.82E-06	7.26E-07	5.57E-07	1.93E-07
110861	Pyridine	1.83	1.97E-06	4.58E-06	4.41E-06	1.29E-07	1.44E-05	3.82E-07	4.94E-05	7.44E-06	5.71E-06	1.98E-06
108883	Toluene	52.99	5.69E-05	1.32E-04	1.28E-04	3.72E-06	4.16E-04	1.10E-05	1.43E-03	2.15E-04	1.65E-04	5.73E-05
121448	Triethylamine	6.20	6.66E-06	1.55E-05	1.49E-05	4.36E-07	4.88E-05	1.29E-06	1.67E-04	2.52E-05	1.93E-05	6.71E-06
1330207	Xylenes	84.99	9.12E-05	2.12E-04	2.05E-04	5.97E-06	6.68E-04	1.77E-05	2.29E-03	3.45E-04	2.65E-04	9.19E-05
^a Source: U	CLA Laboratory Purchase Records	January to December 2007										

		Name:	LAB5	LAB5	LAB6	LAB7	LAB7	LAB7	LAB7	LAB8	LAB8	LAB8
		Number:	10150	10150	10151	10152	10152	10152	10152	10153	10153	10153
		Building:	GONDA CENTER	MACDONALDLAB	BOELTER HALL	BOTANY	BIOMED SCI	LATH HOUSE	OHRC	ENGR BLDG 4	ENGR BLDG 1	ENGR BLDG 5
		Wet Floor Space (ft ²):	28146	48816	38728	8678	34430	270	26052	49004	15432	33551
		Status:	Existing	Existing	Existing	Existing	Existing	Existing	Existing	Existing	Existing	Existing
CAS	Chemical	Emissions ^a (lbs)										
75058	Acetonitrile	111.99	8.82E-04	1.53E-03	1.21E-03	2.72E-04	1.08E-03	8.46E-06	8.17E-04	1.54E-03	4.84E-04	1.05E-03
71432	Benzene	19.38	1.53E-04	2.65E-04	2.10E-04	4.71E-05	1.87E-04	1.46E-06	1.41E-04	2.66E-04	8.37E-05	1.82E-04
7726956	Bromine Compounds	124.16	9.78E-04	1.70E-03	1.35E-03	3.02E-04	1.20E-03	9.38E-06	9.05E-04	1.70E-03	5.36E-04	1.17E-03
75650	Butyl Alcohol, Tert-	0.52	4.09E-06	7.10E-06	5.63E-06	1.26E-06	5.01E-06	3.93E-08	3.79E-06	7.13E-06	2.24E-06	4.88E-06
56235	Carbon Tetrachloride	0.30	2.35E-06	4.08E-06	3.24E-06	7.25E-07	2.88E-06	2.26E-08	2.18E-06	4.09E-06	1.29E-06	2.80E-06
108907	Chlorobenzene	0.85	6.72E-06	1.17E-05	9.25E-06	2.07E-06	8.22E-06	6.45E-08	6.22E-06	1.17E-05	3.69E-06	8.01E-06
67663	Chloroform	117.97	9.29E-04	1.61E-03	1.28E-03	2.87E-04	1.14E-03	8.91E-06	8.60E-04	1.62E-03	5.10E-04	1.11E-03
106467	Dichlorobenzene, p-	0.34	2.69E-06	4.67E-06	3.71E-06	8.31E-07	3.30E-06	2.58E-08	2.49E-06	4.69E-06	1.48E-06	3.21E-06
68122	Dimethylformamide	13.60	1.07E-04	1.86E-04	1.47E-04	3.30E-05	1.31E-04	1.03E-06	9.91E-05	1.86E-04	5.87E-05	1.28E-04
123911	Dioxane, 1,4-	8.53	6.72E-05	1.17E-04	9.25E-05	2.07E-05	8.22E-05	6.45E-07	6.22E-05	1.17E-04	3.69E-05	8.01E-05
106898	Epichlorohydrin	0.00	4.33E-09	7.51E-09	5.96E-09	1.34E-09	5.30E-09	4.16E-11	4.01E-09	7.54E-09	2.38E-09	5.16E-09
107062	Ethylene Dichloride	0.01	1.09E-07	1.89E-07	1.50E-07	3.35E-08	1.33E-07	1.04E-09	1.01E-07	1.89E-07	5.96E-08	1.30E-07
50000	Formaldehyde	1355	1.07E-02	1.85E-02	1.47E-02	3.29E-03	1.31E-02	1.02E-04	9.88E-03	1.86E-02	5.85E-03	1.27E-02
110543	Hexane	960.00	7.56E-03	1.31E-02	1.04E-02	2.33E-03	9.25E-03	7.25E-05	7.00E-03	1.32E-02	4.15E-03	9.02E-03
302012	Hydrazine	0.01	8.68E-08	1.51E-07	1.19E-07	2.68E-08	1.06E-07	8.32E-10	8.03E-08	1.51E-07	4.76E-08	1.03E-07
7647010	Hydrogen Chloride	32.24	2.54E-04	4.41E-04	3.49E-04	7.83E-05	3.11E-04	2.44E-06	2.35E-04	4.42E-04	1.39E-04	3.03E-04
67630	Isopropyl Alcohol	33.15	2.61E-04	4.53E-04	3.59E-04	8.05E-05	3.19E-04	2.50E-06	2.42E-04	4.55E-04	1.43E-04	3.11E-04
67561	Methanol	862.76	6.80E-03	1.18E-02	9.35E-03	2.10E-03	8.31E-03	6.52E-05	6.29E-03	1.18E-02	3.73E-03	8.10E-03
75092	Methylene Chloride	602.52	4.75E-03	8.23E-03	6.53E-03	1.46E-03	5.81E-03	4.55E-05	4.39E-03	8.26E-03	2.60E-03	5.66E-03
127184	Perchloroethylene	0.18	1.41E-06	2.44E-06	1.94E-06	4.34E-07	1.72E-06	1.35E-08	1.30E-06	2.45E-06	7.72E-07	1.68E-06
110861	Pyridine	1.83	1.44E-05	2.51E-05	1.99E-05	4.45E-06	1.77E-05	1.39E-07	1.34E-05	2.51E-05	7.92E-06	1.72E-05
108883	Toluene	52.99	4.17E-04	7.24E-04	5.74E-04	1.29E-04	5.11E-04	4.00E-06	3.86E-04	7.27E-04	2.29E-04	4.98E-04
121448	Triethylamine	6.20	4.89E-05	8.48E-05	6.73E-05	1.51E-05	5.98E-05	4.69E-07	4.52E-05	8.51E-05	2.68E-05	5.83E-05
1330207	Xylenes	84.99	6.70E-04	1.16E-03	9.21E-04	2.06E-04	8.19E-04	6.42E-06	6.20E-04	1.17E-03	3.67E-04	7.98E-04
^a Source: L	ICLA Laboratory Purchase Records J	January to December 2007										
				•		-				-	-	

		Name:	LAB9	LAB9	LAB9	LAB9	LAB9	LAB9	LAB10	LAB10	LAB11	LAB12
		Number:	10154	10154	10154	10154	10154	10154	10155	10155	10156	10157
		Building:	FRANZ HALL	GEOLOGY	MOLECULR SCI	SLICHTER	YOUNG HALL	BOYER HALL	KNUDSEN HALL	PHYS ASTRO	POWELL LIB	MACGOWAN
		Wet Floor Space (ft ²):	6355	13075	58079	9518	65939	35377	35088	19329	264	19180
		Status:	Existing	Existing	Existing	Existing	Existing	Existing	Existing	Existing	Existing	Existing
CAS	Chemical	Emissions ^a (lbs)										ļ
75058	Acetonitrile	111.99	1.99E-04	4.10E-04	1.82E-03	2.98E-04	2.07E-03	1.11E-03	1.10E-03	6.06E-04	8.28E-06	6.01E-04
71432	Benzene	19.38	3.45E-05	7.09E-05	3.15E-04	5.16E-05	3.58E-04	1.92E-04	1.90E-04	1.05E-04	1.43E-06	1.04E-04
7726956	Bromine Compounds	124.16	2.21E-04	4.54E-04	2.02E-03	3.31E-04	2.29E-03	1.23E-03	1.22E-03	6.72E-04	9.17E-06	6.67E-04
75650	Butyl Alcohol, Tert-	0.52	9.24E-07	1.90E-06	8.45E-06	1.38E-06	9.59E-06	5.14E-06	5.10E-06	2.81E-06	3.84E-08	2.79E-06
56235	Carbon Tetrachloride	0.30	5.31E-07	1.09E-06	4.85E-06	7.95E-07	5.51E-06	2.96E-06	2.93E-06	1.61E-06	2.21E-08	1.60E-06
108907	Chlorobenzene	0.85	1.52E-06	3.12E-06	1.39E-05	2.27E-06	1.57E-05	8.45E-06	8.38E-06	4.62E-06	6.31E-08	4.58E-06
67663	Chloroform	117.97	2.10E-04	4.32E-04	1.92E-03	3.14E-04	2.18E-03	1.17E-03	1.16E-03	6.38E-04	8.72E-06	6.33E-04
106467	Dichlorobenzene, p-	0.34	6.08E-07	1.25E-06	5.56E-06	9.11E-07	6.31E-06	3.39E-06	3.36E-06	1.85E-06	2.53E-08	1.84E-06
68122	Dimethylformamide	13.60	2.42E-05	4.98E-05	2.21E-04	3.62E-05	2.51E-04	1.35E-04	1.34E-04	7.36E-05	1.00E-06	7.30E-05
123911	Dioxane, 1,4-	8.53	1.52E-05	3.12E-05	1.39E-04	2.27E-05	1.58E-04	8.45E-05	8.38E-05	4.62E-05	6.31E-07	4.58E-05
106898	Epichlorohydrin	0.00	9.78E-10	2.01E-09	8.94E-09	1.47E-09	1.02E-08	5.45E-09	5.40E-09	2.98E-09	4.06E-11	2.95E-09
107062	Ethylene Dichloride	0.01	2.46E-08	5.05E-08	2.24E-07	3.68E-08	2.55E-07	1.37E-07	1.36E-07	7.47E-08	1.02E-09	7.41E-08
50000	Formaldehyde	1355	2.41E-03	4.96E-03	2.20E-02	3.61E-03	2.50E-02	1.34E-02	1.33E-02	7.33E-03	1.00E-04	7.27E-03
110543	Hexane	960.00	1.71E-03	3.51E-03	1.56E-02	2.56E-03	1.77E-02	9.51E-03	9.43E-03	5.19E-03	7.09E-05	5.15E-03
302012	Hydrazine	0.01	1.96E-08	4.03E-08	1.79E-07	2.93E-08	2.03E-07	1.09E-07	1.08E-07	5.96E-08	8.14E-10	5.91E-08
7647010	Hydrogen Chloride	32.24	5.73E-05	1.18E-04	5.24E-04	8.59E-05	5.95E-04	3.19E-04	3.17E-04	1.74E-04	2.38E-06	1.73E-04
67630	Isopropyl Alcohol	33.15	5.90E-05	1.21E-04	5.39E-04	8.83E-05	6.12E-04	3.28E-04	3.26E-04	1.79E-04	2.45E-06	1.78E-04
67561	Methanol	862.76	1.53E-03	3.16E-03	1.40E-02	2.30E-03	1.59E-02	8.54E-03	8.47E-03	4.67E-03	6.38E-05	4.63E-03
75092	Methylene Chloride	602.52	1.07E-03	2.20E-03	9.79E-03	1.61E-03	1.11E-02	5.97E-03	5.92E-03	3.26E-03	4.45E-05	3.23E-03
127184	Perchloroethylene	0.18	3.18E-07	6.54E-07	2.91E-06	4.76E-07	3.30E-06	1.77E-06	1.76E-06	9.67E-07	1.32E-08	9.60E-07
110861	Pyridine	1.83	3.26E-06	6.71E-06	2.98E-05	4.88E-06	3.38E-05	1.82E-05	1.80E-05	9.92E-06	1.35E-07	9.84E-06
108883	Toluene	52.99	9.43E-05	1.94E-04	8.61E-04	1.41E-04	9.78E-04	5.25E-04	5.20E-04	2.87E-04	3.92E-06	2.84E-04
121448	Triethylamine	6.20	1.10E-05	2.27E-05	1.01E-04	1.65E-05	1.15E-04	6.14E-05	6.09E-05	3.36E-05	4.58E-07	3.33E-05
1330207	Xylenes	84.99	1.51E-04	3.11E-04	1.38E-03	2.26E-04	1.57E-03	8.42E-04	8.35E-04	4.60E-04	6.28E-06	4.56E-04
^a Source: l	JCLA Laboratory Purchase Records	January to December 2007										

		Name:	LAB12	LAB13	LAB14	LAB15	LAB15	LAB16
		Number:	10157	10158	10159	10160	10160	10161
		Building:	MELNITZ HALL	CNSI - CoS	NEUROSCI RCH	HILLBLOM CTR	WARREN HALL	LIFE SCIENCE
		Wet Floor Space (ft ²):	1034	38441	32135	2722	23246	37828
		Status:	Existing	Existing	Existing	Existing	Existing	Existing
CAS	Chemical	Emissions ^a (lbs)						
75058	Acetonitrile	111.99	3.24E-05	1.20E-03	1.01E-03	8.53E-05	7.29E-04	1.19E-03
71432	Benzene	19.38	5.61E-06	2.09E-04	1.74E-04	1.48E-05	1.26E-04	2.05E-04
7726956	Bromine Compounds	124.16	3.59E-05	1.34E-03	1.12E-03	9.46E-05	8.08E-04	1.31E-03
75650	Butyl Alcohol, Tert-	0.52	1.50E-07	5.59E-06	4.67E-06	3.96E-07	3.38E-06	5.50E-06
56235	Carbon Tetrachloride	0.30	8.64E-08	3.21E-06	2.68E-06	2.27E-07	1.94E-06	3.16E-06
108907	Chlorobenzene	0.85	2.47E-07	9.18E-06	7.68E-06	6.50E-07	5.55E-06	9.03E-06
67663	Chloroform	117.97	3.41E-05	1.27E-03	1.06E-03	8.99E-05	7.68E-04	1.25E-03
106467	Dichlorobenzene, p-	0.34	9.90E-08	3.68E-06	3.08E-06	2.61E-07	2.22E-06	3.62E-06
68122	Dimethylformamide	13.60	3.94E-06	1.46E-04	1.22E-04	1.04E-05	8.85E-05	1.44E-04
123911	Dioxane, 1,4-	8.53	2.47E-06	9.18E-05	7.68E-05	6.50E-06	5.55E-05	9.04E-05
106898	Epichlorohydrin	0.00	1.59E-10	5.92E-09	4.95E-09	4.19E-10	3.58E-09	5.82E-09
107062	Ethylene Dichloride	0.01	3.99E-09	1.49E-07	1.24E-07	1.05E-08	8.98E-08	1.46E-07
50000	Formaldehyde	1355	3.92E-04	1.46E-02	1.22E-02	1.03E-03	8.82E-03	1.43E-02
110543	Hexane	960.00	2.78E-04	1.03E-02	8.63E-03	7.31E-04	6.25E-03	1.02E-02
302012	Hydrazine	0.01	3.19E-09	1.19E-07	9.91E-08	8.39E-09	7.17E-08	1.17E-07
7647010	Hydrogen Chloride	32.24	9.33E-06	3.47E-04	2.90E-04	2.46E-05	2.10E-04	3.41E-04
67630	Isopropyl Alcohol	33.15	9.59E-06	3.57E-04	2.98E-04	2.53E-05	2.16E-04	3.51E-04
67561	Methanol	862.76	2.50E-04	9.28E-03	7.76E-03	6.57E-04	5.61E-03	9.13E-03
75092	Methylene Chloride	602.52	1.74E-04	6.48E-03	5.42E-03	4.59E-04	3.92E-03	6.38E-03
127184	Perchloroethylene	0.18	5.17E-08	1.92E-06	1.61E-06	1.36E-07	1.16E-06	1.89E-06
110861	Pyridine	1.83	5.31E-07	1.97E-05	1.65E-05	1.40E-06	1.19E-05	1.94E-05
108883	Toluene	52.99	1.53E-05	5.70E-04	4.77E-04	4.04E-05	3.45E-04	5.61E-04
121448	Triethylamine	6.20	1.80E-06	6.68E-05	5.58E-05	4.73E-06	4.04E-05	6.57E-05
1330207	Xylenes	84.99	2.46E-05	9.14E-04	7.64E-04	6.47E-05	5.53E-04	9.00E-04
^a Source: U	CLA Laboratory Purchase Records	January to December 2007						

		Name:	LAB1	LAB2	LAB3	LAB3	LAB3	LAB3	LAB3	LAB3	LAB3
		Number:	10146	10147	10148	10148	10148	10148	10148	10148	10148
		Building:	REHAB CENTER	MED PLZA 300	CYCLOTRN BIO	DENTISTRY	DORIS STEIN	FACTOR	JULES STEIN	M DAVIES CC	PARKG ST CHS
		Wet Floor Space (ft ²):	19720	2929	1050	29702	1580	38753	5575	10018	10568
		Status:	Existing	Existing	Existing	Existing	Existing	Existing	Existing	Existing	Existing
CAS	Chemical	Emissions ^a (lbs)									
75058	Acetonitrile	111.99	2.23E+00	3.31E-01	1.18E-01	3.35E+00	1.78E-01	4.37E+00	6.29E-01	1.13E+00	1.19E+00
71432	Benzene	19.38	3.85E-01	5.72E-02	2.05E-02	5.80E-01	3.09E-02	7.57E-01	1.09E-01	1.96E-01	2.06E-01
7726956	Bromine Compounds	124.16	2.47E+00	3.66E-01	1.31E-01	3.72E+00	1.98E-01	4.85E+00	6.97E-01	1.25E+00	1.32E+00
75650	Butyl Alcohol, Tert-	0.52	1.03E-02	1.53E-03	5.50E-04	1.55E-02	8.27E-04	2.03E-02	2.92E-03	5.24E-03	5.53E-03
56235	Carbon Tetrachloride	0.30	5.93E-03	8.81E-04	3.16E-04	8.93E-03	4.75E-04	1.17E-02	1.68E-03	3.01E-03	3.18E-03
108907	Chlorobenzene	0.85	1.70E-02	2.52E-03	9.03E-04	2.55E-02	1.36E-03	3.33E-02	4.79E-03	8.61E-03	9.09E-03
67663	Chloroform	117.97	2.34E+00	3.48E-01	1.25E-01	3.53E+00	1.88E-01	4.61E+00	6.63E-01	1.19E+00	1.26E+00
106467	Dichlorobenzene, p-	0.34	6.79E-03	1.01E-03	3.62E-04	1.02E-02	5.44E-04	1.34E-02	1.92E-03	3.45E-03	3.64E-03
68122	Dimethylformamide	13.60	2.70E-01	4.01E-02	1.44E-02	4.07E-01	2.16E-02	5.31E-01	7.64E-02	1.37E-01	1.45E-01
123911	Dioxane, 1,4-	8.53	1.70E-01	2.52E-02	9.03E-03	2.55E-01	1.36E-02	3.33E-01	4.79E-02	8.62E-02	9.09E-02
106898	Epichlorohydrin	0.00	1.09E-05	1.62E-06	5.82E-07	1.65E-05	8.76E-07	2.15E-05	3.09E-06	5.55E-06	5.86E-06
107062	Ethylene Dichloride	0.01	2.74E-04	4.07E-05	1.46E-05	4.13E-04	2.20E-05	5.39E-04	7.75E-05	1.39E-04	1.47E-04
50000	Formaldehyde	1355.00	2.69E+01	4.00E+00	1.43E+00	4.06E+01	2.16E+00	5.29E+01	7.61E+00	1.37E+01	1.44E+01
110543	Hexane	960.00	1.91E+01	2.83E+00	1.02E+00	2.87E+01	1.53E+00	3.75E+01	5.39E+00	9.69E+00	1.02E+01
302012	Hydrazine	0.01	2.19E-04	3.25E-05	1.17E-05	3.30E-04	1.75E-05	4.30E-04	6.19E-05	1.11E-04	1.17E-04
7647010	Hydrogen Chloride	32.24	6.41E-01	9.51E-02	3.41E-02	9.65E-01	5.13E-02	1.26E+00	1.81E-01	3.25E-01	3.43E-01
67630	Isopropyl Alcohol	33.15	6.59E-01	9.78E-02	3.51E-02	9.92E-01	5.28E-02	1.29E+00	1.86E-01	3.35E-01	3.53E-01
67561	Methanol	862.76	1.71E+01	2.55E+00	9.13E-01	2.58E+01	1.37E+00	3.37E+01	4.85E+00	8.71E+00	9.19E+00
75092	Methylene Chloride	602.52	1.20E+01	1.78E+00	6.37E-01	1.80E+01	9.59E-01	2.35E+01	3.38E+00	6.08E+00	6.42E+00
127184	Perchloroethylene	0.18	3.55E-03	5.28E-04	1.89E-04	5.35E-03	2.85E-04	6.98E-03	1.00E-03	1.80E-03	1.90E-03
110861	Pyridine	1.83	3.64E-02	5.41E-03	1.94E-03	5.49E-02	2.92E-03	7.16E-02	1.03E-02	1.85E-02	1.95E-02
108883	Toluene	52.99	1.05E+00	1.56E-01	5.61E-02	1.59E+00	8.44E-02	2.07E+00	2.98E-01	5.35E-01	5.64E-01
121448	Triethylamine	6.20	1.23E-01	1.83E-02	6.56E-03	1.86E-01	9.88E-03	2.42E-01	3.49E-02	6.26E-02	6.61E-02
1330207	Xylenes	84.99	1.69E+00	2.51E-01	8.99E-02	2.54E+00	1.35E-01	3.32E+00	4.77E-01	8.58E-01	9.05E-01
^a Source: UCL	A Laboratory Purchase Records Ja	anuary to December 2007									

		Name:	LAB3	LAB3	LAB3	LAB3	LAB3	LAB3	LAB3	LAB3	LAB3
		Number:	10148	10148	10148	10148	10148	10148	10148	10148	10148
		Building:	PUBLIC HLTH	CLINICAL RES	VIVARIUM	700 WWPLAZA	BRAIN MAPPNG	BRAIN RSCH	CYCLOTRN ADD	HEALTH SCI	REED RESRCH
		Wet Floor Space (ft ²):	15610	3836	8931	8598	251	28075	744	96291	14503
		Status:	Existing	Existing	Existing	Existing	Existing	Existing	Existing	Existing	Existing
CAS	Chemical	Emissions ^a (lbs)									
75058	Acetonitrile	111.99	1.76E+00	4.33E-01	1.01E+00	9.70E-01	2.83E-02	3.17E+00	8.40E-02	1.09E+01	1.64E+00
71432	Benzene	19.38	3.05E-01	7.49E-02	1.74E-01	1.68E-01	4.90E-03	5.48E-01	1.45E-02	1.88E+00	2.83E-01
7726956	Bromine Compounds	124.16	1.95E+00	4.80E-01	1.12E+00	1.08E+00	3.14E-02	3.51E+00	9.31E-02	1.20E+01	1.81E+00
75650	Butyl Alcohol, Tert-	0.52	8.17E-03	2.01E-03	4.68E-03	4.50E-03	1.31E-04	1.47E-02	3.89E-04	5.04E-02	7.59E-03
56235	Carbon Tetrachloride	0.30	4.70E-03	1.15E-03	2.69E-03	2.59E-03	7.55E-05	8.44E-03	2.24E-04	2.90E-02	4.36E-03
108907	Chlorobenzene	0.85	1.34E-02	3.30E-03	7.68E-03	7.39E-03	2.16E-04	2.41E-02	6.40E-04	8.28E-02	1.25E-02
67663	Chloroform	117.97	1.86E+00	4.56E-01	1.06E+00	1.02E+00	2.98E-02	3.34E+00	8.84E-02	1.14E+01	1.72E+00
106467	Dichlorobenzene, p-	0.34	5.38E-03	1.32E-03	3.08E-03	2.96E-03	8.65E-05	9.67E-03	2.56E-04	3.32E-02	5.00E-03
68122	Dimethylformamide	13.60	2.14E-01	5.26E-02	1.22E-01	1.18E-01	3.44E-03	3.85E-01	1.02E-02	1.32E+00	1.99E-01
123911	Dioxane, 1,4-	8.53	1.34E-01	3.30E-02	7.68E-02	7.39E-02	2.16E-03	2.41E-01	6.40E-03	8.28E-01	1.25E-01
106898	Epichlorohydrin	0.00	8.65E-06	2.13E-06	4.95E-06	4.76E-06	1.39E-07	1.56E-05	4.12E-07	5.34E-05	8.04E-06
107062	Ethylene Dichloride	0.01	2.17E-04	5.34E-05	1.24E-04	1.20E-04	3.49E-06	3.90E-04	1.03E-05	1.34E-03	2.02E-04
50000	Formaldehyde	1355.00	2.13E+01	5.24E+00	1.22E+01	1.17E+01	3.43E-01	3.83E+01	1.02E+00	1.31E+02	1.98E+01
110543	Hexane	960.00	1.51E+01	3.71E+00	8.64E+00	8.32E+00	2.43E-01	2.72E+01	7.20E-01	9.31E+01	1.40E+01
302012	Hydrazine	0.01	1.73E-04	4.26E-05	9.91E-05	9.54E-05	2.79E-06	3.12E-04	8.26E-06	1.07E-03	1.61E-04
7647010	Hydrogen Chloride	32.24	5.07E-01	1.25E-01	2.90E-01	2.79E-01	8.15E-03	9.12E-01	2.42E-02	3.13E+00	4.71E-01
67630	Isopropyl Alcohol	33.15	5.21E-01	1.28E-01	2.98E-01	2.87E-01	8.38E-03	9.38E-01	2.48E-02	3.22E+00	4.84E-01
67561	Methanol	862.76	1.36E+01	3.33E+00	7.76E+00	7.47E+00	2.18E-01	2.44E+01	6.47E-01	8.37E+01	1.26E+01
75092	Methylene Chloride	602.52	9.48E+00	2.33E+00	5.42E+00	5.22E+00	1.52E-01	1.70E+01	4.52E-01	5.85E+01	8.80E+00
127184	Perchloroethylene	0.18	2.81E-03	6.91E-04	1.61E-03	1.55E-03	4.52E-05	5.06E-03	1.34E-04	1.73E-02	2.61E-03
110861	Pyridine	1.83	2.88E-02	7.09E-03	1.65E-02	1.59E-02	4.64E-04	5.19E-02	1.37E-03	1.78E-01	2.68E-02
108883	Toluene	52.99	8.33E-01	2.05E-01	4.77E-01	4.59E-01	1.34E-02	1.50E+00	3.97E-02	5.14E+00	7.74E-01
121448	Triethylamine	6.20	9.76E-02	2.40E-02	5.58E-02	5.38E-02	1.57E-03	1.76E-01	4.65E-03	6.02E-01	9.07E-02
1330207	Xylenes	84.99	1.34E+00	3.28E-01	7.65E-01	7.36E-01	2.15E-02	2.40E+00	6.37E-02	8.25E+00	1.24E+00
^a Source: UCL	A Laboratory Purchase Records Ja	anuary to December 2007									

		Name:	LAB3	LAB4	LAB5	LAB5	LAB6	LAB7	LAB7	LAB7	LAB7
		Number:	10148	10149	10150	10150	10151	10152	10152	10152	10152
		Building:	SEMEL INST	MORTON MED	GONDA CENTER	MACDONALD LAB	BOELTER HALL	BOTANY	BIOMED SCI	LATH HOUSE	OHRC
		Wet Floor Space (ft ²):	11131	3863	28146	48816	38728	8678	34430	270	26052
		Status:	Existing	Existing	Existing	Existing	Existing	Existing	Existing	Existing	Existing
CAS	Chemical	Emissions ^a (lbs)									
75058	Acetonitrile	111.99	1.26E+00	4.36E-01	3.18E+00	5.51E+00	4.37E+00	9.79E-01	3.89E+00	3.05E-02	2.94E+00
71432	Benzene	19.38	2.17E-01	7.54E-02	5.50E-01	9.53E-01	7.56E-01	1.69E-01	6.72E-01	5.27E-03	5.09E-01
7726956	Bromine Compounds	124.16	1.39E+00	4.83E-01	3.52E+00	6.11E+00	4.84E+00	1.09E+00	4.31E+00	3.38E-02	3.26E+00
75650	Butyl Alcohol, Tert-	0.52	5.83E-03	2.02E-03	1.47E-02	2.56E-02	2.03E-02	4.54E-03	1.80E-02	1.41E-04	1.36E-02
56235	Carbon Tetrachloride	0.30	3.35E-03	1.16E-03	8.47E-03	1.47E-02	1.16E-02	2.61E-03	1.04E-02	8.12E-05	7.84E-03
108907	Chlorobenzene	0.85	9.57E-03	3.32E-03	2.42E-02	4.20E-02	3.33E-02	7.46E-03	2.96E-02	2.32E-04	2.24E-02
67663	Chloroform	117.97	1.32E+00	4.59E-01	3.35E+00	5.80E+00	4.60E+00	1.03E+00	4.09E+00	3.21E-02	3.10E+00
106467	Dichlorobenzene, p-	0.34	3.84E-03	1.33E-03	9.70E-03	1.68E-02	1.33E-02	2.99E-03	1.19E-02	9.30E-05	8.98E-03
68122	Dimethylformamide	13.60	1.52E-01	5.29E-02	3.86E-01	6.69E-01	5.31E-01	1.19E-01	4.72E-01	3.70E-03	3.57E-01
123911	Dioxane, 1,4-	8.53	9.57E-02	3.32E-02	2.42E-01	4.20E-01	3.33E-01	7.46E-02	2.96E-01	2.32E-03	2.24E-01
106898	Epichlorohydrin	0.00	6.17E-06	2.14E-06	1.56E-05	2.71E-05	2.15E-05	4.81E-06	1.91E-05	1.50E-07	1.44E-05
107062	Ethylene Dichloride	0.01	1.55E-04	5.37E-05	3.91E-04	6.79E-04	5.39E-04	1.21E-04	4.79E-04	3.76E-06	3.62E-04
50000	Formaldehyde	1355.00	1.52E+01	5.27E+00	3.84E+01	6.66E+01	5.29E+01	1.18E+01	4.70E+01	3.69E-01	3.56E+01
110543	Hexane	960.00	1.08E+01	3.74E+00	2.72E+01	4.72E+01	3.75E+01	8.39E+00	3.33E+01	2.61E-01	2.52E+01
302012	Hydrazine	0.01	1.24E-04	4.29E-05	3.12E-04	5.42E-04	4.30E-04	9.63E-05	3.82E-04	3.00E-06	2.89E-04
7647010	Hydrogen Chloride	32.24	3.62E-01	1.25E-01	9.14E-01	1.59E+00	1.26E+00	2.82E-01	1.12E+00	8.77E-03	8.46E-01
67630	Isopropyl Alcohol	33.15	3.72E-01	1.29E-01	9.40E-01	1.63E+00	1.29E+00	2.90E-01	1.15E+00	9.02E-03	8.70E-01
67561	Methanol	862.76	9.68E+00	3.36E+00	2.45E+01	4.24E+01	3.37E+01	7.54E+00	2.99E+01	2.35E-01	2.26E+01
75092	Methylene Chloride	602.52	6.76E+00	2.35E+00	1.71E+01	2.96E+01	2.35E+01	5.27E+00	2.09E+01	1.64E-01	1.58E+01
127184	Perchloroethylene	0.18	2.01E-03	6.96E-04	5.07E-03	8.79E-03	6.98E-03	1.56E-03	6.20E-03	4.86E-05	4.69E-03
110861	Pyridine	1.83	2.06E-02	7.14E-03	5.20E-02	9.02E-02	7.15E-02	1.60E-02	6.36E-02	4.99E-04	4.81E-02
108883	Toluene	52.99	5.94E-01	2.06E-01	1.50E+00	2.61E+00	2.07E+00	4.63E-01	1.84E+00	1.44E-02	1.39E+00
121448	Triethylamine	6.20	6.96E-02	2.42E-02	1.76E-01	3.05E-01	2.42E-01	5.43E-02	2.15E-01	1.69E-03	1.63E-01
1330207	Xylenes	84.99	9.53E-01	3.31E-01	2.41E+00	4.18E+00	3.32E+00	7.43E-01	2.95E+00	2.31E-02	2.23E+00
Source: UCL	A Laboratory Purchase Records Jar	nuary to December 2007									

		Name:	LAB8	LAB8	LAB8	LAB9	LAB9	LAB9	LAB9	LAB9	LAB9	LAB10
		Number:	10153	10153	10153	10154	10154	10154	10154	10154	10154	10155
		Building:	ENGR BLDG 4	ENGR BLDG 1	ENGR BLDG 5	FRANZ HALL	GEOLOGY	MOLECULR SCI	SLICHTER	YOUNG HALL	BOYER HALL	KNUDSEN HALL
		Wet Floor Space (ft ²):	49004	15432	33551	6355	13075	58079	9518	65939	35377	35088
		Status:	Existing	Existing	Existing	Existing	Existing	Existing	Existing	Existing	Existing	Existing
CAS	Chemical	Emissions ^a (lbs)										
75058	Acetonitrile	111.99	5.53E+00	1.74E+00	3.79E+00	7.17E-01	1.48E+00	6.55E+00	1.07E+00	7.44E+00	3.99E+00	3.96E+00
71432	Benzene	19.38	9.57E-01	3.01E-01	6.55E-01	1.24E-01	2.55E-01	1.13E+00	1.86E-01	1.29E+00	6.91E-01	6.85E-01
7726956	Bromine Compounds	124.16	6.13E+00	1.93E+00	4.20E+00	7.95E-01	1.64E+00	7.27E+00	1.19E+00	8.25E+00	4.43E+00	4.39E+00
75650	Butyl Alcohol, Tert-	0.52	2.57E-02	8.08E-03	1.76E-02	3.33E-03	6.84E-03	3.04E-02	4.98E-03	3.45E-02	1.85E-02	1.84E-02
56235	Carbon Tetrachloride	0.30	1.47E-02	4.64E-03	1.01E-02	1.91E-03	3.93E-03	1.75E-02	2.86E-03	1.98E-02	1.06E-02	1.06E-02
108907	Chlorobenzene	0.85	4.21E-02	1.33E-02	2.88E-02	5.46E-03	1.12E-02	4.99E-02	8.18E-03	5.67E-02	3.04E-02	3.02E-02
67663	Chloroform	117.97	5.82E+00	1.83E+00	3.99E+00	7.55E-01	1.55E+00	6.90E+00	1.13E+00	7.84E+00	4.21E+00	4.17E+00
106467	Dichlorobenzene, p-	0.34	1.69E-02	5.32E-03	1.16E-02	2.19E-03	4.51E-03	2.00E-02	3.28E-03	2.27E-02	1.22E-02	1.21E-02
68122	Dimethylformamide	13.60	6.71E-01	2.11E-01	4.60E-01	8.71E-02	1.79E-01	7.96E-01	1.30E-01	9.03E-01	4.85E-01	4.81E-01
123911	Dioxane, 1,4-	8.53	4.21E-01	1.33E-01	2.89E-01	5.47E-02	1.12E-01	4.99E-01	8.19E-02	5.67E-01	3.04E-01	3.02E-01
106898	Epichlorohydrin	0.00	2.72E-05	8.55E-06	1.86E-05	3.52E-06	7.25E-06	3.22E-05	5.27E-06	3.65E-05	1.96E-05	1.94E-05
107062	Ethylene Dichloride	0.01	6.82E-04	2.15E-04	4.67E-04	8.84E-05	1.82E-04	8.08E-04	1.32E-04	9.17E-04	4.92E-04	4.88E-04
50000	Formaldehyde	1355.00	6.69E+01	2.11E+01	4.58E+01	8.68E+00	1.79E+01	7.93E+01	1.30E+01	9.00E+01	4.83E+01	4.79E+01
110543	Hexane	960.00	4.74E+01	1.49E+01	3.25E+01	6.15E+00	1.26E+01	5.62E+01	9.21E+00	6.38E+01	3.42E+01	3.39E+01
302012	Hydrazine	0.01	5.44E-04	1.71E-04	3.72E-04	7.05E-05	1.45E-04	6.45E-04	1.06E-04	7.32E-04	3.93E-04	3.89E-04
7647010	Hydrogen Chloride	32.24	1.59E+00	5.01E-01	1.09E+00	2.06E-01	4.25E-01	1.89E+00	3.09E-01	2.14E+00	1.15E+00	1.14E+00
67630	Isopropyl Alcohol	33.15	1.64E+00	5.15E-01	1.12E+00	2.12E-01	4.37E-01	1.94E+00	3.18E-01	2.20E+00	1.18E+00	1.17E+00
67561	Methanol	862.76	4.26E+01	1.34E+01	2.92E+01	5.52E+00	1.14E+01	5.05E+01	8.27E+00	5.73E+01	3.08E+01	3.05E+01
75092	Methylene Chloride	602.52	2.98E+01	9.37E+00	2.04E+01	3.86E+00	7.94E+00	3.53E+01	5.78E+00	4.00E+01	2.15E+01	2.13E+01
127184	Perchloroethylene	0.18	8.83E-03	2.78E-03	6.04E-03	1.14E-03	2.36E-03	1.05E-02	1.71E-03	1.19E-02	6.37E-03	6.32E-03
110861	Pyridine	1.83	9.05E-02	2.85E-02	6.20E-02	1.17E-02	2.42E-02	1.07E-01	1.76E-02	1.22E-01	6.54E-02	6.48E-02
108883	Toluene	52.99	2.62E+00	8.24E-01	1.79E+00	3.39E-01	6.98E-01	3.10E+00	5.08E-01	3.52E+00	1.89E+00	1.87E+00
121448	Triethylamine	6.20	3.06E-01	9.65E-02	2.10E-01	3.97E-02	8.17E-02	3.63E-01	5.95E-02	4.12E-01	2.21E-01	2.19E-01
1330207	Xylenes	84.99	4.20E+00	1.32E+00	2.87E+00	5.44E-01	1.12E+00	4.97E+00	8.15E-01	5.65E+00	3.03E+00	3.00E+00
^a Source: UCLA	Laboratory Purchase Records Ja	nuary to December 2007	,									

		Name:	LAB10	LAB11	LAB12	LAB12	LAB13	LAB14	LAB15	LAB15	LAB16
		Number:	10155	10156	10157	10157	10158	10159	10160	10160	10161
		Building:	PHYS ASTRO	POWELL LIB	MACGOWAN	MELNITZ HALL	CNSI - CoS	NEUROSCI RCH	HILLBLOM CTR	WARREN HALL	LIFE SCIENCE
		Wet Floor Space (ft ²):	19329	264	19180	1034	38441	32135	2722	23246	37828
		Status:	Existing	Existing	Existing	Existing	Existing	Existing	Existing	Existing	Existing
CAS	Chemical	Emissions ^a (lbs)									
75058	Acetonitrile	111.99	2.18E+00	2.98E-02	2.16E+00	1.17E-01	4.34E+00	3.63E+00	3.07E-01	2.62E+00	4.27E+00
71432	Benzene	19.38	3.77E-01	5.16E-03	3.75E-01	2.02E-02	7.51E-01	6.28E-01	5.32E-02	4.54E-01	7.39E-01
7726956	Bromine Compounds	124.16	2.42E+00	3.30E-02	2.40E+00	1.29E-01	4.81E+00	4.02E+00	3.41E-01	2.91E+00	4.73E+00
75650	Butyl Alcohol, Tert-	0.52	1.01E-02	1.38E-04	1.00E-02	5.41E-04	2.01E-02	1.68E-02	1.42E-03	1.22E-02	1.98E-02
56235	Carbon Tetrachloride	0.30	5.81E-03	7.94E-05	5.77E-03	3.11E-04	1.16E-02	9.67E-03	8.19E-04	6.99E-03	1.14E-02
108907	Chlorobenzene	0.85	1.66E-02	2.27E-04	1.65E-02	8.89E-04	3.31E-02	2.76E-02	2.34E-03	2.00E-02	3.25E-02
67663	Chloroform	117.97	2.30E+00	3.14E-02	2.28E+00	1.23E-01	4.57E+00	3.82E+00	3.24E-01	2.76E+00	4.50E+00
106467	Dichlorobenzene, p-	0.34	6.66E-03	9.10E-05	6.61E-03	3.56E-04	1.32E-02	1.11E-02	9.38E-04	8.01E-03	1.30E-02
68122	Dimethylformamide	13.60	2.65E-01	3.62E-03	2.63E-01	1.42E-02	5.27E-01	4.40E-01	3.73E-02	3.18E-01	5.18E-01
123911	Dioxane, 1,4-	8.53	1.66E-01	2.27E-03	1.65E-01	8.89E-03	3.31E-01	2.76E-01	2.34E-02	2.00E-01	3.25E-01
106898	Epichlorohydrin	0.00	1.07E-05	1.46E-07	1.06E-05	5.73E-07	2.13E-05	1.78E-05	1.51E-06	1.29E-05	2.10E-05
107062	Ethylene Dichloride	0.01	2.69E-04	3.67E-06	2.67E-04	1.44E-05	5.35E-04	4.47E-04	3.79E-05	3.23E-04	5.26E-04
50000	Formaldehyde	1355.00	2.64E+01	3.60E-01	2.62E+01	1.41E+00	5.25E+01	4.39E+01	3.72E+00	3.17E+01	5.16E+01
110543	Hexane	960.00	1.87E+01	2.55E-01	1.86E+01	1.00E+00	3.72E+01	3.11E+01	2.63E+00	2.25E+01	3.66E+01
302012	Hydrazine	0.01	2.15E-04	2.93E-06	2.13E-04	1.15E-05	4.27E-04	3.57E-04	3.02E-05	2.58E-04	4.20E-04
7647010	Hydrogen Chloride	32.24	6.28E-01	8.58E-03	6.23E-01	3.36E-02	1.25E+00	1.04E+00	8.84E-02	7.55E-01	1.23E+00
67630	Isopropyl Alcohol	33.15	6.46E-01	8.82E-03	6.41E-01	3.45E-02	1.28E+00	1.07E+00	9.09E-02	7.76E-01	1.26E+00
67561	Methanol	862.76	1.68E+01	2.30E-01	1.67E+01	8.99E-01	3.34E+01	2.79E+01	2.37E+00	2.02E+01	3.29E+01
75092	Methylene Chloride	602.52	1.17E+01	1.60E-01	1.16E+01	6.28E-01	2.33E+01	1.95E+01	1.65E+00	1.41E+01	2.30E+01
127184	Perchloroethylene	0.18	3.48E-03	4.76E-05	3.46E-03	1.86E-04	6.93E-03	5.79E-03	4.90E-04	4.19E-03	6.81E-03
110861	Pyridine	1.83	3.57E-02	4.88E-04	3.54E-02	1.91E-03	7.10E-02	5.94E-02	5.03E-03	4.29E-02	6.99E-02
108883	Toluene	52.99	1.03E+00	1.41E-02	1.02E+00	5.52E-02	2.05E+00	1.72E+00	1.45E-01	1.24E+00	2.02E+00
121448	Triethylamine	6.20	1.21E-01	1.65E-03	1.20E-01	6.46E-03	2.40E-01	2.01E-01	1.70E-02	1.45E-01	2.37E-01
1330207	Xylenes	84.99	1.66E+00	2.26E-02	1.64E+00	8.85E-02	3.29E+00	2.75E+00	2.33E-01	1.99E+00	3.24E+00
Source: UCL	LA Laboratory Purchase Records J	lanuary to December 2007									

UCLA Toxic Emissions - LRDP Amendment Scenario.xls Gas Turbines, Hr - NG (lb/hr)

	T	T	Т			
			Name:	TURB1	TURB2	
			Number:	10001	10002	
			Equipment:	Gas Turbine	Gas Turbine	
			Location:	Cogen	Cogen	
			Size (mmbtu/hr):	234	234	Total
		Emission Factor ^a	SCAQMD Permit:	F00255	F00070	Emissions
CAS	Pollutant	(lbs/mmcf fuel burned)	Hourly Usage ^b (mmcf):	0.154	0.154	(lb/hr)
75070	Acetaldehyde	4.08E-02		6.28E-03	6.28E-03	1.26E-02
107028	Acrolein	6.53E-03		1.00E-03	1.00E-03	2.01E-03
7664417	Ammonia	9.10E+00		1.40E+00	1.40E+00	2.80E+00
71432	Benzene	1.22E-02		1.88E-03	1.88E-03	3.75E-03
106990	Butadiene, 1,3-	4.39E-04		6.75E-05	6.75E-05	1.35E-04
100414	Ethylbenzene	3.26E-02		5.02E-03	5.02E-03	1.00E-02
50000	Formaldehyde	7.24E-01		1.11E-01	1.11E-01	2.23E-01
91203	Naphthalene	1.33E-03		2.05E-04	2.05E-04	4.09E-04
1151	PAH (excluding Naphthalene) ^b	9.18E-04		1.41E-04	1.41E-04	2.83E-04
75569	Propylene Oxide	2.96E-02		4.55E-03	4.55E-03	9.11E-03
108883	Toluene	1.33E-01		2.05E-02	2.05E-02	4.09E-02
1330207	Xylenes	6.53E-02		1.00E-02	1.00E-02	2.01E-02
^a South Coa	st Air Quality Management Distric	t Supplemental Reporting F	Procedures for			
AB2588 F	acilities Table B-1 Emission Fact	ors for Turbines - Natural G	as Combustion			
^b PAH (carc	inogenic) = Total PAH - Naphthale	ene				
^c Based on a	annual natural gas usage divided	by 8760 hr/yr				

UCLA Toxic Emissions - LRDP Amendment Scenario.xls Gas Turbines, Yr - NG (lb/yr)

			Name:	TURB1	TURB2	
			Number:	10001	10002	
			Equipment:	Gas Turbine	Gas Turbine	
			Location:	Cogen	Cogen	
			Size (mmbtu/hr):	234	234	Total
		Emission Factor ^{a,b}	SCAQMD Permit:	F00255	F00070	Emissions
CAS	Pollutant	(lbs/mmcf fuel burned)	Annual Usage ^c (mmcf):	1347.9	1347.9	(lb/yr)
75070	Acetaldehyde	4.08E-02		5.50E+01	5.50E+01	1.10E+02
107028	Acrolein	6.53E-03		8.80E+00	8.80E+00	1.76E+01
7664417	Ammonia	9.10E+00		1.23E+04	1.23E+04	2.45E+04
71432	Benzene	1.22E-02		1.64E+01	1.64E+01	3.29E+01
106990	Butadiene, 1,3-	4.39E-04		5.92E-01	5.92E-01	1.18E+00
100414	Ethylbenzene	3.26E-02		4.39E+01	4.39E+01	8.79E+01
50000	Formaldehyde	7.24E-01		9.76E+02	9.76E+02	1.95E+03
91203	Naphthalene	1.33E-03		1.79E+00	1.79E+00	3.59E+00
1151	PAH (excluding Naphthalene) ^b	9.18E-04		1.24E+00	1.24E+00	2.47E+00
75569	Propylene Oxide	2.96E-02		3.99E+01	3.99E+01	7.98E+01
108883	Toluene	1.33E-01		1.79E+02	1.79E+02	3.59E+02
1330207	Xylenes	6.53E-02		8.80E+01	8.80E+01	1.76E+02
^a South Coa	ast Air Quality Management Distric	t Supplemental Reporting F	Procedures for			
AB2588	Facilities Table B-1 Emission Fact	ors for Turbines - Natural G	as Combustion			
^b PAH (carc	inogenic) = Total PAH - Naphthale	ene				
^c Source: A	nnual Air Emission Report for 200	6/2007 submitted to SCAQN	ИD			

UCLA Toxic Emissions - LRDP Amendment Scenario.xls Gas Turbines, Hr - LFG (lb/hr)

					TUDD 4	
			Name:	TURB1	TURB2	
			Number:	10001	10002	
			Equipment:	Gas Turbine	Gas Turbine	
			Location:	Cogen	Cogen	
			Size (mmbtu/hr):	234	234	Total
		Emission Factor ^{a,b}	SCAQMD Permit:	F00255	F00070	Emissions
CAS	Pollutant	(lbs/mmcf fuel burned)	Hourly Usage ^c (mmcf):	0.035	0.035	(lb/hr)
71432	Benzene	8.40E-03		2.96E-04	2.96E-04	5.91E-04
56235	Carbon Tetrachloride	7.20E-04		2.53E-05	2.53E-05	5.07E-05
75092	Chloroform	5.60E-04		1.97E-05	1.97E-05	3.94E-05
127184	Methylene Chloride	9.20E-04		3.24E-05	3.24E-05	6.48E-05
79016	Perchloroethylene	1.00E-03		3.52E-05	3.52E-05	7.04E-05
108883	Toluene	4.40E-02		1.55E-03	1.55E-03	3.10E-03
67663	Trichloroethylene	7.60E-04		2.67E-05	2.67E-05	5.35E-05
75014	Vinyl Chloride	6.40E-04		2.25E-05	2.25E-05	4.50E-05
1330207	Xylenes	1.24E-02		4.36E-04	4.36E-04	8.73E-04
^a South Coa	ast Air Quality Management Distr	ict Supplemental Reporting F	Procedures for			
AB2588	Facilities Table B-6 Emission Fa	ctors for Turbines - Landfill G	as Combustion			
^b Based on	annual landfill gas usage divided	by 8760 hr/yr				

UCLA Toxic Emissions - LRDP Amendment Scenario.xls Gas Turbines, Yr - LFG (lb/yr)

				TUDD4	TUDDO	
			Name:	TURB1	TURB2	
			Number:	10001	10002	
			Equipment:	Gas Turbine	Gas Turbine	
			Location:	Cogen	Cogen	
			Size (mmbtu/hr):	234	234	Total
		Emission Factor ^a	SCAQMD Permit:	F00255	F00070	Emissions
CAS	Pollutant	(lbs/mmcf fuel burned)	Annual Usage ^b (mmcf):	308.3	308.3	(lb/yr)
71432	Benzene	8.40E-03		2.59E+00	2.59E+00	5.18E+00
56235	Carbon Tetrachloride	7.20E-04		2.22E-01	2.22E-01	4.44E-01
75092	Chloroform	5.60E-04		1.73E-01	1.73E-01	3.45E-01
127184	Methylene Chloride	9.20E-04		2.84E-01	2.84E-01	5.67E-01
79016	Perchloroethylene	1.00E-03		3.08E-01	3.08E-01	6.17E-01
108883	Toluene	4.40E-02		1.36E+01	1.36E+01	2.71E+01
67663	Trichloroethylene	7.60E-04		2.34E-01	2.34E-01	4.69E-01
75014	Vinyl Chloride	6.40E-04		1.97E-01	1.97E-01	3.95E-01
1330207	Xylenes	1.24E-02		3.82E+00	3.82E+00	7.65E+00
^a South Coa	ast Air Quality Management Di	strict Supplemental Reporting F	Procedures for			
AB2588	Facilities Table B-6 Emission	Factors for Turbines - Landfill G	as Combustion			
^b Source: A	Annual Air Emission Report for	2006/2007 submitted to SCAQI	MD			

UCLA Toxic Emissions - LRDP Amendment Scenario.xls Gasoline Loading-Dispensing, Hr (lb/hr)

			Name:	DISP1	
			Number:	10003	
			Equipment:		
			Location:		
			Tank Size (Mgal):	10,000	Total
		Emission Factor ^{a,b,c}	SCAQMD Permit:	N8863	Emissions
CAS	Pollutant	(lbs/Mgal throughput)	Hourly Throughput ^d (Mgal):	1.9	(lb/hr)
71432	Benzene	2.81E-02		5.39E-02	5.39E-02
100414	Ethylbenzene	3.93E-02		7.54E-02	7.54E-02
110543	Hexane	2.81E-02		5.39E-02	5.39E-02
108883	Toluene	1.96E-01		3.77E-01	3.77E-01
95636	Trimethylbenzene, 1,2,4-	7.01E-02		1.35E-01	1.35E-01
1330207	Xylenes	1.96E-01		3.77E-01	3.77E-01
^a Default SCAQMD Emiss	sion Factor for Gasoline Dispensing	=	1.8	lbs/Mgal	
^b AP-42 Loading Loss Em	nission Factor (LLEF)= (12.46 * S * P * N	1 * / T)*(1-(eff/100))	1.005	lbs/Mgal	
Where:					
Variable Name	Description of Variable		Gasoline Variable	Units of Variable	
LLEF =	Loading Loss Emission Factor			lbs/1000 gal	
12.46 =	Loading Loss Equation Constant		12.46	dimensionless	
S =	Submerged Loading Constant		1	dimensionless	
P =	True Liquid Vapor Pressure		6.6	psia	
M =	Vapor Molecular Weight		66	lb/lb-mole	
T =	Bulk Liquid Temperature		540	°R (°F+460)	
eff =	Vapor Recovery Control Efficiency		90	percent	
^c Gasoline speciation has	ed on SCAQMD Supplemental Instructio	ns for liquid storage tanks -	Appendix 3		
Benzene		lbs/lbs			
Hexane		lbs/lbs			
Toluene		lbs/lbs			
Ethylbenzene		lbs/lbs			
m-Xylene		lbs/lbs			
1,2,4-Trimethylbenzene		lbs/lbs			
d8 nozzles x 6 gal/min x 4					

UCLA Toxic Emissions - LRDP Amendment Scenario.xls Gasoline Loading-Dispensing, Yr (lb/yr)

				DIOD4	
			Name:	DISP1	
			Number:		
			Equipment:		
			Location:	Fleet Services	
			Tank Size (Mgal):	10	Total
		Emission Factor ^{a,b,c}	SCAQMD Permit:	N8863	Emissions
CAS	Pollutant	(lbs/Mgal)	Annual Throughput ^d (Mgal):	320.0	(lb/yr)
71432	Benzene	2.81E-02		8.98E+00	8.98E+00
100414	Ethylbenzene	3.93E-02		1.26E+01	1.26E+01
110543	Hexane	2.81E-02		8.98E+00	8.98E+00
108883	Toluene	1.96E-01		6.28E+01	6.28E+01
95636	Trimethylbenzene, 1,2,4-	7.01E-02		2.24E+01	2.24E+01
1330207	Xylenes	1.96E-01		6.28E+01	6.28E+01
	on Factor for Gasoline Dispensing ^a		1.8	lbs/Mgal	
•	ssion Factor (LLEF)= (12.46 * S * P * N	M * / T)*(1-(eff/100)) ^b	1.005	lbs/Mgal	
Where:					
Variable Name	Description of Variable		Gasoline Variable		
	Loading Loss Emission Factor			lbs/1000 gal	
	Loading Loss Equation Constant			dimensionless	
	Submerged Loading Constant			dimensionless	
	True Liquid Vapor Pressure			psia	
	Vapor Molecular Weight			lb/lb-mole	
	Bulk Liquid Temperature			°R (°F+460)	
eff =	Vapor Recovery Control Efficiency		90	percent	
-					
^c Gasoline speciation based	on SCAQMD Supplemental Instructions fo		k 3		
Benzene		lbs/lbs			
Hexane	0.01	lbs/lbs			
Toluene	0.07	lbs/lbs			
Ethylbenzene	0.014	lbs/lbs			
m-Xylene	0.07	lbs/lbs			
1,2,4-Trimethylbenzene	0.025	lbs/lbs			
dSource: Annual Air Emis	sion Report for 2006/2007 submitted to	o SCAQMD			

			Name:	BOIL1	BOIL2	BOIL3	BOIL4	BOIL5	BOIL6	BOIL7	BOIL8
			Number:	10004	10005	10006	10007	10008	10009	10010	10011
			Equipment:	Boiler	Boiler	Boiler	Boiler	Boiler	Boiler	Boiler	Boiler
			Location:	Covel Commons	Covel Commons	Canyon Point	Delta Terrace	Courtside	Bradley	Dykstra Hall	Dykstra Hall
		Emission Factor ^a	Size (MMBTU/hr):	1.8256	1.8256	1.8256	1.8256	1.8256	1.2000	1.2600	1.2600
		SCAQMD Permit:	EXEMPT	EXEMPT	EXEMPT	EXEMPT	EXEMPT	EXEMPT	EXEMPT	EXEMPT	
CAS	Pollutant	0.0018	0.0018	0.0018	0.0018	0.0018	0.0012	0.0012	0.0012		
75070	Acetaldehyde	0.0043		7.70E-06	7.70E-06	7.70E-06	7.70E-06	7.70E-06	5.06E-06	5.31E-06	5.31E-06
107028	Acrolein	0.0027		4.83E-06	4.83E-06	4.83E-06	4.83E-06	4.83E-06	3.18E-06	3.34E-06	3.34E-06
7664417	Ammonia	3.2		5.73E-03	5.73E-03	5.73E-03	5.73E-03	5.73E-03	3.76E-03	3.95E-03	3.95E-03
71432 Benzene 0.008				1.43E-05	1.43E-05	1.43E-05	1.43E-05	1.43E-05	9.41E-06	9.88E-06	9.88E-06
100414	Ethylbenzene	1.70E-05	1.70E-05	1.70E-05	1.70E-05	1.70E-05	1.12E-05	1.17E-05	1.17E-05		
50000	Formaldehyde	0.017		3.04E-05	3.04E-05	3.04E-05	3.04E-05	3.04E-05	2.00E-05	2.10E-05	2.10E-05
110543	Hexane	0.0063		1.13E-05	1.13E-05	1.13E-05	1.13E-05	1.13E-05	7.41E-06	7.78E-06	7.78E-06
91203	91203 Naphthalene 0.0003				5.37E-07	5.37E-07	5.37E-07	5.37E-07	3.53E-07	3.71E-07	3.71E-07
1151 PAH (excluding napthalene) 0.0001				1.79E-07	1.79E-07	1.79E-07	1.79E-07	1.79E-07	1.18E-07	1.24E-07	1.24E-07
108883 Toluene 0.0366				6.55E-05	6.55E-05	6.55E-05	6.55E-05	6.55E-05	4.31E-05	4.52E-05	4.52E-05
1330207	Xylenes	4.87E-05	4.87E-05	4.87E-05	4.87E-05	4.87E-05	3.20E-05	3.36E-05	3.36E-05		
^a South Coa	st Air Quality Management Distric	t Supplemental Reporting Proc									
AB2588 I	acilities Table B-1 Emission Fact	ors for Boilers - Natural Gas Co									
^b Based on	size of boiler divided by heating va	alue for natural gas, 1020 BTU									

		Name:	BOIL9	BOIL10	BOIL11	DOII 10	DOI! 40	50" 44
			BOILO	DUILIU	BUILTI	BOIL12	BOIL13	BOIL14
		Number:	10012	10013	10014	10015	10016	10017
		Equipment:	Boiler	Boiler	Boiler	Boiler	Boiler	Boiler
		Location:	DeNeve 'C' Bldg	DeNeve 'C' Bldg	DeNeve 'D' Bldg	DeNeve 'D' Bldg	DeNeve 'E' Bldg	DeNeve 'E' Bldg
	Emission Factor ^a	Size (MMBTU/hr):	1.2600	1.2600	1.2600	1.2600	1.2600	1.8000
(lbs/mmcf fuel burned) SCAQM				EXEMPT	EXEMPT	EXEMPT	EXEMPT	EXEMPT
ollutant	(Boilers < 10 MMBTU/HR)	Hourly Usage ^b (mmcf):	0.0012	0.0012	0.0012	0.0012	0.0012	0.0018
cetaldehyde	0.0043		5.31E-06	5.31E-06	5.31E-06	5.31E-06	5.31E-06	7.59E-06
crolein	0.0027		3.34E-06	3.34E-06	3.34E-06	3.34E-06	3.34E-06	4.76E-06
mmonia	3.2		3.95E-03	3.95E-03	3.95E-03	3.95E-03	3.95E-03	5.65E-03
enzene	0.008		9.88E-06	9.88E-06	9.88E-06	9.88E-06	9.88E-06	1.41E-05
100414 Ethylbenzene 0.0095				1.17E-05	1.17E-05	1.17E-05	1.17E-05	1.68E-05
ormaldehyde	0.017		2.10E-05	2.10E-05	2.10E-05	2.10E-05	2.10E-05	3.00E-05
exane	0.0063		7.78E-06	7.78E-06	7.78E-06	7.78E-06	7.78E-06	1.11E-05
aphthalene	0.0003		3.71E-07	3.71E-07	3.71E-07	3.71E-07	3.71E-07	5.29E-07
AH (excluding napthalene)	0.0001		1.24E-07	1.24E-07	1.24E-07	1.24E-07	1.24E-07	1.76E-07
oluene	0.0366		4.52E-05	4.52E-05	4.52E-05	4.52E-05	4.52E-05	6.46E-05
ylenes	0.0272	3.36E-05	3.36E-05	3.36E-05	3.36E-05	3.36E-05	4.80E-05	
Air Quality Management District								
cilities Table B-1 Emission Facto	ors for Boilers - Natural Gas Co							
e of boiler divided by heating val	lue for natural gas, 1020 BTU/	/scf						
cr mei th or e: a ol	etaldehyde rolein monia nzene nylbenzene maldehyde xane phthalene H (excluding napthalene) uene enes ir Quality Management District ities Table B-1 Emission Factor	(lbs/mmcf fuel burned)	Location: Emission Factor Size (MMBTU/hr): (Ibs/mmcf fuel burned) SCAQMD Permit: Ilutant (Boilers < 10 MMBTU/HR) Hourly Usage (mmcf): etaldehyde 0.0043 etaldehyde 0.0027 etaldehyde 0.0027 etaldehyde 0.008 etaldehyde 0.008 etaldehyde 0.0095 etaldehyde 0.017 etaldehyde 0.017 etaldehyde 0.0063 etaldehyde 0.0003 etaldehyde 0.0003 etaldehyde 0.0003 etaldehyde 0.0001 etaldehyde 0.00066 etaldehyde	Location: DeNeve 'C' Bldg	Location: DeNeve 'C' Bldg DeNeve 'C' Bldg	Location: DeNeve 'C' Bldg DeNeve 'C' Bldg DeNeve 'D' Bldg Emission Factor* Size (MMBTU/hr): 1.2600 1.2600	Location: DeNeve 'C' Bldg DeNeve 'C' Bldg DeNeve 'D' Bldg DeNeve 'D' Bldg DeNeve 'D' Bldg Emission Factor® Size (MMBTU/hr): 1.26000 1.26000 1.2600 1.26000 1.26000 1.26000 1.26000 1.26000 1.26000	Location: DeNeve 'C' Bldg DeNeve 'D' Bldg

Name: BOIL15 BOIL16 BOIL17 BOIL18 BOIL19 BOIL20									I	
Equipment: Boiler Boiler				Name:	BOIL15	BOIL16	BOIL17	BOIL18	BOIL19	BOIL20
Deliver Filidg Deliver Filidg Deliver Filidg Deliver Podium Bidg Deliver Ar Bidg Deliver Del				Number:	10018	10019	10020	10021	10022	10023
Emission Factor Size (MMBTU/hr): 1.2600 1.5300 1.5300 1.5300 1.5300 1.2600 1.2600				Equipment:	Boiler	Boiler	Boiler	Boiler	Boiler	Boiler
CAS Pollutant (Boilers < 10 MMBTU/HR) Hourly Usage (mmcf): 0.0012 0.0015 0.0015 0.0015 0.0015 0.0012 0.0012 0.0012 0.0015 0.0015 0.0015 0.0012 0.0012 0.0012 0.0012 0.0012 0.0015 0.0015 0.0015 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0012 0.0015 0.0015 0.0015 0.0012 0.0012 0.0012 0.0012 0.0015 0.0015 0.0015 0.0012 0.0012 0.0012 0.0015 0.0015 0.0015 0.0012 0.0012 0.0012 0.0012 0.0015 0.0015 0.0015 0.0015 0.0012 0.0012 0.0012 0.0012 0.0015 0.0015 0.0015 0.0015 0.0012 0.0012 0.0015 0.0015 0.0015 0.0015 0.0012 0.0012 0.0015 0.0015 0.0015 0.0012 0.0012 0.0015 0.00				Location:	DeNeve 'F' Bldg	DeNeve 'F' Bldg	DeNeve Podium Bldg	DeNeve Podium Bldg	DeNeve 'A' Bldg	DeNeve 'A' Bldg
CAS Pollutant (Boilers < 10 MMBTU/HR) Hourly Usage ^b (mmcf): 0.0012 0.0015 0.0015 0.0015 0.0012 0.0012 75070 Acetaldehyde 0.0043 5.31E-06 6.45E-06 6.45E-06 6.45E-06 5.31E-06 5.31E-06 107028 Acrolein 0.0027 3.34E-06 4.05E-06 4.05E-06 4.05E-06 3.34E-06 3.34E-06 7664417 Ammonia 3.2 3.95E-03 4.80E-03 4.80E-03 3.95E-03 3.95E-03 71432 Benzene 0.008 9.88E-06 1.20E-05 1.20E-05 9.88E-06 9.88E-06 100414 Ethylbenzene 0.0095 1.17E-05 1.43E-05 1.43E-05 1.43E-05 1.17E-05 1.17E-05 50000 Formaldehyde 0.017 2.10E-05 2.55E-05 2.55E-05 2.55E-05 2.55E-05 2.55E-05 2.10E-05 1.17E-05 110543 Hexane 0.0063 7.78E-06 9.45E-06 9.45E-06 9.45E-06 7.78E-06 7.78E-06 9.45E			Emission Factor ^a	Size (MMBTU/hr):	1.2600	1.5300	1.5300	1.5300	1.2600	1.2600
75070 Acetaldehyde 0.0043 5.31E-06 6.45E-06 6.45E-06 5.31E-06 5.31E-06 107028 Acrolein 0.0027 3.34E-06 4.05E-06 4.05E-06 4.05E-06 3.34E-06 3.34E-06 7664417 Ammonia 3.2 3.95E-03 4.80E-03 4.80E-03 4.80E-03 3.95E-03 3.95E-03 71432 Benzene 0.008 9.88E-06 1.20E-05 1.20E-05 9.88E-06 9.88E-06 100414 Ethylbenzene 0.0095 1.17E-05 1.43E-05 1.43E-05 1.17E-05 1.17E-05 50000 Formaldehyde 0.017 2.10E-05 2.55E-05 2.55E-05 2.55E-05 2.10E-05 2.10E-05 2.10E-05 2.10E-05 2.10E-05 2.10E-05 2.10E-05 2.10E-05 2.10E-05 2.55E-05 2.55E-05 2.55E-05 2.10E-05 2.10E-05 2.10E-05 2.55E-05 2.55E-05 2.55E-05 2.10E-05 2.10E-05 2.10E-05 2.55E-05 2.55E-05 2.55E-05 2.55E-05 2.55E-05 <td< td=""><td></td><td></td><td>(lbs/mmcf fuel burned)</td><td>SCAQMD Permit:</td><td>EXEMPT</td><td>EXEMPT</td><td>EXEMPT</td><td>EXEMPT</td><td>EXEMPT</td><td>EXEMPT</td></td<>			(lbs/mmcf fuel burned)	SCAQMD Permit:	EXEMPT	EXEMPT	EXEMPT	EXEMPT	EXEMPT	EXEMPT
107028 Acrolein 0.0027 3.34E-06 4.05E-06 4.05E-06 3.34E-06 3.34E-06 7664417 Ammonia 3.2 3.95E-03 4.80E-03 4.80E-03 4.80E-03 3.95E-03 3.95E-03 71432 Benzene 0.008 9.88E-06 1.20E-05 1.20E-05 9.88E-06 9.88E-06 100414 Ethylbenzene 0.0095 1.17E-05 1.43E-05 1.43E-05 1.17E-05 1.17E-05 50000 Formaldehyde 0.017 2.10E-05 2.55E-05 2.55E-05 2.55E-05 2.10E-05 2.10E-05 110543 Hexane 0.0063 7.78E-06 9.45E-06 9.45E-06 9.45E-06 7.78E-06 7.78E-06 9.45E-06 9.45E-06 7.78E-06 7.78E-06 7.78E-06 9.45E-07 4.50E-07 3.71E-07 3.71E-07 1.50E-07 1.50E-07 1.24E-07 1.24E-07 1.50E-07 1.50E-07 1.24E-07 1.24E-07 1.24E-05 5.49E-05 5.49E-05 4.52E-05 4.52E-05 3.36E-05 3.36E-05 3.36	CAS	Pollutant	(Boilers < 10 MMBTU/HR)	Hourly Usage ^b (mmcf):	0.0012	0.0015	0.0015	0.0015	0.0012	0.0012
7664417 Ammonia 3.2 3.95E-03 4.80E-03 4.80E-03 4.80E-03 3.95E-03 3.95E-03 71432 Benzene 0.008 9.88E-06 1.20E-05 1.20E-05 1.20E-05 9.88E-06 9.88E-06 100414 Ethylbenzene 0.0095 1.17E-05 1.43E-05 1.43E-05 1.43E-05 1.17E-05 1.17E-05 50000 Formaldehyde 0.017 2.10E-05 2.55E-05 2.55E-05 2.55E-05 2.10E-05 2.10E-05 110543 Hexane 0.0063 7.78E-06 9.45E-06 9.45E-06 9.45E-06 7.78E-06 7.78E-06 91203 Naphthalene 0.0003 3.71E-07 4.50E-07 4.50E-07 4.50E-07 3.71E-07 3.71E-07 1151 PAH (excluding napthalene) 0.0001 1.24E-07 1.50E-07 1.50E-07 1.50E-07 1.24E-07 1.24E-07 108883 Toluene 0.0366 4.52E-05 5.49E-05 5.49E-05 5.49E-05 4.52E-05 4.52E-05 1330207	75070	Acetaldehyde	0.0043		5.31E-06	6.45E-06	6.45E-06	6.45E-06	5.31E-06	5.31E-06
71432 Benzene 0.008 9.88E-06 1.20E-05 1.20E-05 9.88E-06 9.88E-06 100414 Ethylbenzene 0.0095 1.17E-05 1.43E-05 1.43E-05 1.43E-05 1.17E-05 1.17E-05 50000 Formaldehyde 0.017 2.10E-05 2.55E-05 2.55E-05 2.55E-05 2.55E-05 2.10E-05 2.10E-05 110543 Hexane 0.0063 7.78E-06 9.45E-06 9.45E-06 9.45E-06 7.78E-06 7.78E-06 91203 Naphthalene 0.0003 3.71E-07 4.50E-07 4.50E-07 4.50E-07 3.71E-07 3.71E-07 1151 PAH (excluding napthalene) 0.0001 1.24E-07 1.50E-07 1.50E-07 1.50E-07 1.24E-07 1.24E-07 108883 Toluene 0.0366 4.52E-05 5.49E-05 5.49E-05 4.52E-05 4.52E-05 1330207 Xylenes 0.0272 3.36E-05 4.08E-05 4.08E-05 4.08E-05 3.36E-05 3.36E-05 *South Coast Air Quality Management District Suppl	107028	Acrolein	0.0027		3.34E-06	4.05E-06	4.05E-06	4.05E-06	3.34E-06	3.34E-06
100414 Ethylbenzene 0.0095 1.17E-05 1.43E-05 1.43E-05 1.43E-05 1.17E-05 1.17E-05 50000 Formaldehyde 0.017 2.10E-05 2.55E-05 2.55E-05 2.55E-05 2.10E-05 110543 Hexane 0.0063 7.78E-06 9.45E-06 9.45E-06 9.45E-06 7.78E-06 7.78E-06 91203 Naphthalene 0.0003 3.71E-07 4.50E-07 4.50E-07 4.50E-07 3.71E-07 3.71E-07 1151 PAH (excluding napthalene) 0.0001 1.24E-07 1.50E-07 1.50E-07 1.50E-07 1.24E-07 1.24E-07 108883 Toluene 0.0366 4.52E-05 5.49E-05 5.49E-05 5.49E-05 4.52E-05 4.52E-05 1330207 Xylenes 0.0272 3.36E-05 4.08E-05 4.08E-05 4.08E-05 3.36E-05 3.36E-05 aB2588 Facilities Table B-1 Emission Factors for Boilers - Natural Gas Combustion 5.40E-05 4.08E-05 4.08E-05 4.08E-05 4.08E-05 4.08E-05 4.08E-05 4.08	7664417	Ammonia	3.2		3.95E-03	4.80E-03	4.80E-03	4.80E-03	3.95E-03	3.95E-03
50000 Formaldehyde 0.017 2.10E-05 2.55E-05 2.55E-05 2.55E-05 2.10E-05 2.10E-05 110543 Hexane 0.0063 7.78E-06 9.45E-06 9.45E-06 9.45E-06 7.78E-06 7.78E-06 91203 Naphthalene 0.0003 3.71E-07 4.50E-07 4.50E-07 4.50E-07 3.71E-07 1151 PAH (excluding napthalene) 0.0001 1.24E-07 1.50E-07 1.50E-07 1.50E-07 1.24E-07 108883 Toluene 0.0366 4.52E-05 5.49E-05 5.49E-05 5.49E-05 4.52E-05 1330207 Xylenes 0.0272 3.36E-05 4.08E-05 4.08E-05 4.08E-05 3.36E-05 3.36E-05 *South Coast Air Quality Management District Supplemental Reporting Procedures for AB2588 Facilities Table B-1 Emission Factors for Boilers - Natural Gas Combustion **South Coast Air Quality Management District Supplemental Reporting Procedures for	71432	Benzene	0.008	9.88E-06	1.20E-05	1.20E-05	1.20E-05	9.88E-06	9.88E-06	
110543 Hexane 0.0063 7.78E-06 9.45E-06 9.45E-06 9.45E-06 7.78E-06 7	100414	Ethylbenzene	0.0095		1.17E-05	1.43E-05	1.43E-05	1.43E-05	1.17E-05	1.17E-05
91203 Naphthalene 0.0003 3.71E-07 4.50E-07 4.50E-07 4.50E-07 3.71E-07 3.71E-07 1151 PAH (excluding napthalene) 0.0001 1.24E-07 1.50E-07 1.50E-07 1.50E-07 1.24E-07 108883 Toluene 0.0366 4.52E-05 5.49E-05 5.49E-05 5.49E-05 4.52E-05 1330207 Xylenes 0.0272 3.36E-05 4.08E-05 4.08E-05 4.08E-05 3.36E-05 *South Coast Air Quality Management District Supplemental Reporting Procedures for AB2588 Facilities Table B-1 Emission Factors for Boilers - Natural Gas Combustion	50000	Formaldehyde	0.017		2.10E-05	2.55E-05	2.55E-05	2.55E-05	2.10E-05	2.10E-05
1151 PAH (excluding napthalene) 0.0001 1.24E-07 1.50E-07 1.50E-07 1.50E-07 1.24E-07 1.24E-07 108883 Toluene 0.0366 4.52E-05 5.49E-05 5.49E-05 5.49E-05 4.52E-05 1330207 Xylenes 0.0272 3.36E-05 4.08E-05 4.08E-05 3.36E-05 3.36E-05 South Coast Air Quality Management District Supplemental Reporting Procedures for AB2588 Facilities Table B-1 Emission Factors for Boilers - Natural Gas Combustion AB2588 Facilities Table B-1 Emission Factors for Boilers - Natural Gas Combustion AB2588 Facilities Table B-1 Emission Factors for Boilers - Natural Gas Combustion	110543	Hexane	0.0063		7.78E-06	9.45E-06	9.45E-06	9.45E-06	7.78E-06	7.78E-06
108883 Toluene 0.0366 4.52E-05 5.49E-05 5.49E-05 4.52E-05 4.52E-05 1330207 Xylenes 0.0272 3.36E-05 4.08E-05 4.08E-05 3.36E-05 3.36E-05 South Coast Air Quality Management District Supplemental Reporting Procedures for AB2588 Facilities Table B-1 Emission Factors for Boilers - Natural Gas Combustion 8.000 8.000 8.000 9.000	91203	Naphthalene	0.0003	3.71E-07	4.50E-07	4.50E-07	4.50E-07	3.71E-07	3.71E-07	
1330207 Xylenes 0.0272 3.36E-05 4.08E-05 4.08E-05 3.36E-05 3.36E-05 ^a South Coast Air Quality Management District Supplemental Reporting Procedures for AB2588 Facilities Table B-1 Emission Factors for Boilers - Natural Gas Combustion	1151	PAH (excluding napthalene)	0.0001		1.24E-07	1.50E-07	1.50E-07	1.50E-07	1.24E-07	1.24E-07
^a South Coast Air Quality Management District Supplemental Reporting Procedures for AB2588 Facilities Table B-1 Emission Factors for Boilers - Natural Gas Combustion	108883	Toluene	0.0366		4.52E-05	5.49E-05	5.49E-05	5.49E-05	4.52E-05	4.52E-05
AB2588 Facilities Table B-1 Emission Factors for Boilers - Natural Gas Combustion	1330207	Xylenes	0.0272		3.36E-05	4.08E-05	4.08E-05	4.08E-05	3.36E-05	3.36E-05
	^a South Coa	st Air Quality Management Distric	ct Supplemental Reporting Prod	edures for						
Based on size of holler divided by heating value for natural gas 1000 RTI l/scf	AB2588 I	Facilities Table B-1 Emission Fact	tors for Boilers - Natural Gas Co	ombustion						
based on size of boiler divided by fielding value for flatterary gas, 1020 B 10/301	^b Based on	size of boiler divided by heating v	alue for natural gas, 1020 BTU	/scf						

			Name:	BOIL21	BOIL22	BOIL23	BOIL24	BOIL25	BOIL26
			Number:	10024	10025	10026	10027	10028	10029
			Equipment:	Boiler	Boiler	Boiler	Boiler	Boiler	Boiler
			Location:	DeNeve 'B' Bldg	DeNeve Kitchen	DeNeve 'A' Bldg	DeNeve 'B' Bldg	Sproul	Hedrick Tower
		Size (MMBTU/hr):	1.2600	1.2600	1.2600	1.2600	1.5300	1.2600	
		SCAQMD Permit:	EXEMPT	EXEMPT	EXEMPT	EXEMPT	EXEMPT	EXEMPT	
CAS	Pollutant	(Boilers < 10 MMBTU/HR)	Hourly Usage ^b (mmcf):	0.0012	0.0012	0.0012	0.0012	0.0015	0.0012
75070	Acetaldehyde	0.0043		5.31E-06	5.31E-06	5.31E-06	5.31E-06	6.45E-06	5.31E-06
107028	Acrolein	0.0027		3.34E-06	3.34E-06	3.34E-06	3.34E-06	4.05E-06	3.34E-06
7664417	Ammonia	3.2		3.95E-03	3.95E-03	3.95E-03	3.95E-03	4.80E-03	3.95E-03
71432	Benzene	0.008		9.88E-06	9.88E-06	9.88E-06	9.88E-06	1.20E-05	9.88E-06
100414 Ethylbenzene 0.0095				1.17E-05	1.17E-05	1.17E-05	1.17E-05	1.43E-05	1.17E-05
50000	Formaldehyde	0.017		2.10E-05	2.10E-05	2.10E-05	2.10E-05	2.55E-05	2.10E-05
110543	Hexane	0.0063		7.78E-06	7.78E-06	7.78E-06	7.78E-06	9.45E-06	7.78E-06
91203	Naphthalene	0.0003		3.71E-07	3.71E-07	3.71E-07	3.71E-07	4.50E-07	3.71E-07
1151	PAH (excluding napthalene)	0.0001		1.24E-07	1.24E-07	1.24E-07	1.24E-07	1.50E-07	1.24E-07
108883	Toluene	0.0366		4.52E-05	4.52E-05	4.52E-05	4.52E-05	5.49E-05	4.52E-05
1330207	Xylenes	0.0272		3.36E-05	3.36E-05	3.36E-05	3.36E-05	4.08E-05	3.36E-05
^a South Coa	st Air Quality Management Distric	t Supplemental Reporting Prod							
AB2588 F	Facilities Table B-1 Emission Fact	ors for Boilers - Natural Gas Co	ombustion						
^b Based on	size of boiler divided by heating va	alue for natural gas, 1020 BTU	/scf						

Name: BOIL27 BOIL28 BOIL29 BOIL30 BOIL31	BOIL32
Equipment: Boiler Boiler	BOIL32
Location: Hedrick Tower Hedrick Hall Hedrick Hall Hedrick Hall Hedrick Hall Hedrick Tower Legon 1.2600 <th< td=""><td>10035</td></th<>	10035
Emission Factor® Size (MMBTU/hr): 1.2600 1.9990 1.9990 1.2600 1.2600 (Ibs/mmcf fuel burned) SCAQMD Permit: EXEMPT	Boiler
CAS Pollutant (Boilers < 10 MMBTU/HR) Hourly Usage ^b (mmcf): 0.0012 0.0020 0.0020 0.0012 0.0012 75070 Acetaldehyde 0.0043 5.31E-06 8.43E-06 8.43E-06 5.31E-06 5.31E-06 107028 Acrolein 0.0027 3.34E-06 5.29E-06 5.29E-06 3.34E-06 3.34E-06 7664417 Ammonia 3.2 3.95E-03 6.27E-03 6.27E-03 3.95E-03 3.95E-03	II Hedrick Hall
CAS Pollutant (Boilers < 10 MMBTU/HR) Hourly Usage ^b (mmcf): 0.0012 0.0020 0.0020 0.0012 0.0012 75070 Acetaldehyde 0.0043 5.31E-06 8.43E-06 8.43E-06 5.31E-06 5.31E-06 107028 Acrolein 0.0027 3.34E-06 5.29E-06 5.29E-06 3.34E-06 3.34E-06 7664417 Ammonia 3.2 3.95E-03 6.27E-03 6.27E-03 3.95E-03 3.95E-03	1.8000
75070 Acetaldehyde 0.0043 5.31E-06 8.43E-06 5.31E-06 5.31E-06 107028 Acrolein 0.0027 3.34E-06 5.29E-06 5.29E-06 3.34E-06 7664417 Ammonia 3.2 3.95E-03 6.27E-03 6.27E-03 3.95E-03	EXEMPT
107028 Acrolein 0.0027 3.34E-06 5.29E-06 5.29E-06 3.34E-06 3.34E-06 7664417 Ammonia 3.2 3.95E-03 6.27E-03 6.27E-03 3.95E-03 3.95E-03	0.0018
7664417 Ammonia 3.2 3.95E-03 6.27E-03 3.95E-03 3.95E-03	7.59E-06
	4.76E-06
	5.65E-03
71432 Benzene 0.008 9.88E-06 1.57E-05 1.57E-05 9.88E-06 9.88E-06	1.41E-05
100414 Ethylbenzene 0.0095 1.17E-05 1.86E-05 1.86E-05 1.17E-05	1.68E-05
50000 Formaldehyde 0.017 2.10E-05 3.33E-05 3.33E-05 2.10E-05 2.10E-05	3.00E-05
110543 Hexane 0.0063 7.78E-06 1.23E-05 1.23E-05 7.78E-06 7.78E-06	1.11E-05
91203 Naphthalene 0.0003 3.71E-07 5.88E-07 5.88E-07 3.71E-07 3.71E-07	5.29E-07
1151 PAH (excluding napthalene) 0.0001 1.24E-07 1.96E-07 1.96E-07 1.24E-07 1.24E-07	1.76E-07
108883 Toluene 0.0366 4.52E-05 7.17E-05 4.52E-05 4.52E-05	6.46E-05
1330207 Xylenes 0.0272 3.36E-05 5.33E-05 5.33E-05 3.36E-05 3.36E-05	4.80E-05
^a South Coast Air Quality Management District Supplemental Reporting Procedures for	
AB2588 Facilities Table B-1 Emission Factors for Boilers - Natural Gas Combustion	
^b Based on size of boiler divided by heating value for natural gas, 1020 BTU/scf	

			Name:	BOIL33	BOIL34	BOIL35	BOIL36	BOIL37	BOIL38	
			Number:	10036	10037	10038	10039	10040	10041	
			Equipment:	Boiler	Boiler	Boiler	Boiler	Boiler	Boiler	
			Location:	Hedrick Hall	Hedrick Hall	Hedrick Hall	Hedrick Hall	Rieber Hall	Rieber Hall	
		Emission Factor ^a	Size (MMBTU/hr):	1.8000	1.8000	1.8000	0.8600	4.83	4.83	Total
		(lbs/mmcf fuel burned)	SCAQMD Permit:	EXEMPT	EXEMPT	EXEMPT	EXEMPT	D79674	D79675	Emissions
CAS	Pollutant	(Boilers < 10 MMBTU/HR)	Hourly Usage ^b (mmcf):	0.0018	0.0018	0.0018	0.0008	0.0047	0.0047	(lb/hr)
75070	Acetaldehyde	0.0043		7.59E-06	7.59E-06	7.59E-06	3.63E-06	2.04E-05	2.04E-05	2.64E-04
107028	Acrolein	0.0027		4.76E-06	4.76E-06	4.76E-06	2.28E-06	1.28E-05	1.28E-05	1.97E-01
7664417	Ammonia		5.65E-03	5.65E-03	5.65E-03	2.70E-03	1.52E-02	1.52E-02	1.97E-01	
71432	Benzene	1.41E-05	1.41E-05	1.41E-05	6.75E-06	3.79E-05	3.79E-05	4.91E-04		
100414	Ethylbenzene	0.0095		1.68E-05	1.68E-05	1.68E-05	8.01E-06	4.50E-05	4.50E-05	5.83E-04
50000	Formaldehyde	0.017		3.00E-05	3.00E-05	3.00E-05	1.43E-05	8.05E-05	8.05E-05	1.04E-03
110543	Hexane	0.0063		1.11E-05	1.11E-05	1.11E-05	5.31E-06	2.98E-05	2.98E-05	3.87E-04
91203	Naphthalene	0.0003		5.29E-07	5.29E-07	5.29E-07	2.53E-07	1.42E-06	1.42E-06	1.84E-05
1151	PAH (excluding napthalene)		1.76E-07	1.76E-07	1.76E-07	8.43E-08	4.74E-07	4.74E-07	6.14E-06	
108883	Toluene	0.0366		6.46E-05	6.46E-05	6.46E-05	3.09E-05	1.73E-04	1.73E-04	2.25E-03
1330207	Xylenes	0.0272		4.80E-05	4.80E-05	4.80E-05	2.29E-05	1.29E-04	1.29E-04	1.67E-03
^a South Coa	st Air Quality Management Distric									
AB2588 F	acilities Table B-1 Emission Fact									
^b Based on :	size of boiler divided by heating v									
	·	·								

			1						
			Name:	BOIL1	BOIL2	BOIL3	BOIL4	BOIL5	BOIL6
			Number:	10004	10005	10006	10007	10008	10009
			Equipment:	Boiler	Boiler	Boiler	Boiler	Boiler	Boiler
			Location:	Covel Common	s Covel Commons	Canyon Point	Delta Terrace	Courtside	Bradley
		Emission Factor ^a	Size (MMBTU/hr):	1.8256	1.8256	1.8256	1.8256	1.8256	1.2000
		(lbs/mmcf fuel burned)	SCAQMD Permit:	EXEMPT	EXEMPT	EXEMPT	EXEMPT	EXEMPT	EXEMPT
CAS	Pollutant	(Boilers < 10 MMBTU/HR)	Annual Usage ^{b,c} (mmcf):	2.0044	2.0044	2.0044	2.0044	2.0044	1.3175
75070	Acetaldehyde	0.0043		8.62E-03	8.62E-03	8.62E-03	8.62E-03	8.62E-03	5.67E-03
107028	Acrolein	0.0027		5.41E-03	5.41E-03	5.41E-03	5.41E-03	5.41E-03	3.56E-03
7664417	Ammonia	3.2		6.41E+00	6.41E+00	6.41E+00	6.41E+00	6.41E+00	4.22E+00
71432	Benzene	0.008		1.60E-02	1.60E-02	1.60E-02	1.60E-02	1.60E-02	1.05E-02
100414	Ethylbenzene	0.0095		1.90E-02	1.90E-02	1.90E-02	1.90E-02	1.90E-02	1.25E-02
50000	Formaldehyde	0.017		3.41E-02	3.41E-02	3.41E-02	3.41E-02	3.41E-02	2.24E-02
110543	Hexane	0.0063		1.26E-02	1.26E-02	1.26E-02	1.26E-02	1.26E-02	8.30E-03
91203	Naphthalene	0.0003		6.01E-04	6.01E-04	6.01E-04	6.01E-04	6.01E-04	3.95E-04
1151	PAH (excluding napthalene)	0.0001		2.00E-04	2.00E-04	2.00E-04	2.00E-04	2.00E-04	1.32E-04
108883	Toluene	0.0366		7.34E-02	7.34E-02	7.34E-02	7.34E-02	7.34E-02	4.82E-02
1330207	Xylenes	0.0272		5.45E-02	5.45E-02	5.45E-02	5.45E-02	5.45E-02	3.58E-02
^a South Coa	ast Air Quality Management District Supple	mental Reporting Procedures for							
AB2588	Facilities Table B-1 Emission Factors for E	Boilers - Natural Gas Combustion							
^b Source: A	nnual Air Emission Report for 2006/2007 s	submitted to SCAQMD							
^c Usage dis	tribution (MMscf) provided by Enviromenta	l Programs Manager David Ott 4/21/200	08						
	Distribution (MMscf)	68.78	North Campus						
	Distribution (MMscf)	237	Facilities						
	Distribution (MMscf)	114.4	Cogeneration						
Total MMB	TU/hr of boilers at north campus	62.646							
Total MMB	otal MMBTU/hr of boilers at facilities 53.932								
Total MMB	TU/hr of boilers at cogeneration plant	224							

	T		1					T.	
			Name:	BOIL7	BOIL8	BOIL9	BOIL10	BOIL11	BOIL12
			Number:	10010	10011	10012	10013	10014	10015
			Equipment:	Boiler	Boiler	Boiler	Boiler	Boiler	Boiler
			Location:	Dykstra Hall	Dykstra Hall	DeNeve 'C' Bldg	DeNeve 'C' Bldg	DeNeve 'D' Bldg	DeNeve 'D' Bldg
		Emission Factor ^a	Size (MMBTU/hr):	1.2600	1.2600	1.2600	1.2600	1.2600	1.2600
		(lbs/mmcf fuel burned)	SCAQMD Permit:	EXEMPT	EXEMPT	EXEMPT	EXEMPT	EXEMPT	EXEMPT
CAS	Pollutant	(Boilers < 10 MMBTU/HR)	Annual Usage ^{b,c} (mmcf):	1.3834	1.3834	1.3834	1.3834	1.3834	1.3834
75070	Acetaldehyde	0.0043		5.95E-03	5.95E-03	5.95E-03	5.95E-03	5.95E-03	5.95E-03
107028	Acrolein	0.0027		3.74E-03	3.74E-03	3.74E-03	3.74E-03	3.74E-03	3.74E-03
7664417	Ammonia	3.2		4.43E+00	4.43E+00	4.43E+00	4.43E+00	4.43E+00	4.43E+00
71432	Benzene	0.008		1.11E-02	1.11E-02	1.11E-02	1.11E-02	1.11E-02	1.11E-02
100414	Ethylbenzene	0.0095		1.31E-02	1.31E-02	1.31E-02	1.31E-02	1.31E-02	1.31E-02
50000	Formaldehyde	0.017		2.35E-02	2.35E-02	2.35E-02	2.35E-02	2.35E-02	2.35E-02
110543	Hexane	0.0063		8.72E-03	8.72E-03	8.72E-03	8.72E-03	8.72E-03	8.72E-03
91203	Naphthalene	0.0003		4.15E-04	4.15E-04	4.15E-04	4.15E-04	4.15E-04	4.15E-04
1151	PAH (excluding napthalene)	0.0001		1.38E-04	1.38E-04	1.38E-04	1.38E-04	1.38E-04	1.38E-04
108883	Toluene	0.0366		5.06E-02	5.06E-02	5.06E-02	5.06E-02	5.06E-02	5.06E-02
1330207	Xylenes	0.0272		3.76E-02	3.76E-02	3.76E-02	3.76E-02	3.76E-02	3.76E-02
^a South Coa	st Air Quality Management District Supple	emental Reporting Procedures for							
AB2588 I	Facilities Table B-1 Emission Factors for E	Boilers - Natural Gas Combustion							
^b Source: A	nnual Air Emission Report for 2006/2007	submitted to SCAQMD							
^c Usage dist	tribution (MMscf) provided by Enviromenta	al Programs Manager David Ott 4/21/20	08						
	Distribution (MMscf)	68.78	North Campus						
	Distribution (MMscf)	237	Facilities						
	Distribution (MMscf)	114.4	Cogeneration						
Total MMB	TU/hr of boilers at north campus	62.646							
Total MMB	TU/hr of boilers at facilities	53.932							
Total MMB	TU/hr of boilers at cogeneration plant	224							

			Name:	BOIL13	BOIL14	BOIL15	BOIL16	BOIL17	BOIL18
			Number:	10016	10017	10018	10019	10020	10021
			Equipment:	Boiler	Boiler	Boiler	Boiler	Boiler	Boiler
			Location:	DeNeve 'E' Bldg	DeNeve 'E' Bldg	DeNeve 'F' Bldg	DeNeve 'F' Bldg	DeNeve Podium Bldg	DeNeve Podium Bldg
		Emission Factor ^a	Size (MMBTU/hr):	1.2600	1.8000	1.2600	1.5300	1.5300	1.5300
		(lbs/mmcf fuel burned)	SCAQMD Permit:	EXEMPT	EXEMPT	EXEMPT	EXEMPT	EXEMPT	EXEMPT
CAS	Pollutant	(Boilers < 10 MMBTU/HR)	Annual Usage ^{b,c} (mmcf):	1.3834	1.9762	1.3834	1.6798	1.6798	1.6798
75070	Acetaldehyde	0.0043		5.95E-03	8.50E-03	5.95E-03	7.22E-03	7.22E-03	7.22E-03
107028	Acrolein	0.0027		3.74E-03	5.34E-03	3.74E-03	4.54E-03	4.54E-03	4.54E-03
7664417	Ammonia	3.2		4.43E+00	6.32E+00	4.43E+00	5.38E+00	5.38E+00	5.38E+00
71432	Benzene	0.008		1.11E-02	1.58E-02	1.11E-02	1.34E-02	1.34E-02	1.34E-02
100414	Ethylbenzene	0.0095		1.31E-02	1.88E-02	1.31E-02	1.60E-02	1.60E-02	1.60E-02
50000	Formaldehyde	0.017		2.35E-02	3.36E-02	2.35E-02	2.86E-02	2.86E-02	2.86E-02
110543	Hexane	0.0063		8.72E-03	1.25E-02	8.72E-03	1.06E-02	1.06E-02	1.06E-02
91203	Naphthalene	0.0003		4.15E-04	5.93E-04	4.15E-04	5.04E-04	5.04E-04	5.04E-04
1151	PAH (excluding napthalene)	0.0001		1.38E-04	1.98E-04	1.38E-04	1.68E-04	1.68E-04	1.68E-04
108883	Toluene	0.0366		5.06E-02	7.23E-02	5.06E-02	6.15E-02	6.15E-02	6.15E-02
1330207	Xylenes	0.0272		3.76E-02	5.38E-02	3.76E-02	4.57E-02	4.57E-02	4.57E-02
^a South Coas	st Air Quality Management District Supple	mental Reporting Procedures for							
AB2588 F	acilities Table B-1 Emission Factors for B	soilers - Natural Gas Combustion							
^b Source: An	nual Air Emission Report for 2006/2007 s	submitted to SCAQMD							
^c Usage distribution (MMscf) provided by Environmenta		l Programs Manager David Ott 4/21/20	008						
	Distribution (MMscf)	68.78	North Campus						
	Distribution (MMscf)	237	Facilities						
	Distribution (MMscf)	114.4	Cogeneration						
Total MMBT	U/hr of boilers at north campus	62.646							
Total MMBT	U/hr of boilers at facilities	53.932							
Total MMBT	U/hr of boilers at cogeneration plant	224							

	_		T	I	I			1	
			Name:	BOIL19	BOIL20	BOIL21	BOIL22	BOIL23	BOIL24
			Number:	10022	10023	10024	10025	10026	10027
			Equipment:	Boiler	Boiler	Boiler	Boiler	Boiler	Boiler
			Location:	DeNeve 'A' Bldg	DeNeve 'A' Bldg	DeNeve 'B' Bldg	DeNeve Kitchen	DeNeve 'A' Bldg	DeNeve 'B' Bldg
		Emission Factor ^a	Size (MMBTU/hr):	1.2600	1.2600	1.2600	1.2600	1.2600	1.2600
		(lbs/mmcf fuel burned)	SCAQMD Permit:	EXEMPT	EXEMPT	EXEMPT	EXEMPT	EXEMPT	EXEMPT
CAS	Pollutant	(Boilers < 10 MMBTU/HR)	Annual Usage ^{b,c} (mmcf):	1.3834	1.3834	1.3834	1.3834	1.3834	1.3834
75070	Acetaldehyde	0.0043		5.95E-03	5.95E-03	5.95E-03	5.95E-03	5.95E-03	5.95E-03
107028	Acrolein	0.0027		3.74E-03	3.74E-03	3.74E-03	3.74E-03	3.74E-03	3.74E-03
7664417	Ammonia	3.2		4.43E+00	4.43E+00	4.43E+00	4.43E+00	4.43E+00	4.43E+00
71432	Benzene	0.008		1.11E-02	1.11E-02	1.11E-02	1.11E-02	1.11E-02	1.11E-02
100414	Ethylbenzene	0.0095		1.31E-02	1.31E-02	1.31E-02	1.31E-02	1.31E-02	1.31E-02
50000	Formaldehyde	0.017		2.35E-02	2.35E-02	2.35E-02	2.35E-02	2.35E-02	2.35E-02
110543	Hexane	0.0063		8.72E-03	8.72E-03	8.72E-03	8.72E-03	8.72E-03	8.72E-03
91203	Naphthalene	0.0003		4.15E-04	4.15E-04	4.15E-04	4.15E-04	4.15E-04	4.15E-04
1151	PAH (excluding napthalene)	0.0001		1.38E-04	1.38E-04	1.38E-04	1.38E-04	1.38E-04	1.38E-04
108883	Toluene	0.0366		5.06E-02	5.06E-02	5.06E-02	5.06E-02	5.06E-02	5.06E-02
1330207	Xylenes	0.0272		3.76E-02	3.76E-02	3.76E-02	3.76E-02	3.76E-02	3.76E-02
^a South Coa	ast Air Quality Management District Supple	emental Reporting Procedures for							
AB2588	Facilities Table B-1 Emission Factors for E	Boilers - Natural Gas Combustion							
^b Source: A	nnual Air Emission Report for 2006/2007	submitted to SCAQMD							
^c Usage dis	tribution (MMscf) provided by Enviromenta	al Programs Manager David Ott 4/21/20	08						
	Distribution (MMscf)	68.78	North Campus						
	Distribution (MMscf)	237	Facilities						
	Distribution (MMscf)	114.4	Cogeneration						
Total MMB	TU/hr of boilers at north campus	62.646							
Total MMB	TU/hr of boilers at facilities	53.932							
Total MMB	TU/hr of boilers at cogeneration plant	224							

Number: 10028 10029 10030 10031 10032							1	1	1	
Equipment: Boiler				Name:	BOIL25	BOIL26	BOIL27	BOIL28	BOIL29	BOIL30
Emission Factor* Size (MMBTU/hr): 1.5300 1.2600 1.2600 1.9990 1				Number:	10028	10029	10030	10031	10032	10033
Emission Factor ^a Size (MMBTU/hr): 1.5300 1.2600 1.2600 1.9990				Equipment:	Boiler	Boiler	Boiler	Boiler	Boiler	Boiler
CAS Pollutant (Ibs/mmcf fuel burned) SCAQMD Permit: EXEMPT EXEM				Location:	Sproul	Hedrick Tower	Hedrick Tower	Hedrick Tower	Hedrick Tower	Hedrick Hall
CAS Poliutant (Boilers < 10 MMBTU/HR) Annual Usage No. 0.043 1.87 1.87 1.884 1.8834			Emission Factor ^a	Size (MMBTU/hr):	1.5300	1.2600	1.2600	1.9990	1.9990	1.2600
7.200 Acetaldehyde 0.0043 7.22E-03 5.95E-03 5.95E-03 9.44E-03 9.44E-03 9.44E-03 1.07028 Acrolein 0.0027 4.54E-03 3.74E-03 3.74E-03 3.74E-03 5.93E-03 5.93E-03 5.93E-03 5.93E-03 7.664417 Ammonia 3.2 5.38E+00 4.43E+00 4.43E+00 7.02E+00			(lbs/mmcf fuel burned)	SCAQMD Permit:	EXEMPT	EXEMPT	EXEMPT	EXEMPT	EXEMPT	EXEMPT
107028 Acrolein 0.0027 4.54E-03 3.74E-03 3.74E-03 5.93E-03 5.93E-03 5.93E-03 7.664417 Ammonia 3.2 5.38E+00 4.43E+00 4.43E+00 7.02E+00	AS	Pollutant	(Boilers < 10 MMBTU/HR)	Annual Usage ^{b,c} (mmcf):	1.6798	1.3834	1.3834	2.1947	2.1947	1.3834
Telephone Tele	5070	Acetaldehyde	0.0043		7.22E-03	5.95E-03	5.95E-03	9.44E-03	9.44E-03	5.95E-03
1.34E-02 1.11E-02 1.76E-02	07028	Acrolein	0.0027		4.54E-03	3.74E-03	3.74E-03	5.93E-03	5.93E-03	3.74E-03
100414 Ethylbenzene 0.0095 1.60E-02 1.31E-02 2.08E-02	664417	Ammonia	3.2		5.38E+00	4.43E+00	4.43E+00	7.02E+00	7.02E+00	4.43E+00
50000 Formaldehyde 0.017 2.86E-02 2.35E-02 3.73E-02	1432	Benzene	0.008		1.34E-02	1.11E-02	1.11E-02	1.76E-02	1.76E-02	1.11E-02
110543 Hexane	00414	Ethylbenzene	0.0095		1.60E-02	1.31E-02	1.31E-02	2.08E-02	2.08E-02	1.31E-02
91203 Naphthalene	0000	Formaldehyde	0.017		2.86E-02	2.35E-02	2.35E-02	3.73E-02	3.73E-02	2.35E-02
1151 PAH (excluding napthalene) 0.0001 1.68E-04 1.38E-04 1.38E-04 2.19E-04 2.19E-04 1.08883 Toluene 0.0366 6.15E-02 5.06E-02 5.06E-02 5.06E-02 8.03E-02 1.30207 Xylenes 0.0272 4.57E-02 3.76E-02 3.76E-02 5.97E-02 5.97E-02 1.38E-04 1.38E-04 1.38E-04 2.19E-04 2.19E	10543	Hexane	0.0063		1.06E-02	8.72E-03	8.72E-03	1.38E-02	1.38E-02	8.72E-03
108883 Toluene	1203	Naphthalene	0.0003		5.04E-04	4.15E-04	4.15E-04	6.58E-04	6.58E-04	4.15E-04
1330207 Xylenes 0.0272 4.57E-02 3.76E-02 5.97E-02 5.97E-0	151	PAH (excluding napthalene)	0.0001		1.68E-04	1.38E-04	1.38E-04	2.19E-04	2.19E-04	1.38E-04
a South Coast Air Quality Management District Supplemental Reporting Procedures for AB2588 Facilities Table B-1 Emission Factors for Boilers - Natural Gas Combustion b Source: Annual Air Emission Report for 2006/2007 submitted to SCAQMD c Usage distribution (MMscf) provided by Environmental Programs Manager David Ott 4/21/2008 Distribution (MMscf) Distribution (MMscf) Distribution (MMscf) 237 Facilities	08883	Toluene	0.0366		6.15E-02	5.06E-02	5.06E-02	8.03E-02	8.03E-02	5.06E-02
AB2588 Facilities Table B-1 Emission Factors for Boilers - Natural Gas Combustion ^b Source: Annual Air Emission Report for 2006/2007 submitted to SCAQMD ^c Usage distribution (MMscf) provided by Environmental Programs Manager David Ott 4/21/2008 Distribution (MMscf) 68.78 North Campus Distribution (MMscf) 237 Facilities	330207	Xylenes	0.0272		4.57E-02	3.76E-02	3.76E-02	5.97E-02	5.97E-02	3.76E-02
bSource: Annual Air Emission Report for 2006/2007 submitted to SCAQMD curve C	South Coas	st Air Quality Management District Supplemen	tal Reporting Procedures for							
CUsage distribution (MMscf) provided by Environmental Programs Manager David Ott 4/21/2008 Distribution (MMscf) 68.78 North Campus Distribution (MMscf) 237 Facilities	AB2588 Fa	acilities Table B-1 Emission Factors for Boiler	s - Natural Gas Combustion							
Distribution (MMscf) 68.78 North Campus Distribution (MMscf) 237 Facilities	Source: Anr	nual Air Emission Report for 2006/2007 subm	itted to SCAQMD							
Distribution (MMscf) 237 Facilities	Jsage distri	ibution (MMscf) provided by Enviromental Pro	ograms Manager David Ott 4/21/20	008						
		Distribution (MMscf)	68.78	North Campus						
Distribution (MMscf) 114.4 Cogeneration		Distribution (MMscf)	237	Facilities						
		Distribution (MMscf)	114.4	Cogeneration						
Total MMBTU/hr of boilers at north campus 62.646	otal MMBT	U/hr of boilers at north campus	62.646							
Total MMBTU/hr of boilers at facilities 53.932	otal MMBT	U/hr of boilers at facilities	53.932							
Total MMBTU/hr of boilers at cogeneration plant 224	otal MMBT	U/hr of boilers at cogeneration plant	224							

			Name:	BOIL31	BOIL32	BOIL33	BOIL34	BOIL35	BOIL36
			Number:	10034	10035	10036	10037	10038	10039
			Equipment:	Boiler	Boiler	Boiler	Boiler	Boiler	Boiler
			Location:	Hedrick Hall					
		Emission Factor ^a	Size (MMBTU/hr):	1.2600	1.8000	1.8000	1.8000	1.8000	0.8600
		(lbs/mmcf fuel burned)	SCAQMD Permit:	EXEMPT	EXEMPT	EXEMPT	EXEMPT	EXEMPT	EXEMPT
CAS	Pollutant	(Boilers < 10 MMBTU/HR)	Annual Usage ^{b,c} (mmcf):	1.3834	1.9762	1.9762	1.9762	1.9762	0.9442
75070	Acetaldehyde	0.0043		5.95E-03	8.50E-03	8.50E-03	8.50E-03	8.50E-03	4.06E-03
107028	Acrolein	0.0027		3.74E-03	5.34E-03	5.34E-03	5.34E-03	5.34E-03	2.55E-03
7664417	Ammonia	3.2		4.43E+00	6.32E+00	6.32E+00	6.32E+00	6.32E+00	3.02E+00
71432	Benzene	0.008		1.11E-02	1.58E-02	1.58E-02	1.58E-02	1.58E-02	7.55E-03
100414	Ethylbenzene	0.0095		1.31E-02	1.88E-02	1.88E-02	1.88E-02	1.88E-02	8.97E-03
50000	Formaldehyde	0.017		2.35E-02	3.36E-02	3.36E-02	3.36E-02	3.36E-02	1.61E-02
110543	Hexane	0.0063		8.72E-03	1.25E-02	1.25E-02	1.25E-02	1.25E-02	5.95E-03
91203	Naphthalene	0.0003		4.15E-04	5.93E-04	5.93E-04	5.93E-04	5.93E-04	2.83E-04
1151	PAH (excluding napthalene)	0.0001		1.38E-04	1.98E-04	1.98E-04	1.98E-04	1.98E-04	9.44E-05
108883	Toluene	0.0366		5.06E-02	7.23E-02	7.23E-02	7.23E-02	7.23E-02	3.46E-02
1330207	Xylenes	0.0272		3.76E-02	5.38E-02	5.38E-02	5.38E-02	5.38E-02	2.57E-02
^a South Coa	st Air Quality Management District Supple	mental Reporting Procedures for							
AB2588 F	Facilities Table B-1 Emission Factors for E	Boilers - Natural Gas Combustion							
^b Source: Ar	nnual Air Emission Report for 2006/2007 s	submitted to SCAQMD							
^c Usage dist	ribution (MMscf) provided by Enviromenta	l Programs Manager David Ott 4/21/200	08						
	Distribution (MMscf)	68.78	North Campus						
	Distribution (MMscf)	237	Facilities						
	Distribution (MMscf)	114.4	Cogeneration						
Total MMB	TU/hr of boilers at north campus	62.646							
Total MMB	TU/hr of boilers at facilities	53.932							
Total MMB	TU/hr of boilers at cogeneration plant	224							

			Name:	BOIL37	BOIL38	
			Number:	10040	10041	
			Equipment:	Boiler	Boiler	
			Location:	Rieber Hall	Rieber Hall	
		Emission Factor ^a	Size (MMBTU/hr):	4.83	4.83	Total
		(lbs/mmcf fuel burned)	SCAQMD Permit:	D79674	D79675	Emissions
CAS	Pollutant	(Boilers < 10 MMBTU/HR)	Annual Usage ^{b,c} (mmcf):	5.3029	5.3029	(lb/hr)
75070	Acetaldehyde	0.0043	<u> </u>	2.28E-02	2.28E-02	2.96E-01
107028	Acrolein	0.0027		1.43E-02	1.43E-02	1.86E-01
7664417	Ammonia	3.2		1.70E+01	1.70E+01	2.20E+02
71432	Benzene	0.008		4.24E-02	4.24E-02	5.50E-01
100414	Ethylbenzene	0.0095		5.04E-02	5.04E-02	6.53E-01
50000	Formaldehyde	0.017		9.01E-02	9.01E-02	1.17E+00
110543	Hexane	0.0063		3.34E-02	3.34E-02	4.33E-01
91203	Naphthalene	0.0003		1.59E-03	1.59E-03	2.06E-02
1151	PAH (excluding napthalene)	0.0001		5.30E-04	5.30E-04	6.88E-03
108883	Toluene	0.0366		1.94E-01	1.94E-01	2.52E+00
1330207	Xylenes	0.0272		1.44E-01	1.44E-01	1.87E+00
^a South Coa	ast Air Quality Management District Supple	emental Reporting Procedures for				
AB2588	Facilities Table B-1 Emission Factors for E	Boilers - Natural Gas Combustion				
^b Source: A	nnual Air Emission Report for 2006/2007 s	submitted to SCAQMD				
^c Usage dis	tribution (MMscf) provided by Enviromenta	al Programs Manager David Ott 4/21/20	08			
	Distribution (MMscf)	68.78	North Campus			
	Distribution (MMscf)	237	Facilities			
	Distribution (MMscf)	114.4	Cogeneration			
Total MME	STU/hr of boilers at north campus	62.646				
Total MME	STU/hr of boilers at facilities	53.932				
Total MME	TU/hr of boilers at cogeneration plant	224				

CAS Pollutant (Boilers < 10 cm)	fuel burned) (lbs/mm	ssion Factor ^a nof fuel burned)	Name: Number: Equipment: Location: Size (MMBTU/hr):	BOIL39 10042 Boiler EH&S Facility	BOIL40 10043 Boiler Rehabilitation #1	BOIL41 10044 Boiler Rehabilitation #2	BOIL42 10045 Boiler
CAS Pollutant (Boilers < 10 graphs) 75070 Acetaldehyde 0.0 graphs 107028 Acrolein 0.0 graphs	fuel burned) (lbs/mm		Equipment: Location:	Boiler EH&S Facility	Boiler	Boiler	Boiler
CAS Pollutant (Boilers < 10 graphs) 75070 Acetaldehyde 0.0 graphs 107028 Acrolein 0.0 graphs	fuel burned) (lbs/mm		Location:	EH&S Facility			
CAS Pollutant (Boilers < 10 graphs) 75070 Acetaldehyde 0.0 graphs 107028 Acrolein 0.0 graphs	fuel burned) (lbs/mm			'	Rehabilitation #1	Rehabilitation #2	
CAS Pollutant (Boilers < 10 cm) 75070 Acetaldehyde 0.0 cm 107028 Acrolein 0.0 cm	fuel burned) (lbs/mm		Size (MMBTU/hr):	4.050			SCRC #3
CAS Pollutant (Boilers < 10 cm) 75070 Acetaldehyde 0.0 cm 107028 Acrolein 0.0 cm	, ,	ncf fuel burned)		1.058	1.500	1.500	1.000
75070 Acetaldehyde 0.0 107028 Acrolein 0.0	0 MMBTU/HR) (Boilers 10		SCAQMD Permit:	EXEMPT	EXEMPT	EXEMPT	EXEMPT
107028 Acrolein 0.0		- 100 MMBTU/HR)	Hourly Usage ^b (mmcf):	0.0010	0.0015	0.0015	0.0010
	0043	0.0031		4.46E-06	6.32E-06	6.32E-06	4.22E-06
7664417 Ammonia 3	0027	0.0027		2.80E-06	3.97E-06	3.97E-06	2.65E-06
	3.2	3.2		3.32E-03	4.71E-03	4.71E-03	3.14E-03
71432 Benzene 0.	.008	0.0058		8.30E-06	1.18E-05	1.18E-05	7.84E-06
100414 Ethylbenzene 0.0	0095	0.0069		9.85E-06	1.40E-05	1.40E-05	9.31E-06
50000 Formaldehyde 0.	.017	0.0123		1.76E-05	2.50E-05	2.50E-05	1.67E-05
110543 Hexane 0.0	0063	0.0046		6.53E-06	9.26E-06	9.26E-06	6.18E-06
91203 Naphthalene 0.0	0003	0.0003		3.11E-07	4.41E-07	4.41E-07	2.94E-07
1151 PAH (excluding napthalene) 0.0	0001	0.0001		1.04E-07	1.47E-07	1.47E-07	9.80E-08
108883 Toluene 0.0	0366	0.0265		3.80E-05	5.38E-05	5.38E-05	3.59E-05
1330207 Xylenes 0.0	0272	0.0197		2.82E-05	4.00E-05	4.00E-05	2.67E-05
^a South Coast Air Quality Management District Supplementa	al Reporting Procedures for						
AB2588 Facilities Table B-1 Emission Factors for Boilers	- Natural Gas Combustion						
^b Based on size of boiler divided by heating value for natural							

				Name:	BOIL43	BOIL44	BOIL45	BOIL46
				Number:	10046	10047	10048	10049
				Equipment:	Boiler	Boiler	Boiler	Boiler
				Location:	SCRC #6	SCRC #7	SCRC- #1	SCRC- #2
		Emission Factor ^a	Emission Factor ^a	Size (MMBTU/hr):	1.440	1.440	1.800	1.800
		(lbs/mmcf fuel burned)	(lbs/mmcf fuel burned)	SCAQMD Permit:	EXEMPT	EXEMPT	EXEMPT	EXEMPT
CAS	Pollutant	(Boilers < 10 MMBTU/HR)	(Boilers 10 - 100 MMBTU/HR)	Hourly Usage ^b (mmcf):	0.0014	0.0014	0.0018	0.0018
75070	Acetaldehyde	0.0043	0.0031		6.07E-06	6.07E-06	7.59E-06	7.59E-06
107028	Acrolein	0.0027	0.0027		3.81E-06	3.81E-06	4.76E-06	4.76E-06
7664417	Ammonia	3.2	3.2		4.52E-03	4.52E-03	5.65E-03	5.65E-03
71432	Benzene	0.008	0.0058		1.13E-05	1.13E-05	1.41E-05	1.41E-05
100414	Ethylbenzene	0.0095	0.0069		1.34E-05	1.34E-05	1.68E-05	1.68E-05
50000	Formaldehyde	0.017	0.0123		2.40E-05	2.40E-05	3.00E-05	3.00E-05
110543	Hexane	0.0063	0.0046		8.89E-06	8.89E-06	1.11E-05	1.11E-05
91203	Naphthalene	0.0003	0.0003		4.24E-07	4.24E-07	5.29E-07	5.29E-07
1151	PAH (excluding napthalene)	0.0001	0.0001		1.41E-07	1.41E-07	1.76E-07	1.76E-07
108883	Toluene	0.0366	0.0265		5.17E-05	5.17E-05	6.46E-05	6.46E-05
1330207	Xylenes	0.0272	0.0197		3.84E-05	3.84E-05	4.80E-05	4.80E-05
^a South Coa	ast Air Quality Management Distri	ct Supplemental Reporting Prod	cedures for					
AB2588	Facilities Table B-1 Emission Fac	tors for Boilers - Natural Gas C	ombustion					
^b Based on	size of boiler divided by heating v	alue for natural gas, 1020 BTU	/scf					

				Name:	BOIL47	BOIL48	BOIL49	BOIL50	BOIL51	BOIL52
				Number:	10050	10051	10052	10053	10054	10055
				Equipment:	Boiler	Boiler	Boiler	Boiler	Boiler	Boiler
				Location:	SRL #BLR-3	SRL #BLR-4	STRB	UES BLR#4	Unex	Unex
		Emission Factor ^a	Emission Factor ^a	Size (MMBTU/hr):	1.260	1.260	1.500	1.800	1.674	1.670
		(lbs/mmcf fuel burned)	(lbs/mmcf fuel burned)	SCAQMD Permit:	EXEMPT	EXEMPT	EXEMPT	EXEMPT	EXEMPT	EXEMPT
CAS	Pollutant	(Boilers < 10 MMBTU/HR)	(Boilers 10 - 100 MMBTU/HR)	Hourly Usage ^b (mmcf):	0.0012	0.0012	0.0015	0.0018	0.0016	0.0016
75070	Acetaldehyde	0.0043	0.0031		5.31E-06	5.31E-06	6.32E-06	7.59E-06	7.06E-06	7.04E-06
107028	Acrolein	0.0027	0.0027		3.34E-06	3.34E-06	3.97E-06	4.76E-06	4.43E-06	4.42E-06
7664417	Ammonia	3.2	3.2		3.95E-03	3.95E-03	4.71E-03	5.65E-03	5.25E-03	5.24E-03
71432	Benzene	0.008	0.0058		9.88E-06	9.88E-06	1.18E-05	1.41E-05	1.31E-05	1.31E-05
100414	Ethylbenzene	0.0095	0.0069		1.17E-05	1.17E-05	1.40E-05	1.68E-05	1.56E-05	1.56E-05
50000	Formaldehyde	0.017	0.0123		2.10E-05	2.10E-05	2.50E-05	3.00E-05	2.79E-05	2.78E-05
110543	Hexane	0.0063	0.0046		7.78E-06	7.78E-06	9.26E-06	1.11E-05	1.03E-05	1.03E-05
91203	Naphthalene	0.0003	0.0003		3.71E-07	3.71E-07	4.41E-07	5.29E-07	4.92E-07	4.91E-07
1151	PAH (excluding napthalene)	0.0001	0.0001		1.24E-07	1.24E-07	1.47E-07	1.76E-07	1.64E-07	1.64E-07
108883	Toluene	0.0366	0.0265		4.52E-05	4.52E-05	5.38E-05	6.46E-05	6.01E-05	5.99E-05
1330207	Xylenes	0.0272	0.0197		3.36E-05	3.36E-05	4.00E-05	4.80E-05	4.46E-05	4.45E-05
^a South Coa	ast Air Quality Management Distric	t Supplemental Reporting Prod	cedures for							
AB2588	Facilities Table B-1 Emission Fact	ors for Boilers - Natural Gas C	ombustion							
^b Based on	size of boiler divided by heating va	alue for natural gas, 1020 BTU	/scf							

				Name:	BOIL53	BOIL54				
				Number:	10056	10057				
				Equipment:	Boiler	Boiler				
				Location:	UES BLR#3	Ueberroth #1				
		Emission Factor ^a	Emission Factor ^a	Size (MMBTU/hr):	0.500	0.500				
		(lbs/mmcf fuel burned)	(lbs/mmcf fuel burned)	SCAQMD Permit:	EXEMPT	EXEMPT				
CAS	Pollutant	(Boilers < 10 MMBTU/HR)	(Boilers 10 - 100 MMBTU/HR)	Hourly Usage ^b (mmcf):	0.0005	0.0005				
75070	Acetaldehyde	0.0043	0.0031		2.11E-06	2.11E-06				
107028	Acrolein	0.0027	0.0027		1.32E-06	1.32E-06				
7664417	Ammonia	3.2	3.2		1.57E-03	1.57E-03				
71432	Benzene	0.008	0.0058		3.92E-06	3.92E-06				
100414	Ethylbenzene	0.0095	0.0069		4.66E-06	4.66E-06				
50000	Formaldehyde	0.017	0.0123		8.33E-06	8.33E-06				
110543	Hexane	0.0063	0.0046		3.09E-06	3.09E-06				
91203	Naphthalene	0.0003	0.0003		1.47E-07	1.47E-07				
1151	PAH (excluding napthalene)	0.0001	0.0001		4.90E-08	4.90E-08				
108883	Toluene	0.0366	0.0265		1.79E-05	1.79E-05				
1330207	Xylenes	0.0272	0.0197		1.33E-05	1.33E-05				
^a South Coast Air Quality Management District Supplemental Reporting Procedures for										
AB2588	Facilities Table B-1 Emission Fact	tors for Boilers - Natural Gas C	ombustion			·				
^b Based on	size of boiler divided by heating v	alue for natural gas, 1020 BTU	l/scf							

				Name	BOIL55	BOIL56	BOIL57	DOIL EO	DOIL EO	
				Name:				BOIL58	BOIL59	
				Number:	10058	10059	10060	10061	10062	
				Equipment:	Boiler	Boiler	Boiler	Boiler	Boiler	
				Location:	Rehab. #5	Rehab. #6	Warren Hall	200 Med Plaza	200 Med Plaza	
		Emission Factor ^a	Emission Factor ^a	Size (MMBTU/hr):	1.000	1.000	5.23	12.5	12.5	Total
		(lbs/mmcf fuel burned)	(lbs/mmcf fuel burned)	SCAQMD Permit:	EXEMPT	EXEMPT	D71042	D71162	D71165	Emissions
CAS	Pollutant	(Boilers < 10 MMBTU/HR)	(Boilers 10 - 100 MMBTU/HR)	Hourly Usage ^b (mmcf):	0.0010	0.0010	0.0051	0.0123	0.0123	(lb/hr)
75070	Acetaldehyde	0.0043	0.0031		4.22E-06	4.22E-06	2.20E-05	3.80E-05	3.80E-05	1.98E-04
107028	Acrolein	0.0027	0.0027		2.65E-06	2.65E-06	1.38E-05	3.31E-05	3.31E-05	1.43E-04
7664417	Ammonia	3.2	3.2		3.14E-03	3.14E-03	1.64E-02	3.92E-02	3.92E-02	1.69E-01
71432	Benzene	0.008	0.0058		7.84E-06	7.84E-06	4.10E-05	7.11E-05	7.11E-05	3.69E-04
100414	Ethylbenzene	0.0095	0.0069		9.31E-06	9.31E-06	4.87E-05	8.46E-05	8.46E-05	4.39E-04
50000	Formaldehyde	0.017	0.0123		1.67E-05	1.67E-05	8.72E-05	1.51E-04	1.51E-04	7.84E-04
110543	Hexane	0.0063	0.0046		6.18E-06	6.18E-06	3.23E-05	5.64E-05	5.64E-05	2.91E-04
91203	Naphthalene	0.0003	0.0003		2.94E-07	2.94E-07	1.54E-06	3.68E-06	3.68E-06	1.59E-05
1151	PAH (excluding napthalene)	0.0001	0.0001		9.80E-08	9.80E-08	5.13E-07	1.23E-06	1.23E-06	5.29E-06
108883	Toluene	0.0366	0.0265		3.59E-05	3.59E-05	1.88E-04	3.25E-04	3.25E-04	1.69E-03
1330207	Xylenes	0.0272	0.0197		2.67E-05	2.67E-05	1.39E-04	2.41E-04	2.41E-04	1.25E-03
^a South Coa	st Air Quality Management Distric	ct Supplemental Reporting Prod	cedures for							
AB2588 F	acilities Table B-1 Emission Fac	tors for Boilers - Natural Gas C	ombustion							
^b Based on s	size of boiler divided by heating v	/scf								

		T						
				Name:	BOIL39	BOIL40	BOIL41	BOIL42
				Number:	10042	10043	10044	10045
				Equipment:	Boiler	Boiler	Boiler	Boiler
				Location:	EH&S Facility	Rehabilitation #1	Rehabilitation #2	SCRC #3
		Emission Factor ^a	Emission Factor ^a	Size (MMBTU/hr):	1.058	1.500	1.500	1.000
		(lbs/mmcf fuel burned)	(lbs/mmcf fuel burned)	SCAQMD Permit:	EXEMPT	EXEMPT	EXEMPT	EXEMPT
CAS	Pollutant	(Boilers < 10 MMBTU/HR)	(Boilers 10 - 100 MMBTU/HR)	Annual Usage ^{b,c} (mmcf):	4.6	6.6	6.6	4.4
75070	Acetaldehyde	0.0043	0.0031		2.00E-02	2.83E-02	2.83E-02	1.89E-02
107028	Acrolein	0.0027	0.0027		1.26E-02	1.78E-02	1.78E-02	1.19E-02
7664417	Ammonia	3.2	3.2		1.49E+01	2.11E+01	2.11E+01	1.41E+01
71432	Benzene	0.008	0.0058		3.72E-02	5.27E-02	5.27E-02	3.52E-02
100414	Ethylbenzene	0.0095	0.0069		4.42E-02	6.26E-02	6.26E-02	4.17E-02
50000	Formaldehyde	0.017	0.0123		7.90E-02	1.12E-01	1.12E-01	7.47E-02
110543	Hexane	0.0063	0.0046		2.93E-02	4.15E-02	4.15E-02	2.77E-02
91203	Naphthalene	0.0003	0.0003		1.39E-03	1.98E-03	1.98E-03	1.32E-03
1151	PAH (excluding napthalene)	0.0001	0.0001		4.65E-04	6.59E-04	6.59E-04	4.39E-04
108883	Toluene	0.0366	0.0265		1.70E-01	2.41E-01	2.41E-01	1.61E-01
1330207	Xylenes	0.0272	0.0197		1.26E-01	1.79E-01	1.79E-01	1.20E-01
^a South Coa	st Air Quality Management District Suppleme	ntal Reporting Procedures for						
AB2588 I	Facilities Table B-1 Emission Factors for Boile	ers - Natural Gas Combustion						
^b Source: A	nnual Air Emission Report for 2006/2007 subr	nitted to SCAQMD						
^c Usage dist	tribution (MMscf) provided by Enviromental Pr	rograms Manager David Ott 4/2	1/2008					
	Distribution (MMscf)	68.78		North Campus				
	Distribution (MMscf)	237		Facilities				
	Distribution (MMscf)	114.4		Cogeneration				
Total MMB	TU/hr of boilers at north campus	62.646						
Total MMB	TU/hr of boilers at facilities	53.932						
Total MMB	TU/hr of boilers at cogeneration plant	224						

		1			DOI! 40	DOI! 44	DOI! 45	DOI! 40
				Name:	BOIL43	BOIL44	BOIL45	BOIL46
				Number:	10046	10047	10048	10049
				Equipment:	Boiler	Boiler	Boiler	Boiler
				Location:	SCRC #6	SCRC #7	SCRC #1	SCRC #2
		Emission Factor ^a	Emission Factor ^a	Size (MMBTU/hr):	1.440	1.440	1.800	1.800
		(lbs/mmcf fuel burned)	(lbs/mmcf fuel burned)	SCAQMD Permit:	EXEMPT	EXEMPT	EXEMPT	EXEMPT
CAS	Pollutant	(Boilers < 10 MMBTU/HR)	(Boilers 10 - 100 MMBTU/HR)	Annual Usage ^{b,c} (mmcf):	6.3	6.3	7.9	7.9
75070	Acetaldehyde	0.0043	0.0031		2.72E-02	2.72E-02	3.40E-02	3.40E-02
107028	Acrolein	0.0027	0.0027		1.71E-02	1.71E-02	2.14E-02	2.14E-02
7664417	Ammonia	3.2	3.2		2.02E+01	2.02E+01	2.53E+01	2.53E+01
71432	Benzene	0.008	0.0058		5.06E-02	5.06E-02	6.33E-02	6.33E-02
100414	Ethylbenzene	0.0095	0.0069		6.01E-02	6.01E-02	7.51E-02	7.51E-02
50000	Formaldehyde	0.017	0.0123		1.08E-01	1.08E-01	1.34E-01	1.34E-01
110543	Hexane	0.0063	0.0046		3.99E-02	3.99E-02	4.98E-02	4.98E-02
91203	Naphthalene	0.0003	0.0003		1.90E-03	1.90E-03	2.37E-03	2.37E-03
1151	PAH (excluding napthalene)	0.0001	0.0001		6.33E-04	6.33E-04	7.91E-04	7.91E-04
108883	Toluene	0.0366	0.0265		2.32E-01	2.32E-01	2.90E-01	2.90E-01
1330207	Xylenes	0.0272	0.0197		1.72E-01	1.72E-01	2.15E-01	2.15E-01
^a South Coa	ast Air Quality Management District Suppleme	ental Reporting Procedures for						
AB2588	Facilities Table B-1 Emission Factors for Boile	ers - Natural Gas Combustion						
^b Source: A	nnual Air Emission Report for 2006/2007 subr	mitted to SCAQMD						
^c Usage dis	tribution (MMscf) provided by Enviromental P	rograms Manager David Ott 4/2	1/2008					
	Distribution (MMscf)	68.78		North Campus				
	Distribution (MMscf)	237		Facilities				
	Distribution (MMscf)	114.4		Cogeneration				
	,			-				
Total MMB	TU/hr of boilers at north campus	62.646						
	TU/hr of boilers at facilities	53.932						
	TU/hr of boilers at cogeneration plant	224						

	I			1		1		1		
				Name:	BOIL47	BOIL48	BOIL49	BOIL50	BOIL51	BOIL52
				Number:	10050	10051	10052	10053	10054	10055
				Equipment:	Boiler	Boiler	Boiler	Boiler	Boiler	Boiler
				Location:	SRL #BLR-3	SRL #BLR-4	STRB	UES BLR#4	Unex	Unex
		Emission Factor ^a	Emission Factor ^a	Size (MMBTU/hr):	1.260	1.260	1.500	1.800	1.674	1.670
		(lbs/mmcf fuel burned)	(lbs/mmcf fuel burned)	SCAQMD Permit:	EXEMPT	EXEMPT	EXEMPT	EXEMPT	EXEMPT	EXEMPT
CAS	Pollutant	(Boilers < 10 MMBTU/HR)	(Boilers 10 - 100 MMBTU/HR)	Annual Usage ^{b,c} (mmcf):	5.5	5.5	6.6	7.9	7.4	7.3
75070	Acetaldehyde	0.0043	0.0031		2.38E-02	2.38E-02	2.83E-02	3.40E-02	3.16E-02	3.16E-02
107028	Acrolein	0.0027	0.0027		1.49E-02	1.49E-02	1.78E-02	2.14E-02	1.99E-02	1.98E-02
7664417	Ammonia	3.2	3.2		1.77E+01	1.77E+01	2.11E+01	2.53E+01	2.35E+01	2.35E+01
71432	Benzene	0.008	0.0058		4.43E-02	4.43E-02	5.27E-02	6.33E-02	5.89E-02	5.87E-02
100414	Ethylbenzene	0.0095	0.0069		5.26E-02	5.26E-02	6.26E-02	7.51E-02	6.99E-02	6.97E-02
50000	Formaldehyde	0.017	0.0123		9.41E-02	9.41E-02	1.12E-01	1.34E-01	1.25E-01	1.25E-01
110543	Hexane	0.0063	0.0046		3.49E-02	3.49E-02	4.15E-02	4.98E-02	4.63E-02	4.62E-02
91203	Naphthalene	0.0003	0.0003		1.66E-03	1.66E-03	1.98E-03	2.37E-03	2.21E-03	2.20E-03
1151	PAH (excluding napthalene)	0.0001	0.0001		5.54E-04	5.54E-04	6.59E-04	7.91E-04	7.36E-04	7.34E-04
108883	Toluene	0.0366	0.0265		2.03E-01	2.03E-01	2.41E-01	2.90E-01	2.69E-01	2.69E-01
1330207	Xylenes	0.0272	0.0197		1.51E-01	1.51E-01	1.79E-01	2.15E-01	2.00E-01	2.00E-01
^a South Coa	st Air Quality Management District Suppleme	ntal Reporting Procedures for								
AB2588 F	Facilities Table B-1 Emission Factors for Boile	ers - Natural Gas Combustion								
^b Source: Ar	nnual Air Emission Report for 2006/2007 subr	nitted to SCAQMD								
^c Usage dist	ribution (MMscf) provided by Enviromental Pr	rograms Manager David Ott 4/2	1/2008							
	Distribution (MMscf)	68.78		North Campus						
	Distribution (MMscf)	237		Facilities						
	Distribution (MMscf)	114.4		Cogeneration						
Total MMB	ΓU/hr of boilers at north campus	62.646								
Total MMB	ΓU/hr of boilers at facilities	53.932								
Total MMB	ΓU/hr of boilers at cogeneration plant	224								

				Name:	BOIL53	BOIL54	BOIL55	BOIL56	BOIL57
				Number:	10056	10057	10058	10059	10060
				Equipment:	Boiler	Boiler	Boiler	Boiler	Boiler
				Location:	UES BLR#3	Ueberroth #1	Rehab. #5	Rehab. #6	Warren Hall
		Emission Factor ^a	Emission Factor ^a	Size (MMBTU/hr):	0.500	0.500	1.000	1.000	5.23
		(lbs/mmcf fuel burned)	(lbs/mmcf fuel burned)	SCAQMD Permit:	EXEMPT	EXEMPT	EXEMPT	EXEMPT	D71042
CAS	Pollutant	(Boilers < 10 MMBTU/HR)	(Boilers 10 - 100 MMBTU/HR)	Annual Usage ^{b,c} (mmcf):	2.2	2.2	4.4	4.4	23.0
75070	Acetaldehyde	0.0043	0.0031		9.45E-03	9.45E-03	1.89E-02	1.89E-02	9.88E-02
107028	Acrolein	0.0027	0.0027		5.93E-03	5.93E-03	1.19E-02	1.19E-02	6.21E-02
7664417	Ammonia	3.2	3.2		7.03E+00	7.03E+00	1.41E+01	1.41E+01	7.35E+01
71432	Benzene	0.008	0.0058		1.76E-02	1.76E-02	3.52E-02	3.52E-02	1.84E-01
100414	Ethylbenzene	0.0095	0.0069		2.09E-02	2.09E-02	4.17E-02	4.17E-02	2.18E-01
50000	Formaldehyde	0.017	0.0123		3.74E-02	3.74E-02	7.47E-02	7.47E-02	3.91E-01
110543	Hexane	0.0063	0.0046		1.38E-02	1.38E-02	2.77E-02	2.77E-02	1.45E-01
91203	Naphthalene	0.0003	0.0003		6.59E-04	6.59E-04	1.32E-03	1.32E-03	6.89E-03
1151	PAH (excluding napthalene)	0.0001	0.0001		2.20E-04	2.20E-04	4.39E-04	4.39E-04	2.30E-03
108883	Toluene	0.0366	0.0265		8.04E-02	8.04E-02	1.61E-01	1.61E-01	8.41E-01
1330207	Xylenes	0.0272	0.0197		5.98E-02	5.98E-02	1.20E-01	1.20E-01	6.25E-01
^a South Co	ast Air Quality Management District Suppleme	ental Reporting Procedures for							
AB2588	Facilities Table B-1 Emission Factors for Boile	ers - Natural Gas Combustion							
^b Source: A	Annual Air Emission Report for 2006/2007 sub	mitted to SCAQMD							
^c Usage dis	stribution (MMscf) provided by Enviromental P	rograms Manager David Ott 4/2	1/2008						
	Distribution (MMscf)	68.78		North Campus					
	Distribution (MMscf)	237		Facilities					
	Distribution (MMscf)	114.4		Cogeneration					
Total MME	TU/hr of boilers at north campus	62.646							
Total MME	BTU/hr of boilers at facilities	53.932							
Total MME	BTU/hr of boilers at cogeneration plant	224							

		Г	T	I .		I .	
				Name:	BOIL58	BOIL59	
				Number:	10061	10062	
				Equipment:	Boiler	Boiler	
				Location:	200 Med Plaza	200 Med Plaza	
		Emission Factor ^a	Emission Factor ^a	Size (MMBTU/hr):	12.5	12.5	Total
		(lbs/mmcf fuel burned)	(lbs/mmcf fuel burned)	SCAQMD Permit:	D71162	D71165	Emissions
CAS	Pollutant	(Boilers < 10 MMBTU/HR)	(Boilers 10 - 100 MMBTU/HR)	Annual Usage ^{b,c} (mmcf):	54.9	54.9	(lb/hr)
75070	Acetaldehyde	0.0043	0.0031		1.70E-01	1.70E-01	8.87E-01
107028	Acrolein	0.0027	0.0027		1.48E-01	1.48E-01	6.40E-01
7664417	Ammonia	3.2	3.2		1.76E+02	1.76E+02	7.58E+02
71432	Benzene	0.008	0.0058		3.19E-01	3.19E-01	1.65E+00
100414	Ethylbenzene	0.0095	0.0069		3.79E-01	3.79E-01	1.97E+00
50000	Formaldehyde	0.017	0.0123		6.76E-01	6.76E-01	3.51E+00
110543	Hexane	0.0063	0.0046		2.53E-01	2.53E-01	1.31E+00
91203	Naphthalene	0.0003	0.0003		1.65E-02	1.65E-02	7.11E-02
1151	PAH (excluding napthalene)	0.0001	0.0001		5.49E-03	5.49E-03	2.37E-02
108883	Toluene	0.0366	0.0265		1.46E+00	1.46E+00	7.56E+00
1330207	Xylenes	0.0272	0.0197		1.08E+00	1.08E+00	5.62E+00
^a South Coa	ast Air Quality Management District Suppleme	ntal Reporting Procedures for					
AB2588 I	Facilities Table B-1 Emission Factors for Boile	rs - Natural Gas Combustion					
^b Source: A	nnual Air Emission Report for 2006/2007 subn	nitted to SCAQMD					
^c Usage dis	tribution (MMscf) provided by Enviromental Pr	ograms Manager David Ott 4/2	1/2008				
	Distribution (MMscf)	68.78		North Campus			
	Distribution (MMscf)	237		Facilities			
	Distribution (MMscf)	114.4		Cogeneration			
Total MMB	TU/hr of boilers at north campus	62.646					
Total MMB	TU/hr of boilers at facilities	53.932					
Total MMB	TU/hr of boilers at cogeneration plant	224					

				DOIL 00	
			Name:	BOIL60	
			Number:	10063	
			Equipment:	Boiler	
			Location:	Cogen	
		Emission Factor ^a	Size (MMBTU/hr):	224	Total
		(lbs/mmcf fuel burned)	SCAQMD Permit:	F01220	Emissions
CAS	Pollutant	(Boilers > 100 MMBTU/HR)	Hourly Usage ^c (mmcf):	0.2196	(lb/hr)
75070	Acetaldehyde	0.0009		1.98E-04	1.98E-04
107028	Acrolein	0.0008		1.76E-04	1.76E-04
7664417	Ammonia	3.2		7.03E-01	7.03E-01
71432	Benzene	0.0017		3.73E-04	3.73E-04
100414	Ethylbenzene	0.002		4.39E-04	4.39E-04
50000	Formaldehyde	0.0036		7.91E-04	7.91E-04
110543	Hexane	0.0013		2.85E-04	2.85E-04
91203	Naphthalene	0.0003		6.59E-05	6.59E-05
1151	PAH (excluding napthalene)	0.0001		2.20E-05	2.20E-05
108883	Toluene	0.0078		1.71E-03	1.71E-03
1330207	Xylenes	0.0058		1.27E-03	1.27E-03
^a South Co	ast Air Quality Management Dist	rict Supplemental Reporting Proc	edures for		
AB2588	Facilities Table B-1 Emission Fa	ctors for Boilers - Natural Gas Co	ombustion		
Based or	size of boiler divided by heating	value for natural gas, 1020 BTU/	scf		

				DOII 00	
			Name:	BOIL60	
			Number:	10063	
			Equipment:	Boiler	
			Location:	Cogen	
		Emission Factor ^a	Size (MMBTU/hr):	224	Total
		(lbs/mmcf fuel burned)	SCAQMD Permit:	F01220	Emissions
CAS	Pollutant	(Boilers > 100 MMBTU/HR)	Annual Usage ^{b,c} (mmcf):	114.4	(lb/yr)
75070	Acetaldehyde	0.0009		1.03E-01	1.03E-01
107028	Acrolein	0.0008		9.15E-02	9.15E-02
7664417	Ammonia	3.2		3.66E+02	3.66E+02
71432	Benzene	0.0017		1.94E-01	1.94E-01
100414	Ethylbenzene	0.002		2.29E-01	2.29E-01
50000	Formaldehyde	0.0036		4.12E-01	4.12E-01
110543	Hexane	0.0013		1.49E-01	1.49E-01
91203	Naphthalene	0.0003		3.43E-02	3.43E-02
1151	PAH (excluding napthalene)	0.0001		1.14E-02	1.14E-02
108883	Toluene	0.0078		8.92E-01	8.92E-01
1330207	Xylenes	0.0058		6.64E-01	6.64E-01
^a South Co	oast Air Quality Management District Sup	plemental Reporting Procedure	es for		
AB2588	Facilities Table B-1 Emission Factors for	r Boilers - Natural Gas Combus	stion		
^b Source: A	Annual Air Emission Report for 2006/200	7 submitted to SCAQMD			
^c Usage di	stribution (MMscf) provided by Envirome	ntal Programs Manager David	Ott 4/21/2008		
	Distribution (MMscf)	68.78	North Campus		
	Distribution (MMscf)	237	Facilities		
	Distribution (MMscf)	114.4	Cogeneration		
Total MAA	DTI I/by of heileys at weyth some	00.040			
	BTU/hr of boilers at north campus	62.646			
	BTU/hr of boilers at facilities	53.932			
Total MMI	BTU/hr of boilers at cogeneration plant	224			

UCLA Toxic Emissions - LRDP Amendment Scenario.xls Boilers, Hr - NG New - LRDP (Ib/yr)

		Name:	BOIL61	BOIL62	BOIL63	BOIL64	BOIL65	BOIL66	BOIL67
		Number:	20001	20002	20003	20004	20005	20006	20007
		Equipment:	Boiler	Boiler	Boiler	Boiler	Boiler	Boiler	Boiler
		Location:b	Sproul South	Sproul South	Sproul West	Sproul West	Upper DeNeve	Upper DeNeve	Lower DeNeve
	Emission Factor ^a	Size (MMBTU/hr):	1.331	1.331	1.331	1.331	1.331	1.331	1.331
	(lbs/mmcf fuel burned)	SCAQMD Permit:	NEW	NEW	NEW	NEW	NEW	NEW	NEW
Pollutant	(Boilers < 10 MMBTU/HR)	Hourly Usage ^c (mmcf):	1.30E-03	1.30E-03	1.30E-03	1.30E-03	1.30E-03	1.30E-03	1.30E-03
Acetaldehyde	0.0031		4.05E-06	4.05E-06	4.05E-06	4.05E-06	4.05E-06	4.05E-06	4.05E-06
Acrolein	0.0027		3.52E-06	3.52E-06	3.52E-06	3.52E-06	3.52E-06	3.52E-06	3.52E-06
Ammonia	3.2		4.18E-03	4.18E-03	4.18E-03	4.18E-03	4.18E-03	4.18E-03	4.18E-03
Benzene	0.0058		7.57E-06	7.57E-06	7.57E-06	7.57E-06	7.57E-06	7.57E-06	7.57E-06
Ethylbenzene	0.0069		9.00E-06	9.00E-06	9.00E-06	9.00E-06	9.00E-06	9.00E-06	9.00E-06
Formaldehyde	0.0123		1.61E-05	1.61E-05	1.61E-05	1.61E-05	1.61E-05	1.61E-05	1.61E-05
Hexane	0.0046		6.00E-06	6.00E-06	6.00E-06	6.00E-06	6.00E-06	6.00E-06	6.00E-06
Naphthalene	0.0003		3.91E-07	3.91E-07	3.91E-07	3.91E-07	3.91E-07	3.91E-07	3.91E-07
PAH (excluding napthalene)	0.0001		1.30E-07	1.30E-07	1.30E-07	1.30E-07	1.30E-07	1.30E-07	1.30E-07
Toluene	0.0265		3.46E-05	3.46E-05	3.46E-05	3.46E-05	3.46E-05	3.46E-05	3.46E-05
Xylenes	0.0197		2.57E-05	2.57E-05	2.57E-05	2.57E-05	2.57E-05	2.57E-05	2.57E-05
Quality Management District S	Supplemental Reporting Proced	dures for							
ties Table B-1 Emission Factors	s for Boilers - Natural Gas Com	nbustion							
ers will all be located in North C	Campus Area								
of boiler divided by heating valu	e for natural gas, 1020 BTU/sc	f							
t	Acetaldehyde Acrolein Ammonia Benzene Ethylbenzene Formaldehyde Hexane Naphthalene PAH (excluding napthalene) Toluene Xylenes Quality Management District Sies Table B-1 Emission Factor	(Ibs/mmcf fuel burned) Pollutant	Number: Equipment: Location: b Equipment: Location: b Emission Factor a Size (MMBTU/hr): (lbs/mmcf fuel burned) SCAQMD Permit: Pollutant (Boilers < 10 MMBTU/HR) Hourly Usage c (mmcf): Acetaldehyde 0.0031 Acrolein 0.0027 Ammonia 3.2 Benzene 0.0058 Ethylbenzene 0.0058 Ethylbenzene 0.0069 Formaldehyde 0.0123 Hexane 0.0046 Naphthalene 0.0003 PAH (excluding napthalene) 0.0001 Toluene 0.0265 Xylenes 0.0197 Quality Management District Supplemental Reporting Procedures for ies Table B-1 Emission Factors for Boilers - Natural Gas Combustion Size (MMBTU/hr): Acquiring the size (Management District Supplemental Reporting Procedures for ies Table B-1 Emission Factors for Boilers - Natural Gas Combustion Control of the size o	Number: 20001 Equipment: Boiler Sproul South	Number: 20001 20002 Equipment: Boiler Boiler Boiler Sproul South Scaqmd Permit: NEW NE	Number: 20001 20002 20003 Equipment: Boiler Boiler Boiler Boiler Boiler Boiler Boiler Boiler Sproul South Sproul South Sproul West Sproul West Sproul South Sproul West Sproul South Sproul West Sproul West Sproul South Sproul West Sproul West Sproul West Sproul South Sproul West Sproul West Sproul South Sproul West Sproul West Sproul South Sproul West Sproul South Sproul West Sproul West Sproul South Sproul South Sproul West Sproul South Sproul West Sproul South Sproul South	Number: 20001 20002 20003 20004 Equipment: Boiler Boiler Boiler Boiler Location: Sproul South Sproul South Sproul South Sproul South Sproul South Sproul South Sproul South Sproul South Sproul South Sproul South Sproul South Sproul South Sproul South Sproul South Sproul South Sproul South Sproul South Sproul South Sproul South Sproul South Sproul South Sproul South Sproul South Sproul South Sproul South NEW NEW NEW NEW NEW NEW NEW NEW NEW NEW Sproul South Sproul South Spr	Number: 20001 20002 20003 20004 20005 Equipment: Boiler Boiler Boiler Boiler Boiler Boiler Location: Sproul South Sproul West Sproul	Number: 20001 20002 20003 20004 20005 20006 Equipment: Boiler Boiler Boiler Boiler Boiler Boiler Boiler Boiler Location: Sproul South Sproul West Sproul West Upper DeNeve Upper DeNeve Emission Factor

UCLA Toxic Emissions - LRDP Amendment Scenario.xls Boilers, Hr - NG New - LRDP (Ib/yr)

				DOI! 00	
			Name:	BOIL68	
			Number:	20008	
			Equipment:	Boiler	
			Location:b	Lower DeNeve	
		Emission Factor ^a	Size (MMBTU/hr):	1.331	Total
		(lbs/mmcf fuel burned)	SCAQMD Permit:	NEW	Emissions
CAS	Pollutant	(Boilers < 10 MMBTU/HR)	Hourly Usage ^c (mmcf):	1.30E-03	(lb/hr)
75070	Acetaldehyde	0.0031		4.05E-06	3.24E-05
107028	Acrolein	0.0027		3.52E-06	2.82E-05
7664417	Ammonia	3.2		4.18E-03	3.34E-02
71432	Benzene	0.0058		7.57E-06	6.05E-05
100414	Ethylbenzene	0.0069		9.00E-06	7.20E-05
50000	Formaldehyde	0.0123		1.61E-05	1.28E-04
110543	Hexane	0.0046		6.00E-06	4.80E-05
91203	Naphthalene	0.0003		3.91E-07	3.13E-06
1151	PAH (excluding napthalene)	0.0001		1.30E-07	1.04E-06
108883	Toluene	0.0265		3.46E-05	2.77E-04
1330207	Xylenes	0.0197		2.57E-05	2.06E-04
^a South Coast A	Air Quality Management District S	Supplemental Reporting Proced	dures for		
AB2588 Fac	ilities Table B-1 Emission Factor	s for Boilers - Natural Gas Com	nbustion		
b Additional bo	oilers will all be located in North C	Campus Area			
Based on size	e of boiler divided by heating valu	ue for natural gas, 1020 BTU/sc	f		

UCLA Toxic Emissions - LRDP Amendment Scenario.xls Boilers, Yr - NG New - LRDP (lb/yr)

			Name:	BOIL61	BOIL62	BOIL63	BOIL64	BOIL65	BOIL66	BOIL67
					20002	20003				20007
			Number:	20001			20004	20005	20006	
			Equipment:	Boiler	Boiler	Boiler	Boiler	Boiler	Boiler	Boiler
			Location:b	Sproul South	Sproul South	Sproul West	Sproul West	Upper DeNeve	Upper DeNeve	Lower DeNeve
		Emission Factor ^a	Size (MMBTU/hr):c	1.331	1.331	1.331	1.331	1.331	1.331	1.331
		(lbs/mmcf fuel burned)	SCAQMD Permit:	NEW	NEW	NEW	NEW	NEW	NEW	NEW
CAS	Pollutant	(Boilers < 10 MMBTU/HR)	Annual Usage ^c (mmcf):	1.46E+00	1.46E+00	1.46E+00	1.46E+00	1.46E+00	1.46E+00	1.46E+00
75070	Acetaldehyde	0.0031		4.53E-03	4.53E-03	4.53E-03	4.53E-03	4.53E-03	4.53E-03	4.53E-03
107028	Acrolein	0.0027		3.95E-03	3.95E-03	3.95E-03	3.95E-03	3.95E-03	3.95E-03	3.95E-03
7664417	Ammonia	3.2		4.68E+00	4.68E+00	4.68E+00	4.68E+00	4.68E+00	4.68E+00	4.68E+00
71432	Benzene	0.0058		8.48E-03	8.48E-03	8.48E-03	8.48E-03	8.48E-03	8.48E-03	8.48E-03
100414	Ethylbenzene	0.0069		1.01E-02	1.01E-02	1.01E-02	1.01E-02	1.01E-02	1.01E-02	1.01E-02
50000	Formaldehyde	0.0123		1.80E-02	1.80E-02	1.80E-02	1.80E-02	1.80E-02	1.80E-02	1.80E-02
110543	Hexane	0.0046		6.72E-03	6.72E-03	6.72E-03	6.72E-03	6.72E-03	6.72E-03	6.72E-03
91203	Naphthalene	0.0003		4.38E-04	4.38E-04	4.38E-04	4.38E-04	4.38E-04	4.38E-04	4.38E-04
1151	PAH (excluding napthalene)	0.0001		1.46E-04	1.46E-04	1.46E-04	1.46E-04	1.46E-04	1.46E-04	1.46E-04
108883	Toluene	0.0265		3.87E-02	3.87E-02	3.87E-02	3.87E-02	3.87E-02	3.87E-02	3.87E-02
1330207	Xylenes	0.0197		2.88E-02	2.88E-02	2.88E-02	2.88E-02	2.88E-02	2.88E-02	2.88E-02
North Campus B	aseline Natural Gas Usage	=	68.8							
Adjusted Natural	Gas Usage	=	80.5							
^a South Coast Air	Quality Management District Supple	emental Reporting Procedure	s for							
	ies Table B-1 Emission Factors for I									
^b Additional boiler	s will all be located in North Campu	is Area								
^c Additional boiler	rs represent a 17% increase in overa	all boiler capacity at the North	Campus							
Therefore, the 2	2007 baseline natural gas usage at t	the North Campus was increase	sed 17%.							

UCLA Toxic Emissions - LRDP Amendment Scenario.xls Boilers, Yr - NG New - LRDP (lb/yr)

			Name:	BOIL68	
			Number:	20008	
			Equipment:	Boiler	
			Location:b	Lower DeNeve	
		Emission Factor ^a	Size (MMBTU/hr):c	1.331	Total
		(lbs/mmcf fuel burned)	SCAQMD Permit:	NEW	Emissions
CAS	Pollutant	(Boilers < 10 MMBTU/HR)	Annual Usage ^c (mmcf):	1.46E+00	(lb/hr)
75070	Acetaldehyde	0.0031		4.53E-03	3.62E-02
107028	Acrolein	0.0027		3.95E-03	3.16E-02
7664417	Ammonia	3.2		4.68E+00	3.74E+01
71432	Benzene	0.0058		8.48E-03	6.78E-02
100414	Ethylbenzene	0.0069		1.01E-02	8.07E-02
50000	Formaldehyde	0.0123		1.80E-02	1.44E-01
110543	Hexane	0.0046		6.72E-03	5.38E-02
91203	Naphthalene	0.0003		4.38E-04	3.51E-03
1151	PAH (excluding napthalene)	0.0001		1.46E-04	1.17E-03
108883	Toluene	0.0265		3.87E-02	3.10E-01
1330207	Xylenes	0.0197		2.88E-02	2.30E-01
North Campus E	 Baseline Natural Gas Usage	=	68.8		
Adjusted Natura	l Gas Usage	=	80.5		
^a South Coast Air	 r Quality Management District Suppl	emental Reporting Procedure	es for		
AB2588 Facili	ties Table B-1 Emission Factors for	Boilers - Natural Gas Combu	stion		
Additional boile	rs will all be located in North Campu	ıs Area			
Additional boile	rs represent a 17% increase in over	all boiler capacity at the North	n Campus		
Therefore, the	2007 baseline natural gas usage at	the North Campus was increa	sed 17%.		

	Name:	ICE1	ICE2	ICE3	ICE4	ICE5	ICE6	ICE7	ICE8	
	Number:	10064	10065	10066	10067	10068	10069	10070	10071	
	Equipment:	ICE, Em Gen								
	Location:	Covel	De Neve	Hedrick	Sproul Hall	Dykstra	Rieber Hall	Reiber N	Reiber W	
	Size (bhp):	335	415	440	724	320	320	635	635	
	SCAQMD Permit:	D38196	F36980	F38570	F38571	F38572	F38573	F82410	F82411	Total
	Hourly Usage ^a (Mgal):	0.0052	0.0064	0.0068	0.0112	0.0050	0.0050	0.0098	0.0098	Emissions
CAS Pollutant ^b	Emission Factor ^c (lbs/Mgal)	8.9008	0.7121	11.3931	22.7861	11.3931	11.3931	2.8483	2.8483	(lb/yr)
9901 Diesel Exhaust (particulates)		4.62E-02	4.57E-03	7.76E-02	2.55E-01	5.64E-02	5.64E-02	2.80E-02	2.80E-02	4.97E-01
Est Hourly Fuel Consumption (gal/hr):		5.186	6.424	6.811	11.208	4.954	4.954	9.830	9.830	
Est Load Factor:		0.250	0.250	0.250	0.250	0.250	0.250	0.250	0.250	
Manufacturer Diesel PM Emission Factor (g/bhp-hr):		0.25	0.02	0.32	0.64	0.32	0.32	0.08	0.08	
Converted Diesel PM Emission Factor (lbs/Mgal):		8.901	0.712	11.393	22.786	11.393	11.393	2.848	2.848	
Default SCAQMD (lbs/Mgal) 33.5	lbs/Mgal									
^a Hourly usage based on engine fuel comsumption (gal/hr)										
^b In reference to guidance provided in apprendix D of OHHEA, Tor	m Chico of SCAQMD									
said in a phone conversation 20 May 2008 that diesel PM repres	ents the sole toxicity									
from diesel combustion in ICEs and should be the only chemical	quantified for diesel ICEs									
in SCAQMD HRAs										
^c Diesel PM emission factors obtained from manufactuer specifica	esel PM emission factors obtained from manufactuer specification sheets;									
when specificion sheets were not available, referred to default S	CADMD emission factors									

UCLA Toxic Emissions - LRDP Amendment Scenario.xls ICE, Yr - Diesel North Campus (lb/yr)

			Name:	ICE1	ICE2	ICE3	ICE4	ICE5	ICE6	ICE7	ICE8	
			Number:	10064	10065	10066	10067	10068	10069	10070	10071	
			Equipment:	ICE, Em Gen								
			Location:	Covel	De Neve	Hedrick	Sproul Hall	Dykstra	Rieber Hall	Reiber N	Reiber W	
			Size (bhp):	335	415	440	724	320	320	635	635	
			SCAQMD Permit:	D38196	F36980	F38570	F38571	F38572	F38573	F82410	F82411	Total
			Annual Usage ^{a,b,c} (Mgal):	0.248	0.307	0.325	0.535	0.236	0.236	0.469	0.469	Emissions
CAS	Pollutant ^d		Emission Factor ^e (lbs/Mgal)	8.901	0.712	11.393	22.786	11.393	11.393	2.848	2.848	(lb/yr)
9901	Diesel Exhaust (particulates)			2.20E+00	2.18E-01	3.70E+00	1.22E+01	2.69E+00	2.69E+00	1.34E+00	1.34E+00	2.64E+01
Est Annua	l Fuel Usage (gal/yr):			247.6	306.7	325.2	535.0	236.5	236.5	469.3	469.3	
Est Hourly	Fuel Consumption (gal/hr):			5.2	6.4	6.8	11.2	5.0	5.0	9.8	9.8	
Est Annua	l Hourly Usage (hr/yr):			47.7	47.7	47.7	47.7	47.7	47.7	47.7	47.7	
Est Load F	actor:			0.250	0.250	0.250	0.250	0.250	0.250	0.25	0.25	
Manufactu	rer Diesel PM Emission Factor (g/l	bhp-hr):		0.25	0.02	0.32	0.64	0.32	0.32	0.08	0.08	
Converted	Diesel PM Emission Factor (lbs/N	Mgal):		8.901	0.712	11.393	22.786	11.393	11.393	2.848	2.848	
Default SC	CAQMD (lbs/Mgal)	33.5	lbs/Mgal									
^a Annual us	age estimated based on engine size	ze and repo	rted diesel usage									
^b Diesel us	age reported on the 2006/2007 SC	AQMD Ann	ual Air Emission Report									
^c Usage dis	stribution (gal) provided by Environ	nental Progr	ams Manager David Ott 4/21/2008									
	ce to guidance provided in apprend		,									
-	phone conversation 20 May 2008 to											
		oe the only o	chemical quantified for diesel ICEs									
in SCAQI												
	M emission factors obtained from n		'									
when spe	ecificion sheets were not available,	referred to	default SCADMD emission factors							1		
										1		
Distribution		2826	North Campus									-
Distributio	, v ,	8750	Facilities									
Distribution	n (gal):	11576	Total							1		
T-4-1 b1	-	0004										-
-	of ICE's at the North Campus	3824								-		-
lotal bhp	of ICE's at Facilities	56944										

				1	1				1
		Name:	ICE9	ICE10	ICE11	ICE12	ICE13	ICE14	ICE15
		Number:	10072	10073	10074	10075	10076	10077	10078
		Equipment:	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen
		Location:	Cogen	Ackerman	Young Hall E	MSB	STRB	UCPD NE	PS 1
		Size (bhp):	2220	746	1750	1323	668	553	750
		SCAQMD Permit:	D75643	D89196	D88255	F00371	F11549	F23691	F2943
		Hourly Usage ^a (Mgal):	0.1031	0.0115	0.0271	0.0205	0.0103	0.0086	0.0116
CAS	Pollutant ^b	Emission Factor ^c (Ibs/Mgal)	3.5603	21.3620	33.5000	18.1577	21.3620	30.9749	17.8017
9901	Diesel Exhaust (particulates)		3.67E-01	2.47E-01	9.08E-01	3.72E-01	2.21E-01	2.65E-01	2.07E-01
Est Hourly	Fuel Consumption (gal/hr):		103.100	11.5	27.1	20.5	10.3	8.6	11.6
Est Load	Factor:		0.750	0.25	0.25	0.25	0.25	0.25	0.25
Est Load	Factor × bhp		1665.0	186.5	437.5	330.75	167	138.25	187.5
Manufacti	urer Diesel PM Emission Factor (g/bh	p-hr)	0.1	0.6	NA	0.51	0.6	0.87	0.5
Converted	d Diesel PM Emission Factor (lbs/Mga	d)	3.560	21.362	NA	18.158	21.362	30.975	17.802
Default So	CAQMD (lbs/Mgal)	33.5 lbs/Mgal							
^a Hourly us	age based on engine fuel comsumpti	on (gal/hr)							
	<u> </u>	c D of OHHEA, Tom Chico of SCAQMD							
		t diesel PM represents the sole toxicity							
	' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	the only chemical quantified for diesel ICEs							
	MD HRAs								
^c Diesel PN	M emission factors obtained from man	nufactuer specification sheets;							
when sp	ecificion sheets were not available, re	ferred to default SCADMD emission factors							

			Name:	ICE16	ICE17	ICE18	ICE19	ICE20	ICE21	ICE22
			Number:	10079	10080	10081	10082	10083	10084	10085
			Equipment:	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen
			Location:	Gonda	UCLA Med Ctr	Macdonald Lab				
			Size (bhp):	1850	1260	1260	1310	1310	1750	890
			SCAQMD Permit:	F9960	D78147	D78148	D78149	D78150	D79963	D48280
			Hourly Usage ^a (Mgal):	0.0286	0.0585	0.0585	0.0608	0.0608	0.0813	0.0138
CAS F	Pollutant ^b		Emission Factor ^c (lbs/Mgal)	2.8483	2.5634	2.5634	2.4655	2.4655	33.5000	16.0215
9901	Diesel Exhaust (particulates)			8.16E-02	1.50E-01	1.50E-01	1.50E-01	1.50E-01	2.72E+00	2.21E-01
Est Hourly F	uel Consumption (gal/hr):			28.6	58.5	58.5	60.8	60.8	81.3	13.8
Est Load Fa				0.25	0.75	0.75	0.75	0.75	0.75	0.25
Est Load Fa	ctor × bhp			462.5	945	945	982.5	982.5	1312.5	222.5
Manufacture	er Diesel PM Emission Factor (g/bhp	o-hr)		0.08	0.15	0.15	0.15	0.15	NA	0.45
Converted D	Diesel PM Emission Factor (lbs/Mgal)		2.848	2.563	2.563	2.466	2.466	NA	16.021
Default SCA	QMD (lbs/Mgal)	33.5	lbs/Mgal							
^a Hourly usac	ge based on engine fuel comsumption	on (gal/hr)								
bln reference	e to guidance provided in apprendix	D of OHHEA, Tom Chico	of SCAQMD							
said in a ph	one conversation 20 May 2008 that	diesel PM represents the	sole toxicity							
from diesel	combustion in ICEs and should be t	he only chemical quantifie	d for diesel ICEs							
in SCAQME) HRAs									
°Diesel PM e	emission factors obtained from man	ufactuer specification shee	ets;							
when spec	ificion sheets were not available, ref	erred to default SCADMD	emission factors							

F										
			Name:	ICE23	ICE24	ICE25	ICE26	ICE27	ICE28	ICE29
			Number:	10086	10087	10088	10089	10090	10091	10092
			Equipment:	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen				
			Location:	AGSM South	Seas IV NW	Campus Wide	Rehab Cen	Phys And Astrom	SRB I (NRB)	CNSI
			Size (bhp):	1490	1095	2514	635	910	2000	2000
			SCAQMD Permit:	D87699	D99790	F37551	F52213	F58406	F56614	F71101
			Hourly Usage ^a (Mgal):	0.0231	0.0170	0.0389	0.0098	0.0141	0.0310	0.0310
CAS	Pollutant ^b		Emission Factor ^c (lbs/Mgal)	33.5000	33.5000	33.5000	3.9164	1.0681	2.6702	2.6702
9901	Diesel Exhaust (particulates)			7.73E-01	5.68E-01	1.30E+00	3.85E-02	1.50E-02	8.27E-02	8.27E-02
Est Hourly	Fuel Consumption (gal/hr):			23.1	17.0	38.9	9.8	14.1	31.0	31.0
Est Load F	1 (0 /			0.25	0.25	0.25	0.25	0.25	0.25	0.25
Est Load F	actor × bhp			372.5	273.75	628.5	158.75	227.5	500	500
Manufactu	rer Diesel PM Emission Factor (g/bh	p-hr)		NA	NA	NA	0.11	0.03	0.075	0.075
Converted	Diesel PM Emission Factor (lbs/Mga	al)		NA	NA	NA	3.916	1.068	2.670	2.670
Default SC	CAQMD (lbs/Mgal)	33.5	lbs/Mgal							
^a Hourly us	age based on engine fuel comsumpti	on (gal/hr)								
^b In referen	nce to guidance provided in apprendix	D of OHHEA, Tom Chico	of SCAQMD							
said in a	ohone conversation 20 May 2008 tha	t diesel PM represents the	sole toxicity							
from dies	el combustion in ICEs and should be	the only chemical quantifie	d for diesel ICEs							
in SCAQN	MD HRAs									
^c Diesel PM	A emission factors obtained from mar	nufactuer specification shee	ets;							
when spe	ecificion sheets were not available, re	ferred to default SCADMD	emission factors							

					I	1				
			Name:	ICE30	ICE31	ICE32	ICE33	ICE34	ICE35	ICE36
			Number:	10093	10094	10095	10096	10097	10098	10099
			Equipment:	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen
			Location:	SRB II	Rep Hospital 1	Rep Hospital 2	Rep Hospital 3	Rep Hospital 4	Police Station Rep	Powell / kinsey
			Size (bhp):	2000	2000	2000	2000	2000	1881	755
			SCAQMD Permit:	F71100	F78903	F78904	F78905	F78906	F90961	F82412
			Hourly Usage ^a (Mgal):	0.0310	0.0929	0.0929	0.0929	0.0929	0.0291	0.0117
CAS	Pollutant ^b		Emission Factor ^c (lbs/Mgal)	2.6702	2.6702	2.6702	2.6702	2.6702	5.3405	2.6702
9901	Diesel Exhaust (particulates)			8.27E-02	2.48E-01	2.48E-01	2.48E-01	2.48E-01	1.56E-01	3.12E-02
Est Hourly	Fuel Consumption (gal/hr):			31.0	92.9	92.9	92.9	92.9	29.1	11.7
Est Load	Factor:			0.25	0.75	0.75	0.75	0.75	0.25	0.25
Est Load	Factor × bhp			500	1500	1500	1500	1500	470.25	188.75
Manufacti	urer Diesel PM Emission Factor (g/bh	p-hr)		0.075	0.075	0.075	0.075	0.075	0.15	0.075
Converted	d Diesel PM Emission Factor (lbs/Mga	ıl)		2.670	2.670	2.670	2.670	2.670	5.340	2.670
Default So	CAQMD (lbs/Mgal)	33.5	lbs/Mgal							
^a Hourly us	sage based on engine fuel comsumpti	on (gal/hr)								
bln refere	nce to guidance provided in apprendix	D of OHHEA, Tom Chico	of SCAQMD							
said in a	phone conversation 20 May 2008 that	t diesel PM represents the	sole toxicity							
from dies	sel combustion in ICEs and should be	the only chemical quantifie	d for diesel ICEs							
in SCAQ	MD HRAs									
^c Diesel Pl	M emission factors obtained from mar	ufactuer specification shee	ets;							
when sp	ecificion sheets were not available, re	ferred to default SCADMD	emission factors							

		1	T	1		1	1		1		
			Name:	ICE37	ICE38	ICE39	ICE40	ICE41	ICE42	ICE43	ICE44
			Number:	10100	10101	10102	10103	10104	10105	10106	10107
			Equipment:	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen
			Location:	PKS#5,4,7	Eng V	Kerckhoff	Sunset Rec NE	Boelter III	Royce NW	Boelter II 12400	Boyer
			Size (bhp):	3622	3057	377	66	443	235	166	390
			SCAQMD Permit:	Subitted2	Subitted3	F37887	D88184	D89155	D98768	D98801	F00370
			Hourly Usage ^a (Mgal):	0.0561	0.0473	0.0058	0.0010	0.0069	0.0036	0.0026	0.0060
CAS	Pollutant ^b		Emission Factor ^c (lbs/Mgal)	1.2817	4.2724	19.5818	33.5000	24.5663	33.5000	33.5000	17.0896
9901	Diesel Exhaust (particulates)			7.19E-02	2.02E-01	1.14E-01	3.42E-02	1.68E-01	1.22E-01	8.61E-02	1.03E-01
Est Hourl	y Fuel Consumption (gal/hr):			56.1	47.3	5.8	1.0	6.9	3.6	2.6	6.0
Est Load	, , ,			0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
Est Load	Factor × bhp			905.5	764.25	94.25	16.5	110.75	58.75	41.5	97.5
Manufact	urer Diesel PM Emission Factor (g/br	np-hr)		0.036	0.12	0.55	NA	0.69	NA	NA	0.48
Converte	d Diesel PM Emission Factor (lbs/Mg	al)		1.282	4.272	19.582	NA	24.566	NA	NA	17.090
Default S	CAQMD (lbs/Mgal)	33.5	lbs/Mgal								
^a Hourly us	 sage based on engine fuel comsumpt	ion (gal/hr)									
bIn refere	nce to guidance provided in apprendi	x D of OHHEA, Tom Chico	of SCAQMD								
said in a	phone conversation 20 May 2008 that	at diesel PM represents the	sole toxicity								
from dies	sel combustion in ICEs and should be	the only chemical quantifie	d for diesel ICEs							<u> </u>	
in SCAQ	MD HRAs										
^c Diesel Pl	M emission factors obtained from ma	nufactuer specification shee	ets;								
when sp	ecificion sheets were not available, re	eferred to default SCADMD	emission factors								
	·	·	·						·	·	

							I		1		
			Name:	ICE45	ICE46	ICE47	ICE48	ICE49	ICE50	ICE51	ICE52
			Number:	10108	10109	10110	10111	10112	10113	10114	10115
			Equipment:	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen
			Location:	PS 4	SRL N	Life Sciences	Franz Hall	Math Sciences	SRL	PS 8 SE	Unix
			Size (bhp):	519	377	250	166	60	168	168	107
			SCAQMD Permit:	F17312	F2279	F23692	F37922	F39010	F4681	F4806	F4808
			Hourly Usage ^a (Mgal):	0.0080	0.0058	0.0039	0.0026	0.0009	0.0026	0.0026	0.0017
CAS	Pollutant ^b		Emission Factor ^c (lbs/Mgal)	33.5000	19.9379	33.5000	33.5000	33.5000	33.5000	33.5000	33.5000
9901	Diesel Exhaust (particulates)			2.69E-01	1.16E-01	1.30E-01	8.61E-02	3.11E-02	8.71E-02	8.71E-02	5.55E-02
Est Hourly	y Fuel Consumption (gal/hr):			8.0	5.8	3.9	2.6	0.9	2.6	2.6	1.7
Est Load	Factor:			0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
Est Load	Factor × bhp			129.75	94.25	62.5	41.5	15	42	42	26.75
Manufact	urer Diesel PM Emission Factor (g/bh	o-hr)		NA	0.56	NA	NA	NA	NA	NA	NA
Converted	d Diesel PM Emission Factor (lbs/Mga	l)		NA	19.938	NA	NA	NA	NA	NA	NA
Default S	CAQMD (lbs/Mgal)	33.5	lbs/Mgal								
^a Hourly us	sage based on engine fuel comsumption	on (gal/hr)									
^b In refere	nce to guidance provided in apprendix	D of OHHEA, Tom Chico	of SCAQMD								
said in a	phone conversation 20 May 2008 that	t diesel PM represents the	sole toxicity								
from dies	sel combustion in ICEs and should be	the only chemical quantifie	d for diesel ICEs								
in SCAQ	MD HRAs										
^c Diesel Pl	M emission factors obtained from man	ufactuer specification shee	ets;								
when sp	ecificion sheets were not available, re	ferred to default SCADMD	emission factors								

									1
		Name:	ICE53	ICE54	ICE55	ICE56	ICE57	ICE58	ICE59
		Number:	10116	10117	10118	10119	10120	10121	10122
		Equipment:	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen				
		Location:	Bunche	LATC	Pauley	Law Library	200 Med Plaza	300 Med Plaza	200 Med Plaza
		Size (bhp):	100	135	135	370	1095	335	1095
		SCAQMD Permit:	F5266	F5268	F5269	F5492	D77804	D77805	D77806
		Hourly Usage ^a (Mgal):	0.0015	0.0021	0.0021	0.0057	0.0170	0.0052	0.0170
CAS Pollutant ^b		Emission Factor ^c (lbs/Mgal)	33.5000	33.5000	33.5000	33.5000	33.5000	6.7646	33.5000
9901 Diesel Exhaust (particulates)			5.19E-02	7.00E-02	7.00E-02	1.92E-01	5.68E-01	3.51E-02	5.68E-01
Est Hourly Fuel Consumption (gal/hr):			1.5	2.1	2.1	5.7	17.0	5.2	17.0
Est Load Factor:			0.25	0.25	0.25	0.25	0.25	0.25	0.25
Est Load Factor × bhp			25	33.75	33.75	92.5	273.75	83.75	273.75
Manufacturer Diesel PM Emission Factor (g/bh	p-hr)		NA	NA	NA	NA	NA	0.19	NA
Converted Diesel PM Emission Factor (lbs/Mga	al)		NA	NA	NA	NA	NA	6.765	NA
Default SCAQMD (lbs/Mgal)	33.5	lbs/Mgal							
^a Hourly usage based on engine fuel comsumpti	on (gal/hr)								
^b In reference to guidance provided in apprendix	D of OHHEA, Tom Chico	of SCAQMD							
said in a phone conversation 20 May 2008 that	t diesel PM represents the	sole toxicity							
from diesel combustion in ICEs and should be	the only chemical quantifie	d for diesel ICEs							
in SCAQMD HRAs									
^c Diesel PM emission factors obtained from mar	nufactuer specification shee	ets;							
when specificion sheets were not available, re	ferred to default SCADMD	emission factors							

				10504	10500	10500	10504	10505	10500
		Name:	ICE60	ICE61	ICE62	ICE63	ICE64	ICE65	ICE66
		Number:	10123	10124	10125	10126	10127	10128	10129
		Equipment:	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen
		Location:	Env Service Building	Parking Structure 7	YRL	Campus Wide	Campus Wide	CHS	Broad Art Center
		Size (bhp):	535	317	260	216	490	277	490
		SCAQMD Permit:	F49789	F52215	F52214	F37549	F58435	F62618	F58436
		Hourly Usage ^a (Mgal):	0.0083	0.0049	0.0040	0.0033	0.0076	0.0043	0.0076
CAS F	Pollutant ^b	Emission Factor ^c (lbs/Mgal)	14.2413	14.2413	33.5000	7.1207	0.7121	4.9845	0.7121
9901	Diesel Exhaust (particulates)		1.18E-01	6.99E-02	1.35E-01	2.38E-02	5.40E-03	2.14E-02	5.40E-03
Est Hourly F	uel Consumption (gal/hr):		8.3	4.9	4.0	3.3	7.6	4.3	7.6
Est Load Fa			0.25	0.25	0.25	0.25	0.25	0.25	0.25
Est Load Fa	ctor × bhp		133.75	79.25	65	54	122.5	69.25	122.5
Manufacture	r Diesel PM Emission Factor (g/bhp-hr)		0.4	0.4	NA	0.2	0.02	0.14	0.02
Converted D	iesel PM Emission Factor (lbs/Mgal)		14.241	14.241	NA	7.121	0.712	4.984	0.712
Default SCA	QMD (lbs/Mgal) 33.5	lbs/Mgal							
^a Hourly usag	le based on engine fuel comsumption (gal/hr)								
^b In reference	to guidance provided in apprendix D of OHHEA, Tom Chico	of SCAQMD							
said in a ph	one conversation 20 May 2008 that diesel PM represents the	sole toxicity							
from diesel	combustion in ICEs and should be the only chemical quantifie	d for diesel ICEs							
in SCAQME) HRAs								
^c Diesel PM e	emission factors obtained from manufactuer specification she	ets;							
when speci	ficion sheets were not available, referred to default SCADMD	emission factors							

	_				1	1	,			1	1
			Name:	ICE67	ICE68	ICE69	ICE70	ICE71	ICE72	ICE73	ICE74
			Number:	10130	10131	10132	10133	10134	10135	10136	10137
			Equipment:	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen
			Location:	Campus Wide	Public Policy	Murphy Hall	Hilbrom	Hedrick Tower	MS	PKS#3	CHS Park Str
			Size (bhp):	155	201	370	550	157	325	65	50
			SCAQMD Permit:	F37540	F4805	F4983	F73384	F73157	F89260	submitted1	Exempt1
			Hourly Usage ^a (Mgal):	0.0024	0.0031	0.0057	0.0085	0.0024	0.0050	0.0010	0.0008
CAS	Pollutant ^b		Emission Factor ^c (lbs/Mgal)	33.5000	33.5000	33.5000	4.9845	33.5000	3.5603	4.9845	33.5000
9901	Diesel Exhaust (particulates)			8.04E-02	1.04E-01	1.92E-01	4.24E-02	8.14E-02	1.79E-02	5.02E-03	2.59E-02
Est Hourly	Fuel Consumption (gal/hr):			2.4	3.1	5.7	8.5	2.4	5.0	1.0	0.8
Est Load F	-actor:			0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
Est Load F	actor × bhp			38.75	50.25	92.5	137.5	39.25	81.25	16.25	12.5
Manufactu	rer Diesel PM Emission Factor (g/bh	o-hr)		NA	NA	NA	0.14	NA	0.1	0.14	NA
Converted	Diesel PM Emission Factor (lbs/Mga	l)		NA	NA	NA	4.984	NA	3.560	4.984	NA
Default SC	CAQMD (lbs/Mgal)	33.5	lbs/Mgal								
^a Hourly us	age based on engine fuel comsumpti	on (gal/hr)									
^b In referen	ce to guidance provided in apprendix	D of OHHEA, Tom Chico	of SCAQMD								
said in a p	phone conversation 20 May 2008 that	diesel PM represents the	sole toxicity								
from diese	el combustion in ICEs and should be	the only chemical quantifie	d for diesel ICEs								
in SCAQN	MD HRAs										
^c Diesel PM	1 emission factors obtained from man	ufactuer specification shee	ets;								
when spe	ecificion sheets were not available, re	ferred to default SCADMD	emission factors								

		T	1			1	1	1	1		
			Name:	ICE75	ICE76	ICE77	ICE78	ICE79	ICE80	ICE81	
			Number:	10138	10139	10140	10141	10142	10143	10144	
			Equipment:	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	
			Location:	Dicksen Art	East Melnitz	Grad School Edu	Melnitz Hall	Campus Wide	Campus Wide	Park Str 8	
			Size (bhp):	50	50	50	50	50	50	50	
			SCAQMD Permit:	Exempt2	Exempt3	Exempt4	Exempt5	Exempt6	Exempt7	Exempt8	Total
			Hourly Usage ^a (Mgal):	0.0008	0.0008	0.0008	0.0008	0.0008	0.0008	0.0008	Emissions
CAS	Pollutant ^b		Emission Factor ^c (lbs/Mgal)	33.5000	33.5000	33.5000	33.5000	33.5000	33.5000	33.5000	(lb/yr)
9901	Diesel Exhaust (particulates)			2.59E-02	2.59E-02	2.59E-02	2.59E-02	2.59E-02	2.59E-02	2.59E-02	1.44E+01
Est Hourly	Fuel Consumption (gal/hr):			0.8	0.8	0.8	0.8	0.8	0.8	8.0	
Est Load I	Factor:			0.25	0.25	0.25	0.25	0.25	0.25	0.25	
Est Load	Factor × bhp			12.5	12.5	12.5	12.5	12.5	12.5	12.5	
Manufactu	urer Diesel PM Emission Factor (g/bh	p-hr)		NA	NA	NA	NA	NA	NA	NA	
Converted	d Diesel PM Emission Factor (lbs/Mga	ıl)		NA	NA	NA	NA	NA	NA	NA	
Default S0	CAQMD (lbs/Mgal)	33.5	lbs/Mgal								
^a Hourly us	age based on engine fuel comsumpti	on (gal/hr)									
^b In referer	nce to guidance provided in apprendix	D of OHHEA, Tom Chico	of SCAQMD								
said in a	phone conversation 20 May 2008 tha	t diesel PM represents the	sole toxicity								
from dies	el combustion in ICEs and should be	the only chemical quantifie	d for diesel ICEs								
in SCAQI	MD HRAs										
^c Diesel PN	M emission factors obtained from mar	nufactuer specification shee	ets;								
when sp	ecificion sheets were not available, re	ferred to default SCADMD	emission factors								

	Name:	ICE9	ICE10	ICE11	ICE12	ICE13	ICE14	ICE15	ICE16
	Number:	10072	10073	10074	10075	10076	10077	10078	10079
	Equipment:	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen
	Location:	Cogen	Ackerman	Young Hall E	MSB	STRB	UCPD NE	PS 1	Gonda
	Size (bhp):	2220	746	1750	1323	668	553	750	1850
	SCAQMD Permit:	D75643	D89196	D88255	F00371	F11549	F23691	F2943	F9960
	Annual Usage ^{a,b,c} (Mgal):	0.624	0.070	0.164	0.124	0.063	0.052	0.070	0.173
CAS Pollutant ^d	Emission Factor ^e (lbs/Mgal)	3.560	21.362	33.500	18.158	21.362	30.975	17.802	2.848
9901 Diesel Exhaust (particulates)		2.22E+00	1.49E+00	5.49E+00	2.25E+00	1.34E+00	1.60E+00	1.25E+00	4.94E-01
Est Annual Fuel Usage (gal/yr):		624.04	69.90	163.97	123.96	62.59	51.82	70.27	173.34
Est Hourly Fuel Consumption (gal/hr):		103.100	11.5	27.1	20.5	10.3	8.6	11.6	28.6
Est Annual Hourly Usage (hr/yr):		6.053	6.05	6.05	6.05	6.05	6.05	6.05	6.05
Est Load Factor:		0.750	0.25	0.25	0.25	0.25	0.25	0.25	0.25
Est Load Factor × bhp		1665	187	438	331	167	138	188	463
Manufacturer Diesel PM Emission Factor (g/l	bhp-hr)	0.1	0.6	NA	0.51	0.6	0.87	0.5	80.0
Converted Diesel PM Emission Factor (lbs/M	lgal)	3.560	21.362	NA	18.158	21.362	30.975	17.802	2.848
Default SCAQMD (lbs/Mgal)	33.5 lbs/Mgal								
^a Annual usage estimated based on engine size	ze and reported diesel usage								
^b Diesel usage reported on the 2006/2007 SC	AQMD Annual Air Emission Report								
^c Usage distribution (gal) provided by Environ	nental Programs Manager David Ott 4/21/20	008							
dIn reference to guidance provided in appren	dix D of OHHEA, Tom Chico of SCAQMD								
said in a phone conversation 20 May 2008 to	hat diesel PM represents the sole toxicity								
from diesel combustion in ICEs and should be	be the only chemical quantified for diesel IC	Es							
in SCAQMD HRAs									
^e Diesel PM emission factors obtained from m	nanufacturer specification sheets;								
when specificion sheets were not available,	referred to default SCADMD emission fact	ors							
Distribution (gal):	2826 North Campus								
Distribution (gal):	8750 Facilities								
Distribution (gal):	11576 Total								
Total bhp of ICE's at the North Campus	3824								
Total bhp of ICE's at Facilities	59164								

			Name:	ICE17	ICE18	ICE19	ICE20	ICE21	ICE22	ICE23	ICE24
			Number:	10080	10081	10082	10083	10084	10085	10086	10087
			Equipment:	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen					
			Location:	UCLA Med Ctr	Macdonald Lab	AGSM South	Seas IV NW				
			Size (bhp):	1260	1260	1310	1310	1750	890	1490	1095
			SCAQMD Permit:	D78147	D78148	D78149	D78150	D79963	D48280	D87699	D99790
			Annual Usage ^{a,b,c} (Mgal):	0.354	0.354	0.368	0.368	0.492	0.083	0.140	0.103
CAS	Pollutant ^d		Emission Factor ^e (lbs/Mgal)	2.563	2.563	2.466	2.466	33.500	16.021	33.500	33.500
9901	Diesel Exhaust (particulates)			9.08E-01	9.08E-01	9.08E-01	9.08E-01	1.65E+01	1.34E+00	4.68E+00	3.44E+00
Est Annual F	Fuel Usage (gal/yr):			354.18	354.18	368.24	368.24	491.92	83.39	139.61	102.60
Est Hourly F	uel Consumption (gal/hr):			58.5	58.5	60.8	60.8	81.3	13.8	23.1	17.0
Est Annual I	lourly Usage (hr/yr):			6.05	6.05	6.05	6.05	6.05	6.05	6.05	6.05
Est Load Fa	ctor:			0.75	0.75	0.75	0.75	0.75	0.25	0.25	0.25
Est Load Fa	ctor × bhp			945	945	983	983	1313	223	373	274
Manufacture	r Diesel PM Emission Factor (g/	bhp-hr)		0.15	0.15	0.15	0.15	NA	0.45	NA	NA
Converted D	iesel PM Emission Factor (lbs/N	1gal)		2.563	2.563	2.466	2.466	NA	16.021	NA	NA
Default SCA	QMD (lbs/Mgal)	33.5	lbs/Mgal								
^a Annual usa	ge estimated based on engine si	ze and repo	orted diesel usage								
^b Diesel usag	e reported on the 2006/2007 SC	AQMD Ann	ual Air Emission Report								
^c Usage distr	bution (gal) provided by Environ	nental Progi	rams Manager David Ott 4/21/20								
dIn reference	to guidance provided in appren	dix D of OF	IHEA, Tom Chico of SCAQMD								
said in a ph	one conversation 20 May 2008 t	hat diesel F	M represents the sole toxicity								
from diesel	combustion in ICEs and should be	be the only	chemical quantified for diesel IC								
in SCAQMI	HRAs										
^e Diesel PM e	emission factors obtained from m	nanufacture	r specification sheets;								
when spec	ficion sheets were not available,	referred to	default SCADMD emission factor	l .							
Distribution	(gal):	2826	North Campus								
Distribution	(gal):	8750	Facilities								
Distribution	(gal):	11576	Total								
Total bhp of	ICE's at the North Campus	3824									
-	ICE's at Facilities	59164									

	Name:	ICE25	ICE26	ICE27	ICE28	ICE29	ICE30	ICE31	ICE32
	Number:	10088	10089	10090	10091	10092	10093	10094	10095
	Equipment:	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen
	Location:	Campus Wide	Rehab Cen	Phys And Astrom	SRB I (NRB)	CNSI	SRB II	Rep Hospital 1	Rep Hospital 2
	Size (bhp):	2514	635	910	2000	2000	2000	2000	2000
	SCAQMD Permit:	F37551	F52213	F58406	F56614	F71101	F71100	F78903	F78904
	Annual Usage ^{a,b,c} (Mgal):	0.236	0.059	0.085	0.187	0.187	0.187	0.562	0.562
CAS Pollutant ^d	Emission Factor ^e (Ibs/Mgal)	33.500	3.916	1.068	2.670	2.670	2.670	2.670	2.670
9901 Diesel Exhaust (particulates)		7.89E+00	2.33E-01	9.11E-02	5.00E-01	5.00E-01	5.00E-01	1.50E+00	1.50E+00
Est Annual Fuel Usage (gal/yr):		235.56	59.50	85.27	187.40	187.40	187.40	562.19	562.19
Est Hourly Fuel Consumption (gal/hr):		38.9	9.8	14.1	31.0	31.0	31.0	92.9	92.9
Est Annual Hourly Usage (hr/yr):		6.05	6.05	6.05	6.05	6.05	6.05	6.05	6.05
Est Load Factor:		0.25	0.25	0.25	0.25	0.25	0.25	0.75	0.75
Est Load Factor × bhp		629	159	228	500	500	500	1500	1500
Manufacturer Diesel PM Emission Factor (g/bhp-hr)		NA	0.11	0.03	0.075	0.075	0.075	0.075	0.075
Converted Diesel PM Emission Factor (lbs/Mgal)		NA	3.916	1.068	2.670	2.670	2.670	2.670	2.670
Default SCAQMD (lbs/Mgal) 33.5	lbs/Mgal								
^a Annual usage estimated based on engine size and repo	orted diesel usage								
^b Diesel usage reported on the 2006/2007 SCAQMD Ann	ual Air Emission Report								
^c Usage distribution (gal) provided by Enviromental Progr	ams Manager David Ott 4/21/2	(
dIn reference to guidance provided in apprendix D of OH	IHEA, Tom Chico of SCAQMD								
said in a phone conversation 20 May 2008 that diesel P	M represents the sole toxicity								
from diesel combustion in ICEs and should be the only of	chemical quantified for diesel IC	,							
in SCAQMD HRAs									
^e Diesel PM emission factors obtained from manufacture	r specification sheets;								
when specificion sheets were not available, referred to	default SCADMD emission fact	(
Distribution (gal): 2826	North Campus								
Distribution (gal): 8750	Facilities								
Distribution (gal): 11576	Total								
Total bhp of ICE's at the North Campus 3824									
Total bhp of ICE's at Facilities 59164									

		Name:	ICE33	ICE34	ICE35	ICE36	ICE37	ICE38	ICE39	ICE40
		Number:		10097	10098	10099	10100	10101	10102	10103
		Equipment:		ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen
			Rep Hospital 3	Rep Hospital 4		Powell / kinsey	PKS#5,4,7	Eng V	Kerckhoff	Sunset Rec NE
		Size (bhp):		2000	1881	755	3622	3057	377	66
		SCAQMD Permit:		F78906	F90961	F82412	Subitted2	Subitted3	F37887	D88184
		Annual Usage ^{a,b,c} (Mgal):		0.562	0.176	0.071	0.339	0.286	0.035	0.006
CAS Pollutant ^d		Emission Factor ^e (Ibs/Mgal)		2.670	5.340	2.670	1.282	4.272	19.582	33.500
9901 Diesel Exhaust (particulates)		Linission ractor (ibs/mgar)	1.50E+00	1.50E+00	9.41E-01	1.89E-01	4.35E-01	1.22E+00	6.92E-01	2.07E-01
Dieser Extraust (particulates)			1.50E+00	1.50E+00	3.412 01	1.002 01	4.002 01	1.222+00	0.322 01	2.07 2 01
Est Annual Fuel Usage (gal/yr):			562.19	562.19	176.25	70.74	339.38	286.44	35.32	6.18
Est Hourly Fuel Consumption (gal/hr):			92.9	92.9	29.1	11.7	56.1	47.3	5.8	1.0
Est Annual Hourly Usage (hr/yr):			6.05	6.05	6.05	6.05	6.05	6.05	6.05	6.05
Est Load Factor:			0.75	0.75	0.25	0.25	0.25	0.25	0.25	0.25
Est Load Factor × bhp			1500	1500	470	189	906	764	94	17
Manufacturer Diesel PM Emission Factor (g/b	ohp-hr)		0.075	0.075	0.15	0.075	0.036	0.12	0.55	NA
Converted Diesel PM Emission Factor (lbs/M	gal)		2.670	2.670	5.340	2.670	1.282	4.272	19.582	NA
Default SCAQMD (lbs/Mgal)	33.5	lbs/Mgal								
^a Annual usage estimated based on engine size	ze and repo	orted diesel usage								
^b Diesel usage reported on the 2006/2007 SC.	AQMD Ann	ual Air Emission Report								
^c Usage distribution (gal) provided by Environ	ental Progr	rams Manager David Ott 4/21/2	(
dIn reference to guidance provided in apprend	dix D of OH	IHEA, Tom Chico of SCAQMD								
said in a phone conversation 20 May 2008 th	nat diesel P	M represents the sole toxicity								
from diesel combustion in ICEs and should b	e the only o	chemical quantified for diesel IC	;							
in SCAQMD HRAs										
^e Diesel PM emission factors obtained from m	anufacture	r specification sheets;								
when specificion sheets were not available,	referred to	default SCADMD emission fact	(
Distribution (gal):	2826	North Campus								
Distribution (gal):	8750	Facilities								
Distribution (gal):	11576	Total								
Tabal blance (1051s at the Nauth Consumer	2004									
Total bhp of ICE's at the North Campus	3824									-
Total bhp of ICE's at Facilities	59164									

			Name:	ICE41	ICE42	ICE43	ICE44	ICE45	ICE46	ICE47	ICE48
			Number:	10104	10105	10106	10107	10108	10109	10110	10111
			Equipment:		ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen
			Location:	Boelter III	Royce NW	Boelter II 12400	Boyer	PS 4	SRL N	Life Sciences	Franz Hall
			Size (bhp):	443	235	166	390	519	377	250	166
			SCAQMD Permit:	D89155	D98768	D98801	F00370	F17312	F2279	F23692	F37922
			Annual Usage ^{a,b,c} (Mgal):	0.042	0.022	0.016	0.037	0.049	0.035	0.023	0.016
CAS	Pollutant ^d		Emission Factor ^e (lbs/Mgal)	24.566	33.500	33.500	17.090	33.500	19.938	33.500	33.500
9901	Diesel Exhaust (particulates)			1.02E+00	7.38E-01	5.21E-01	6.24E-01	1.63E+00	7.04E-01	7.85E-01	5.21E-01
Est Annual F	uel Usage (gal/yr):			41.51	22.02	15.55	36.54	48.63	35.32	23.42	15.55
Est Hourly F	uel Consumption (gal/hr):			6.9	3.6	2.6	6.0	8.0	5.8	3.9	2.6
Est Annual F	lourly Usage (hr/yr):			6.05	6.05	6.05	6.05	6.05	6.05	6.05	6.05
Est Load Fac	ctor:			0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
Est Load Fac	ctor × bhp			111	59	42	98	130	94	63	42
Manufacture	r Diesel PM Emission Factor (g/l	ohp-hr)		0.69	NA	NA	0.48	NA	0.56	NA	NA
Converted D	iesel PM Emission Factor (lbs/M	gal)		24.566	NA	NA	17.090	NA	19.938	NA	NA
Default SCA	QMD (lbs/Mgal)	33.5	lbs/Mgal								
^a Annual usaç	ge estimated based on engine size	ze and repo	orted diesel usage								
^b Diesel usag	e reported on the 2006/2007 SC	AQMD Ann	nual Air Emission Report								
^c Usage distri	bution (gal) provided by Environ	ental Prog	rams Manager David Ott 4/21/20								
dIn reference	to guidance provided in appren	dix D of OF	HEA, Tom Chico of SCAQMD								
said in a ph	one conversation 20 May 2008 tl	nat diesel F	PM represents the sole toxicity								
from diesel	combustion in ICEs and should b	e the only	chemical quantified for diesel IC								
in SCAQME	HRAs										
^e Diesel PM e	emission factors obtained from m	anufacture	r specification sheets;								
when speci	ficion sheets were not available,	referred to	default SCADMD emission factor								
Distribution (gal):	2826	North Campus								
Distribution (gal):	8750	Facilities								
Distribution (gal):	11576	Total								
•	ICE's at the North Campus	3824									
Total bhp of	ICE's at Facilities	59164									

			Name:	ICE49	ICE50	ICE51	ICE52	ICE53	ICE54	ICE55	ICE56
			Number:	10112	10113	10114	10115	10116	10117	10118	10119
			Equipment:		ICE, Em Gen						
				Math Sciences	SRL	PS 8 SE	Unix	Bunche	LATC	Pauley	Law Library
			Size (bhp):	60	168	168	107	100	135	135	370
			SCAQMD Permit:	F39010	F4681	F4806	F4808	F5266	F5268	F5269	F5492
			Annual Usage ^{a,b,c} (Mgal):	0.006	0.016	0.016	0.010	0.009	0.013	0.013	0.035
CAS	Pollutant ^d		Emission Factor ^e (lbs/Mgal)	33.500	33.500	33.500	33.500	33.500	33.500	33.500	33.500
9901	Diesel Exhaust (particulates)			1.88E-01	5.27E-01	5.27E-01	3.36E-01	3.14E-01	4.24E-01	4.24E-01	1.16E+00
Est Annual F	uel Usage (gal/yr):			5.62	15.74	15.74	10.03	9.37	12.65	12.65	34.67
Est Hourly F	uel Consumption (gal/hr):			0.9	2.6	2.6	1.7	1.5	2.1	2.1	5.7
Est Annual F	lourly Usage (hr/yr):			6.05	6.05	6.05	6.05	6.05	6.05	6.05	6.05
Est Load Fa	ctor:			0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
Est Load Fa	ctor × bhp			15	42	42	27	25	34	34	93
Manufacture	r Diesel PM Emission Factor (g/h	ohp-hr)		NA	NA	NA	NA	NA	NA	NA	NA
Converted D	iesel PM Emission Factor (lbs/M	gal)		NA	NA	NA	NA	NA	NA	NA	NA
Default SCA	QMD (lbs/Mgal)	33.5	lbs/Mgal								
^a Annual usaç	ge estimated based on engine siz	ze and repo	orted diesel usage								
^b Diesel usag	e reported on the 2006/2007 SC	AQMD Ann	ual Air Emission Report								
^c Usage distri	bution (gal) provided by Environ	nental Progr	rams Manager David Ott 4/21/20								
dIn reference	to guidance provided in appren	dix D of OH	IHEA, Tom Chico of SCAQMD								
said in a ph	one conversation 20 May 2008 tl	hat diesel P	M represents the sole toxicity								
from diesel	combustion in ICEs and should b	e the only	chemical quantified for diesel IC								
in SCAQME	HRAs										
^e Diesel PM e	emission factors obtained from m	anufacture	r specification sheets;								
when speci	ficion sheets were not available,	referred to	default SCADMD emission factor	(
Distribution (gal):	2826	North Campus								
Distribution (gal):	8750	Facilities								
Distribution (gal):	11576	Total								
-	ICE's at the North Campus	3824									
Total bhp of	ICE's at Facilities	59164									

UCLA Toxic Emissions - LRDP Amendment Scenario.xls ICE, Yr - Diesel Facilites (Ib/yr)

			Name:	ICE57	ICE58	ICE59	ICE60	ICE61	ICE62	ICE63	ICE64
			Number:	10120	10121	10122	10123	10124	10125	10126	10127
			Equipment:	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen
			Location:	200 Med Plaza	300 Med Plaza	200 Med Plaza	Env Service Building	Parking Structure 7	YRL	Campus Wide	Campus Wide
			Size (bhp):	1095	335	1095	535	317	260	216	490
			SCAQMD Permit:	D77804	D77805	D77806	F49789	F52215	F52214	F37549	F58435
			Annual Usage ^{a,b,c} (Mgal):	0.103	0.031	0.103	0.050	0.030	0.024	0.020	0.046
CAS	Pollutant ^d		Emission Factor ^e (Ibs/Mgal)	33.500	6.765	33.500	14.241	14.241	33.500	7.121	0.712
9901	Diesel Exhaust (particulates)			3.44E+00	2.12E-01	3.44E+00	7.14E-01	4.23E-01	8.16E-01	1.44E-01	3.27E-02
Est Annual F	uel Usage (gal/yr):			102.60	31.39	102.60	50.13	29.70	24.36	20.24	45.91
Est Hourly Fu	uel Consumption (gal/hr):			17.0	5.2	17.0	8.3	4.9	4.0	3.3	7.6
Est Annual H	ourly Usage (hr/yr):			6.05	6.05	6.05	6.05	6.05	6.05	6.05	6.05
Est Load Fac	etor:			0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
Est Load Fac	ctor × bhp			274	84	274	134	79	65	54	123
Manufacture	Diesel PM Emission Factor (g/l	bhp-hr)		NA	0.19	NA	0.4	0.4	NA	0.2	0.02
Converted D	iesel PM Emission Factor (lbs/M	gal)		NA	6.765	NA	14.241	14.241	NA	7.121	0.712
Default SCA	QMD (lbs/Mgal)	33.5	5 lbs/Mgal								
^a Annual usag	e estimated based on engine size	ze and rep	orted diesel usage								
^b Diesel usag	e reported on the 2006/2007 SC	AQMD Anı	nual Air Emission Report								
^c Usage distri	oution (gal) provided by Environ	nental Prog	grams Manager David Ott 4/21/20								
dIn reference	to guidance provided in appren-	dix D of Ol	HHEA, Tom Chico of SCAQMD								
said in a pho	one conversation 20 May 2008 to	hat diesel I	PM represents the sole toxicity								
from diesel of	combustion in ICEs and should b	e the only	chemical quantified for diesel IC								
in SCAQMD											
^e Diesel PM e	mission factors obtained from m	anufacture	er specification sheets;								
when speci	ficion sheets were not available,	referred to	default SCADMD emission factor								
Distribution (gal):	2826	North Campus								
Distribution (gal):	8750	Facilities								
Distribution (gal):	11576	Total								
·	CE's at the North Campus	3824									
Total bhp of	CE's at Facilities	59164									

UCLA Toxic Emissions - LRDP Amendment Scenario.xls ICE, Yr - Diesel Facilites (Ib/yr)

			Name:	ICE65	ICE66	ICE67	ICE68	ICE69	ICE70	ICE71	ICE72	ICE73
			Number:	10128	10129	10130	10131	10132	10133	10134	10135	10136
			Equipment:		ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen		ICE, Em Gen
			Location:	CHS	Broad Art Center	Campus Wide	Public Policy	Murphy Hall	Hilbrom	Hedrick Tower	MS	PKS#3
			Size (bhp):	277	490	155	201	370	550	157	325	65
			SCAQMD Permit:	F62618	F58436	F37540	F4805	F4983	F73384	F73157	F89260	submitted1
			Annual Usage ^{a,b,c} (Mgal):	0.026	0.046	0.015	0.019	0.035	0.052	0.015	0.030	0.006
CAS	Pollutant ^d		Emission Factor ^e (lbs/Mgal)	4.984	0.712	33.500	33.500	33.500	4.984	33.500	3.560	4.984
9901	Diesel Exhaust (particulates)			1.29E-01	3.27E-02	4.87E-01	6.31E-01	1.16E+00	2.57E-01	4.93E-01	1.08E-01	3.04E-02
Est Annual F	uel Usage (gal/yr):			25.95	45.91	14.52	18.83	34.67	51.53	14.71	30.45	6.09
Est Hourly F	uel Consumption (gal/hr):			4.3	7.6	2.4	3.1	5.7	8.5	2.4	5.0	1.0
Est Annual F	lourly Usage (hr/yr):			6.05	6.05	6.05	6.05	6.05	6.05	6.05	6.05	6.05
Est Load Fa	ctor:			0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
Est Load Fa	ctor × bhp			69	123	39	50	93	138	39	81	16
Manufacture	r Diesel PM Emission Factor (g/l	ohp-hr)		0.14	0.02	NA	NA	NA	0.14	NA	0.1	0.14
Converted D	iesel PM Emission Factor (lbs/M	gal)		4.984	0.712	NA	NA	NA	4.984	NA	3.560	4.984
Default SCA	QMD (lbs/Mgal)	33.5	lbs/Mgal									
	ge estimated based on engine size		ŭ									
	e reported on the 2006/2007 SC											
	bution (gal) provided by Environ		•									
	to guidance provided in appren		*									
	one conversation 20 May 2008 th											
	combustion in ICEs and should be	e the only	chemical quantified for diesel IC									
in SCAQME												
	emission factors obtained from m											
when speci	ficion sheets were not available,	referred to	default SCADMD emission factor	:								
Distribution		2826	North Campus									
Distribution (8750	Facilities									
Distribution	gai):	11576	Total									
Total bbs of	ICE's at the North Comput	3824										
•	ICE's at the North Campus	59164										
rotal pnp of	ICE's at Facilities	29164									1	

UCLA Toxic Emissions - LRDP Amendment Scenario.xls ICE, Yr - Diesel Facilites (Ib/yr)

			Name:	ICE74	ICE75	ICE76	ICE77	ICE78	ICE79	ICE80	ICE81	
			Number:	10137	10138	10139	10140	10141	10142	10143	10144	
			Equipment:	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	
				CHS Park Str	Dicksen Art	East Melnitz	Grad School Edu	Melnitz Hall	Campus Wide	Campus Wide	Park Str 8	
			Size (bhp):	50	50	50	50	50	50	50	50	
			SCAQMD Permit:	Exempt1	Exempt2	Exempt3	Exempt4	Exempt5	Exempt6	Exempt7	Exempt8	Total
			Annual Usage ^{a,b,c} (Mgal):	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	Emissions
CAS	Pollutant ^d		Emission Factor ^e (Ibs/Mgal)	33.500	33.500	33.500	33.500	33.500	33.500	33.500	33.500	(lb/yr)
9901	Diesel Exhaust (particulates)			1.57E-01	1.57E-01	1.57E-01	1.57E-01	1.57E-01	1.57E-01	1.57E-01	1.57E-01	8.71E+01
Est Annua	al Fuel Usage (gal/yr):			4.68	4.68	4.68	4.68	4.68	4.68	4.68	4.68	
Est Hourly	Fuel Consumption (gal/hr):			0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	
Est Annua	al Hourly Usage (hr/yr):			6.05	6.05	6.05	6.05	6.05	6.05	6.05	6.05	
Est Load	Factor:			0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	
Est Load	Factor × bhp			13	13	13	13	13	13	13	13	
Manufact	urer Diesel PM Emission Factor (g/	bhp-hr)		NA	NA	NA	NA	NA	NA	NA	NA	
Converted	d Diesel PM Emission Factor (lbs/N	1gal)		NA	NA	NA	NA	NA	NA	NA	NA	
Default S	CAQMD (lbs/Mgal)	33.5	lbs/Mgal									
^a Annual u	sage estimated based on engine si	ze and repo	orted diesel usage									
^b Diesel us	age reported on the 2006/2007 SC	AQMD Ann	nual Air Emission Report									
^c Usage di	stribution (gal) provided by Environ	nental Progi	rams Manager David Ott 4/21/2	(
^d In refere	nce to guidance provided in appren	dix D of OF	HEA, Tom Chico of SCAQMD									
said in a	phone conversation 20 May 2008 t	hat diesel P	PM represents the sole toxicity									
from dies	el combustion in ICEs and should t	oe the only	chemical quantified for diesel IC	,								
in SCAQ	MD HRAs											
^e Diesel Pl	M emission factors obtained from m	nanufacture	r specification sheets;									
when sp	ecificion sheets were not available,	referred to	default SCADMD emission fact	(
Distribution	on (gal):	2826	North Campus									
Distribution	on (gal):	8750	Facilities									
Distribution	on (gal):	11576	Total									
Total bhp	of ICE's at the North Campus	3824										
Total bhp	of ICE's at Facilities	59164										

UCLA Toxic Emissions - LRDP Amendment Scenario.xls ICE, Hr - Diesel NEW - LRDP (lb/yr)

	1				,	
		Name	ICE82	ICE83	ICE84	ICE85
		Number:	20009	20010	20011	20012
		Equipment:	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen
		Location:	Sproul South	Sproul West	Tiverton Medical Edu	Outpatient Facility
		Size (bhp):	335	335	500	500
		SCAQMD Permit:	New	New	New	New
		Hourly Usage ^a (Mgal):	0.005	0.005	0.008	0.008
CAS	Pollutant	Emission Factor ^c (lbs/Mgal)	3.560	3.560	3.560	3.560
	Diesel Exhaust					
9901	(particulates) ^c		1.85E-02	1.85E-02	2.76E-02	2.76E-02
Est Hourly Fu	el Consumption (ga	al/hr):	5.19	5.19	7.74	7.74
Est Load Fac	tor:		0.25	0.25	0.25	0.25
ATCM Regula	ated Diesel PM Em	ission Factor (g/bhp-hr):	0.1	0.1	0.1	0.1
Converted Die	esel PM Emission I	Factor (lbs/Mgal):	3.56	3.56	3.56	3.56
aHourly usage	e based on engine f	fuel comsumption (gal/hr)				
bIn reference	to guidance provide	ed in apprendix D of OHHEA, Tor	n Chico of SCAQMI)		
said in a pho	ne conversation 20	May 2008 that diesel PM repres	ents the sole toxicity	1		
from diesel c	ombustion in ICEs	and should be the only chemical	quantified for diesel	ICEs		
in SCAQMD	HRAs		•			
^c Diesel PM er	mission factors ass	umed to be 0 .1 g/bhp-hr based o	n new engine ATCN	1 regulations		

UCLA Toxic Emissions - LRDP Amendment Scenario.xls ICE, Hr - Diesel NEW - LRDP (lb/yr)

		Name	ICE86	ICE87	ICE88	ICE89	
		Number:	20013	20014	20015	20016	
		Equipment:	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	
		Location:	Wilshire Corridor	U&L DeNeve	Sproul Complex	LSR	
		Size (bhp):	500	670	1340	500	
		SCAQMD Permit:	New	New	New	New	Total
		Hourly Usage ^a (Mgal):	0.008	0.010	0.021	0.008	Emissions
CAS	Pollutant	Emission Factor ^c (lbs/Mgal)	3.560	3.560	3.560	3.560	(lb/yr)
	Diesel Exhaust						
9901	(particulates) ^c		2.76E-02	3.69E-02	7.39E-02	2.76E-02	2.58E-01
Est Hourly Fu	el Consumption (ga	al/hr):	7.74	10.37	20.74	7.74	
Est Load Fac	tor:		0.25	0.25	0.25	0.25	
ATCM Regula	ated Diesel PM Em	ission Factor (g/bhp-hr):	0.1	0.1	0.1	0.1	
Converted Di	esel PM Emission I	Factor (lbs/Mgal):	3.56	3.56	3.56	3.56	
aHourly usage	e based on engine f	fuel comsumption (gal/hr)					
bIn reference	to guidance provide	ed in apprendix D of OHHEA, To					
said in a pho	ne conversation 20	May 2008 that diesel PM repres					
from diesel o	combustion in ICEs	and should be the only chemical					
in SCAQMD	HRAs						
^c Diesel PM er	mission factors ass	umed to be 0 .1 g/bhp-hr based c					

UCLA Toxic Emissions - LRDP Amendment Scenario.xls ICE, Yr - Diesel New - LRDP (Ib/hr)

						I				
	Name	ICE82	ICE83	ICE84	ICE85	ICE86	ICE87	ICE88	ICE89	
	Number:	20009	20010	20011	20012	20013	20014	20015	20016	
	Equipment:	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	ICE, Em Gen	
	Location:	Sproul South	Sproul West	Tiverton Medical Edu	Outpatient Facility	Wilshire Corridor	U&L DeNeve	Sproul Complex	LSR	
	Size (bhp):	335	335	500	500	500	670	1340	500	
	SCAQMD Permit:	New	New	New	New	New	New	New	New	Total
	Annual Usage ^a (Mgal):	0.031	0.031	0.046	0.046	0.046	0.062	0.124	0.046	Emissions
CAS Pollutant ^b	Emission Factor ^c (lbs/Mgal)	3.560	3.560	3.560	3.560	3.560	3.560	3.560	3.560	(lb/yr)
Diesel Exhaust (particulates) ^b		1.11E-01	1.11E-01	1.65E-01	1.65E-01	1.65E-01	2.22E-01	4.43E-01	1.65E-01	1.55E+00
Est Annual Fuel Usage (gal/yr):		31.12	31.12	46.44	46.44	46.44	62.23	124.46	46.44	
Est Hourly Fuel Consumption (gal/	'hr):	5.19	5.19	7.74	7.74	7.74	10.37	20.74	7.74	
Est Annual Hourly Usage (hr/yr):		6	6	6	6	6	6	6	6	
Est Load Factor:		0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	
ATCM Regulated Diesel PM Emiss	sion Factor (g/bhp-hr):	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	
Converted Diesel PM Emission Fa	actor (lbs/Mgal)	3.56	3.56	3.56	3.56	3.56	3.56	3.56	3.56	
Annual usage based on the assur	I nption that the engine will operate (6 hours per year f	or maintenance							
^b In reference to guidance provided	I in apprendix D of OHHEA, Tom C	hico of SCAQMD								
said in a phone conversation 20 M	May 2008 that diesel PM represents	the sole toxicity								
from diesel combustion in ICEs ar	nd should be the only chemical qua	ntified for diesel I	CEs							
in SCAQMD HRAs										
^c Diesel PM emission factors assur	med to be 0 .1 g/bhp-hr based on n	ew engine ATCM	regulations							

UCLA Toxic Emissions - LRDP Amendment Scenario.xls Spray Booth, Hr (lb/hr)

	Name:		BOOTH1		BOOTH1		BOOTH1
	Number:		10145		10145		10145
	Equipment:		Spray Booth, CSB I		Spray Booth, CSB I		Spray Booth, CSB I
	SCAQMD Permit:		D44160		D44160		D44160
	Manufacturer		Varathane Elite		Polystar		Ultrastar
	Product ^a :		Finish		Lacquer Primer		Lacquer Sealer
	Density (lb/gal):		8.5902		11.259		8.5068
	Hourly Usage (gal) ^b :		0.75		0.75		0.75
			Emissions		Emissions		Emissions
Pollutant		Wt %	(lb/yr)	Wt %	(lbs/yr)	Wt %	(lbs/yr)
1-Methoxy-2-propanol		0.00	0.00	2.00	0.17	4.00	0.26
Trichloroethylene		1.50	0.10	0.00	0.00	0.00	0.00
Trimethylbenzene, 1,2,4-		0.00	0.00	0.00	0.00	1.00	0.06
^a Product data based on MSDS							
^b Assumed max hourly usage of 3	gallons per						
hour based on daily material rec	ord keeping logs						
^c Emissions based on a worst cas	e composite material				·		

UCLA Toxic Emissions - LRDP Amendment Scenario.xls Spray Booth, Hr (lb/hr)

	Name:			BOOTH1		BOOTH1
	Number:			10145		10145 ^c
	Equipment:			Spray Booth, CSB I		Spray Booth, CSB I
	SCAQMD Permit:			D44160		D44160
	Manufacturer			Ultrastar		Worst Case
	Product ^a :			Lacquer Finish		Composite
	Density (lb/gal):			8.5902		8.59
	Hourly Usage (gal) ^b :			0.75		3
				Emissions		Emissions
Pollutant		Wt %	Wt %	(lbs/yr)	Wt %	(lbs/yr)
1-Methoxy-2-propanol		0.00	3.00	0.19	4.00	1.03
Trichloroethylene		1.50	0.00	0.00	1.50	0.39
Trimethylbenzene, 1,2,4-		0.00	1.00	0.06	1.00	0.26
^a Product data based on MSDS						
^b Assumed max hourly usage of 3	gallons per					
hour based on daily material rec	ord keeping logs					
^c Emissions based on a worst cas	e composite material					

UCLA Toxic Emissions - LRDP Amendment Scenario.xls Spray Booth, Yr (lb/hr)

	Name:		BOOTH1		BOOTH1
	Number:	·	10145		10145
			Spray Booth,		Spray Booth,
	Equipment:		CSB I		CSB I
	SCAQMD Permit:		D44160		D44160
	Manufacturer		Varathane Elite		Polystar
	Product ^a :		Finish		Lacquer Primer
	Density (lb/gal):		8.590		11.259
	Annual Usage (gal):		16.75		6.25
			Emissions		Emissions
Pollutant		Wt %	lb/yr	Wt %	lb/yr
1-Methoxy-2-propanol		0	0.00	2	1.41
Trichloroethylene		1.5	2.16	0	0.00
Trimethylbenzene, 1,2,4-		0	0.00	0	0.00
^a Product data based on MSDS					

UCLA Toxic Emissions - LRDP Amendment Scenario.xls Spray Booth, Yr (lb/hr)

	Name:			BOOTH1		BOOTH1		
	Number:			10145		10145		
				Spray Booth,		Spray Booth,		
	Equipment:			CSB I		CSB I		
	SCAQMD Permit:			D44160		D44160		
	Manufacturer			Ultrastar		Ultrastar	Total	
	Product ^a :			Lacquer Sealer		Lacquer Finish	Usage/Emissions	
	Density (lb/gal):			8.507		8.590	(gal/yr)	
	Annual Usage (gal):			45.5		62	130.5	
				Emissions		Emissions	Emissions	
Pollutant		Wt %	Wt %	lb/yr	Wt %	lb/yr	lb/yr	lb/gal
1-Methoxy-2-propanol		0	4	15.48	3.00	15.98	32.87	0.25
Trichloroethylene		1.5	0	0.00	0.00	0.00	2.16	0.02
Trimethylbenzene, 1,2,4-		0	1	3.87	1.00	5.33	9.20	0.07
^a Product data based on MSDS		·						

		Name:	LAB1	LAB2	LAB3	LAB3	LAB3	LAB3	LAB3	LAB3	LAB3	LAB3
		Number:	10146	10147	10148	10148	10148	10148	10148	10148	10148	10148
		Building:	REHAB CENTER	MED PLZA 300	CYCLOTRN BIO	DENTISTRY	DORIS STEIN	FACTOR	JULES STEIN	M DAVIES CC	PARKG ST CHS	PUBLIC HLTH
		Wet Floor Space (ft ²):	19720	2929	1050	29702	1580	38753	5575	10018	10568	15610
		Status:	Existing	Existing	Existing	Existing	Existing	Existing	Existing	Existing	Existing	Existing
CAS	Pollutant	Emissions ^a (lbs)										
75058	Acetonitrile	116.17	6.18E-04	9.18E-05	3.29E-05	9.31E-04	4.95E-05	1.21E-03	1.75E-04	3.14E-04	3.31E-04	4.89E-04
71432	Benzene	20.10	1.07E-04	1.59E-05	5.70E-06	1.61E-04	8.57E-06	2.10E-04	3.02E-05	5.43E-05	5.73E-05	8.47E-05
7726956	Bromine Compounds	128.79	6.85E-04	1.02E-04	3.65E-05	1.03E-03	5.49E-05	1.35E-03	1.94E-04	3.48E-04	3.67E-04	5.42E-04
75650	Butyl Alcohol, Tert-	0.54	2.87E-06	4.26E-07	1.53E-07	4.32E-06	2.30E-07	5.64E-06	8.11E-07	1.46E-06	1.54E-06	2.27E-06
56235	Carbon Tetrachloride	0.31	1.65E-06	2.45E-07	8.77E-08	2.48E-06	1.32E-07	3.24E-06	4.66E-07	8.37E-07	8.83E-07	1.30E-06
108907	Chlorobenzene	0.89	4.71E-06	7.00E-07	2.51E-07	7.09E-06	3.77E-07	9.26E-06	1.33E-06	2.39E-06	2.52E-06	3.73E-06
67663	Chloroform	122.36	6.51E-04	9.67E-05	3.47E-05	9.81E-04	5.22E-05	1.28E-03	1.84E-04	3.31E-04	3.49E-04	5.15E-04
106467	Dichlorobenzene, p-	0.35	1.89E-06	2.80E-07	1.00E-07	2.84E-06	1.51E-07	3.71E-06	5.34E-07	9.59E-07	1.01E-06	1.49E-06
68122	Dimethylformamide	14.10	7.50E-05	1.11E-05	4.00E-06	1.13E-04	6.01E-06	1.47E-04	2.12E-05	3.81E-05	4.02E-05	5.94E-05
123911	Dioxane, 1,4-	8.85	4.71E-05	7.00E-06	2.51E-06	7.10E-05	3.77E-06	9.26E-05	1.33E-05	2.39E-05	2.52E-05	3.73E-05
106898	Epichlorohydrin	0.00	3.04E-09	4.51E-10	1.62E-10	4.57E-09	2.43E-10	5.97E-09	8.58E-10	1.54E-09	1.63E-09	2.40E-09
107062	Ethylene Dichloride	0.01	7.62E-08	1.13E-08	4.06E-09	1.15E-07	6.10E-09	1.50E-07	2.15E-08	3.87E-08	4.08E-08	6.03E-08
50000	Formaldehyde	1405.52	7.48E-03	1.11E-03	3.98E-04	1.13E-02	5.99E-04	1.47E-02	2.11E-03	3.80E-03	4.01E-03	5.92E-03
110543	Hexane	995.79	5.30E-03	7.87E-04	2.82E-04	7.98E-03	4.25E-04	1.04E-02	1.50E-03	2.69E-03	2.84E-03	4.19E-03
302012	Hydrazine	0.01	6.08E-08	9.03E-09	3.24E-09	9.16E-08	4.87E-09	1.19E-07	1.72E-08	3.09E-08	3.26E-08	4.81E-08
7647010	Hydrogen Chloride	33.44	1.78E-04	2.64E-05	9.47E-06	2.68E-04	1.43E-05	3.50E-04	5.03E-05	9.04E-05	9.54E-05	1.41E-04
67630	Isopropyl Alcohol	34.38	1.83E-04	2.72E-05	9.74E-06	2.76E-04	1.47E-05	3.60E-04	5.17E-05	9.29E-05	9.80E-05	1.45E-04
67561	Methanol	894.93	4.76E-03	7.07E-04	2.54E-04	7.17E-03	3.82E-04	9.36E-03	1.35E-03	2.42E-03	2.55E-03	3.77E-03
75092	Methylene Chloride	624.98	3.33E-03	4.94E-04	1.77E-04	5.01E-03	2.66E-04	6.54E-03	9.40E-04	1.69E-03	1.78E-03	2.63E-03
127184	Perchloroethylene	0.19	9.87E-07	1.47E-07	5.25E-08	1.49E-06	7.91E-08	1.94E-06	2.79E-07	5.01E-07	5.29E-07	7.81E-07
110861	Pyridine	1.90	1.01E-05	1.50E-06	5.39E-07	1.52E-05	8.11E-07	1.99E-05	2.86E-06	5.14E-06	5.42E-06	8.01E-06
108883	Toluene	54.97	2.92E-04	4.34E-05	1.56E-05	4.41E-04	2.34E-05	5.75E-04	8.27E-05	1.49E-04	1.57E-04	2.32E-04
121448	Triethylamine	6.44	3.42E-05	5.09E-06	1.82E-06	5.16E-05	2.74E-06	6.73E-05	9.68E-06	1.74E-05	1.84E-05	2.71E-05
1330207	Xylenes	88.16	4.69E-04	6.97E-05	2.50E-05	7.07E-04	3.76E-05	9.22E-04	1.33E-04	2.38E-04	2.51E-04	3.71E-04
^a Source: L	CLA Laboratory Purchase Record	s January to December 2	2007									

		Name:	LAB3	LAB3	LAB3	LAB3	LAB3	LAB3	LAB3	LAB3	LAB3
		Number:	10148	10148	10148	10148	10148	10148	10148	10148	10148
		Building:	CLINICAL RES	VIVARIUM	700 WWPLAZA	BRAIN MAPPNG	BRAIN RSCH	CYCLOTRN ADD	HEALTH SCI	REED RESRCH	SEMEL INST
		Wet Floor Space (ft ²):	3836	8931	8598	251	28075	744	96291	14503	11131
		Status:	Existing	Existing	Existing	Existing	Existing	Existing	Existing	Existing	Existing
CAS	Pollutant	Emissions ^a (lbs)									
75058	Acetonitrile	116.17	1.20E-04	2.80E-04	2.70E-04	7.87E-06	8.80E-04	2.33E-05	3.02E-03	4.55E-04	3.49E-04
71432	Benzene	20.10	2.08E-05	4.84E-05	4.66E-05	1.36E-06	1.52E-04	4.04E-06	5.22E-04	7.87E-05	6.04E-05
7726956	Bromine Compounds	128.79	1.33E-04	3.10E-04	2.99E-04	8.72E-06	9.76E-04	2.59E-05	3.35E-03	5.04E-04	3.87E-04
75650	Butyl Alcohol, Tert-	0.54	5.58E-07	1.30E-06	1.25E-06	3.65E-08	4.08E-06	1.08E-07	1.40E-05	2.11E-06	1.62E-06
56235	Carbon Tetrachloride	0.31	3.21E-07	7.46E-07	7.18E-07	2.10E-08	2.35E-06	6.22E-08	8.05E-06	1.21E-06	9.30E-07
108907	Chlorobenzene	0.89	9.16E-07	2.13E-06	2.05E-06	5.99E-08	6.71E-06	1.78E-07	2.30E-05	3.46E-06	2.66E-06
67663	Chloroform	122.36	1.27E-04	2.95E-04	2.84E-04	8.29E-06	9.27E-04	2.46E-05	3.18E-03	4.79E-04	3.68E-04
106467	Dichlorobenzene, p-	0.35	3.67E-07	8.55E-07	8.23E-07	2.40E-08	2.69E-06	7.12E-08	9.22E-06	1.39E-06	1.07E-06
68122	Dimethylformamide	14.10	1.46E-05	3.40E-05	3.27E-05	9.55E-07	1.07E-04	2.83E-06	3.66E-04	5.52E-05	4.24E-05
123911	Dioxane, 1,4-	8.85	9.16E-06	2.13E-05	2.05E-05	6.00E-07	6.71E-05	1.78E-06	2.30E-04	3.46E-05	2.66E-05
106898	Epichlorohydrin	0.00	5.91E-10	1.37E-09	1.32E-09	3.86E-11	4.32E-09	1.15E-10	1.48E-08	2.23E-09	1.71E-09
107062	Ethylene Dichloride	0.01	1.48E-08	3.45E-08	3.32E-08	9.70E-10	1.08E-07	2.87E-09	3.72E-07	5.60E-08	4.30E-08
50000	Formaldehyde	1405.52	1.45E-03	3.39E-03	3.26E-03	9.52E-05	1.06E-02	2.82E-04	3.65E-02	5.50E-03	4.22E-03
110543	Hexane	995.79	1.03E-03	2.40E-03	2.31E-03	6.74E-05	7.54E-03	2.00E-04	2.59E-02	3.90E-03	2.99E-03
302012	Hydrazine	0.01	1.18E-08	2.75E-08	2.65E-08	7.74E-10	8.66E-08	2.29E-09	2.97E-07	4.47E-08	3.43E-08
7647010	Hydrogen Chloride	33.44	3.46E-05	8.06E-05	7.76E-05	2.26E-06	2.53E-04	6.71E-06	8.69E-04	1.31E-04	1.00E-04
67630	Isopropyl Alcohol	34.38	3.56E-05	8.29E-05	7.98E-05	2.33E-06	2.60E-04	6.90E-06	8.93E-04	1.35E-04	1.03E-04
67561	Methanol	894.93	9.26E-04	2.16E-03	2.08E-03	6.06E-05	6.78E-03	1.80E-04	2.33E-02	3.50E-03	2.69E-03
75092	Methylene Chloride	624.98	6.47E-04	1.51E-03	1.45E-03	4.23E-05	4.73E-03	1.25E-04	1.62E-02	2.45E-03	1.88E-03
127184	Perchloroethylene	0.19	1.92E-07	4.47E-07	4.30E-07	1.26E-08	1.40E-06	3.72E-08	4.82E-06	7.26E-07	5.57E-07
110861	Pyridine	1.90	1.97E-06	4.58E-06	4.41E-06	1.29E-07	1.44E-05	3.82E-07	4.94E-05	7.44E-06	5.71E-06
108883	Toluene	54.97	5.69E-05	1.32E-04	1.28E-04	3.72E-06	4.16E-04	1.10E-05	1.43E-03	2.15E-04	1.65E-04
121448	Triethylamine	6.44	6.66E-06	1.55E-05	1.49E-05	4.36E-07	4.88E-05	1.29E-06	1.67E-04	2.52E-05	1.93E-05
1330207	Xylenes	88.16	9.12E-05	2.12E-04	2.05E-04	5.97E-06	6.68E-04	1.77E-05	2.29E-03	3.45E-04	2.65E-04
^a Source: U	CLA Laboratory Purchase Record	ds January to December 2									

		Name:	LAB4	LAB5	LAB5	LAB6	LAB7	LAB7	LAB7	LAB7	LAB8	LAB8
		Number:	10149	10150	10150	10151	10152	10152	10152	10152	10153	10153
		Building:	MORTON MED	GONDA CENTER	MACDONALD LAB	BOELTER HALL	BOTANY	BIOMED SCI	LATH HOUSE	OHRC	ENGR BLDG 4	ENGR BLDG 1
		Wet Floor Space (ft ²):	3863	28146	48816	38728	8678	34430	270	26052	49004	15432
		Status:	Existing	Existing	Existing	Existing	Existing	Existing	Existing	Existing	Existing	Existing
CAS	Pollutant	Emissions ^a (lbs)										
75058	Acetonitrile	116.17	1.21E-04	8.82E-04	1.53E-03	1.21E-03	2.72E-04	1.08E-03	8.46E-06	8.17E-04	1.54E-03	4.84E-04
71432	Benzene	20.10	2.10E-05	1.53E-04	2.65E-04	2.10E-04	4.71E-05	1.87E-04	1.46E-06	1.41E-04	2.66E-04	8.37E-05
7726956	Bromine Compounds	128.79	1.34E-04	9.78E-04	1.70E-03	1.35E-03	3.02E-04	1.20E-03	9.38E-06	9.05E-04	1.70E-03	5.36E-04
75650	Butyl Alcohol, Tert-	0.54	5.62E-07	4.09E-06	7.10E-06	5.63E-06	1.26E-06	5.01E-06	3.93E-08	3.79E-06	7.13E-06	2.24E-06
56235	Carbon Tetrachloride	0.31	3.23E-07	2.35E-06	4.08E-06	3.24E-06	7.25E-07	2.88E-06	2.26E-08	2.18E-06	4.09E-06	1.29E-06
108907	Chlorobenzene	0.89	9.23E-07	6.72E-06	1.17E-05	9.25E-06	2.07E-06	8.22E-06	6.45E-08	6.22E-06	1.17E-05	3.69E-06
67663	Chloroform	122.36	1.28E-04	9.29E-04	1.61E-03	1.28E-03	2.87E-04	1.14E-03	8.91E-06	8.60E-04	1.62E-03	5.10E-04
106467	Dichlorobenzene, p-	0.35	3.70E-07	2.69E-06	4.67E-06	3.71E-06	8.31E-07	3.30E-06	2.58E-08	2.49E-06	4.69E-06	1.48E-06
68122	Dimethylformamide	14.10	1.47E-05	1.07E-04	1.86E-04	1.47E-04	3.30E-05	1.31E-04	1.03E-06	9.91E-05	1.86E-04	5.87E-05
123911	Dioxane, 1,4-	8.85	9.23E-06	6.72E-05	1.17E-04	9.25E-05	2.07E-05	8.22E-05	6.45E-07	6.22E-05	1.17E-04	3.69E-05
106898	Epichlorohydrin	0.00	5.95E-10	4.33E-09	7.51E-09	5.96E-09	1.34E-09	5.30E-09	4.16E-11	4.01E-09	7.54E-09	2.38E-09
107062	Ethylene Dichloride	0.01	1.49E-08	1.09E-07	1.89E-07	1.50E-07	3.35E-08	1.33E-07	1.04E-09	1.01E-07	1.89E-07	5.96E-08
50000	Formaldehyde	1405.52	1.47E-03	1.07E-02	1.85E-02	1.47E-02	3.29E-03	1.31E-02	1.02E-04	9.88E-03	1.86E-02	5.85E-03
110543	Hexane	995.79	1.04E-03	7.56E-03	1.31E-02	1.04E-02	2.33E-03	9.25E-03	7.25E-05	7.00E-03	1.32E-02	4.15E-03
302012	Hydrazine	0.01	1.19E-08	8.68E-08	1.51E-07	1.19E-07	2.68E-08	1.06E-07	8.32E-10	8.03E-08	1.51E-07	4.76E-08
7647010	Hydrogen Chloride	33.44	3.49E-05	2.54E-04	4.41E-04	3.49E-04	7.83E-05	3.11E-04	2.44E-06	2.35E-04	4.42E-04	1.39E-04
67630	Isopropyl Alcohol	34.38	3.58E-05	2.61E-04	4.53E-04	3.59E-04	8.05E-05	3.19E-04	2.50E-06	2.42E-04	4.55E-04	1.43E-04
67561	Methanol	894.93	9.33E-04	6.80E-03	1.18E-02	9.35E-03	2.10E-03	8.31E-03	6.52E-05	6.29E-03	1.18E-02	3.73E-03
75092	Methylene Chloride	624.98	6.51E-04	4.75E-03	8.23E-03	6.53E-03	1.46E-03	5.81E-03	4.55E-05	4.39E-03	8.26E-03	2.60E-03
127184	Perchloroethylene	0.19	1.93E-07	1.41E-06	2.44E-06	1.94E-06	4.34E-07	1.72E-06	1.35E-08	1.30E-06	2.45E-06	7.72E-07
110861	Pyridine	1.90	1.98E-06	1.44E-05	2.51E-05	1.99E-05	4.45E-06	1.77E-05	1.39E-07	1.34E-05	2.51E-05	7.92E-06
108883	Toluene	54.97	5.73E-05	4.17E-04	7.24E-04	5.74E-04	1.29E-04	5.11E-04	4.00E-06	3.86E-04	7.27E-04	2.29E-04
121448	Triethylamine	6.44	6.71E-06	4.89E-05	8.48E-05	6.73E-05	1.51E-05	5.98E-05	4.69E-07	4.52E-05	8.51E-05	2.68E-05
1330207	Xylenes	88.16	9.19E-05	6.70E-04	1.16E-03	9.21E-04	2.06E-04	8.19E-04	6.42E-06	6.20E-04	1.17E-03	3.67E-04
^a Source: L	ICLA Laboratory Purchase Record	s January to December 2										

		Name:	LAB8	LAB9	LAB9	LAB9	LAB9	LAB9	LAB9	LAB10	LAB10	LAB11
		Number:	10153	10154	10154	10154	10154	10154	10154	10155	10155	10156
		Building:	ENGR BLDG 5	FRANZ HALL	GEOLOGY	MOLECULR SCI	SLICHTER	YOUNG HALL	BOYER HALL	KNUDSEN HALL	PHYS ASTRO	POWELL LIB
		Wet Floor Space (ft ²):										
		Status:	33551	6355	13075	58079	9518	65939	35377	35088	19329	264
CAS	Pollutant	Emissions ^a (lbs)	Existing									
75058	Acetonitrile	116.17	1.05E-03	1.99E-04	4.10E-04	1.82E-03	2.98E-04	2.07E-03	1.11E-03	1.10E-03	6.06E-04	8.28E-06
71432	Benzene	20.10	1.82E-04	3.45E-05	7.09E-05	3.15E-04	5.16E-05	3.58E-04	1.92E-04	1.90E-04	1.05E-04	1.43E-06
7726956	Bromine Compounds	128.79	1.02E-04 1.17E-03	2.21E-04	4.54E-04	2.02E-03	3.31E-04	2.29E-03	1.92E-04 1.23E-03	1.22E-03	6.72E-04	9.17E-06
75650	Butyl Alcohol, Tert-	0.54	4.88E-06	9.24E-07	1.90E-06	8.45E-06	1.38E-06	9.59E-06	5.14E-06	5.10E-06	2.81E-06	3.84E-08
56235	Carbon Tetrachloride	0.31	2.80E-06	5.24E-07 5.31E-07	1.09E-06	4.85E-06	7.95E-07	5.51E-06	2.96E-06	2.93E-06	1.61E-06	2.21E-08
108907	Chlorobenzene	0.89	8.01E-06	1.52E-06	3.12E-06	1.39E-05	2.27E-06	1.57E-05	8.45E-06	8.38E-06	4.62E-06	6.31E-08
67663	Chloroform	122.36	1.11E-03		4.32E-06	1.39E-05 1.92E-03	3.14E-04			1.16E-03	4.62E-06 6.38E-04	8.72E-06
106467		0.35	3.21E-06	2.10E-04 6.08E-07	1.25E-06	1	9.11E-07	2.18E-03	1.17E-03 3.39E-06	3.36E-06		8.72E-06 2.53E-08
	Dichlorobenzene, p-					5.56E-06		6.31E-06			1.85E-06	
68122	Dimethylformamide	14.10	1.28E-04	2.42E-05	4.98E-05	2.21E-04	3.62E-05	2.51E-04	1.35E-04	1.34E-04	7.36E-05	1.00E-06
123911	Dioxane, 1,4-	8.85	8.01E-05	1.52E-05	3.12E-05	1.39E-04	2.27E-05	1.58E-04	8.45E-05	8.38E-05	4.62E-05	6.31E-07
106898 107062	Epichlorohydrin Ethylene Dichloride	0.00 0.01	5.16E-09 1.30E-07	9.78E-10 2.46E-08	2.01E-09 5.05E-08	8.94E-09 2.24E-07	1.47E-09 3.68E-08	1.02E-08 2.55E-07	5.45E-09 1.37E-07	5.40E-09 1.36E-07	2.98E-09 7.47E-08	4.06E-11 1.02E-09
	<u> </u>					+						
50000 110543	Formaldehyde	1405.52	1.27E-02	2.41E-03	4.96E-03	2.20E-02	3.61E-03	2.50E-02	1.34E-02	1.33E-02	7.33E-03	1.00E-04
	Hexane	995.79	9.02E-03	1.71E-03	3.51E-03	1.56E-02	2.56E-03	1.77E-02	9.51E-03	9.43E-03	5.19E-03	7.09E-05
302012	Hydrazine	0.01	1.03E-07	1.96E-08	4.03E-08	1.79E-07	2.93E-08	2.03E-07	1.09E-07	1.08E-07	5.96E-08	8.14E-10
7647010	Hydrogen Chloride	33.44	3.03E-04	5.73E-05	1.18E-04	5.24E-04	8.59E-05	5.95E-04	3.19E-04	3.17E-04	1.74E-04	2.38E-06
67630	Isopropyl Alcohol	34.38	3.11E-04	5.90E-05	1.21E-04	5.39E-04	8.83E-05	6.12E-04	3.28E-04	3.26E-04	1.79E-04	2.45E-06
67561	Methanol	894.93	8.10E-03	1.53E-03	3.16E-03	1.40E-02	2.30E-03	1.59E-02	8.54E-03	8.47E-03	4.67E-03	6.38E-05
75092	Methylene Chloride	624.98	5.66E-03	1.07E-03	2.20E-03	9.79E-03	1.61E-03	1.11E-02	5.97E-03	5.92E-03	3.26E-03	4.45E-05
127184	Perchloroethylene	0.19	1.68E-06	3.18E-07	6.54E-07	2.91E-06	4.76E-07	3.30E-06	1.77E-06	1.76E-06	9.67E-07	1.32E-08
110861	Pyridine	1.90	1.72E-05	3.26E-06	6.71E-06	2.98E-05	4.88E-06	3.38E-05	1.82E-05	1.80E-05	9.92E-06	1.35E-07
108883	Toluene	54.97	4.98E-04	9.43E-05	1.94E-04	8.61E-04	1.41E-04	9.78E-04	5.25E-04	5.20E-04	2.87E-04	3.92E-06
121448	Triethylamine	6.44	5.83E-05	1.10E-05	2.27E-05	1.01E-04	1.65E-05	1.15E-04	6.14E-05	6.09E-05	3.36E-05	4.58E-07
1330207	Xylenes	88.16	7.98E-04	1.51E-04	3.11E-04	1.38E-03	2.26E-04	1.57E-03	8.42E-04	8.35E-04	4.60E-04	6.28E-06
^a Source: I	JCLA Laboratory Purchase Record	ls January to December 2										

		Name:	LAB12	LAB12	LAB13	LAB14	LAB15	LAB15	LAB16	LAB17
		Number:	10157	10157	10158	10159	10160	10160	10161	20017
		Building:	MACGOWAN	MELNITZ HALL	CNSI - CoS	NEUROSCI RCH	HILLBLOM CTR	WARREN HALL	LIFE SCIENCE	LSR
		Wet Floor Space (ft ²):	19180	1034	38441	32135	2722	23246	37828	37000
		Status:	Existing	Existing	Existing	Existing	Existing	Existing	Existing	New
CAS	Pollutant	Emissions ^a (lbs)	3	3	3	3	9	3	3	
75058	Acetonitrile	116.17	6.01E-04	3.24E-05	1.20E-03	1.01E-03	8.53E-05	7.29E-04	1.19E-03	1.16E-03
71432	Benzene	20.10	1.04E-04	5.61E-06	2.09E-04	1.74E-04	1.48E-05	1.26E-04	2.05E-04	2.01E-04
7726956	Bromine Compounds	128.79	6.67E-04	3.59E-05	1.34E-03	1.12E-03	9.46E-05	8.08E-04	1.31E-03	1.29E-03
75650	Butyl Alcohol, Tert-	0.54	2.79E-06	1.50E-07	5.59E-06	4.67E-06	3.96E-07	3.38E-06	5.50E-06	5.38E-06
56235	Carbon Tetrachloride	0.31	1.60E-06	8.64E-08	3.21E-06	2.68E-06	2.27E-07	1.94E-06	3.16E-06	3.09E-06
108907	Chlorobenzene	0.89	4.58E-06	2.47E-07	9.18E-06	7.68E-06	6.50E-07	5.55E-06	9.03E-06	8.84E-06
67663	Chloroform	122.36	6.33E-04	3.41E-05	1.27E-03	1.06E-03	8.99E-05	7.68E-04	1.25E-03	1.22E-03
106467	Dichlorobenzene, p-	0.35	1.84E-06	9.90E-08	3.68E-06	3.08E-06	2.61E-07	2.22E-06	3.62E-06	3.54E-06
68122	Dimethylformamide	14.10	7.30E-05	3.94E-06	1.46E-04	1.22E-04	1.04E-05	8.85E-05	1.44E-04	1.41E-04
123911	Dioxane, 1,4-	8.85	4.58E-05	2.47E-06	9.18E-05	7.68E-05	6.50E-06	5.55E-05	9.04E-05	8.84E-05
106898	Epichlorohydrin	0.00	2.95E-09	1.59E-10	5.92E-09	4.95E-09	4.19E-10	3.58E-09	5.82E-09	5.70E-09
107062	Ethylene Dichloride	0.01	7.41E-08	3.99E-09	1.49E-07	1.24E-07	1.05E-08	8.98E-08	1.46E-07	1.43E-07
50000	Formaldehyde	1405.52	7.27E-03	3.92E-04	1.46E-02	1.22E-02	1.03E-03	8.82E-03	1.43E-02	1.40E-02
110543	Hexane	995.79	5.15E-03	2.78E-04	1.03E-02	8.63E-03	7.31E-04	6.25E-03	1.02E-02	9.94E-03
302012	Hydrazine	0.01	5.91E-08	3.19E-09	1.19E-07	9.91E-08	8.39E-09	7.17E-08	1.17E-07	1.14E-07
7647010	Hydrogen Chloride	33.44	1.73E-04	9.33E-06	3.47E-04	2.90E-04	2.46E-05	2.10E-04	3.41E-04	3.34E-04
67630	Isopropyl Alcohol	34.38	1.78E-04	9.59E-06	3.57E-04	2.98E-04	2.53E-05	2.16E-04	3.51E-04	3.43E-04
67561	Methanol	894.93	4.63E-03	2.50E-04	9.28E-03	7.76E-03	6.57E-04	5.61E-03	9.13E-03	8.93E-03
75092	Methylene Chloride	624.98	3.23E-03	1.74E-04	6.48E-03	5.42E-03	4.59E-04	3.92E-03	6.38E-03	6.24E-03
127184	Perchloroethylene	0.19	9.60E-07	5.17E-08	1.92E-06	1.61E-06	1.36E-07	1.16E-06	1.89E-06	1.85E-06
110861	Pyridine	1.90	9.84E-06	5.31E-07	1.97E-05	1.65E-05	1.40E-06	1.19E-05	1.94E-05	1.90E-05
108883	Toluene	54.97	2.84E-04	1.53E-05	5.70E-04	4.77E-04	4.04E-05	3.45E-04	5.61E-04	5.49E-04
121448	Triethylamine	6.44	3.33E-05	1.80E-06	6.68E-05	5.58E-05	4.73E-06	4.04E-05	6.57E-05	6.43E-05
1330207	Xylenes	88.16	4.56E-04	2.46E-05	9.14E-04	7.64E-04	6.47E-05	5.53E-04	9.00E-04	8.80E-04
^a Source: U	CLA Laboratory Purchase Record	ls January to December 2								

		Name:	LAB1	LAB2	LAB3	LAB3	LAB3	LAB3	LAB3	LAB3	LAB3
		Number:	10146	10147	10148	10148	10148	10148	10148	10148	10148
		Building:	REHAB CENTER	MED PLZA 300	CYCLOTRN BIO	DENTISTRY	DORIS STEIN	FACTOR	JULES STEIN	M DAVIES CC	PARKG ST CHS
		Wet Floor Space (ft ²):	19720	2929	1050	29702	1580	38753	5575	10018	10568
		Status:	Existing	Existing	Existing	Existing	Existina	Existing	Existing	Existing	Existing
CAS	Pollutant	Emissions ^a (lbs)									
75058	Acetonitrile	116.17	2.23E+00	3.31E-01	1.18E-01	3.35E+00	1.78E-01	4.37E+00	6.29E-01	1.13E+00	1.19E+00
71432	Benzene	20.10	3.85E-01	5.72E-02	2.05E-02	5.80E-01	3.09E-02	7.57E-01	1.09E-01	1.96E-01	2.06E-01
7726956	Bromine Compounds	128.79	2.47E+00	3.66E-01	1.31E-01	3.72E+00	1.98E-01	4.85E+00	6.97E-01	1.25E+00	1.32E+00
75650	Butyl Alcohol, Tert-	0.54	1.03E-02	1.53E-03	5.50E-04	1.55E-02	8.27E-04	2.03E-02	2.92E-03	5.24E-03	5.53E-03
56235	Carbon Tetrachloride	0.31	5.93E-03	8.81E-04	3.16E-04	8.93E-03	4.75E-04	1.17E-02	1.68E-03	3.01E-03	3.18E-03
108907	Chlorobenzene	0.89	1.70E-02	2.52E-03	9.03E-04	2.55E-02	1.36E-03	3.33E-02	4.79E-03	8.61E-03	9.09E-03
67663	Chloroform	122.36	2.34E+00	3.48E-01	1.25E-01	3.53E+00	1.88E-01	4.61E+00	6.63E-01	1.19E+00	1.26E+00
106467	Dichlorobenzene, p-	0.35	6.79E-03	1.01E-03	3.62E-04	1.02E-02	5.44E-04	1.34E-02	1.92E-03	3.45E-03	3.64E-03
68122	Dimethylformamide	14.10	2.70E-01	4.01E-02	1.44E-02	4.07E-01	2.16E-02	5.31E-01	7.64E-02	1.37E-01	1.45E-01
123911	Dioxane, 1,4-	8.85	1.70E-01	2.52E-02	9.03E-03	2.55E-01	1.36E-02	3.33E-01	4.79E-02	8.62E-02	9.09E-02
106898	Epichlorohydrin	0.00	1.09E-05	1.62E-06	5.82E-07	1.65E-05	8.76E-07	2.15E-05	3.09E-06	5.55E-06	5.86E-06
107062	Ethylene Dichloride	0.01	2.74E-04	4.07E-05	1.46E-05	4.13E-04	2.20E-05	5.39E-04	7.75E-05	1.39E-04	1.47E-04
50000	Formaldehyde	1405.52	2.69E+01	4.00E+00	1.43E+00	4.06E+01	2.16E+00	5.29E+01	7.61E+00	1.37E+01	1.44E+01
110543	Hexane	995.79	1.91E+01	2.83E+00	1.02E+00	2.87E+01	1.53E+00	3.75E+01	5.39E+00	9.69E+00	1.02E+01
302012	Hydrazine	0.01	2.19E-04	3.25E-05	1.17E-05	3.30E-04	1.75E-05	4.30E-04	6.19E-05	1.11E-04	1.17E-04
7647010	Hydrogen Chloride	33.44	6.41E-01	9.51E-02	3.41E-02	9.65E-01	5.13E-02	1.26E+00	1.81E-01	3.25E-01	3.43E-01
67630	Isopropyl Alcohol	34.38	6.59E-01	9.78E-02	3.51E-02	9.92E-01	5.28E-02	1.29E+00	1.86E-01	3.35E-01	3.53E-01
67561	Methanol	894.93	1.71E+01	2.55E+00	9.13E-01	2.58E+01	1.37E+00	3.37E+01	4.85E+00	8.71E+00	9.19E+00
75092	Methylene Chloride	624.98	1.20E+01	1.78E+00	6.37E-01	1.80E+01	9.59E-01	2.35E+01	3.38E+00	6.08E+00	6.42E+00
127184	Perchloroethylene	0.19	3.55E-03	5.28E-04	1.89E-04	5.35E-03	2.85E-04	6.98E-03	1.00E-03	1.80E-03	1.90E-03
110861	Pyridine	1.90	3.64E-02	5.41E-03	1.94E-03	5.49E-02	2.92E-03	7.16E-02	1.03E-02	1.85E-02	1.95E-02
108883	Toluene	54.97	1.05E+00	1.56E-01	5.61E-02	1.59E+00	8.44E-02	2.07E+00	2.98E-01	5.35E-01	5.64E-01
121448	Triethylamine	6.44	1.23E-01	1.83E-02	6.56E-03	1.86E-01	9.88E-03	2.42E-01	3.49E-02	6.26E-02	6.61E-02
1330207	Xylenes	88.16	1.69E+00	2.51E-01	8.99E-02	2.54E+00	1.35E-01	3.32E+00	4.77E-01	8.58E-01	9.05E-01
	oor space (2007 Baseline Senario)	992445									
	oor space (2013 LRDP Senario)	1029445									<u> </u>
Percent Chan	ge	3.73%									
^a Source: UCL	A Laboratory Purchase Records Janu	ary to December 2007									

		Name:	LAB3	LAB3	LAB3	LAB3	LAB3	LAB3	LAB3	LAB3	LAB3	LAB3
		Number:	10148	10148	10148	10148	10148	10148	10148	10148	10148	10148
		Building:	PUBLIC HLTH	CLINICAL RES	VIVARIUM	700 WWPLAZA	BRAIN MAPPNG	BRAIN RSCH	CYCLOTRN ADD	HEALTH SCI	REED RESRCH	SEMEL INST
		Wet Floor Space (ft ²):	15610	3836	8931	8598	251	28075	744	96291	14503	11131
		Status:	Existing	Existing	Existing	Existing	Existing	Existing	Existing	Existing	Existing	Existing
CAS	Pollutant	Emissions ^a (lbs)										
75058	Acetonitrile	116.17	1.76E+00	4.33E-01	1.01E+00	9.70E-01	2.83E-02	3.17E+00	8.40E-02	1.09E+01	1.64E+00	1.26E+00
71432	Benzene	20.10	3.05E-01	7.49E-02	1.74E-01	1.68E-01	4.90E-03	5.48E-01	1.45E-02	1.88E+00	2.83E-01	2.17E-01
7726956	Bromine Compounds	128.79	1.95E+00	4.80E-01	1.12E+00	1.08E+00	3.14E-02	3.51E+00	9.31E-02	1.20E+01	1.81E+00	1.39E+00
75650	Butyl Alcohol, Tert-	0.54	8.17E-03	2.01E-03	4.68E-03	4.50E-03	1.31E-04	1.47E-02	3.89E-04	5.04E-02	7.59E-03	5.83E-03
56235	Carbon Tetrachloride	0.31	4.70E-03	1.15E-03	2.69E-03	2.59E-03	7.55E-05	8.44E-03	2.24E-04	2.90E-02	4.36E-03	3.35E-03
108907	Chlorobenzene	0.89	1.34E-02	3.30E-03	7.68E-03	7.39E-03	2.16E-04	2.41E-02	6.40E-04	8.28E-02	1.25E-02	9.57E-03
67663	Chloroform	122.36	1.86E+00	4.56E-01	1.06E+00	1.02E+00	2.98E-02	3.34E+00	8.84E-02	1.14E+01	1.72E+00	1.32E+00
106467	Dichlorobenzene, p-	0.35	5.38E-03	1.32E-03	3.08E-03	2.96E-03	8.65E-05	9.67E-03	2.56E-04	3.32E-02	5.00E-03	3.84E-03
68122	Dimethylformamide	14.10	2.14E-01	5.26E-02	1.22E-01	1.18E-01	3.44E-03	3.85E-01	1.02E-02	1.32E+00	1.99E-01	1.52E-01
123911	Dioxane, 1,4-	8.85	1.34E-01	3.30E-02	7.68E-02	7.39E-02	2.16E-03	2.41E-01	6.40E-03	8.28E-01	1.25E-01	9.57E-02
106898	Epichlorohydrin	0.00	8.65E-06	2.13E-06	4.95E-06	4.76E-06	1.39E-07	1.56E-05	4.12E-07	5.34E-05	8.04E-06	6.17E-06
107062	Ethylene Dichloride	0.01	2.17E-04	5.34E-05	1.24E-04	1.20E-04	3.49E-06	3.90E-04	1.03E-05	1.34E-03	2.02E-04	1.55E-04
50000	Formaldehyde	1405.52	2.13E+01	5.24E+00	1.22E+01	1.17E+01	3.43E-01	3.83E+01	1.02E+00	1.31E+02	1.98E+01	1.52E+01
110543	Hexane	995.79	1.51E+01	3.71E+00	8.64E+00	8.32E+00	2.43E-01	2.72E+01	7.20E-01	9.31E+01	1.40E+01	1.08E+01
302012	Hydrazine	0.01	1.73E-04	4.26E-05	9.91E-05	9.54E-05	2.79E-06	3.12E-04	8.26E-06	1.07E-03	1.61E-04	1.24E-04
7647010	Hydrogen Chloride	33.44	5.07E-01	1.25E-01	2.90E-01	2.79E-01	8.15E-03	9.12E-01	2.42E-02	3.13E+00	4.71E-01	3.62E-01
67630	Isopropyl Alcohol	34.38	5.21E-01	1.28E-01	2.98E-01	2.87E-01	8.38E-03	9.38E-01	2.48E-02	3.22E+00	4.84E-01	3.72E-01
67561	Methanol	894.93	1.36E+01	3.33E+00	7.76E+00	7.47E+00	2.18E-01	2.44E+01	6.47E-01	8.37E+01	1.26E+01	9.68E+00
75092	Methylene Chloride	624.98	9.48E+00	2.33E+00	5.42E+00	5.22E+00	1.52E-01	1.70E+01	4.52E-01	5.85E+01	8.80E+00	6.76E+00
127184	Perchloroethylene	0.19	2.81E-03	6.91E-04	1.61E-03	1.55E-03	4.52E-05	5.06E-03	1.34E-04	1.73E-02	2.61E-03	2.01E-03
110861	Pyridine	1.90	2.88E-02	7.09E-03	1.65E-02	1.59E-02	4.64E-04	5.19E-02	1.37E-03	1.78E-01	2.68E-02	2.06E-02
108883	Toluene	54.97	8.33E-01	2.05E-01	4.77E-01	4.59E-01	1.34E-02	1.50E+00	3.97E-02	5.14E+00	7.74E-01	5.94E-01
121448	Triethylamine	6.44	9.76E-02	2.40E-02	5.58E-02	5.38E-02	1.57E-03	1.76E-01	4.65E-03	6.02E-01	9.07E-02	6.96E-02
1330207	Xylenes	88.16	1.34E+00	3.28E-01	7.65E-01	7.36E-01	2.15E-02	2.40E+00	6.37E-02	8.25E+00	1.24E+00	9.53E-01
Total wetlab flo	por space (2007 Baseline Senario)	992445										
Total wetlab flo	por space (2013 LRDP Senario)	1029445										
Percent Chang	ge	3.73%										
^a Source: UCLA	A Laboratory Purchase Records Janu	ary to December 2007										

		Name:	LAB4	LAB5	LAB5	LAB6	LAB7	LAB7	LAB7	LAB7	LAB8	LAB8	LAB8	LAB9
		Number:	10149	10150	10150	10151	10152	10152	10152	10152	10153	10153	10153	10154
		Building:	MORTON MED	GONDA CENTER	MACDONALDLAB	BOELTER HALL	BOTANY	BIOMED SCI	LATH HOUSE	OHRC	ENGR BLDG 4	ENGR BLDG 1	ENGR BLDG 5	FRANZ HALL
		Wet Floor Space (ft ²):	3863	28146	48816	38728	8678	34430	270	26052	49004	15432	33551	6355
		Status:	Existing	Existing	Existing	Existing	Existing	Existing	Existing	Existing	Existing	Existing	Existing	Existing
CAS	Pollutant	Emissions ^a (lbs)												
75058	Acetonitrile	116.17	4.36E-01	3.18E+00	5.51E+00	4.37E+00	9.79E-01	3.89E+00	3.05E-02	2.94E+00	5.53E+00	1.74E+00	3.79E+00	7.17E-01
71432	Benzene	20.10	7.54E-02	5.50E-01	9.53E-01	7.56E-01	1.69E-01	6.72E-01	5.27E-03	5.09E-01	9.57E-01	3.01E-01	6.55E-01	1.24E-01
7726956	Bromine Compounds	128.79	4.83E-01	3.52E+00	6.11E+00	4.84E+00	1.09E+00	4.31E+00	3.38E-02	3.26E+00	6.13E+00	1.93E+00	4.20E+00	7.95E-01
75650	Butyl Alcohol, Tert-	0.54	2.02E-03	1.47E-02	2.56E-02	2.03E-02	4.54E-03	1.80E-02	1.41E-04	1.36E-02	2.57E-02	8.08E-03	1.76E-02	3.33E-03
56235	Carbon Tetrachloride	0.31	1.16E-03	8.47E-03	1.47E-02	1.16E-02	2.61E-03	1.04E-02	8.12E-05	7.84E-03	1.47E-02	4.64E-03	1.01E-02	1.91E-03
108907	Chlorobenzene	0.89	3.32E-03	2.42E-02	4.20E-02	3.33E-02	7.46E-03	2.96E-02	2.32E-04	2.24E-02	4.21E-02	1.33E-02	2.88E-02	5.46E-03
67663	Chloroform	122.36	4.59E-01	3.35E+00	5.80E+00	4.60E+00	1.03E+00	4.09E+00	3.21E-02	3.10E+00	5.82E+00	1.83E+00	3.99E+00	7.55E-01
106467	Dichlorobenzene, p-	0.35	1.33E-03	9.70E-03	1.68E-02	1.33E-02	2.99E-03	1.19E-02	9.30E-05	8.98E-03	1.69E-02	5.32E-03	1.16E-02	2.19E-03
68122	Dimethylformamide	14.10	5.29E-02	3.86E-01	6.69E-01	5.31E-01	1.19E-01	4.72E-01	3.70E-03	3.57E-01	6.71E-01	2.11E-01	4.60E-01	8.71E-02
123911	Dioxane, 1,4-	8.85	3.32E-02	2.42E-01	4.20E-01	3.33E-01	7.46E-02	2.96E-01	2.32E-03	2.24E-01	4.21E-01	1.33E-01	2.89E-01	5.47E-02
106898	Epichlorohydrin	0.00	2.14E-06	1.56E-05	2.71E-05	2.15E-05	4.81E-06	1.91E-05	1.50E-07	1.44E-05	2.72E-05	8.55E-06	1.86E-05	3.52E-06
107062	Ethylene Dichloride	0.01	5.37E-05	3.91E-04	6.79E-04	5.39E-04	1.21E-04	4.79E-04	3.76E-06	3.62E-04	6.82E-04	2.15E-04	4.67E-04	8.84E-05
50000	Formaldehyde	1405.52	5.27E+00	3.84E+01	6.66E+01	5.29E+01	1.18E+01	4.70E+01	3.69E-01	3.56E+01	6.69E+01	2.11E+01	4.58E+01	8.68E+00
110543	Hexane	995.79	3.74E+00	2.72E+01	4.72E+01	3.75E+01	8.39E+00	3.33E+01	2.61E-01	2.52E+01	4.74E+01	1.49E+01	3.25E+01	6.15E+00
302012	Hydrazine	0.01	4.29E-05	3.12E-04	5.42E-04	4.30E-04	9.63E-05	3.82E-04	3.00E-06	2.89E-04	5.44E-04	1.71E-04	3.72E-04	7.05E-05
7647010	Hydrogen Chloride	33.44	1.25E-01	9.14E-01	1.59E+00	1.26E+00	2.82E-01	1.12E+00	8.77E-03	8.46E-01	1.59E+00	5.01E-01	1.09E+00	2.06E-01
67630	Isopropyl Alcohol	34.38	1.29E-01	9.40E-01	1.63E+00	1.29E+00	2.90E-01	1.15E+00	9.02E-03	8.70E-01	1.64E+00	5.15E-01	1.12E+00	2.12E-01
67561	Methanol	894.93	3.36E+00	2.45E+01	4.24E+01	3.37E+01	7.54E+00	2.99E+01	2.35E-01	2.26E+01	4.26E+01	1.34E+01	2.92E+01	5.52E+00
75092	Methylene Chloride	624.98	2.35E+00	1.71E+01	2.96E+01	2.35E+01	5.27E+00	2.09E+01	1.64E-01	1.58E+01	2.98E+01	9.37E+00	2.04E+01	3.86E+00
127184	Perchloroethylene	0.19	6.96E-04	5.07E-03	8.79E-03	6.98E-03	1.56E-03	6.20E-03	4.86E-05	4.69E-03	8.83E-03	2.78E-03	6.04E-03	1.14E-03
110861	Pyridine	1.90	7.14E-03	5.20E-02	9.02E-02	7.15E-02	1.60E-02	6.36E-02	4.99E-04	4.81E-02	9.05E-02	2.85E-02	6.20E-02	1.17E-02
108883	Toluene	54.97	2.06E-01	1.50E+00	2.61E+00	2.07E+00	4.63E-01	1.84E+00	1.44E-02	1.39E+00	2.62E+00	8.24E-01	1.79E+00	3.39E-01
121448	Triethylamine	6.44	2.42E-02	1.76E-01	3.05E-01	2.42E-01	5.43E-02	2.15E-01	1.69E-03	1.63E-01	3.06E-01	9.65E-02	2.10E-01	3.97E-02
1330207	Xylenes	88.16	3.31E-01	2.41E+00	4.18E+00	3.32E+00	7.43E-01	2.95E+00	2.31E-02	2.23E+00	4.20E+00	1.32E+00	2.87E+00	5.44E-01
Total wetlab fl	oor space (2007 Baseline Senario)	992445												
Total wetlab fi	oor space (2013 LRDP Senario)	1029445												
Percent Chan	ge	3.73%												
^a Source: UCL	A Laboratory Purchase Records Janu	ary to December 2007												

		Name:	LAB9	LAB9	LAB9	LAB9	LAB9	LAB10	LAB10	LAB11	LAB12	LAB12	LAB13	LAB14
		Number:	10154	10154	10154	10154	10154	10155	10155	10156	10157	10157	10158	10159
		Building:	GEOLOGY	MOLECULR SCI	SLICHTER	YOUNG HALL	BOYER HALL	KNUDSEN HALL	PHYS ASTRO	POWELL LIB	MACGOWAN	MELNITZ HALL	CNSI - CoS	NEUROSCI RCH
		Wet Floor Space (ft ²):	13075	58079	9518	65939	35377	35088	19329	264	19180	1034	38441	32135
		Status:	Existing	Existing	Existing	Existing	Existing	Existing	Existing	Existing	Existing	Existing	Existing	Existing
CAS	Pollutant	Emissions ^a (lbs)												
75058	Acetonitrile	116.17	1.48E+00	6.55E+00	1.07E+00	7.44E+00	3.99E+00	3.96E+00	2.18E+00	2.98E-02	2.16E+00	1.17E-01	4.34E+00	3.63E+00
71432	Benzene	20.10	2.55E-01	1.13E+00	1.86E-01	1.29E+00	6.91E-01	6.85E-01	3.77E-01	5.16E-03	3.75E-01	2.02E-02	7.51E-01	6.28E-01
7726956	Bromine Compounds	128.79	1.64E+00	7.27E+00	1.19E+00	8.25E+00	4.43E+00	4.39E+00	2.42E+00	3.30E-02	2.40E+00	1.29E-01	4.81E+00	4.02E+00
75650	Butyl Alcohol, Tert-	0.54	6.84E-03	3.04E-02	4.98E-03	3.45E-02	1.85E-02	1.84E-02	1.01E-02	1.38E-04	1.00E-02	5.41E-04	2.01E-02	1.68E-02
56235	Carbon Tetrachloride	0.31	3.93E-03	1.75E-02	2.86E-03	1.98E-02	1.06E-02	1.06E-02	5.81E-03	7.94E-05	5.77E-03	3.11E-04	1.16E-02	9.67E-03
108907	Chlorobenzene	0.89	1.12E-02	4.99E-02	8.18E-03	5.67E-02	3.04E-02	3.02E-02	1.66E-02	2.27E-04	1.65E-02	8.89E-04	3.31E-02	2.76E-02
67663	Chloroform	122.36	1.55E+00	6.90E+00	1.13E+00	7.84E+00	4.21E+00	4.17E+00	2.30E+00	3.14E-02	2.28E+00	1.23E-01	4.57E+00	3.82E+00
106467	Dichlorobenzene, p-	0.35	4.51E-03	2.00E-02	3.28E-03	2.27E-02	1.22E-02	1.21E-02	6.66E-03	9.10E-05	6.61E-03	3.56E-04	1.32E-02	1.11E-02
68122	Dimethylformamide	14.10	1.79E-01	7.96E-01	1.30E-01	9.03E-01	4.85E-01	4.81E-01	2.65E-01	3.62E-03	2.63E-01	1.42E-02	5.27E-01	4.40E-01
123911	Dioxane, 1,4-	8.85	1.12E-01	4.99E-01	8.19E-02	5.67E-01	3.04E-01	3.02E-01	1.66E-01	2.27E-03	1.65E-01	8.89E-03	3.31E-01	2.76E-01
106898	Epichlorohydrin	0.00	7.25E-06	3.22E-05	5.27E-06	3.65E-05	1.96E-05	1.94E-05	1.07E-05	1.46E-07	1.06E-05	5.73E-07	2.13E-05	1.78E-05
107062	Ethylene Dichloride	0.01	1.82E-04	8.08E-04	1.32E-04	9.17E-04	4.92E-04	4.88E-04	2.69E-04	3.67E-06	2.67E-04	1.44E-05	5.35E-04	4.47E-04
50000	Formaldehyde	1405.52	1.79E+01	7.93E+01	1.30E+01	9.00E+01	4.83E+01	4.79E+01	2.64E+01	3.60E-01	2.62E+01	1.41E+00	5.25E+01	4.39E+01
110543	Hexane	995.79	1.26E+01	5.62E+01	9.21E+00	6.38E+01	3.42E+01	3.39E+01	1.87E+01	2.55E-01	1.86E+01	1.00E+00	3.72E+01	3.11E+01
302012	Hydrazine	0.01	1.45E-04	6.45E-04	1.06E-04	7.32E-04	3.93E-04	3.89E-04	2.15E-04	2.93E-06	2.13E-04	1.15E-05	4.27E-04	3.57E-04
7647010	Hydrogen Chloride	33.44	4.25E-01	1.89E+00	3.09E-01	2.14E+00	1.15E+00	1.14E+00	6.28E-01	8.58E-03	6.23E-01	3.36E-02	1.25E+00	1.04E+00
67630	Isopropyl Alcohol	34.38	4.37E-01	1.94E+00	3.18E-01	2.20E+00	1.18E+00	1.17E+00	6.46E-01	8.82E-03	6.41E-01	3.45E-02	1.28E+00	1.07E+00
67561	Methanol	894.93	1.14E+01	5.05E+01	8.27E+00	5.73E+01	3.08E+01	3.05E+01	1.68E+01	2.30E-01	1.67E+01	8.99E-01	3.34E+01	2.79E+01
75092	Methylene Chloride	624.98	7.94E+00	3.53E+01	5.78E+00	4.00E+01	2.15E+01	2.13E+01	1.17E+01	1.60E-01	1.16E+01	6.28E-01	2.33E+01	1.95E+01
127184	Perchloroethylene	0.19	2.36E-03	1.05E-02	1.71E-03	1.19E-02	6.37E-03	6.32E-03	3.48E-03	4.76E-05	3.46E-03	1.86E-04	6.93E-03	5.79E-03
110861	Pyridine	1.90	2.42E-02	1.07E-01	1.76E-02	1.22E-01	6.54E-02	6.48E-02	3.57E-02	4.88E-04	3.54E-02	1.91E-03	7.10E-02	5.94E-02
108883	Toluene	54.97	6.98E-01	3.10E+00	5.08E-01	3.52E+00	1.89E+00	1.87E+00	1.03E+00	1.41E-02	1.02E+00	5.52E-02	2.05E+00	1.72E+00
121448	Triethylamine	6.44	8.17E-02	3.63E-01	5.95E-02	4.12E-01	2.21E-01	2.19E-01	1.21E-01	1.65E-03	1.20E-01	6.46E-03	2.40E-01	2.01E-01
1330207	Xylenes	88.16	1.12E+00	4.97E+00	8.15E-01	5.65E+00	3.03E+00	3.00E+00	1.66E+00	2.26E-02	1.64E+00	8.85E-02	3.29E+00	2.75E+00
Total wetlah fic	oor space (2007 Baseline Senario)	992445												
	por space (2013 LRDP Senario)	1029445												+
Percent Chang		3.73%												+
. c.oon, onan	g~	3.7376												
ao	A Laboratory Purchase Records Janu													

Ap	pendix	D
	PCHAIN	

Biological Resources

Appendix D1

Tree Report

TREE SURVEY

UCLA 2008 NORTHWEST HOUSING INFILL PROJECT

Prepared for

Tova Lelah

Assistant Director, Campus and Environmental Planning

University of California Los Angeles

1060 Veteran Avenue

Los Angeles, California 90095

T: (310) 206-5482

Prepared by

BonTerra Consulting

David Hughes, Certified Arborist

3452 East Foothill Boulevard, Suite 420

Pasadena, California 91107

T: (626) 351-2000 F: (626) 351-2030

www.BonTerraConsulting.com

October 29, 2008

TABLE OF CONTENTS

Section	1			<u>Page</u>
Section	1.0	Intro	duction	1
		1.1	Project Location	1
		1.2	Project Description	1
		1.3	Survey Area	2
		1.4	Existing Conditions	2
Section	2.0	Meth	odology	3
		2.1	Tree Tags	3
		2.2	Diameter	3
		2.3	Height and Canopy	3
		2.4	Aesthetics	3
		2.5	Health	3
Section	3.0	Resu	lts	5
Section	4.0	Tree	Mitigation	7
			TABLES	
<u>Table</u>				<u>Page</u>
			Quantity and Size for Trees Within the Development Area Tree Characteristics for Trees Within the Development Area	
			EXHIBITS	
<u>Exhibit</u>			<u>Fc</u>	ollows Page
1 (2	Campu 2008 N	ıs Lan IHIP T	d Use Zones ree Locations	1 2
			APPENDICES	
Append	<u>dix</u>			

i

A Summary of Tree Data

SECTION 1.0 INTRODUCTION

The purpose of this report is to quantify the trees within and adjacent to the planned development area associated with the University of California Los Angeles (UCLA) Northwest Housing Infill project (NHIP) site (hereafter referred to as "the project site") to determine the number and species of trees that would be impacted as a result of this project.

1.1 PROJECT LOCATION

The proposed project site is located in the vicinity of the intersection of Charles E. Young Drive and De Neve Drive in the Northwest zone of the UCLA campus (Exhibit 1). In consideration of existing land constraints in the Northwest zone, the proposed NHIP includes four separate residence buildings which would be developed on three sites. Two buildings referred to as "Upper and Lower De Neve" would be constructed in an undeveloped hillside area west of the existing De Neve Commons and north of Gayley Avenue and are proposed to be nine and seven levels, respectively. The other two buildings referred to as "Sproul South" and "Sproul West" would be constructed adjacent to the existing Sproul Residence Hall. Sproul South would include six levels for residences (housing) and would be constructed on a three-story podium structure (Sproul Complex), which would include primary support services identified above. Sproul West would be constructed as a nine-story residence hall, immediately east of Rieber Hall.

1.2 PROJECT DESCRIPTION

The proposed NHIP includes the development of four new residence halls and associated support facilities for undergraduate students on land immediately adjacent to existing residence halls in the Northwest zone of the campus. The NHIP in its entirety would include approximately 550,000 gross square feet (gsf) of new development and would accommodate the following uses: (1) approximately 1,525 student beds (including beds for Resident Assistants); (2) a limited number of apartments for professional staff and faculty-in-residence; (3) an approximate 750-seat dining commons; (4) multipurpose assembly, study, and meeting rooms; (5) a fitness center; and (6) maintenance and support space.

As part of the proposed NHIP, the Office of Residential Life Building and the space that accommodates the Housing Maintenance Division (located in the covered parking area south of Sproul Hall) would be demolished. The Office of Residential Life would be permanently relocated to Bradley Hall, while Housing Maintenance would be temporarily relocated. The existing Housing Maintenance space, including the covered parking area, would be renovated/expanded and located on the ground floor of the new Sproul Complex.

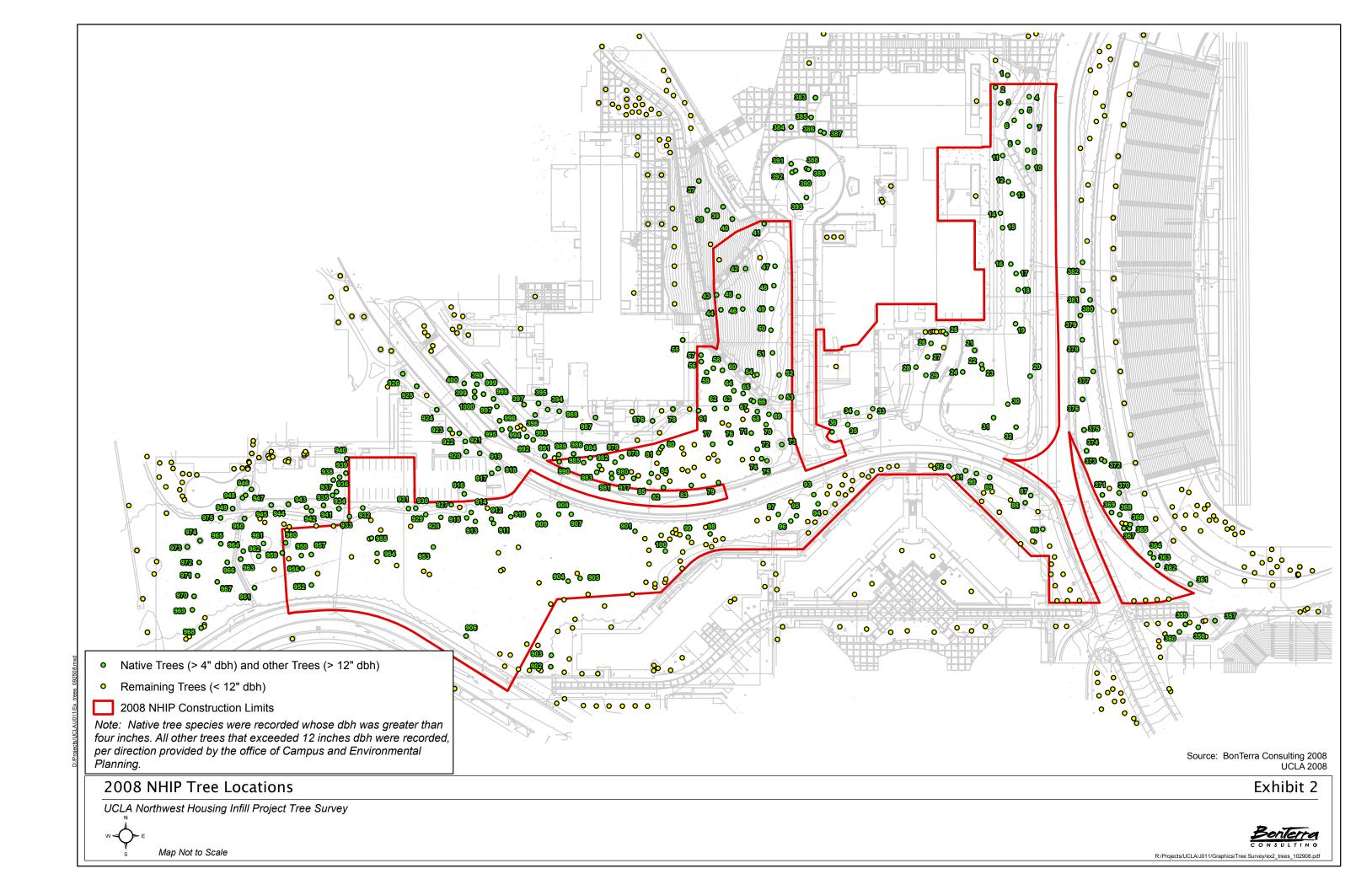
Vehicular circulation improvements for the proposed NHIP would include: (1) a new vehicular entry for Housing Maintenance service vehicles into the Sproul Complex from Charles E. Young Drive and (2) widening of the existing Sproul Hall loading dock off De Neve Drive from two bays to three. Existing pedestrian facilities in proximity to the proposed NHIP would be reconfigured and/or replaced, and new facilities would be constructed to ensure safe and efficient movement of residents within the Northwest zone and to other campus areas.

The proposed NHIP would include installation of new hardscape and landscape. Additionally, campus utilities (storm drain, water, sewer, electric, natural gas, telecommunication, and cable television) would be extended and/or relocated, as necessary, to serve the new buildings.

1

Exhibit 1

UCLA Northwest Housing Infill Project Tree Survey



1.3 SURVEY AREA

The survey area for the tree survey was defined as the development area for the project with an additional buffer area of approximately 100 feet in areas that contained trees adjacent to the development area (Exhibit 2). The purpose of the buffer area is to document trees that may be impacted due to future minor changes to the development project or construction activities not currently foreseen.

1.4 EXISTING CONDITIONS

The survey area currently consists of landscaped areas that are dominated by horticultural tree species including deodar cedar (*Cedrus deodara*), coral tree (*Erythrina* sp.), lemon-scented gum (*Eucalyptus citriodora*), unidentified gum (*Eucalyptus* sp.), ficus (*Ficus* spp.), ash (*Fraxinus* sp.), jacaranda (*Jacaranda mimosifolia*), magnolia (*Magnolia* sp.), olive (*Olea europea*), Canary Island pine (*Pinus canariensis*), Monterey pine (*Pinus radiata*), unidentified pines (*Pinus* spp.), Victorian box (*Pittosporum undulatum*), London plane tree (*Platanus acerifolia*), and Brazilian pepper (*Schinus terebinthefolius*). Two species native to southern California are found within the survey area: California sycamore (*Platanus racemosa*) and coast live oak (*Quercus agrifolia*). Understory plant species in the survey area included English ivy (*Hedera helix*), cape honeysuckle (*Tecomaria capensis*), periwinkle (*Vinca major*), and turf grass.

SECTION 2.0 METHODOLOGY

The project site was surveyed by BonTerra Consulting Certified Arborist David Hughes (International Society of Arboriculture Certificate No. WE-7752A), with the assistance of BonTerra Consulting Environmental Planner Heather Fong, on April 9, 10, and 23, 2008. Tree locations were recorded using a hand-held geographic position system (GPS) device. In areas that did not have sufficient signal strength, tree locations were mapped on a 100-scale (1"=100') aerial photograph in the field. During the survey, each tree was tagged and the following data were collected: trunk diameter at breast height (dbh), tree height, canopy width, aesthetics, and overall health. A summary of data collection is found in Appendix A.

2.1 TREE TAGS

Each tree that was assessed was individually tagged with a circular aluminum tag (one inch diameter) bearing the tree number. Trees were tagged with the following numbers: 1 through 100, 357 through 400, and 901 through 1,000. Inaccessible trees were given identifying numbers on the tree map but were not tagged. Tags were nailed onto the north side of each tree. Nails were left protruding approximately one-half inch to facilitate their future removal from trees that are not impacted by construction.

2.2 **DIAMETER**

Using a diameter tape, measurements were taken at four and one-half feet above mean natural grade; multiple trunks were measured separately. For multi-trunk trees, the diameter of each trunk was combined to determine the total diameter of each tree. The diameter was estimated for trees that were not accessible. Native tree species were recorded whose dbh was greater than four inches. All other trees that exceeded 12 inches dbh were recorded, per direction provided by the office of Campus and Environmental Planning.

2.3 **HEIGHT AND CANOPY**

The height of each tree was estimated from mean natural grade to the highest branch. Also, the diameter of each tree's canopy was estimated at its widest point.

2.4 **AESTHETICS**

Each tree assessed was inspected and compared to an archetype tree (considered excellent on all points mentioned below) of the same species. Tree aesthetics were evaluated with respect to overall form and symmetry, crown balance, branching pattern, and broken branches.

The trees were rated on a scale of 1 to 5, as follows:

- 1: Very Poor
- 2: Poor
- 3: Fair
- 4: Good
- 5: Excellent

2.5 HEALTH

The health of each tree was assessed based on visual evidence of vigor, such as the amount of foliage; leaf color and size; presence of branch or twig dieback; severity of insect infestation; the presence of disease; heart rot; fire damage; mechanical damage; amount of new growth;

appearance of bark; and rate of callous development over wounds. The tree's structural integrity was also evaluated with respect to branch attachment, branch placement, root health, and stability. In addition, the health assessment considered such elements as the presence of decay, weak branch attachments, and the presence of exposed roots due to soil erosion.

The trees were rated on the 1 to 5 scale, noted above.

SECTION 3.0 RESULTS

A total of 244 trees were surveyed within the study area, 132 of which are found within the limits of construction for the project (Exhibit 2). Trees within the construction limits include: 2 deodar cedars, 1 coral tree, 32 lemon-scented gum trees, 7 unidentified gum trees, 1 ash, 2 magnolias, 3 olive trees, 65 Canary Island pines, 2 Monterey pines, 5 unidentified pines, 3 Victorian box trees, 1 coast live oak, 2 Brazilian pepper trees, and 6 unidentified ornamental trees. Tree species quantities and sizes are summarized below in Table 1. A summary of the trunk diameter, tree height, canopy width, and health and aesthetic ratings are provided in Table 2. Collected data for all trees are found in Appendix A.

The only native tree species that was encountered within the construction footprint was a single coast live oak tree (tree number 75). Two other coast live oaks and five California sycamores are found within the survey area but are not within the construction limits for this project.

Several trees are located immediately adjacent to the limits of construction and may be impacted by the project, either directly through impacts to the root zone or indirectly due to excessive shade from structures to be built. A total of 13 potentially impacted trees (tree numbers 1, 902, 903, 916, 934-940, 986, and 989) are located adjacent to the project site, all of which are Canary Island Pines. It is recommended that a follow-up tree survey is completed at the conclusion of initial construction activities to determine if any additional trees were removed as part of this project.

TABLE 1
SUMMARY OF QUANTITY AND SIZE FOR TREES
WITHIN THE DEVELOPMENT AREA

5	Species		Tı	ree Size (db	h)		
Common Name	Scientific Name	4–12"	12–20"	20–30"	30–40"	>40"	Total
deodar cedar	Cedrus deodara	_	2	_	_	_	2
coral tree	Erythrina sp.	_	_	_	_	1	1
lemon-scented gum	Eucalyptus citriodora	_	21	10	1	_	32
gum	Eucalyptus sp.	_	4	2	1	_	7
ash	Fraxinus sp.	_	_	1	_	_	1
magnolia	Magnolia sp.	_	1	_	_	1	2
olive	Olea europea	_	_	2	1	_	3
Canary Island pine	Pinus canariensis	_	40	25	_	_	65
Monterey pine	Pinus radiata	_	_	2	_	_	2
unidentified pines	Pinus spp.	_	2	2	_	1	5
Victorian box	Pittosporum undulatum	_	2	1	_	_	3
coast live oak 1	Quercus agrifolia	1	_	_	_	_	1
Brazilian pepper	Schinus terebinthefolius	_	_	_	2	_	2
unknown ornamental		_	1	5	_	_	6
						Total	132

Coast live oak is a native species. The minimum threshold for inclusion of native species in this report was is 4 inches, as opposed to 12 inches for all other tree species.

TABLE 2 SUMMARY OF TREE CHARACTERISTICS FOR TREES WITHIN THE DEVELOPMENT AREA

S	pecies			Average	Average	Average	Average
Common Name	Scientific Name	Quantity	Average dbh (in.)	Height (ft)	Canopy (feet)	Health Rating	Aesthetic Rating
deodar cedar	Cedrus deodara	2	15.0	65.0	27.5	5.0	5.0
coral tree	Erythrina sp.	1	53.7	20.0	40.0	2.0	4.0
lemon-scented gum	Eucalyptus citriodora	32	19.3	74.7	29.8	4.5	4.1
gum	Eucalyptus sp.	7	19.0	80.0	29.3	4.6	3.9
ash	Fraxinus sp.	1	20.4	80.0	25.0	5.0	5.0
magnolia	Magnolia sp.	2	34.2	50.0	55.0	2.5	3.5
olive	Olea europea	3	28.4	13.0	13.3	3.0	2.0
Canary Island pine	Pinus canariensis	65	18.8	80.4	22.5	4.9	4.8
Monterey pine	Pinus radiata	2	25.0	75.0	35.0	5.0	4.5
unidentified pines	Pinus spp.	5	32.4	80.0	38.0	4.4	4.8
Victorian box	Pittosporum undulatum	3	19.6	36.7	26.7	4.0	4.0
coast live oak 1	Quercus agrifolia	1	5.1	12.0	10.0	5.0	3.0
Brazilian pepper	Schinus terebinthefolius	2	32.6	35.0	30.0	4.0	2.5
unknown ornamental		6	21.2	35.0	24.2	3.2	2.7

The following issues were noted during the tree survey and are presented for the consideration of UCLA:

- Several potentially hazardous trees are located adjacent to the western end of the
 development area that is located north of Gayley Avenue. Two coast live oak trees
 (Nos. 961 and 962) were found under mature magnolia trees. These oaks are apparently
 volunteer trees that have a spindly growth form as they are being shaded out by these
 magnolias. BonTerra Consulting recommends their removal for safety and aesthetic
 reasons. Additionally, several Canary Island pines are in this area (tree numbers 966–974),
 most of which are leaning. One tree had apparently fallen recently in this area, suggesting
 that others are at risk of falling.
- It should be noted that several London plane trees are located at the western terminus of Bruin Walk, at the intersection of Charles E. Young Drive. These trees are all less than 12 inches dbh, and were therefore not included in this report. They are often mistaken for the native California sycamore, but they are non-native trees.

SECTION 4.0 TREE MITIGATION

The University of California is not subject to local zoning and planning ordinances, including the City of Los Angeles Native Tree Protection Ordinance No. 177404, and is therefore able to mitigate the loss of trees at its own discretion. The City of Los Angeles Native Tree Protection Ordinance requires the replacement of "protected species" trees, defined as coast live oak, valley oak (*Quercus lobata*), California sycamore, Southern California black walnut (*Juglans californica* var. *californica*), and California bay laurel (*Umbellularia californica*). Tree replacement mitigation is determined on a case-by-case basis by the Urban Forestry Division of the Bureau of Street Services, typically at a ratio of 2:1.

Historically, UCLA has met or exceeded the City of Los Angeles tree replacement requirements. Using the City's ordinance as a guideline for this project, the only tree that would require mitigation is 1 coast live oak (refer to Table 1). The following mitigation is required for the proposed NHIP.

1. UCLA shall replace protected species trees removed for the proposed project (1 coast live oak) as defined under the City of Los Angeles Native Tree Protection Ordinance, 177404 on a 2:1 ratio.

Additionally, the following campus programs, practices, and procedures (PPs) and mitigation measures (MMs) from the 2002 LRDP Final EIR would apply to the proposed NHIP to reduce impacts to trees.

- PP 4.3-1(a) Mature trees to be retained and protected in place during construction, shall be fenced at the drip-line, and maintained by the contractor in accordance with landscape specifications contained in the construction contract.
- PP 4.3-1(b) Trees shall be examined by an arborist and trimmed, if appropriate, prior to the start of construction.
- PP 4.3-1(c) Construction contract specifications shall include the provision for temporary irrigation/watering and feeding of these trees during construction, as recommended by the designated arborist.
- PP 4.3-1(d) Construction contract specifications shall require that no building material, parked equipment, or vehicles shall be stored within the fence line.
- PP 4.3-1(e) Examination of these trees by an arborist shall be performed monthly during construction to ensure that they are being adequately maintained.
- MM 4.3-1(c) In conjunction with CEQA documentation required for each project proposal under the 2002 LRDP, as amended, that would result in the removal of one or more mature trees, the project will include a tree replacement plan with a 1:1 tree replacement ratio at the development site where feasible and/or elsewhere within the campus boundaries where feasible. If it is not feasible to plant replacement trees at a 1:1 ratio within the campus boundaries, the tree replacement plan will include the planting of native shrubs in ecologically appropriate areas within the campus boundaries that would provide nesting, foraging or roosting habitat for birds so that the replacement number of trees and shrubs will result in a 1:1 replacement ratio.

APPENDIX A SUMMARY OF TREE DATA

APPENDIX A SUMMARY OF TREE DATA UCLA NORTHWEST HOUSING INFILL PROJECT

Tree		# Main	Dia	meter at	Breast	Height	(in.)	Sum of	Height	Canopy	Health	Aesthetic	Within	
Tag	Tree Species	Trunks	1st	2nd	3rd	4th	5th	Trunks	(ft)	Diameter	Rating	Rating	Dev	Notes
			Trunk	Trunk	Trunk	Trunk	Trunk		. ,	(ft)			Area	
1	Pinus canariensis	1	22.4					22.4	90	15	5	5	no	adjacent to dev area
2	Pinus canariensis	1	18.9					18.9	90	15	4	5	yes	
3	Pinus canariensis	1	23.6					23.6	90	20	5	5	yes	
4	Eucalyptus citriodora	1	15.7					15.7	50	20	5	4	yes	
5	Eucalyptus citriodora	1	21.6					21.6	70	50	4	4	yes	
6	Eucalyptus citriodora	1	19.2					19.2	70	50	4	4	yes	
7	Eucalyptus citriodora	1	18.2					18.2	70	25	5	3	yes	
8	Eucalyptus citriodora	2	12.8	11.9				24.8	70	30	2	3	yes	codominant stems
9	Eucalyptus citriodora	1	14.1					14.1	70	20	5	4	yes	
10	Eucalyptus citriodora	1	17.3					17.3	70	25	5	5	yes	
11	Eucalyptus citriodora	1	21.7					21.7	80	30	5	4	yes	
12	Eucalyptus citriodora	1	19.4					19.4	80	40	5	5	yes	
13	Eucalyptus citriodora	1	25.5					25.5	80	40	5	5	yes	
14	Eucalyptus citriodora	1	18.1					18.1	80	35	5	4	yes	
15	Eucalyptus citriodora	1	28.1					28.1	80	50	5	4	yes	
16	Pinus canariensis	1	22.6					22.6	90	40	5	5	yes	
17	Fraxinus sp.	1	20.4					20.4	80	25	5	5	yes	
18	Pinus canariensis	1	29.8					29.8	90	30	5	5	yes	
19	Pinus canariensis	1	26.3					26.3	90	25	5	5	yes	
20	Pinus canariensis	1	25.1					25.1	90	20	5	5	yes	
21	Pinus sp.	1	24.8					24.8	80	30	3	4	yes	Pinus muricata?
22	Pinus canariensis	1	16.0					16.0	80	15	5	5	yes	
23	Pinus canariensis	1	18.2					18.2	80	20	5	5	yes	
24	Pinus canariensis	1	22.1					22.1	80	20	5	5	yes	
25	Unknown ornamental	1	12.1					12.1	40	20	3	3	yes	Ficus sp.? exposed roots, severe lean, 17 additional smaller trees in same area (same sp.)
26	Pinus canariensis	1	16.5					16.5	80	15	5	5	yes	
27	Pinus canariensis	1	16.1					16.1	80	15	5	5	yes	
28	Pinus canariensis	1	14.6					14.6	60	15	5	5	yes	
29	Pinus canariensis	1	13.2					13.2	50	15	5	5	yes	
30	Olea europea	3	7.5	7.3	5.3			20.1	12	10	3	2	yes	
31	Olea europea	4	8.9	7.2	7.0	4.8		27.9	12	15	3	2	yes	
32	Olea europea	3	13.0	14.8	9.4			37.2	15	15	3	2	yes	

APPENDIX A SUMMARY OF TREE DATA UCLA NORTHWEST HOUSING INFILL PROJECT

Tree Tag	Tree Species	# Main Trunks	Dia	meter at	Breast	Height	(in.)	Sum of Trunks	Height (ft)	Canopy Diameter	Health Rating	Aesthetic Rating	Within Dev	Notes
			1st	2nd	3rd	4th	5th							
			Trunk	Trunk	Trunk	Trunk	Trunk			(ft)			Area	
33	Pinus canariensis	1	12.2					12.2	50	10	5	5	yes	
34	Pinus canariensis	1	14.9					14.9	50	15	5	5	yes	
35	Pinus canariensis	1	18.6					18.6	70	25	5	5	yes	
36	Pinus canariensis	1	17.8					17.8	70	20	5	5	yes	
37	Pinus canariensis	1	27.6					27.6	90	40	5	5	no	
38	Pinus canariensis	1	23.9					23.9	90	25	5	5	no	
39	Pinus canariensis	1	19.1					19.1	90	25	5	5	no	
40	Pinus canariensis	1	27.7					27.7	100	40	5	5	no	
41	Pinus canariensis	1	28.9					28.9	100	30	5	5	yes	
42	Pinus sp.	1	34.6					34.6	100	50	5	5	yes	Pinus muricata?
43	Pinus canariensis	1	23.2					23.2	100	20	5	5	yes	
44	Pinus canariensis	1	22.7					22.7	100	20	5	5	yes	
45	Pinus canariensis	1	26.9					26.9	100	25	5	5	yes	
46	Pinus canariensis	1	22.4					22.4	100	25	5	5	yes	
47	Pinus canariensis	1	24.3					24.3	100	20	5	5	yes	
48	Pinus canariensis	1	18.6					18.6	80	25	5	5	yes	
49	Pinus canariensis	1	26.9					26.9	100	25	5	5	yes	
50	Pinus canariensis	1	20.3					20.3	80	25	5	5	yes	
51	Pinus canariensis	1	19.6					19.6	90	20	5	5	yes	
52	Pinus canariensis	1	22.6					22.6	90	25	5	5	yes	
53	Pinus canariensis	1	21.8					21.8	100	20	5	5	yes	
54	Pinus sp.	1	31.9					31.9	90	40	5	5	yes	Pinus muricata?
55	Eucalyptus citriodora	1	16.7					16.7	80	20	5	5	no	
56	Eucalyptus citriodora	1	22.6					22.6	70	30	5	5	yes	
57	Eucalyptus citriodora	1	17.2					17.2	50	25	5	3	yes	
58	Eucalyptus citriodora	1	19.5					19.5	90	20	5	5	yes	
59	Eucalyptus citriodora	1	14.5					14.5	80	15	3	2	yes	
60	Unknown ornamental	4	5.7	4.7	6.4	6.9		23.8	15	25	1	2	yes	
61	Eucalyptus citriodora	1	22.7					22.7	80	40	5	4	yes	
62	Eucalyptus citriodora	1	19.1					19.1	70	25	4	4	yes	
63	Eucalyptus citriodora	1	19.2					19.2	90	40	5	4	yes	
64	Pinus sp.	1	20.2					20.2	100	30	5	5	yes	Pinus muricata?
65	Eucalyptus citriodora	1	21.4					21.4	70	25	5	5	yes	
66	Eucalyptus citriodora	1	18.6					18.6	70	35	3	5	yes	
67	Eucalyptus citriodora	1	12.1					12.1	50	20	4	3	yes	

APPENDIX A SUMMARY OF TREE DATA UCLA NORTHWEST HOUSING INFILL PROJECT

Tree Tag	Tree Species	# Main	Dia	meter at	Breast	Height	(in.)	Sum of Trunks	Height (ft)	Canopy Diameter	Health Rating	Aesthetic Rating	Within Dev	Notes
			1st	2nd	3rd	4th 5t	5th							
			Trunk	Trunk	Trunk	Trunk	Trunk			(ft)			Area	
68	Eucalyptus citriodora	1	14.2					14.2	50	20	4	3	yes	
69	Eucalyptus citriodora	1	21.9					21.9	80	30	3	4	yes	
70	Eucalyptus citriodora	1	23.2					23.2	100	30	5	5	yes	
71	Eucalyptus citriodora	1	16.5					16.5	80	30	5	4	yes	
72	Eucalyptus citriodora	1	20.0					20.0	100	30	5	4	yes	
73	Pinus sp.	1	50.6					50.6	30	40	4	5	yes	Pinus halepensis? many branches at base
74	Eucalyptus sp.	1	24.8					24.8	70	25	5	4	yes	
75	Quercus agrifolia	1	5.1					5.1	12	10	5	3	yes	
76	Eucalyptus citriodora	1	14.6					14.6	90	20	4	5	yes	
77	Eucalyptus citriodora	1	13.4					13.4	70	20	5	3	yes	
78	Eucalyptus citriodora	1	20.4					20.4	90	40	5	5	no	
79	Eucalyptus sp.	1	13.3					13.3	80	25	4	3	yes	
80	Eucalyptus sp.	1	30.5					30.5	70	25	4	4	yes	
81	Eucalyptus sp.	1	13.2					13.2	80	30	5	4	yes	
82	Eucalyptus sp.	1	13.2					13.2	80	25	5	4	yes	
83	Eucalyptus citriodora	1	15.2					15.2	60	20	4	3	yes	
84	Eucalyptus sp.	1	21.3					21.3	90	40	4	4	yes	
85	Eucalyptus sp.	1	16.4					16.4	90	35	5	4	yes	
86	Erythrina sp.	3	22.6	15.0	16.0			53.7	20	40	2	4	yes	
87	Pinus canariensis	1	18.9					18.9	80	30	5	5	yes	
88	Pinus canariensis	1	19.5					19.5	80	25	5	5	yes	
89	Pinus canariensis	1	24.2					24.2	90	30	5	5	yes	
90	Pinus canariensis	1	19.0					19.0	90	30	5	5	yes	
91	Pinus canariensis	1	17.2					17.2	90	25	5	5	yes	
92	Pinus canariensis	1	21.4					21.4	85	30	5	5	yes	
93	Eucalyptus citriodora	1	14.8					14.8	70	25	5	5	yes	
94	Cedrus deodara	1	14.4					14.4	60	25	5	5	yes	
95	Pittosporum undulatum	5	7.9	4.1	4.0	4.4	5.6	26.0	30	35	5	5	yes	
96	Pittosporum undulatum	3	6.2	5.3	3.0			14.4	30	15	5	5	yes	
97	Cedrus deodara	1	15.7					15.7	70	30	5	5	yes	
98	Unknown ornamental	2	12.6	9.2				21.8	60	20	4	3	yes	Ficus sp.?
99	Schinus terebinthefolius	4	9.1	11.9	6.5	7.3		34.7	30	30	4	2	yes	·
100	Schinus terebinthefolius	4	8.1	7.6	7.0	7.7		30.4	40	30	4	3	yes	
357	Erythrina sp.	2	24.9	19.8				44.6	25	30	4	4	no	

Tree		# Main	Dia	meter at	Breast	Height	(in.)	Sum of	Height	Canopy	Health	Aesthetic	Within	
Tag	Tree Species	Trunks	1st	2nd	3rd	4th	5th	Trunks	(ft)	Diameter	Rating	Rating	Dev	Notes
3			Trunk	Trunk	Trunk	Trunk	Trunk		()	(ft)	 3	J	Area	
358	Pinus canariensis	1	14.0					14.0	70	15	5	4	no	
359	Pinus canariensis	1	15.0					15.0	70	15	5	4	no	
360	Pinus canariensis	1	12.4					12.4	60	15	5	4	no	
361	Eucalyptus citriodora	1	12.0					12.0	60	25	4	3	no	inaccessible, dbh est.
362	Eucalyptus citriodora	1	12.0					12.0	60	25	4	3	no	inaccessible, dbh est.
363	Eucalyptus citriodora	1	12.0					12.0	60	25	4	3	no	inaccessible, dbh est.
364	Eucalyptus citriodora	1	12.0					12.0	60	25	4	3	no	inaccessible, dbh est.
365	Eucalyptus citriodora	1	24.0					24.0	80	40	5	5	no	
366	Eucalyptus citriodora	1	25.2					25.2	75	25	5	4	no	
367	Pinus radiata	1	19.4					19.4	70	30	4	4	no	
368	Pinus radiata	1	14.2					14.2	50	20	3	3	no	
369	Pinus radiata	1	21.5					21.5	60	40	4	4	no	slight lean
370	Pinus radiata	1	15.4					15.4	80	25	4	5	no	
371	Pinus canariensis	1	20.3					20.3	20	40	2	2	no	severe lean
372	Eucalyptus citriodora	1	19.4					19.4	80	25	4	4	no	
373	Eucalyptus citriodora	1	14.1					14.1	80	25	4	4	no	
374	Eucalyptus sp.	1	27.1					27.1	90	40	4	5	no	
375	Pinus radiata	1	33.7					33.7	100	50	4	4	no	co-dominant stems, no cracks
376	Pinus radiata	1	30.6					30.6	110	60	2	4	no	decay at base
377	Eucalyptus sp.	1	17.4					17.4	60	30	3	2	no	lerp psyllid infestation
378	Eucalyptus citriodora	1	19.1					19.1	90	45	5	5	no	
379	Eucalyptus citriodora	1	14.1					14.1	90	25	5	4	no	
380	Eucalyptus citriodora	1	16.3					16.3	80	30	5	3	no	
381	Eucalyptus citriodora	1	18.9					18.9	85	35	5	5	no	
382	Eucalyptus citriodora	1	24.1					24.1	90	45	5	5	no	
383	Pinus canariensis	1	18.5					18.5	100	40	5	5	no	no tag
384	Pinus radiata	1	14.9					14.9	30	40	3	3	no	no tag
385	Pinus canariensis	1	18.3					18.3	90	30	5	4	no	no tag
386	Eucalyptus citriodora	1	17.0					17.0	80	20	4	3	no	no tag
387	Eucalyptus citriodora	1	21.7					21.7	60	20	3	2		no tag
388	Platanus racemosa	1	15.1					15.1	90	30	4	5		center island
389	Platanus racemosa	1	9.8					9.8	35	20	4	2	no	center island
390	Platanus racemosa	1	13.0					13.0	50	20	5	5	no	center island
391	Platanus racemosa	1	13.7					13.7	35	25	4	3	no	center island

Tree		# Main	Dia	meter at	Breast	Height	(in.)	Sum of	Height	Canopy	Health	Aesthetic	Within	
Tag	Tree Species	Trunks	1st	2nd	3rd	4th	5th	Trunks	(ft)	Diameter	Rating	Rating	Dev	Notes
			Trunk	Trunk	Trunk	Trunk	Trunk			(ft)	J	3	Area	
392	Platanus racemosa	1	17.3					17.3	90	25	5	5	no	center island
393	Ficus sp.	3	32.3	22.2	9.9			64.4	45	40	4	2	no	center island
394	Eucalyptus citriodora	1	12.0					12.0	60	10	5	3	no	no tag, tree behind fence, dbh est.
395	Eucalyptus citriodora	1	15.6					15.6	70	20	5	5	no	
396	Eucalyptus citriodora	1	14.5					14.5	80	20	5	5	no	
397	Eucalyptus citriodora	1	23.5					23.5	75	30	5	5	no	
398	Pinus canariensis	1	16.6					16.6	80	20	5	5	no	
399	Pinus canariensis	1	15.4					15.4	80	20	5	5	no	
400	Pinus canariensis	1	14.3					14.3	70	15	5	5	no	
901	Pinus radiata	1	27.3					27.3	80	40	5	5	yes	
902	Pinus canariensis	1	18.3					18.3	80	25	5	5	no	
903	Pinus canariensis	1	16.1					16.1	80	25	5	5	no	
904	Pinus canariensis	1	12.2					12.2	30	20	5	3	yes	
905	Unknown ornamental	3	7.6	7.7	7.7			23.0	40	30	4	3	yes	
906	Eucalyptus citriodora	1	34.4					34.4	100	40	5	5	yes	
907	Unknown ornamental	4	6.4	8.0	4.8	5.9		25.1	25	25	4	2	yes	
908	Unknown ornamental	4	5.9	5.5	5.5	4.4		21.3	30	25	3	3	yes	
909	Pinus radiata	1	22.7					22.7	70	30	5	4	yes	
910	Pinus canariensis	1	22.9					22.9	90	25	5	5	yes	
911	Pinus canariensis	1	16.6					16.6	80	15	5	5	yes	
912	Pinus canariensis	1	18.3					18.3	90	30	5	5	yes	
913	Pinus canariensis	1	15.1					15.1	80	15	5	4	yes	
914	Pinus canariensis	1	14.8					14.8	80	20	5	5	yes	
915	Pinus canariensis	1	16.0					16.0	90	25	5	5	yes	
916	Pinus canariensis	1	13.4					13.4	70	20	5	5	no	adjacent to dev area
917	Pinus canariensis	1	14.6					14.6	70	20	4	4	no	
918	Pinus canariensis	1	16.9					16.9	80	15	5	5	no	
919	Pinus canariensis	1	19.4					19.4	90	30	5	5	no	
920	Pinus canariensis	1	15.2					15.2	80	20	5	4	no	
921	Pinus canariensis	1	17.0					17.0	90	25	4	5	no	
922	Pinus canariensis	1	13.7					13.7	80	15	5	5	no	
923	Pinus canariensis	1	15.6					15.6	80	20	5	3	no	
924	Pinus canariensis	1	16.5					16.5	80	20	5	5	no	
925	Pinus canariensis	1	16.7					16.7	70	20	5	5	no	

Tree		# Main	Dia	neter at	Breast	Height	(in.)		Height	Canopy	Health	Aesthetic	Within	
Tag	Tree Species	Trunks	1st	2nd	3rd	4th	5th	Trunks	(ft)	Diameter	Rating	Rating	Dev	Notes
			Trunk	Trunk	Trunk	Trunk	Trunk		()	(ft)	J	3	Area	
926	Pinus radiata	1	17.7					17.7	60	30	5	5	no	
927	Pinus canariensis	1	25.3					25.3	90	40	5	5	yes	
928	Pinus canariensis	1	20.5					20.5	90	30	5	5	yes	
929	Pinus canariensis	1	14.3					14.3	90	20	5	5	yes	
930	Pinus canariensis	1	12.6					12.6	90	25	5	5	yes	
931	Pinus canariensis	1	13.0					13.0	90	15	5	5	yes	
932	Pinus canariensis	1	21.7					21.7	80	30	5	5	yes	
933	Pinus canariensis	1	15.2					15.2	80	20	5	5	yes	
934	Pinus canariensis	1	15.2					15.2	70	25	5	5	no	adjacent to dev area
935	Pinus canariensis	1	15.9					15.9	80	20	5	5	no	adjacent to dev area
936	Pinus canariensis	1	14.0					14.0	80	20	5	4	no	adjacent to dev area
937	Pinus canariensis	1	14.5					14.5	70	20	5	5	no	adjacent to dev area
938	Pinus canariensis	1	13.7					13.7	70	20	5	5	no	adjacent to dev area
939	Pinus canariensis	1	15.4					15.4	70	20	5	5	no	adjacent to dev area
940	Pinus canariensis	1	15.2					15.2	70	20	5	5	no	adjacent to dev area
941	Pinus canariensis	1	16.8					16.8	90	20	5	5	no	
942	Pinus canariensis	1	12.2					12.2	50	20	5	4	no	
943	Pinus canariensis	1	14.3					14.3	70	20	5	5	no	
944	Eucalyptus citriodora	1	20.5					20.5	70	30	4	3	no	
945	Eucalyptus citriodora	1	22.6					22.6	70	40	3	3	no	
946	Pinus canariensis	1	14.6					14.6	60	20	5	5	no	
947	Pinus canariensis	1	15.4					15.4	70	20	5	5	no	
948	Pinus canariensis	1	12.4					12.4	40	20	5	4	no	
949	Eucalyptus citriodora	1	19.9					19.9	70	30	3	4	no	
950	Eucalyptus citriodora	1	15.1					15.1	50	25	3	3	no	
951	Pinus canariensis	1	28.7					28.7	65	40	3	4	no	leaning
952	Pinus canariensis	1	20.7					20.7	50	30	2	2	yes	covered in ivy, leaning
953	Pinus canariensis	1	12.4					12.4	50	20	5	5	yes	
954	Pittosporum undulatum	2	9.8	8.5				18.3	50	30	2	2	yes	
955	Pinus canariensis	1	15.6					15.6	70	25	5	4	yes	
956	Pinus canariensis	1	21.0					21.0	80	35	5	5	yes	
957	Pinus canariensis	1	21.1					21.1	40	35	3	2	yes	
958	Pinus canariensis	1	12.2					12.2	50	15	4	4	yes	
959	Magnolia sp.	1	19.8					19.8	40	50	3	4	yes	bleeding sap from nail, minor fungus on roots

Tree		# Main	Dia	meter at	Breast	Height	(in.)	Sum of	Height	Canopy	Health	Aesthetic	Within	
Tag	Tree Species	Trunks	1st	2nd	3rd	4th	5th	Trunks	(ft)	Diameter	Rating	Rating	Dev	Notes
			Trunk	Trunk	Trunk	Trunk	Trunk			(ft)			Area	
960	Magnolia sp.	3	14.8	17.5	16.4			48.7	60	60	2	3	yes	bleeing sap from nail, fungus on exposed roots
961	Quercus agrifolia	1	9.9					9.9	25	20	2	2	no	
962	Quercus agrifolia	1	7.4					7.4	20	15	2	2	no	
963	Pinus canariensis	1	15.8					15.8	40	30	3	3	no	
964	Magnolia sp.	1	15.3					15.3	50	30	3	3	no	bleeding sap
965	Pittosporum undulatum	4	5.6	5.5	3.4	3.5		18.0	25	15	2	2	no	
966	Pinus canariensis	1	14.3					14.3	35	20	4	3	no	
967	Pinus canariensis	1	15.3					15.3	35	20	5	4	no	
968	Pinus canariensis	1	12.1					12.1	35	20	3	3	no	leaning
969	Pinus canariensis	1	18.0					18.0	45	40	4	4	no	leaning slightly
970	Pinus canariensis	3	9.9	10.4	9.4			29.7	35	30	4	2	no	
971	Pinus canariensis	1	15.6					15.6	40	40	4	3	no	slight lean
972	Pinus canariensis	1	15.9					15.9	30	30	4	3	no	slight lean
973	Pinus canariensis	1	20.7					20.7	35	40	4	4	no	slight lean
974	Pinus canariensis	1	26.3					26.3	55	35	4	3	no	
975	Eucalyptus citriodora	1	12.9					12.9	35	20	4	4	no	
976	Eucalyptus citriodora	1	18.0					18.0	90	30	5	5	no	
977	Pinus canariensis	1	14.4					14.4	80	15	5	5	yes	
978	Pinus canariensis	1	16.0					16.0	80	15	5	5	yes	
979	Pinus canariensis	1	18.0					18.0	80	20	5	5	yes	
980	Pinus canariensis	1	15.7					15.7	80	20	5	5	yes	
981	Pinus canariensis	1	17.2					17.2	80	25	5	5	yes	
982	Pinus canariensis	1	15.5					15.5	80	20	5	5	yes	
983	Pinus canariensis	1	14.3					14.3	80	25	5	5	yes	
984	Pinus canariensis	1	14.1					14.1	70	10	5	5	yes	
985	Pinus canariensis	1	16.5					16.5	80	20	5	5	yes	
986	Pinus canariensis	1	16.1					16.1	80	20	5	5	no	adjacent to dev area
987	Podocarpus sp.	1	18.1					18.1	50	30	5	5	no	-
988	Eucalyptus citriodora	1	21.7					21.7	110	20	5	4	no	
989	Pinus canariensis	1	15.4					15.4	80	20	5	5	no	adjacent to dev area
990	Pinus canariensis	1	15.6					15.6	80	20	5	5	yes	
991	Pinus canariensis	1	18.1					18.1	80	25	5	5	no	
992	Pinus canariensis	1	12.0					12.0	60	15	5	4	no	
993	Pinus canariensis	1	14.3					14.3	70	20	5	5	no	

Tree	Tree Species	# Main	Diameter at Breast Height (in.)				Sum of Height	Canopy	Health	Aesthetic	Within			
Tag		Trunks		2nd Trunk	3rd Trunk	4th Trunk	5th Trunk	Trunks	(ft)	Diameter (ft)	Rating	Rating	Dev Area	Notes
994	Pinus canariensis	1	16.0					16.0	80	20	5	5	no	
995	Pinus canariensis	1	19.1					19.1	80	20	5	5	no	
996	Pinus canariensis	1	19.6					19.6	85	20	5	4	no	
997	Pinus canariensis	1	16.7					16.7	80	20	5	5	no	
998	Pinus canariensis	1	18.1					18.1	80	20	5	5	no	
999	Pinus canariensis	1	16.5					16.5	65	25	5	4	no	
1000	Pinus canariensis	1	13.8					13.8	80	20	5	5	no	

APPENDIX D2 PLANT AND WILDLIFE COMPENDIA

PLANT COMPENDIUM Stone											
Species	UCLA Campus ¹	NHIP ²	Stone Canyon Creek ²	4-Acre Parcel ²							
GYMNOSPERMS											
CUPRESSACEAE - CYPRESS FAMILY											
Cupressus sp. cypress	х										
Juniperus sp. juniper	x										
Juniperus chinensis* Chinese juniper	х										
Taxodium mucronatum* Montezuma cypress	х										
PINACEAE - PINE FAMILY											
Cedrus deodara* deodar cedar	х	x									
Pinus spp.* pine	х	x		х							
Pinus canariensis* Canary Island pine	х	х									
Pinus halepensis* Aleppo pine	х										
Pinus radiata* Monterey pine	х	х									
PITTOSPORACEAE - PITTOSPORUM FAMILY											
Pittosporum undulatum* victorian box	х	х									
TAXODIACEAE - BALD CYPRESS FAMILY											
Sequoia sempervirens coast redwood	x		х								
Sequoiadendron giganteum giant sequoia	х										
FLOWERING PLANTS											
CLASS DICOTYLEDONES (DICOTS)											
ACERACEAE - MAPLE FAMILY											
Acer macrophyllum big-leaf maple	х										
AIZOACEAE - FIG-MARIGOLD FAMILY											
Carpobrotus edulis* hottentot fig	х	х									
ANACARDIACEAE - SUMAC FAMILY											
Malosma laurina laurel sumac	х			х							
Schinus terebinthifolius* Brazilian pepper tree	x	x									
Toxicodendron diversilobum western poison oak	х										
APIACEAE (UMBELLIFERAE) - CARROT FAMILY											
Foeniculum vulgare* sweet fennel	х			х							

PLANT COMPEN	DIUM			
Species	UCLA Campus ¹	NHIP ²	Stone Canyon Creek ²	4-Acre Parcel ²
APOCYNACEAE - DOGBANE FAMILY				
Nerium oleander* oleander	x	х		
Vinca major* greater periwinkle ARACEAE - ARUM FAMILY	х	Х		
Philodendron bipinnatifidum* philodendron	х			
ARALIACEAE - GINSENG FAMILY Aralia chinensis* Chinese angelica	x			
Hedera canariensis* Algerian ivy	x			
Hedera helix* English ivy	Х	Х		
Delairea odorata* ivy	x	x		
ASTERACEAE (COMPOSITAE) - SUNFLOWER FAMILY				
Artemisia californica California sagebrush	x			х
Baccharis pilularis coyote brush	x			X
Baccharis salicifolia mule fat	x			Х
Conyza bonariensis* flax-leaved horseweed	x			
Conyza canadensis common horseweed	x			
Encelia californica bush sunflower	x			
Gazania rigens* gazania	x			
Gnaphalium bicolor bicolored everlasting/Bioletti's cudweed	x			
Gnaphalium californicum California everlasting	x			
Gnaphalium sp. everlasting	x			
Hazardia squarrosa saw-toothed goldenbush	x			
Hazardia stenolepis goldenbush	x			
Isocoma sp. goldenbush	х			
Iva axillaris poverty weed	x			
Picris echioides* bristly ox tongue	x			

PLANT COMPEN	DIUM			
Species	UCLA Campus ¹	NHIP ²	Stone Canyon Creek ²	4-Acre Parcel ²
Santolina chamaecyparisus lavender-cotton	x			
Senecio [Delairea] mikanioides [odorata]* German ivy	x			
Senecio vulgaris* common groundsel	x			
Sonchus oleraceus* common sow-thistle	x			
Stephanomeria sp. wreath plant	x			
Taraxacum officinale* common dandelion BIGNONIACEAE - BIGNONIA FAMILY	х			
Distictis buccinatoria* trumpet vine	х			
Jacaranda mimosifolia* jacaranda	х	х		
Tecomaria capensis* cape honeysuckle	x	х		
BRASSICACEAE (CRUCIFERAE) - MUSTARD FAMILY				
Brassica nigra* black mustard	x			х
Raphanus sativus* wild radish	x			
CACTACEAE - CACTUS FAMILY				
Opuntia littoralis coastal prickly pear	x			х
Opuntia x occidentalis western prickly pear	x			
CAPRIFOLIACEAE - HONEYSUCKLE FAMILY				
Sambucus mexicana Mexican elderberry	х			X
CHENOPODIACEAE - GOOSEFOOT FAMILY				
Atriplex semibaccata* Australian saltbush	х			
Salsola tragus* Russian thistle	х			
ANNONACEAE - CUSTARD-APPLE FAMILY				
Annona cherimola* cherimoya	х			
CISTACEAE - ROCK-ROSE FAMILY				
Cistus incanus* rock-rose	x			
Cistus sp.* rock-rose	x			
CONVOLVULACEAE - MORNING-GLORY FAMILY				
Calystegia sp. morning-glory	х			

PLANT COMPENDIUM											
Species	UCLA Campus ¹	NHIP ²	Stone Canyon Creek ²	4-Acre Parcel ²							
Convolvulus arvensis* bindweed	х										
CRASSULACEAE - STONECROP FAMILY											
Crassula ovata* jade plant	х										
CUCURBITACEAE - GOURD FAMILY											
Marah macrocarpus wild cucumber/man-root	x										
CYCADACEAE - CYCAD FAMILY											
Cycas revoluta* sago palm	х										
EUPHORBIACEAE - SPURGE FAMILY											
Ricinus communis* castor bean	х			х							
FABACEAE (LEGUMINOSAE) - LEGUME FAMILY											
Acacia sp.* acacia	x										
Acacia baileyana* cootamundra wattle	x										
Acacia melanoxylon* blackwood acacia	х										
Albizia distachaya* plume albizia	х										
Albizia julibrissin* silk tree	х										
Astragalus sp. milkvetch	х										
Astragalus gambelianus Gambel's locoweed	х										
Cassia corymbosa* flowery senna	х										
Ceratonia siliqua* carob	х										
Erythrina sp.* coral tree	х	х									
Lotus scoparius deerweed/California broom	х										
Lupinus spp. lupine	х										
Medicago lupulina* black medick	х										
Trifolium sp. red clover	х										

PLANT COMPE	ENDIUM			
Species	UCLA Campus ¹	NHIP ²	Stone Canyon Creek ²	4-Acre Parcel ²
FAGACEAE - OAK/BEECH FAMILY				
Quercus agrifolia coast live oak	x	х		х
Quercus chrysolepis canyon live oak	х			
GROSSULARIACEAE - GOOSEBERRY FAMILY				
Ribes speciosum fuchsia-flowered gooseberry	x			
HAMAMELIDACEAE - WITCH-HAZEL FAMILY				
Liquidambar sp.* sweet gum	x			
JUGLANDACEAE - WALNUT FAMILY				
Juglans californica southern California black walnut	x			
LAMIACEAE (LABIATAE) - MINT FAMILY				
Salvia mellifera black sage	x			
Trichostema lanatum woolly blue-curls	x			
MAGNOLIACEAE - MAGNOLIA FAMILY				
Magnolia sp.* magnolia	x	x		
MALVACEAE - MALLOW FAMILY				
Malva neglecta* common mallow	x			
MORACEAE - FIG FAMILY				
Ficus spp.* ficus	х	x		
MYRTACEAE - MYRTLE FAMILY				
Eucalyptus spp. * gum	x	x		
Eucalyptus camaldulensis* river red gum	x	x		
Eucalyptus citriodora* lemon-scented gum	x	x		
Callistemon sp.* bottlebrush	x	х		
OLEACEAE - OLIVE FAMILY				
Fraxinus sp. Ash	х	х		
Olea europaea* olive	х	х		
PLATANACEAE - SYCAMORE FAMILY				
Platanus acerifolia* London plane	х	х		
Platanus racemosa western sycamore	х	х		

PLANT COMP	ENDIUM			
Species	UCLA Campus ¹	NHIP ²	Stone Canyon Creek ²	4-Acre Parcel ²
POLYGONACEAE - BUCKWHEAT FAMILY				
Eriogonum sp. buckwheat	x			
Polygonum sp. knotweed/smartweed	х		х	
PORTULACACEAE - PURSLANE FAMILY Claytonia perfoliata miner's-lettuce	×			
PRIMULACEAE - PRIMROSE FAMILY	^			
Anagallis arvensis* scarlet pimpernel	x			
ROSACEAE - ROSE FAMILY				
Cercocarpus betuloides mountain mahogany	х			
Heteromeles arbutifolia toyon/christmas berry	х			Х
Prunus ilicifolia holly-leaved cherry	х			
Rhaphiolepis indica* India hawthorn	х			
RUTACEAE - RUE FAMILY				
Casimiroa sp.* sapote	х			
Citrus reticulata* tangerine	x			
SALICACEAE - WILLOW FAMILY				
Salix laevigata red willow	x		Х	
SCROPHULARIACEAE - FIGWORT FAMILY				
Keckiella ternata bush-penstemon	х			
Mimulus aurantiacus bush monkeyflower	x			
Mimulus longiflorus monkeyflower	x			
SOLANACEAE - NIGHTSHADE FAMILY				
Datura sp. jimson weed	х			
Nicotiana glauca* tree tobacco	х			х
Solanum douglasii Douglas' nightshade	x			
Solanum xanti chaparral nightshade	x			

PLANT COMPENDIUM										
Species	UCLA Campus ¹	NHIP ²	Stone Canyon Creek ²	4-Acre Parcel ²						
VERBENACEAE - VERVAIN FAMILY										
Lantana camara lantana	x									
Verbena lasiostachys vervain	x									
Verbena sp. verbena	х									
VISCACEAE - MISTLETOE FAMILY										
Phoradendron macrophyllum big leaf mistletoe	x									
CLASS MONOCOTYLEDONES (MONOCOTS)										
ARECACEAE (PALMAE) - PALM FAMILY										
Washingtonia filifera California fan palm	x									
CYPERACEAE - SEDGE FAMILY										
Cyperus eragrostis tall umbrella-sedge	x									
Cyperus involucratus* African umbrella-sedge	х									
IRIDACEAE - IRIS FAMILY										
Sisyrinchium bellum blue-eyed grass	х									
<i>LILIACEAE</i> - LILY FAMILY										
Hemerocallis sp.* daylily	х									
Yucca whipplei Our Lord's candle	х			х						
POACEAE [GRAMINEAE] - GRASS FAMILY										
Avena spp.* wild oat	х									
Bromus diandrus* ripgut grass	х									
Bromus tectorum* cheat grass	x									
Cortaderia selloana* Sellow's pampas grass	x			х						
Cynodon dactylon* Bermuda grass	х		х							
Leymus sp. wild rye	х			х						
Digitaria sangiunalis* crab grass	х									
Distichlis spicata salt grass	х									
Ehrharta calycina* veldt grass	х									

PLANT COMPENDIUM				
Species	UCLA Campus ¹	NHIP ²	Stone Canyon Creek ²	4-Acre Parcel ²
Festuca megulura foxtail fuscue	х			
Festuca sp. fescue	х			
Leymus condensatus giant wild rye	х			
Lolium multiflorum* Italian ryegrass	х			
Melica imperfecta small-flowered melic grass	х			
Nassella lepida foothill needlegrass	х			
Nassella pulchra purple needlegrass	х			
Phalaris aquatica* harding grass	х			
Piptatherum miliaceum* smilo grass/millett ricegrass	х			

^{*} introduced species

1 Species list compiled from 2008 surveys, the 2002 LRDP Final EIR, and the Krieger Child Care Center Final EIR.

2 Species list from the 2008 reconnaissance and tree surveys.

WILDLIFE COMPENDIUM					
Observed and/or Expected ¹	Likelihood ²	NHIP Site ²			
	phibians				
	LUNGLESS SALAMANDERS	1			
Batrachoseps attenuatus California slender salamander	Observed	Not Expected			
	- TREEFROGS				
Pseudacris [Hyla] cadaverina California treefrog	Expected	Not Expected			
Pseudacris [Hyla] regilla Pacific treefrog	Expected	Not Expected			
	Reptiles				
PHRYNOSOMATIDAE - ZEBRA-TAILED, F AND HOF	FRINGE-TOED, SPINY, TREE, SID RNED LIZARDS	E-BLOTCHED,			
Sceloporus occidentalis western fence lizard	Expected	Expected			
Uta stansburiana side-blotched lizard	Observed	Expected			
SCINCIE	DAE - SKINKS				
Eumeces skiltonianus western skink	Potential	Not Expected			
TEIIDAE - W	HIPTAIL LIZARDS				
Aspidoscelis [Cnemidophorus] tigris western whiptail	Potential	Not Expected			
	LLIGATOR LIZARDS	T			
Elgaria multicarinata southern alligator lizard	Expected	Expected			
	COLUBRID SNAKES	1			
Pituophis catenifer gopher snake	Expected	Not Expected			
Lampropeltis getula common kingsnake	Potential	Not Expected			
Crotalus oreganus western rattlesnake	Potential	Not Expected			
	Birds				
	ORIDAE - QUAILS	T			
Callipepla californica California quail	Potential	Not Expected			
CATHARTIDAE - N	EW WORLD VULTURES				
Cathartes aura turkey vulture	Expected	Potential			
ACCIPITRIDAE - HAWKS					
Accipiter striatus sharp-shinned hawk	Observed	Expected			
Accipiter cooperii Cooper's hawk	Observed	Expected			
Buteo lineatus red-shouldered hawk	Observed	Expected			
Buteo jamaicensis red-tailed hawk	Expected	Expected			

WILDLIFE COMPENDIUM						
Observed and/or Expected ¹	Likelihood ²	NHIP Site ²				
Buteo regalis ferruginous hawk	Potential	Potential				
Buteo swainsoni Swainson's hawk	Potential	Potential				
FALCONID	AE - FALCONS					
Falco sparverius American kestrel	Expected	Expected				
Falco columbarius merlin	Potential	Potential				
CHARADRII	DAE - PLOVERS					
Charadrius vociferus killdeer	Expected	Expected				
LARIDAE - (GULLS & TERNS					
Larus delawarensis ring-billed gull	Potential	Not Expected				
	PIGEONS & DOVES					
Columba livia rock pigeon *	Expected	Expected				
Streptopelia chinensis spotted dove	Potential	Potential				
Zenaida macroura mourning dove	Observed	Expected				
CUCULIDAE - CUCKOOS & ROADRUNNERS						
Geococcyx californianus greater roadrunner	Potential	Potential				
TYTONIDA	E - BARN OWLS	T				
Tyto alba barn owl	Expected	Expected				
	E - TRUE OWLS					
Athene cunicularia burrowing owl	Potential	Not Expected				
Megascops kennicottii western screech-owl	Expected	Expected				
Bubo virginianus great horned owl	Observed	Expected				
Asio otus long-eared owl	Potential	Potential				
Asio flammeus short-eared owl	Potential	Potential				
CAPRIMULGIDAE - GOATSUCKERS						
Chordeiles acutipennis lesser nighthawk	Potential	Not Expected				
Phalaenoptilus nuttallii common poorwill	Potential	Not Expected				
APODIDAE - SWIFTS						
Aeronautes saxatalis white-throated swift	Expected	Expected				

WILDLIFE COMPENDIUM					
Observed and/or Expected ¹	Likelihood ²	NHIP Site ²			
TROCHILIDA	E - HUMMINGBIRDS	_			
Archilochus alexandri black-chinned hummingbird	Expected	Expected			
Calypte anna Anna's hummingbird	Observed	Expected			
Calypte costae Costa's hummingbird	Potential	Potential			
Selasphorus sasin Allen's hummingbird	Observed	Expected			
PICIDAE -	WOODPECKERS				
Picoides pubescens downy woodpecker	Expected	Expected			
Colaptes auratus northern flicker	Observed	Expected			
TYRANNIDAE - T	YRANT FLYCATCHERS				
Contopus sordidulus western wood-pewee	Potential	Potential			
Empidonax difficilis Pacific-slope flycatcher	Potential	Potential			
Sayornis nigricans black phoebe	Observed	Expected			
Sayornis saya Say's phoebe	Expected	Expected			
Myiarchus cinerascens ash-throated flycatcher	Potential	Potential			
Tyrannus vociferans Cassin's kingbird	Expected	Expected			
Tyrannus verticalis western kingbird	Expected	Expected			
LANIID	AE - SHRIKES				
Lanius ludovicianus loggerhead shrike	Potential	Not Expected			
CORVIDAE	- JAYS & CROWS				
Cyanocitta stelleri Steller's jay	Potential	Not Expected			
Aphelocoma californica western scrub-jay	Observed	Expected			
Corvus brachyrhynchos American crow	Observed	Expected			
Corvus corax common raven	Observed	Expected			
ALAUDIDAE - LARKS					
Eremophila alpestris horned lark	Potential	Potential			
HIRUNDINIDAE - SWALLOWS					
Tachycineta thalassina violet-green swallow	Potential	Potential			
Stelgidopteryx serripennis northern rough-winged swallow	Expected	Expected			

WILDLIFE COMPENDIUM							
Observed and/or Expected ¹	Likelihood ²	NHIP Site ²					
Petrochelidon pyrrhonota cliff swallow	Observed	Expected					
Hirundo rustica barn swallow	Potential	Potential					
PARID	AE - TITMICE						
Baeolophus inornatus oak titmouse	Observed	Expected					
	IDAE - BUSHTITS						
Psaltriparus minimus bushtit	Observed	Expected					
	YTIDAE - WRENS						
Thryomanes bewickii Bewick's wren	Expected	Expected					
Troglodytes aedon house wren	Expected	Expected					
	AE - KINGLETS						
Regulus satrapa golden-crowned kinglet	Potential	Not Expected					
Regulus calendula ruby-crowned kinglet	Expected	Expected					
SYLVIIDAE -	GNATCATCHERS	·					
Polioptila californica californica coastal California gnatcatcher	Potential	Not Expected					
Polioptila caerulea blue-gray gnatcatcher	Potential	Potential					
TURDIDAE - TI	HRUSHES & ROBINS	·					
Catharus guttatus hermit thrush	Potential	Not Expected					
Turdus migratorius American robin	Expected	Expected					
TIMALIID	AE - WRENTITS						
Chamaea fasciata wrentit	Observed	Not Expected					
MIMIDAE	- THRASHERS						
Mimus polyglottos northern mockingbird	Observed	Expected					
Toxostoma redivivum California thrasher	Expected	Potential					
STURNIDAE - STARLINGS							
Sturnus vulgaris European starling *	Expected	Expected					
	MOTACILLIDAE - PIPITS						
Anthus rubescens American pipit	Expected	Expected					
BOMBYCILLIDAE - WAXWINGS							
Bombycilla cedrorum cedar waxwing	Expected	Expected					

WILDLIFE COMPENDIUM						
Observed and/or Expected ¹	Likelihood ²	NHIP Site ²				
PARULIDAE - WARBLERS						
Vermivora celata orange-crowned warbler	Observed	Expected				
Vermivora ruficapilla Nashville warbler	Potential	Potential				
Dendroica petechia yellow warbler	Potential	Potential				
Dendroica coronata yellow-rumped warbler	Observed	Expected				
Dendroica townsendi Townsend's warbler	Expected	Expected				
Geothlypis trichas common yellowthroat	Observed	Expected				
Wilsonia pusilla Wilson's warbler	Expected	Expected				
THRAUF	PIDAE - TANAGERS					
Piranga ludoviciana western tanager	Potential	Potential				
EMBERIZIDAE	- SPARROWS & JUNCOS	1				
Pipilo maculatus spotted towhee	Observed	Potential				
Pipilo crissalis California towhee	Observed	Expected				
Aimophila ruficeps rufous-crowned sparrow	Potential	Not Expected				
Spizella passerina chipping sparrow	Potential	Not Expected				
Chondestes grammacus lark sparrow	Potential	Not Expected				
Amphispiza belli sage sparrow	Potential	Not Expected				
Passerculus sandwichensis savannah sparrow	Expected	Expected				
Melospiza melodia song sparrow	Observed	Expected				
Melospiza lincolnii Lincoln's sparrow	Potential	Potential				
Zonotrichia leucophrys white-crowned sparrow	Observed	Expected				
Zonotrichia atricapilla golden-crowned sparrow	Potential	Potential				
Junco hyemalis dark-eyed junco	Observed	Expected				
ICTERIDAE - BLACKBIRDS						
Sturnella neglecta western meadowlark	Potential	Potential				
Euphagus cyanocephalus Brewer's blackbird	Expected	Expected				

WILDLIFE COMPENDIUM					
Observed and/or Expected ¹	Likelihood ²	NHIP Site ²			
Molothrus ater brown-headed cowbird	Potential	Potential			
Icterus cucullatus hooded oriole	Expected	Expected			
Icterus bullockii Bullock's oriole	Expected	Expected			
FRINGILLI	DAE - FINCHES	•			
Carpodacus mexicanus house finch	Observed	Expected			
Carduelis psaltria lesser goldfinch	Observed	Expected			
Carduelis lawrencei Lawrence's goldfinch	Potential	Potential			
Carduelis tristis American goldfinch	Expected	Expected			
PASSERIDAE - OL	D WORLD SPARROWS				
Passer domesticus house sparrow *	Observed	Expected			
Ma	ammals	•			
	W WORLD OPOSSUMS				
Didelphis virginiana Virginia opossum *	Observed	Expected			
VESPERTILIONII	DAE - EVENING BATS				
Antrozous pallidus pallid bat	Potential	Potential			
Myotis yumanensis Yuma myotis	Potential	Potential			
Corynorhinus [Plecotus] townsendii Townsend's big-eared bat	Potential	Potential			
MOLOSSIDAE	- MOLOSSID BATS				
Eumops perotis western mastiff bat	Potential	Potential			
LEPORIDAE -	HARES & RABBITS				
Sylvilagus audubonii desert cottontail	Observed	Expected			
Lepus californicus black-tailed jackrabbit	Potential	Not Expected			
SCIURIDAE - SQUIRRELS					
Spermophilus beecheyi California ground squirrel	Observed	Expected			
Sciurus niger fox squirrel *	Observed	Expected			
GEOMYIDAE - POCKET GOPHERS					
Thomomys bottae Botta's pocket gopher	Observed	Expected			
HETEROMYIDAE - POCKET MICE & KANGAROO RATS					
Perognathus longimembris brevinasus Los Angeles pocket mouse	Potential	Not Expected			

WILDLIFE COMPENDIUM				
Observed and/or Expected ¹	Likelihood ²	NHIP Site ²		
Chaetodipus californicus California pocket mouse	Potential	Potential		
MURIDAE - MIC	E, RATS, AND VOLES			
Mus musculus house mouse *	Observed	Expected		
Neotoma fuscipes dusky-footed woodrat	Observed	Potential		
Peromyscus maniculatus deer mouse	Expected	Potential		
Rattus norvegicus Norway rat*	Observed	Expected		
Reithrodontomys megalotis western harvest mouse	Expected	Expected		
CANIDAE - V	WOLVES & FOXES			
Canis latrans coyote	Observed	Potential		
Urocyon cinereoargenteus gray fox	Potential	Not Expected		
PROCYONII	DAE - RACCOONS	·		
Procyon lotor common raccoon	Expected	Expected		
MUSTELIDAE - WEASELS, SKUNKS & OTTERS				
Spilogale gracilis western spotted skunk	Expected	Potential		
CERVIDAE - DEER				
Odocoileus hemionus mule deer	Observed	Not Expected		

^{*} introduced species

Likelihood determined by BonTerra Consulting Biologist following October 2008 Site Visit

Observed - Species observed during current or previous surveys (Longcore et al. 1997, EIP 2001, 2002, Impact Sciences 2004, or BonTerra Consulting 2008)

Expected - Species expected to occur because habitat onsite is suitable for the species

Potential - Species has some potential to occur, though potential is low because (a) habitat for this species onsite is limited in extent, not contiguous with larger areas of habitat, or is marginally suitable for the species; or (b) the species is limited in number/distribution in the region, perhaps occurring only during migration

Species list compiled from the 2002 LRDP Final EIR and the Krieger Child Care Center Final EIR

A	D	מ	e	no	ik	X	Ε
•					/		

Geotechnical Report

eotechnologies, Inc.

Consulting Geotechnical Engineers

439 Western Avenue Glendale, California 91201-2837 818.240.9600 • Fax 818.240.9675

> May 8, 2007 Revised June 26, 2008 File No. 19645

UCLA Capital Programs 1060 Veteran Avenue Box 951365 Los Angeles, California

Attention: Mr. Mark Voltz

Subject:

Geotechnical Engineering Investigation

Proposed UCLA Northwest Student Housing Infill Project

Northwest Corner of De Neve Drive and Charles E. Young Drive West

Westwood, California

Ladies and Gentlemen:

This letter transmits the Geotechnical Engineering Investigation for the subject property prepared by Geotechnologies, Inc. This report provides geotechnical recommendations for the development of the site, including earthwork, seismic design, retaining walls, excavations, shoring and foundation design. Engineering for the proposed project should not begin until approval of the geotechnical investigation is granted by the local building official. Significant changes in the geotechnical recommendations may result due to the building department review process.

The validity of the recommendations presented herein is dependant upon review of the geotechnical aspects of the project during construction by this firm. The subsurface conditions described herein have been projected from limited subsurface exploration and laboratory testing. The exploration and testing presented in this report should in no way be construed to reflect any variations which may occur between the exploration locations or which may result from changes in subsurface conditions.

Should you have any questions please contact this office.

Respectfully submitted,

GEOTECHNOLOGIES, INC.

R.C.E. 5617

SST:km

Distribution: (7) Addressee

TABLE OF CONTENTS

SECTION	PAGE
INTRODUCTION	1
PROPOSED DEVELOPMENT	2
SITE CONDITIONS	3
GEOTECHNICAL EXPLORATION FIELD EXPLORATION Geologic Materials Groundwater and Caving	4
RESEARCH - PRIOR GEOTECHNICAL WORK	7
SEISMIC EVALUATION REGIONAL GEOLOGIC SETTING REGIONAL FAULTING HISTORIC SEISMICITY SEISMIC HAZARDS Ground Motion Deterministic Method Probabilistic Method Seismic Hazard Zone Report SECONDARY SEISMIC EFFECTS Surface Rupture Liquefaction Dynamic Dry Settlement Tsunamis, Seiches and Flooding Landsliding	
CONCLUSIONS AND RECOMMENDATIONS SEISMIC DESIGN CONSIDERATIONS FILL SOILS EXPANSIVE SOILS WATER-SOLUBLE SULFATES GRADING GUIDELINES Site Preparation Compaction Acceptable Materials Hillside Grading	

Geotechnologies, Inc.

TABLE OF CONTENTS - continued

SECTION	PAGE
Utility Trench Backfill	27
Shrinkage	
Weather Related Grading Considerations	
Geotechnical Observations and Testing During Grading	
FOUNDATION DESIGN	334
Conventional Foundation	34
Miscellaneous Foundations	
Conventional Foundation Reinforcement	
Lateral Design for Conventional Foundation	
Conventional Foundation Settlement	
FOUNDATION DESIGN - FRICTION PILES	39
Drilled Cast-in-Place Friction Piles	
Lateral Design	
Pile Installation	
Settlement	
Building Setback	43
Foundation Observations	
RETAINING WALL DESIGN	45
Cantilever Retaining Walls	45
Restrained Retaining Walls	46
Dynamic (Seismic) Lateral Forces	
Waterproofing	
Retaining Wall Drainage	
Retaining Wall Backfill	51
Sump Pump Design	
TEMPORARY EXCAVATIONS	52
Excavation Observations	53
Temporary Shoring	
Soldier Piles	
Lagging	57
Tied-Back Anchors	58
Anchor Installation	60
Lateral Pressures	
Deflection	62
Monitoring	
Shoring Observations	
SLABS ON GRADE	
Concrete Slabs-on Grade	
Structural Slabs	65

Geotechnologies, inc.

TABLE OF CONTENTS - continued

SECTION	PAGE
Design Of Slabs That Receive Moisture-Sensitive Floor Coverings	65
Concrete Crack Control	
Slab Reinforcing	
PAVEMENTS	
SITE DRAINAGE	
DESIGN REVIEW	69
CONSTRUCTION MONITORING	70
CLOSURE AND LIMITATIONS	71
GEOTECHNICAL TESTING	
Classification and Sampling	
Moisture and Density Relationships	73
Direct Shear Testing	
Consolidation Testing	
Expansion Index Testing	
Laboratory Compaction Characteristics	
ENCLOSURES	
References	
Vicinity Map	
Historically Highest Groundwater Levels	
Seismic Hazard Zone Map	
Local Geologic Map	
Plot Plan	
Cross Sections A-A' and B-B'	
Plates A-1 through A-25	
Plates B-1 through B-5	
Plates C-1 through C-9	
Plate D-1 and D-2	
Table I - Faults in the Vicinity of the Site	
Figure I - Southern California Fault Map	
Table II - Historical Earthquake Epicenters	
Figure II - Earthquake Epicenter Map	
Figure III - Return Period vs. Acceleration	
Figure IV - Probability of Exceedance	
Friction Pile Capacity Chart	
Lateral Pile Canacity Charts (9)	

Geotechnologies, inc.

GEOTECHNICAL ENGINEERING INVESTIGATION

PROPOSED U. C. L. A. NORTHWEST STUDENT HOUSING INFILL PROJECT

NORTHWEST CORNER OF DE NEVE DRIVE

AND CHARLES E. YOUNG DRIVE WEST

WESTWOOD, CALIFORNIA

INTRODUCTION

This report presents the results of the geotechnical engineering investigation performed on the subject property. The purpose of this investigation was to identify the distribution and engineering properties of the earth materials underlying the site, and to provide geotechnical recommendations for the design of the proposed development.

This investigation included exploratory excavations, collection of representative samples, laboratory testing, engineering analysis, review of published geologic data, review of available geotechnical engineering information and the preparation of this report. The exploratory excavation locations are shown on the enclosed Plot Plan. The results of the exploration and the laboratory testing are presented in the Appendix of this report.

Geotechnologies, Inc.

May 8, 2007 Revised June 26, 2008 File No. 19645

Page 2

PROPOSED DEVELOPMENT

Information concerning the proposed development was furnished by Mr. Mark Voltz, of UCLA

Capital Programs. The site is proposed to be developed with four new buildings including high

density campus housing facilities, student dining and recreation facilities, and campus administrative

offices, and maintenance facilities. The proposed new buildings include the Sproul Complex, the

Sproul West structure, and the Upper and Lower De Neve buildings. The existing Sproul Hall

building is also planned to be renovated as a part of this project.

The proposed new buildings are planned to be set into the existing hillside at the site, and are planned

to be between five and nine stories in height over partial to full subterranean basements. Column

loads are estimated to be between 600 and 1,000 kips. Wall loads are estimated to be between 6 and

8 kips per lineal foot. These loads reflect the dead plus live load, of which the dead load is

approximately 75 percent. Grading will consist of excavations as much as 12 feet in depth for the

planned subterranean levels. Removal and recompaction of existing unsuitable soils may require

excavations on the order of 25 to 30 feet in depth.

At the time of the writing of this report, the design and alignment of the proposed structure has not

been finalized. The proposed development should be reviewed by this office when it achieves more

Geotechnologies, inc.

May 8, 2007 Revised June 26, 2008 File No. 19645

Page 3

definition. Any changes in the design of the project or location of any structure, as outlined in this

report, should be reviewed by this office. The recommendations contained in this report should not

be considered valid until reviewed and modified or reaffirmed, in writing, subsequent to such review.

SITE CONDITIONS

The property is located at the northwest corner of the intersection of Charles E. Young Drive West

and De Neve Drive, and extends to the west and south across De Neve Drive to Gayley Avenue. The

project site is located in the northwest portion of the UCLA campus, in the Westwood section of the

City of Los Angeles, California.

The area of the proposed development is a hillside site with approximately 50 feet of total elevation

change across the site. Slope gradients at the site vary from approximately 2H:1V (26 degrees) to

gentler than 5H:1V (11 degrees). Drainage across the project site is by sheetflow to area drains

which outlet to De Neve Drive, Charles E. Young Drive West, and Gayley Avenue.

The site is currently developed with existing structures and improvements associated with Sproul

Hall, as well as landscape areas, concrete walkways, and an asphalt driveway. The existing

Geotechnologies, inc.

File No. 19645

Page 4

developments neighboring the project site include Sproul Hall, Rieber Hall, Dykstra Hall, and the

Saxon Residential Suites, and neighboring parking areas.

GEOTECHNICAL EXPLORATION

FIELD EXPLORATION

The site was explored between March 17, 2008, and June 7, 2008, by drilling 13 exploratory borings,

and excavating twelve exploratory test pits. The exploratory excavations varied in depth from 10 to

50 feet.

The exploratory borings, with the exceptions of Boring Number 12 and 13, were excavated with the

aid of a truck-mounted drilling machine using 8-inch diameter hollowstem augers. Boring Number

12 and 13 were excavated with the aid of a 24-inch diameter, bucket-auger drilling machine.

The test pits were excavated with the aid of hand labor. The upper reaches of the test pits were on

the order of 30 inches square. The deeper portions of the test pits were advanced with a 5-inch

diameter hand auger. The exploration locations are shown on the enclosed Plot Plan and the geologic

materials encountered are logged on Plates A-1 through A-25.

Geotechnologies, Inc.

File No. 19645

Page 5

The location of exploratory excavations was determined by information furnished by the client.

Elevations of the exploratory excavations were determined by hand level or interpolation from data

provided. The location and elevation of the exploratory excavations should be considered accurate

only to the degree implied by the method used.

Geologic Materials

The geologic materials encountered during explorations consist of existing fill materials overlying

Older Alluvium deposited by river and stream action typical to this area of Los Angeles County.

More detailed descriptions of the earth materials encountered may be obtained from individual logs

of the subsurface excavations.

Existing uncertified fill was observed to blanket the project area, with thickness varying from ½-foot

to as much as 30 feet. The fill consists of interfingered layers of silty to clayey sands and silty to

sandy clays, with some gravel. The existing fill materials are generally mottled yellow-brown and

brown, moist, and medium dense to firm. Deeper fills may occur in other areas of the site.

Older Alluvium was observed to underlie the existing fill materials at the subject site. The Older

Alluvium consists of interfingered layers of silty sand, sandy clay, sandy silt, and sand with gravel,

Geotechnologies, Inc.

File No. 19645

Page 6

that are generally yellowish brown and grayish brown to brown, moist, dense to very dense, and stiff.

The Older Alluvium extended to the termination of the borings, a maximum of 50 feet below the

existing ground surface.

Groundwater and Caving

Groundwater and caving were not encountered during explorations. Caving was not encountered

in the bucket-auger borings, but could not be directly observed in the hollow-stem borings due to the

type of drilling equipment utilized. Caving was also not encountered during exploration of the test

pits.

The historic high groundwater level was established by review of California Geological Survey

Seismic Hazard Evaluation Report 023, Plate 1.2, entitled "Historically Highest Ground Water

Contours". Review of this plate indicates that the historically highest groundwater level is greater

than 40 feet below grade.

Fluctuations in the level of groundwater may occur due to variations in rainfall, temperature, and

other factors not evident at the time of the measurements reported herein. Fluctuations also may

occur across the site. High groundwater levels can result in changed conditions.

Geotechnologies, Inc.

May 8, 2007 Revised June 26, 2008 File No. 19645 Page 7

RESEARCH - PRIOR GEOTECHNICAL WORK

This firm has previously produced geotechnical engineering reports covering projects in the vicinity of the subject site including:

Geotechnical Engineering Investigation, Proposed Dining Area Balcony Extension, by Jerry Kovacs and Associates, Inc., dated June 24, 1996;

Geotechnical Engineering Investigation, Proposed De Neve Plaza Housing Project, by Jerry Kovacs and Associates, Inc., dated May 9, 1997;

Update of Geotechnical Engineering Investigation, Proposed Dykstra Hall Parking Structure, by Geotechnologies, Inc., dated May 17, 2002.

The referenced geotechnical reports provided recommendations for the existing UCLA campus residential facilities immediately adjacent to the proposed project site. The referenced geotechnical reports were reviewed prior to the start of this project.

File No. 19645

Page 8

SEISMIC EVALUATION

REGIONAL GEOLOGIC SETTING

Regionally, the subject property is located in the northern portion of the Peninsular Ranges

Geomorphic Province, along the northern boundary with the Transverse Ranges Geomorphic

Provence. The Peninsular Ranges are characterized by northwest-trending blocks of mountain ridges

and sediment-floored valleys. The dominant geologic structural features are northwest trending fault

zones that either die out to the northwest or terminate at east-trending reverse faults that form the

southern margin of the Transverse Ranges.

The Transverse Ranges are characterized by roughly east-west trending mountains and the northern

and southern boundaries are formed by reverse fault scarps. The convergent deformational features

of the Transverse Ranges are a result of north-south shortening due to plate tectonics. This has

resulted in local folding and uplift of the mountains along with the propagation of thrust faults

(including blind thrusts). The intervening valleys have been filled with sediments derived from the

bordering mountains.

Geotechnologies, inc.

File No. 19645

Page 9

Locally, the subject site is located on the southern alluvial plain of the Santa Monica Mountains, in

the Los Angeles Basin. The Los Angeles Basin is located at the northern end of the Peninsular

Ranges Geomorphic Province. The basin is bounded to the north by the Santa Monica Mountains

and the Repetto, Elysian, and Puente Hills, and to the south-southeast by the Santa Ana Mountains

and San Joaquin Hills.

Over 22 million years ago, the Los Angeles Basin was a deep marine basin formed by tectonic forces

between the North American and Pacific plates. Since that time, over 5 miles of marine and non-

marine sedimentary rock as well as intrusive and extrusive igneous rocks have filled the basin. During

the last 2 million years, defined by the Pleistocene and Holocene epochs, the Los Angeles Basin and

surrounding mountain ranges have been uplifted to form the present day landscape. Erosion of the

surrounding mountains, has resulted in deposition of unconsolidated and normally consolidated

sediments in low-lying areas by rivers such as the Los Angeles River. Areas that have experienced

subtle uplift have been eroded with gullies. The subject site is underlain by unconsolidated and

normally consolidated alluvial sediments deposited by river and stream action, that are in excess of

200 feet thick.

Geotechnologies, inc.

File No. 19645

Page 10

REGIONAL FAULTING

Based on criteria established by the California Division of Mines and Geology (CDMG) now called

California Geologic Survey(CGS), faults may be categorized as active, potentially active, or inactive.

Active faults are those which show evidence of surface displacement within the last 11,000 years

(Holocene-age). Potentially-active faults are those that show evidence of most recent surface

displacement within the last 1.6 million years (Quaternary-age). Faults showing no evidence of

surface displacement within the last 1.6 million years are considered inactive for most purposes, with

the exception of design of some critical structures.

Buried thrust faults are faults without a surface expression but are a significant source of seismic

activity. They are typically broadly defined based on the analysis of seismic wave recordings of

hundreds of small and large earthquakes in the southern California area. Due to the buried nature of

these thrust faults, their existence is usually not known until they produce an earthquake. The risk

for surface rupture potential of these buried thrust faults is inferred to be low (Leighton, 1990).

However, the seismic risk of these buried structures in terms of recurrence and maximum potential

magnitude, is not well established. Therefore, the potential for surface rupture on these surface-

verging splays at magnitudes higher than 6.0 cannot be precluded.

Geotechnologies, Inc.

File No. 19645 Page 11

Using the computer program EQFAULT significant faults within a 60 mile radius of the site and their

distance to the site is presented in Table I in the Appendix. The program EQFAULT, measures the

shortest distance to faults in a three dimensional system. Some of the attenuation relationships

utilized in the program returns a distance of 0.0 miles where the depth to a dipping fault plane is less

than 10 km. For depths greater than 10 km, these attenuation relationships cause the program to

return the inferred depth to the fault plane minus 10 km.

The project site is located approximately 200 to 500 feet southeast of the Hollywood Fault, as

mapped by Dibblee (1991). Crook and Proctor (1992) have noted the presence of bedrock faulted

over Older Alluvium, found in a temporary excavation for the Southwest Regional Library at the

UCLA campus, approximately 400 feet west of the project location. This observation of faulted rock

over Older alluvium is the only evidence of an active fault in the vicinity of the project site. The

Hollywood Fault is part of the Hollywood-Santa Monica Fault system, the frontal fault system

responsible for the uplift of the eastern and central Santa Monica Mountains. The Hollywood Fault

is considered an active fault, (fault movement within the last 11,000 years), however, the CGS has

not mapped the fault as active with an Earthquake Fault Hazard Zone.

<u>Geotechnologies</u>, inc.

File No. 19645

Page 12

HISTORIC SEISMICITY

The epicenters of earthquakes with magnitudes of 5.0 or greater, and located within a radius of 60

miles of the site are listed on Table II, Historical Earthquake Epicenters, in the Appendix. The

location of the earthquake epicenters is shown on Figure II, Earthquake Epicenters Map. Other

pertinent information regarding these earthquakes is also provided on Table II.

SEISMIC HAZARDS

The primary geologic hazard at the site is moderate to strong ground motion (acceleration) caused

by an earthquake on any of the local or regional faults. The potential for other earthquake-induced

hazards was also evaluated including surface rupture, liquefaction, dynamic settlement, inundation

and landsliding.

Ground Motion

The seismic exposure of the site may be investigated in two ways. The deterministic method

calculates an estimated maximum earthquake magnitude for a fault based on formulas which correlate

the fault trace to the theoretical maximum magnitude earthquake. The probabilistic method considers

Geotechnologies, Inc.

File No. 19645

Page 13

the probability of exceedance of various levels of ground motion (acceleration) and is calculated by

consideration of risk contributions from all possible earthquake scenarios on all faults within a

prescribed search radius. The CGS database of faults and historical earthquakes is used for both

methods.

Deterministic Method

The deterministic method is used to predict a unique outcome for a given earthquake scenario. All

known faults within the defined search radius are assigned an estimated maximum earthquake

magnitude based on their length. Then, the resulting ground acceleration that the earthquake is

capable of producing is calculated based on an appropriate attenuation relationship. The selected

ground motion is simply the highest attenuated ground motion.

Table I in the Appendix shows known faults within a 60-mile radius of the site based on the current

understanding of regional seismo-tectonics. For this investigation, the attenuation relationship of

Boore, et al. (1997) was selected. The resulting peak site accelerations at the site from the

maximum-earthquake for each fault are shown on Table I.

Geotechnologies, Inc.

Revised June 26, 2008

File No. 19645

Page 14

Using this methodology, the maximum earthquake resulting in the largest estimated maximum

earthquake site acceleration at the site would be a magnitude 6.6 event on the Santa Monica Fault.

Such an event would be expected to generate peak horizontal accelerations at the site of 1.02g.

Probabilistic Method

The probabilistic seismic hazard analysis (PSHA) determines the probability of exceedance of various

levels of ground motion and is calculated by summing the risk contributions of all of the regional

faults to obtain values for the sites. For this study, 46 regional faults were used. These faults are

located within a specified search radius of 60 miles from the site.

Figure III in the Appendix indicates the return periods of various levels of mean peak horizontal

acceleration. Typical earthquake ground motions used for seismic design of structures are often

taken as those with a 2 percent and a 10 percent probability of exceedance in a 50-year structural life,

and the ground motion with a 10 percent probability of exceedance in a 100-year structural life. The

10 percent probability in 50-year earthquake has a corresponding return period of 475 years. The 2

percent probability in 50-year earthquake has a return period of 2,475 years. The 10 percent

probability in 100-year earthquake has a return period of 949 years.

Geotechnologies, inc.

File No. 19645 Page 15

According to the 2001 California Building Code (2001 CBC), Sections 1627A, 1629A.1, and

1631A.2, the Design-Basis Earthquake (DBE) ground motion is defined as the motion having a 10

percent probability of being exceeded in a 50-year period. The DBE ground motion has a statistical

return period of approximately 475 years. The DBE ground motion is a probabilistic concept,

expressed as Peak Ground Acceleration, PGADBE, and is used as a basis for structural design in the

2001 CBC and as a design basis ground motion for liquefaction hazard analyses in California.

The 10 percent probability of exceedance in a 100-year structural life earthquake has a return period

of 949 years. The 2001 California Building Code (2001 CBC) defines this ground motion as the

Upper Bound Earthquake (UBE). The UBE ground motion is expressed as Peak Ground

Acceleration (PGA_{UBE}). It is used as a basis for structural design based on the 2001 CBC, as well as

for the analysis of liquefaction hazards in California, for public school projects.

The 2003 National Earthquake Hazards Reduction Program Provisions (2003 NEHRP) provides the

basis for the seismic design of structures section of both the 2006 International Building Code (2006

IBC) and the 2007 California Building Code (2007 CBC). The 2003 NEHRP defines the Maximum

Considered Earthquake (MCE) ground motion as the motion having a 2 percent probability of being

exceeded in a 50-year period. The MCE ground motion has a statistical return period of

Geotechnologies, Inc.

Revised June 26, 2008

File No. 19645

Page 16

approximately 2,475 years. The MCE ground motion is a probabilistic concept, expressed as Peak

Ground Acceleration, PGA_{MCE}, and is used as a basis for structural design in the 2007 CBC.

The enclosed probabilistic seismic hazard analysis was performed utilizing the computer program,

FRISKSP V. 4.00, by Thomas F. Blake (2000). The attenuation relation of Boore et al. (1997) was

utilized to determine the peak ground motions generated by regional earthquakes. The data used for

performing the probabilistic seismic hazard analysis includes recorded and measured quantities such

as slip-rate and fault rupture length. The analysis does not take into account the potential hazards

from unknown buried thrust faults, many of which are still to be identified. Based on the indicated

attenuation relationship the PGA_{UBE} is 0.76g and the PGA_{MCE} is 0.98g. The results of the

probabilistic seismic hazard analysis is presented in Figure IV.

Seismic Hazard Zone Report

The CDMG has published Seismic Hazard Zone Report 023, Seismic Hazard Zone Report for the

Beverly Hills 7.5-Minute Quadrangle, Los Angeles County, California (1998, revised 2006). Figure

3.3 (Alluvium Conditions) indicates the PGA_{DBE} for this area of Los Angeles to be 0.48g. Figure 3.4

(Predominant Earthquake) indicates an earthquake with a moment magnitude of 6.6 (Mw) as the

Design-Basis Earthquake (DBE) ground motion for this area of Los Angeles.

Geotechnologies, inc.

File No. 19645

Page 17

SECONDARY SEISMIC EFFECTS

The primary geologic hazard at the site is moderate to strong ground shaking caused by an

earthquake on any of the local or regional faults. The potential for secondary geologic hazards was

also evaluated including liquefaction, dynamic settlement, inundation and landsliding.

Surface Rupture

In 1972, the Alquist-Priolo Special Studies Zones Act (now known as the Alquist-Priolo Earthquake

Fault Zoning Act) was passed into law. The Act defines "active" and "potentially active" faults

utilizing the same aging criteria as that used by California Geological Survey (CGS). However,

established state policy has been to zone only those faults which have direct evidence of movement

within the last 11,000 years. It is this recency of fault movement that the CGS considers as a

characteristic for faults that have a relatively high potential for ground rupture in the future.

CGS policy is to delineate a boundary from 200 to 500 feet wide on each side of the known fault

trace based on the location precision, the complexity, or the regional significance of the fault. If a

site lies within an Earthquake Fault Zone, a geologic fault rupture investigation must be performed

Geotechnologies, inc.

Revised June 26, 2008

File No. 19645

Page 18

that demonstrates that the proposed building site is not threatened by surface displacement from the

fault before development permits may be issued.

Ground rupture is defined as surface displacement which occurs along the surface trace of the

causative fault during an earthquake. Based on research of available literature and results of site

reconnaissance, no known active or potentially active faults underlie the subject site. In addition,

the subject site is not located within an Alquist-Priolo Earthquake Fault Zone. Based on these

considerations, the potential for surface ground rupture at the subject site is considered low.

Liquefaction

Liquefaction is a phenomenon in which saturated silty to cohesionless soils below the groundwater

table are subject to a temporary loss of strength due to the buildup of excess pore pressure during

cyclic loading conditions such as those induced by an earthquake. Liquefaction-related effects include

loss of bearing strength, amplified ground oscillations, lateral spreading, and flow failures.

The subject site is not located by the CDMG in a Seismic Hazard Liquefaction Zone where a

geotechnical investigation quantifying the potential for liquefaction and mitigation of a liquefaction

seismic hazard is required per California Public Resource Code sections 2690 and 2693(b). This

Geotechnologies, Inc.

File No. 19645

Page 19

determination is based on groundwater depth records, soil type and distance to a fault capable of

producing a substantial earthquake.

The site is underlain by Older Alluvium, as mapped (Dibblee, 1991). Therefore, due to the density

and tectonic history of the earth materials underlying the subject site, it is the opinion of this firm that

the potential for liquefaction at the subject site is low.

Dynamic Dry Settlement

Seismically-induced settlement or compaction of dry or moist, cohesionless soils can be an effect

related to earthquake ground motion. Such settlements are typically most damaging when the

settlements are differential in nature across the length of structures.

Some seismically-induced settlement of the proposed structures should be expected as a result of

strong ground-shaking, however, due to the uniform nature of the underlying earth materials,

excessive differential settlements are not expected to occur.

Geotechnologies, Inc.

File No. 19645

Page 20

Tsunamis, Seiches and Flooding

Tsunamis are tidal waves generated by fault displacement or major ground movement below the

ocean. The site is high enough and far enough from the ocean to preclude being prone to hazards of

a tsunami.

Seiches are large waves generated in enclosed bodies of water in response to ground shaking. No

major water-retaining structures are located immediately up gradient from the project site. Therefore,

the risk of flooding from a seismically-induced seiche is considered to be remote.

Review of the County of Los Angeles Flood and Inundation Hazards Map (Leighton, 1990), indicates

the site lies within the inundation boundaries of the Stone Dam. A determination of whether a higher

site elevation would remove the site from the potential inundation zones is beyond the scope of this

investigation.

Landsliding

The subject site is not located by the CDMG in a Seismic Hazard Earthquake-Induced Landslide

Zone where a geotechnical investigation quantifying the potential for and/or mitigation of an

Geotechnologies, Inc.

File No. 19645

Page 21

earthquake-induced landslide seismic hazard is required per California Public Resource Code sections

2690 and 2693(b). Generally, the existing site gradients vary from flatter than 5H:1V (11 degrees)

to approximately 2H:1V (26 degrees) in their entirety. The proposed project is anticipated to include

grading and construction of engineered retaining walls as part of the proposed building subterranean

levels. Therefore, the probability of seismically-induced landslides occurring on the site is considered

to be low due to the fact that the grading for and construction of the proposed project will provide

engineered structures to mitigate the majority of the existing slope geometry across or adjacent to

the subject site.

CONCLUSIONS AND RECOMMENDATIONS

Based upon the exploration, laboratory testing, and research, it is the finding of this firm that

construction of the proposed project is considered feasible from a geotechnical engineering standpoint

provided the advice and recommendations presented herein are followed and implemented during

construction.

At the time of the writing of this report, the design and alignment of the proposed campus housing

structures have not been finalized. The proposed development plan should be reviewed by this office

when it achieves more definition. Any changes in the design of the project or location of any

Geotechnologies, inc.

File No. 19645

Page 22

structure, as outlined in this report, should be reviewed by this office. The recommendations

contained in this report should not be considered valid until reviewed and modified or reaffirmed, in

writing, subsequent to such review.

The existing fill materials are not suitable for support of the proposed foundations, floor slabs or any

additional fill. All existing fill materials shall be properly removed, to expose the underlying dense

Older Alluvium, anticipated at a depth of 2 feet to as much as 30 feet below the existing site grade,

and recompacted for foundation and slab support.

Due to the sloping nature of the site, it is anticipated that excavation of the proposed subterranean

levels for the new residential buildings will remove the majority of the unsuitable materials in the

proposed building areas. In areas where existing fill soils were encountered below the proposed

subterranean level subgrade elevations, the existing fill materials should be removed and replaced as

properly compacted fill for support of the proposed foundations and floor slabs.

The proposed residential buildings may bear into the recommended new properly compacted fill

and/or competent Older Alluvium by means of conventional foundations. Any new foundations which

would be required for the renovation of the existing Sproul Hall building should bear into properly

Geotechnologies, Inc.

File No. 19645

Page 23

compacted fill, or should be deepened through any existing fill materials to bear into competent Older

Alluvium.

As an alternative to the grading required to remove and recompact the existing fill materials, friction

pile foundations deepened to extend through the existing fill materials and bear into competent Older

Alluvium may be utilized for support of the proposed structures. Where pile foundations are utilized,

structural slabs shall be designed to span between the pile foundation system deriving support from

the dense Older Alluvium.

Grading and earthwork for the proposed project is anticipated to consist of removal and

recompaction of the existing unsuitable fill materials, foundation excavations for the proposed new

buildings, new foundation excavations associated with the renovation of Sproul Hall, and minor wall

backfill. It is anticipated that temporary excavations of approximately 5 to as much as 30 feet in

height will be necessary for the recommended grading and earthwork.

The excavations are expected to expose fill and dense native soils, which are suitable for vertical

excavations up to 5 feet where not surcharged by adjacent traffic or structures. Temporary

unsurcharged excavations, exceeding five feet in height, may be sloped at a uniform 1H:1V gradient

(45 degrees) in their entirety. All excavations should be cut and maintained in accordance with

Geotechnologies, Inc.

File No. 19645

Page 24

applicable OSHA rules and regulations. Where temporary excavations will be surcharged by existing

structures or public rights-of-way, temporary shoring may be utilized.

The validity of the conclusions and design recommendations presented herein is dependant upon

review of the geotechnical aspects of the proposed construction by this firm. The subsurface

conditions described herein have been projected from borings on the site as indicated and should in

no way be construed to reflect any variations which may occur between these borings or which may

result from changes in subsurface conditions.

SEISMIC DESIGN CONSIDERATIONS

According to Table 1613.5.2 of the 2007 California Building Code, the subject site may be classified

as Site Class D, which corresponds to a "Stiff Soil" Profile. The following table outlines the Mapped

Spectral Accelerations and Site Coefficients per the 2007 CBC, which may be used by the structural

engineer for the seismic design and analysis of structures.

Geotechnologies, inc.

2007 CALIFORNIA BUILDING CODE SEISMIC P	ARAMETERS
Site Class	D
Mapped Spectral Acceleration at Short Periods (S _S)	1.735g
Site Coefficient (F _a)	1.0
Maximum Considered Earthquake Spectral Response for Short Periods (S_{MS})	1.735g
Five-Percent Damped Design Spectral Response Acceleration at Short Periods (S_{DS})	1.157g
Mapped Spectral Acceleration at One-Second Period (S ₁)	0.600g
Site Coefficient (F _v)	1.5
Maximum Considered Earthquake Spectral Response for One-Second Period (S_{M1})	0.900g
Five-Percent Damped Design Spectral Response Acceleration for One-Second Period (S _{DI})	0.600g

FILL SOILS

The maximum depth of fill encountered on the site was 30 feet. This material and any fill generated during demolition should be properly removed and recompacted for use as controlled fill for support of the proposed buildings.

Geotechnologies, inc.

File No. 19645

Page 26

EXPANSIVE SOILS

The expansion characteristics of the onsite earth materials vary from the very low to the high

expansion range. Reinforcing recommendations are provided in the "Foundation Design" and "Slabs

On Grade" sections of this report.

WATER-SOLUBLE SULFATES

The Portland cement portion of concrete is subject to attack when exposed to water-soluble sulfates.

Usually the two most common sources of exposure are from soil and marine environments. The

source of natural sulfate minerals in soils include the sulfates of calcium, magnesium, sodium, and

potassium. When these minerals interact and dissolve in subsurface water, a sulfate concentration

is created, which will react with the exposed concrete. Over time sulfate attack will destroy

improperly proportioned concrete well before the end of its intended service life.

The water-soluble sulfate content of the onsite earth materials was tested by California Test 417. The

water-soluble sulfate contents of the onsite earth materials were determined to be less than 0.1

percentage by weight for the soils tested. The sulfate exposure characteristics are considered

negligible for concrete in contact with the earth materials at the subject site and Type I cement may

Geotechnologies, inc.

File No. 19645

Page 27

be utilized for concrete foundations in contact with the site soils. Additionally, all concrete

foundations should be designed in accordance with the American Concrete Institute publication: ACI

318-05 Building Code Requirements for Structural Concrete (2005).

GRADING GUIDELINES

Site Preparation

All vegetation, existing fill, and soft or disturbed earth materials should be removed from the areas

to receive controlled fill. The excavated areas shall be carefully observed by the geotechnical

engineer prior to placing compacted fill.

Any vegetation or associated root system located within the footprint of the proposed structures

should be removed during grading. Any existing or abandoned utilities located within the footprint

of the proposed structures should be removed or relocated as appropriate. All existing fill materials

and any disturbed earth materials resulting from grading operations should be removed and properly

recompacted prior to foundation excavation.

Geotechnologies, inc.

File No. 19645

Page 28

The existing unsuitable fill materials that are located within the proposed building areas shall be

excavated to expose the underlying dense Older Alluvium. The excavation shall extend at least five

feet beyond the edge of the proposed new foundations, or for a distance equal to the depth of the

recommended new properly compacted fill below the foundations, whichever is greater.

Subsequent to the indicated removals, the exposed grade shall be scarified to a depth of six inches,

moistened to optimum moisture content, and recompacted in excess of the minimum required

comparative density. It is very important that the positions of the proposed structures are accurately

located so that the limits of the graded area are accurate and the grading operation proceeds

efficiently.

Compaction

All fill should be mechanically compacted in layers not more than 8 inches thick. All fill shall be

compacted to at least 90 percent of the maximum laboratory density for the materials used. The

maximum density shall be determined by the laboratory operated by Geotechnologies, Inc. using test

method ASTM D 1557-02 or equivalent.

Ceotechnologies, inc.

Revised June 26, 2008

File No. 19645

Page 29

Field observation and testing shall be performed by a representative of the geotechnical engineer

during grading to assist the contractor in obtaining the required degree of compaction and the proper

moisture content. Where compaction is less than required, additional compactive effort shall be made

with adjustment of the moisture content, as necessary, until a minimum of 90 percent compaction is

obtained.

Acceptable Materials

The excavated onsite materials are considered satisfactory for reuse in the controlled fills as long as

any debris and/or organic matter is removed. Any imported materials shall be observed and tested

by the representative of the geotechnical engineer prior to use in fill areas. Imported materials should

contain sufficient fines so as to be relatively impermeable and result in a stable subgrade when

compacted. Any required import materials should consist of relatively non-expansive soils with an

expansion index of less than 50. The water-soluble sulfate content of the import materials should be

less than 0.1 percentage by weight.

Imported materials should be free from chemical or organic substances which could effect the

proposed development. A competent professional should be retained in order to test imported

Geotechnologies, Inc.

File No. 19645

Page 30

materials and address environmental issues and organic substances which might effect the proposed

development.

Hillside Grading

These recommendations are presented should sidehill fill slopes be necessary as a part of the final

grading plan for the proposed project. Sidehill fill slopes should have a keyway placed at the toe of

the proposed fill slope. This keyway should be cut a minimum of three feet into the competent Older

Alluvium and be a minimum of 12 feet in width. The base of the keyway shall be sloped back into

the hill. Where slopes are steeper than 5H:1V (11 degrees), horizontal benches shall be cut into

competent Older Alluvium in order to provide both lateral and vertical stability.

Sidehill fills shall have backdrains installed at the compacted fill/Older Alluvium contact to prevent

future porewater pressure buildup. Backdrains shall consist of four inch perforated pipes, placed with

perforations down. The pipe should be encased with a minimum of one foot gravel, and wrapped in

filter fabric. The minimum gravel cover on the pipe should be one foot. The gravel should consist

of ³/₄-inch to one inch crushed rock.

Geotechnologies, Inc.

File No. 19645

Page 31

The first drain shall be placed no higher than 3 feet above the front cut of the keyway excavation.

Additional backdrains shall be placed at intervals roughly equivalent to 10 feet of vertical rise in

elevation or where considered necessary by the representative of this firm.

Each drain shall be placed into a trench excavated along the back of a horizontal bench at the

compacted fill/Older Alluvium contact. The trench bottom shall slope downward to each exit drain

with a minimum gradient of two percent. The exit pipe shall consist of a 4-inch diameter non-

perforated pipe. This pipe need not be encased in gravel. It shall exit at a minimum gradient of 2

percent to the finish face of the fill slope. A cutoff wall consisting of concrete or soil cement shall

be placed at the junction of the perforated pipe and the exit drains to stop seepage and force the water

being removed into the perforated pipe.

Materials excavated uphill from where fills are to be placed, shall not be cast over the slope into the

fill area. Materials shall be channeled down a ramp to the area to receive compacted fill and then

spread in horizontal layers. As compacted fills are placed, this ramp will be trimmed out to expose

the dense, tight materials approved by the soils engineer. The minimum vertical height of bench in

approved materials shall be 3 feet. This will maintain the proper benching, as fill is placed up the

slope. The ramp will be shifted periodically during the grading operations to allow for complete

removal of the loose fill materials and for the proper benching.

Geotechnologies, Inc.

File No. 19645

Page 32

A minimum compaction of 90 percent out to the finish face of fill slopes will be required.

Compaction on slopes may be achieved by over building the slope and cutting back to the compacted

core or by direct compaction of the slope face with suitable equipment. Direct compaction on the

slope faces shall be accomplished by back-rolling the slopes in 3 to 4-foot increments of elevation

gain. Also, the maximum allowable slope gradient for all cut and/or fill slopes is 2H:1V (26 degrees)

in their entirety.

Utility Trench Backfill

Utility trenches should be backfilled with controlled fill. The utility should be bedded with clean

sands at least one foot over the crown. The remainder of the backfill may be onsite soil compacted

to 90 percent of the laboratory maximum density. Utility trench backfill should be tested by

representatives of this firm in accordance with ASTM D-1557-02.

Shrinkage

Shrinkage results when a volume of soil removed at one density is compacted to a higher density.

A shrinkage factor between 5 and 15 percent should be anticipated when excavating and

Geotechnologies, inc.

File No. 19645

Page 33

recompacting the existing fill and underlying native earth materials on the site to an average

comparative compaction of 92 percent.

Weather Related Grading Considerations

When rain is forecast all fill that has been spread and awaits compaction shall be properly compacted

prior to stopping work for the day or prior to stopping due to inclement weather. These fills, once

compacted, shall have the surface sloped to drain to an area where water can be removed.

Temporary drainage devices should be installed to collected and transfer excess water to the street

in non-erosive drainage devices. Drainage should not be allowed to pond anywhere on the site, and

especially not against any foundation or retaining wall. Drainage should not be allowed to flow

uncontrolled over any descending slope.

Work may start again, after a period of rainfall, once the site has been reviewed by a representative

of this office. Any soils saturated by the rain shall be removed and aerated so that the moisture

content will fall within three percent of the optimum moisture content.

Geotechnologies, Inc.

Revised June 26, 2008

File No. 19645

Page 34

Surface materials previously compacted before the rain shall be scarified, brought to the proper

moisture content and recompacted prior to placing additional fill, if considered necessary by a

representative of this firm.

Geotechnical Observations and Testing During Grading

Geotechnical observations and testing during grading are considered to be a continuation of the

geotechnical investigation. It is critical that the geotechnical aspects of the project be reviewed by

this firm during the construction process. Compliance with the design concepts, specifications or

recommendations during construction requires review by this firm during the course of construction.

Any fill which is placed should be observed, tested, and verified if used for engineered purposes.

Please advise this office at least twenty-four hours prior to any required site visit.

FOUNDATION DESIGN

Conventional Foundation

Conventional foundations for the proposed residential buildings may bear into properly compacted

fill and/or competent Older Alluvium. Portions of the proposed Sproul Complex, Sproul West

Geotechnologies, inc.

File No. 19645

Page 35

structure, and the Upper and Lower De Neve structures are anticipated to bear into both competent

Older Alluvium and/or properly compacted fill.

Continuous foundations may be designed for a bearing capacity of 2,500 pounds per square foot, and

should be a minimum of 12 inches in width, 18 inches in depth below the lowest adjacent grade and

18 inches into the recommended bearing material.

Column foundations may be designed for a bearing capacity of 3,500 pounds per square foot, and

should be a minimum of 24 inches in width, 18 inches in depth below the lowest adjacent grade and

18 inches into the recommended bearing material.

The bearing capacity increase for each additional foot of footing width is 150 pounds per square foot.

The bearing capacity increase for each additional foot of footing depth is 500 pounds per square foot.

The maximum recommended bearing capacity is 7,500 pounds per square foot.

The bearing capacities indicated above are for the total of dead and frequently applied live loads, and

may be increased by one third for short duration loading, which includes the effects of wind or seismic

forces.

Geotechnologies, Inc.

File No. 19645

Page 36

Since the recommended bearing capacity is a net value, the weight of concrete in the foundations may

be taken as 50 pounds per cubic foot and the weight of the soil backfill may be neglected when

determining the downward load on the foundations.

If depth increases are utilized, this office should be provided a copy of the final construction plans

to ensure that the excavation recommendations presented herein are properly reviewed and revised

if necessary.

Foundations bearing in controlled fill which are to be constructed adjacent to property lines and/or

existing structures should be deepened, as appropriate, to bear below a 1H:1V (45 degrees) plane of

foundation action projected up from the toe of the newly placed controlled fill. Foundations bearing

in controlled fill which are to be constructed immediately adjacent to property lines and/or existing

structures should be deepened to bear solely in native soils.

Also, any new foundations which would be required for the renovation of the existing Sproul Hall

building should bear into properly compacted fill or competent Older Alluvium. As a minimum, any

new foundations required for additions adjacent to the existing Sproul Hall building should be

deepened to match the depths of the existing foundations. It is recommended that additional

Geotechnologies, Inc.

Revised June 26, 2008

File No. 19645

Page 37

explorations be made prior to grading to determine the depth of the existing foundations for Sproul

Hall. Any available as-built foundation plans for Sproul Hall shall be provided to this firm for review.

Miscellaneous Foundations

Conventional foundations for structures such as privacy walls or trash enclosures which will not be

rigidly connected to the proposed new campus housing buildings may bear into either competent

native soils and/or properly compacted fill. Continuous footings may be designed for a bearing

capacity of 1,500 pounds per square foot, and should be a minimum of 12 inches in width, 18 inches

in depth below the lowest adjacent grade and 18 inches into the recommended bearing material. No

bearing capacity increases are recommended.

Conventional Foundation Reinforcement

All continuous foundations should be reinforced with a minimum of four #4 steel bars. Two should

be placed near the top of the foundation, and two should be placed near the bottom.

Geotechnologies, Inc.

Revised June 26, 2008

File No. 19645

Page 38

Lateral Design for Conventional Foundation

Resistance to lateral loading may be provided by friction acting at the base of foundations and by

passive earth pressure. An allowable coefficient of friction of 0.30 may be used with the dead load

forces.

Passive earth pressure for the sides of foundations poured against undisturbed competent native soil

or recompacted soil may be computed as an equivalent fluid having a density of 300 pounds per cubic

foot with a maximum earth pressure of 3,000 pounds per square foot. When combining passive and

friction for lateral resistance, the passive component should be reduced by one third. A one-third

increase in the passive value may be used for wind or seismic loads.

Conventional Foundation Settlement

Settlement of the conventional foundation system is expected to occur on initial application of

loading. The maximum settlement is expected to be \(^3\)4-inch and occur below the heaviest loaded

columns. Differential settlement is not expected to exceed 1/4-inch.

Geotechnologies, Inc.

File No. 19645

Page 39

FOUNDATION DESIGN - FRICTION PILES

In areas of deep existing fill materials, friction pile foundations deepened through the existing fill

materials to bear into the competent Older Alluvium may be utilized for the proposed structures, as

an alternative to conventional foundations bearing into properly compacted fill and/or dense Older

Alluvium. Structural engineering information and plans for the proposed project were not available

at the time of completion of this report. The pile foundation recommendations given below are

preliminary in nature. A more detailed analysis of any proposed friction pile foundations should be

performed once the structural development plans for the proposed project have achieved more

definition.

Drilled Cast-in-Place Friction Piles

Friction piles should be a minimum of 24 inches in diameter. Friction piles shall penetrate through

all fill and shall be embedded into the dense Older Alluvium a minimum of 20 feet. The proposed

friction piles may be proportioned utilizing the enclosed Friction Pile Capacity Chart and the Lateral

Load Capacity Charts. The vertical friction pile capacities are mathematically determined using a

safety factor of 2. Uplift capacity may be designed using 50 percent of the downward capacity.

Geotechnologies, inc.

Revised June 26, 2008

File No. 19645

Page 40

All friction piles should be tied together with grade beams or structural slabs. Where pile groups are

required, the piles should be spaced a minimum of 3 diameters on centers. If so spaced, there will

be no reduction in the downward capacity of the piles due to group action.

Lateral Design

Maximum recommended allowable lateral capacities for 1/4-inch deflection for single, isolated, fixed-

head and free-head piles are presented in the Appendix. No factors of safety have been applied to

the lateral load values calculated to induce 1/4-inch lateral deflection. Lateral capacities provided are

for drilled, cast-in-place concrete piles, penetrating the materials encountered during the course of

this investigation. Assumed as part of these lateral capacity calculations are a concrete modulus of

elasticity of at least 3,000,000 pounds per square inch, and minimum total pile depth of 20 feet.

Piles should be spaced a minium of 8-diameters on center to be considered isolated for the laterally

loaded condition. If the piles are so spaced, no reduction in the lateral capacities need be considered

due to group action. Piles spaced less than 8-diameters on center will require a reduction in lateral

capacity due to group effects. Lateral pile capacity reduction factors due to group effects may be

determined from the following table:

Geotechnologies, Inc.

May 8, 2007 Revised June 26, 2008 File No. 19645 Page 41

GROUP EFFECT LATERAL PILE CAPACITY REDUCTION		
MINIMUM PILE SPACING (in Pile Diameters "D")	LATERAL PILE CAPACITY (as a Percentage of Isolated Pile Lateral Capacity)	
8D	100%	
6D	70%	
4D	40%	
3D	25%	
adapted from: NAVF.	AC DM-7.2, p. 241 (1982)	

Pile Installation

Due to the cohesive nature of the existing earth materials encountered during exploration, significant caving is not anticipated during drilling of the proposed piles above the water table. Where the bottom of the proposed piles will be below the water level, casing or the use of drilling mud will be required in order to achieve the required depth and maintain an open hole to allow the placement of the steel and concrete.

If casing is used, extreme care should be employed so that the pile is not pulled apart as the casing is withdrawn. At no time should the distance between the surface of the concrete and the bottom of the casing be less than 5 feet. If a "polymer-slurry" drilling fluid is used, all drilling fluid shall be

Geotechnologies, Inc.

File No. 19645

Page 42

displaced by the placement of the concrete by pumping concrete from the bottom to the ground

surface through the use of a tremie or concrete pump.

Closely spaced piles should be drilled and filled alternately, with the concrete permitted to set at least

8 hours before drilling an adjacent hole. Pile excavations should be filled with concrete as soon after

drilling and inspection as possible; the holes should not be left open overnight. The concrete should

be placed with special equipment so that the concrete is not allowed to fall freely more than 5 feet

and to prevent concrete from striking the walls of the excavations and possible causing caving.

Piles placed below the water level require the use of a tremie and/or a concrete pump to place the

concrete into the bottom of the hole. A tremie shall consist of a water-tight tube having a diameter

of not less than 10 inches with a hopper at the top. The tube shall be equipped with a device that will

close the discharge end and prevent water from entering the tube while it is being charged with

concrete. The tremie shall be supported so as to permit free movement of the discharge end over the

entire top surface of the work and to permit rapid lowering when necessary to retard or stop the flow

of concrete. The discharge end shall be closed at the start of the work to prevent water entering the

tube and shall be entirely sealed at all times, except when the concrete is being placed. The tremie

tube shall be kept full of concrete. The flow shall be continuous until the work is completed and the

resulting concrete seal shall be monolithic and homogeneous. The tip of the tremie tube shall always

Geotechnologies, Inc.

File No. 19645

Page 43

be kept about five feet below the surface of the concrete and definite steps and safeguards should be

taken to insure that the tip of the tremie tube is never raised above the surface of the concrete.

A special concrete mix should be used for concrete to be placed below water. The design shall

provide for concrete with a strength of 1,000 psi. over the initial job specification. An admixture that

reduces the problem of segregation of paste/aggregates and dilution of paste shall be included. The

slump shall be commensurate to any research report for the admixture, provided that it shall also be

the minimum for a reasonable consistency for placing when water is present.

Settlement

The maximum settlement of pile-supported foundations is not expected to exceed 1/4-inch.

Differential settlement is expected to be negligible.

Building Setback

The 2007 California Building Code requires that the planned building be setback horizontally from

the retaining wall, located at the toe of the adjacent ascending slopes. The required setback

corresponds to a horizontal distance equal to one-half of the vertical height of the slope above the

Geotechnologies, inc.

File No. 19645

Page 44

retaining wall, with a minimum distance of 3 feet and a maximum distance of 15 feet. This distance

is measured from the face of the building to the face of the retaining wall.

Also, the 2007 California Building Code requires that foundations be excavated to a sufficient

distance from the face of a descending slope to provide sufficient vertical and lateral support. The

required setback is one-third the height of the descending slope with a minimum of 5 feet and a

maximum of 40 feet measured horizontally from the base of the foundation to the slope face.

Foundation Observations

It is critical that all foundation excavations are observed by a representative of this firm to verify

penetration into the recommended bearing materials. The observation should be performed prior to

the placement of reinforcement. Foundations should be deepened to extend into satisfactory earth

materials, if necessary. Foundation excavations should be cleaned of all loose soils prior to placing

steel and concrete. Any required foundation backfill should be mechanically compacted, flooding is

not permitted.

Geotechnologies, inc.

May 8, 2007 Revised June 26, 2008 File No. 19645 Page 45

All foundation pile excavations shall be performed under the continuous observation by personnel of this firm to verify penetration into firm undisturbed natural soils. Piles should be deepened if necessary to extend into satisfactory soils.

RETAINING WALL DESIGN

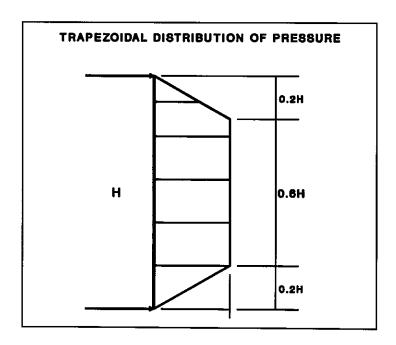
Cantilever Retaining Walls

Any proposed new exterior retaining walls should be designed as cantilevered retaining walls for the active pressure condition. Cantilever retaining walls should be designed per the Cantilever Retaining Wall Design Table, below, utilizing a triangular distribution of earth pressure.

CANTILEVER RETAINING WALL DESIGN TABLE		
HEIGHT OF WALL (feet)	BACKSLOPE ANGLE (degrees)	EQUIVALENT FLUID WEIGHT (pounds per cubic foot)
Up to 12	level	35
Up to 12	2:1 (h:v)	50

For this equivalent fluid weight to be valid backfill soils should be free draining and no excess hydrostatic pressure should develop behind the wall. Retaining walls which are to be restrained at

Geotechnologies, Inc.



May 8, 2007 Revised June 26, 2008 File No. 19645 Page 46

the top should be backfilled prior to the upper connection being made. Additional active pressure should be added for a surcharge condition due to sloping ground, vehicular traffic or adjacent structures.

Restrained Retaining Walls

Any proposed new basement and partial basement retaining walls should be designed as restrained retaining walls. In accordance with the 2007 California Building Code, restrained retaining walls should be designed for the at-rest pressure condition. Restrained retaining walls should be designed per the Restrained Retaining Wall Design Table, below, utilizing a trapezoidal pressure distribution of lateral earth pressure as indicated in the diagram below.

Geotechnologies, Inc.

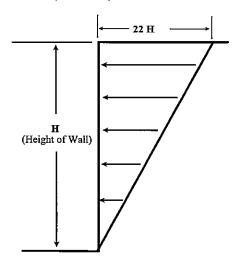
May 8, 2007 Revised June 26, 2008 File No. 19645 Page 47

RESTRAINED RETAINING WALL DESIGN TABLE							
HEIGHT OF WALL (feet)	BACKSLOPE ANGLE (degrees)	DESIGN EARTH PRESSURE* (pounds per square foot)					
Up to 12	level	37.5H					
Up to 12	2:1 (h:v)	45H					

^{*} Where H is the retained height in feet.

For the recommended design lateral earth pressure for restrained retaining walls to be valid a permanent wall subdrainage system shall be installed, the backfill soils should be free draining, and no excess hydrostatic pressure should develop behind the walls. Additional active pressures should be added to the retaining wall design lateral earth pressure for any surcharge condition due to sloping ground or adjacent structures.

In addition to the recommended earth pressure, the upper ten feet of the retaining wall adjacent to streets, driveways or parking areas should be designed to resist a uniform lateral pressure of 100 pounds per square foot, acting as a result of an assumed 300 pounds per square foot surcharge behind the walls due to normal street traffic. If the traffic is kept back at least ten feet from the retaining walls, the traffic surcharge may be neglected.


Geotechnologies, inc.

Dynamic (Seismic) Lateral Forces

Pursuant to Section 1802.2.7 of the 2007 California Building Code, any proposed new retaining walls should be designed to resist a seismic increment of lateral earth pressure. Retaining walls exceeding 12 feet in height shall be designed to resist the additional earth pressure caused by seismic ground shaking. An inverse triangular pressure distribution should be utilized for seismic loads, with an equivalent fluid pressure of 22 pounds per cubic foot. Utilizing this inverse triangular pressure distribution, the earthquake load would be zero at the base of the wall, and would increase linearly to a maximum of 22(H) pounds per square foot at the top of the wall, where H is the height of the retaining wall.

DYNAMIC (SEISMIC) PRESSURE INCREMENT

Geotechnologies, inc.

File No. 19645

Page 49

Waterproofing

Moisture effecting retaining walls is one of the most common post construction complaints. Poorly

applied or omitted waterproofing can lead to efflorescence or standing water inside the building.

Efflorescence is a process in which a powdery substance is produced on the surface of the concrete

by the evaporation of water. The white powder usually consists of soluble salts such as gypsum,

calcite, or common salt. Efflorescence is common to retaining walls and does not effect their strength

or integrity.

It is recommended that retaining walls be waterproofed. Waterproofing design and inspection of its

installation is not the responsibility of the geotechnical engineer. A qualified waterproofing consultant

should be retained in order to recommend a product or method which would provide protection to

below grade walls.

Retaining Wall Drainage

All retaining walls should be provided with a subdrain covered with a minimum of 12 inches of gravel,

and a compacted fill blanket or other seal at the surface. The onsite earth materials are acceptable

Geotechnologies, Inc.

File No. 19645

Page 50

for use as retaining wall backfill as long as they are compacted to a minimum of 90 percent of the

maximum density as determined by ASTM D 1557-02 or equivalent.

Certain types of subdrain pipe are not acceptable to the various municipal agencies, it is

recommended that prior to purchasing subdrainage pipe, the type and brand is cleared with the proper

municipal agencies. Subdrainage pipes should outlet to an acceptable location.

Where retaining walls are to be constructed adjacent to property lines there is usually not enough

space for emplacement of a standard pipe and gravel drainage system. Under these circumstances,

the use of a flat drainage produce is acceptable.

Some municipalities do not allow the use of flat-drainage products. The use of such a product should

be researched with the building official. As an alternative, omission of one-half of a block at the back

of the wall on eight foot centers is an acceptable method of draining the walls. The resulting void

should be filled with gravel. A collector is placed within the gravel which directs collected waters

through the wall to a sump or standard pipe and gravel system constructed under the slab. This

method should be approved by the retaining wall designed prior to implementation.

Geotechnologies, Inc.

File No. 19645

Page 51

Retaining Wall Backfill

Any required backfill should be mechanically compacted in layers not more than 8 inches thick, to at

least 90 percent of the maximum density obtainable by the ASTM Designation D 1557-02 method

of compaction. Flooding should not be permitted. Proper compaction of the backfill will be

necessary to reduce settlement of overlying walks and paving. Some settlement of required backfill

should be anticipated, and any utilities supported therein should be designed to accept differential

settlement, particularly at the points of entry to the structure.

Sump Pump Design

The purpose of the recommended retaining wall backdrainage system is to relieve hydrostatic

pressure. Groundwater was not encountered during exploration to a depth of 50 feet from site grade.

Therefore, the only water which could effect the proposed retaining walls would be irrigation waters

and precipitation. Additionally, the proposed site grading is such that all drainage is directed to the

street and the structure has been designed with adequate non-erosive drainage devices.

Geotechnologies, inc.

File No. 19645

Page 52

Based on these considerations the retaining wall backdrainage system is not expected to experience

an appreciable flow of water, and in particular, no groundwater will effect it. However, for the

purposes of design, a flow of 5-gallons per minute may be assumed.

TEMPORARY EXCAVATIONS

It is anticipated that excavations on the order of 5 to 30 feet in vertical height will be required for

removal and recompaction necessary for site grading, and the construction of any subterranean

building levels. The excavations are expected to expose fill and dense native soils, which are suitable

for vertical excavations up to five feet where not surcharged by adjacent traffic or structures.

Excavations which will be surcharged by adjacent traffic or structures should be shored.

Where sufficient space is available, temporary unsurcharged embankments could be cut at a uniform

1H:1V (45 degrees) slope gradient in their entirety. A uniform sloped excavation does not have a

vertical component.

Where sloped embankments are utilized, the tops of the slopes should be barricaded to prevent

vehicles and storage loads near the top of slope within a horizontal distance equal to the depth of the

excavation. If the temporary construction embankments are to be maintained during the rainy season,

Geotechnologies. Inc.

Revised June 26, 2008

File No. 19645

Page 53

berms are strongly recommended along the tops of the slopes to prevent runoff water from entering

the excavation and eroding the slope faces. Water should not be allowed to pond on top of the

excavation nor to flow towards it.

Excavation Observations

It is critical that the soils exposed in the cut slopes are observed by a representative of this office

during excavation so that modifications of the slopes can be made if variations in the earth material

conditions occur. Many building officials require that temporary excavations should be made during

the continuous observations of the geotechnical engineer. All excavations should be stabilized within

30 days of initial excavation.

Temporary Shoring

The following information on the design and installation of the shoring is as complete as possible at

the time of completion of this report. It is suggested that a review of the final shoring plans and

specifications be made by this office prior to bidding or negotiating with a shoring contractor be

made.

Geotechnologies, Inc.

File No. 19645

Page 54

Temporary shoring should be anticipated to be utilized wherever the proposed temporary excavations

will remove lateral support from neighboring structures, parking areas, and public rights-of-way. One

method of shoring would consist of steel soldier piles, placed in drilled holes and backfilled with

concrete. The soldier piles may be designed as cantilevers or restrained soldier piles utilizing drilled

tie-back anchors or raker braces.

Soldier Piles

Drilled cast-in-place soldier piles should have a minimum diameter of 18 inches. Structural concrete

should be used for the soldier piles below the base of the excavation; lean-mix concrete may be

employed above the base of the excavation. As an alternative, lean-mix concrete may be used

throughout the pile where the reinforcing consists of a wideflange section. The slurry must be of

sufficient strength to impart the lateral bearing pressure developed by the wideflange section to the

earth materials. For design purposes, the allowable passive earth pressure for soldier piles poured

against undisturbed the alluvial soils below the bottom plane of excavation may be computed as an

equivalent fluid having a density of 300 pounds per cubic foot with a maximum earth pressure of

3,000 pounds per square foot. The allowable passive pressure value may doubled for isolated soldier

piles. Soldier piles should be placed no closer than 3 diameters on center, to be considered isolated.

Geotechnologies, Inc.

Revised June 26, 2008

File No. 19645

Page 55

To develop the full lateral value, provisions should be implemented to assure firm contact between

the soldier piles and the undisturbed earth materials.

Groundwater was not encountered during exploration to a depth of 50 feet below site grade. The

recommended temporary shoring soldier piles are not anticipated to encounter groundwater. Should

the recommended soldier piles be placed below the water level, use of a tremie will be required to

place the concrete into the bottom of the hole. The tremie shall consist of a water-tight tube having

a diameter of not less than 10 inches with a hopper at the top. The tube shall be equipped with a

device that will close the discharge end and prevent water from entering the tube while it is being

charged with concrete. The tremie shall be supported so as to permit free movement of the discharge

end over the entire top surface of the work and to permit rapid lowering when necessary to retard

or stop the flow of concrete. The discharge end shall be closed at the start of the work to prevent

water entering the tube and shall be entirely sealed at all times, except when the concrete is being

placed. The tremie tube shall be kept full of concrete. The flow shall be continuous until the work

is completed and the resulting concrete seal shall be monolithic and homogeneous. The tip of the

tremie tube shall always be kept about five feet below the surface of the concrete and definite steps

and safeguards should be taken to insure that the tip of the tremie tube is never raised above the

surface of the concrete.

Geotechnologies, Inc.

File No. 19645

Page 56

A special concrete mix should be used for concrete to be placed below water. The concrete mix

design shall provide for an increase in concrete strength of 1,000 pounds per square inch above the

initial job specification. An admixture that reduces the problem of segregation of paste/aggregates

and dilution of paste shall be included. The slump shall be commensurate to any research report for

the admixture, provided that it shall also be the minimum for a reasonable consistency for placing

when water is present.

Casing may be required should caving be experienced in the saturated, granular earth materials. If

casing is used, extreme care should be employed so that the pile is not pulled apart as the casing is

withdrawn. At no time should the distance between the surface of the concrete and the bottom of

the casing be less than five feet.

The frictional resistance between the soldier piles and retained earth material may be used to resist

the vertical component of the anchor load. The coefficient of friction may be taken as 0.30 based on

uniform contact between the steel beam and lean-mix concrete and retained earth. The portion of

soldier piles below the plane of excavation may also be employed to resist the downward loads. The

downward capacity may be determined using a frictional resistance of 500 pounds per square foot.

The minimum depth of embedment for shoring piles is 7 feet into competent Older Alluvium, and/or

Geotechnologies, Inc.

Revised June 26, 2008

File No. 19645

Page 57

7 feet below the bottom of excavated plane whichever is deeper. Soldier piles may be assumed fixed

at 3 feet below into competent Older Alluvium and/or the bottom of the excavation.

Lagging

If the clear spacing between soldier piles does not exceed four feet, lagging between soldier piles

could be omitted within the cohesive earth materials. In the less cohesive earth materials, such as the

sands and gravels, lagging would be necessary. It is recommended that the exposed earth materials

be observed by the geotechnical engineer to verify the cohesive nature of the earth materials and the

area where lagging may be omitted. At this time, it is expected that most of the excavation will

require continuous lagging.

Soldier piles and anchors should be designed for the full anticipated pressures. Due to arching in the

earth materials, the pressure on the lagging will be less. It is recommended that the lagging be

designed for the full design pressure but be limited to a maximum of 400 pounds per square foot.

Geotechnologies, inc.

File No. 19645

Page 58

Tied-Back Anchors

Tied-back anchors may be used to resist lateral loads. Friction anchors are recommended. For design

purposes, it may be assumed that the active wedge adjacent to the shoring is defined by a plane drawn

35 degrees with the vertical through the bottom plane of the excavation. Friction anchors should

extend a minimum of 20 feet beyond the potentially active wedge.

Drilled friction anchors may be designed for a skin friction of 400 pounds per square foot. Only the

frictional resistance developed beyond the active wedge would be effective in resisting lateral loads.

This skin friction is based on 25 foot high shoring, a tied back anchor elevation 6 feet below grade

and a minimum twenty foot embedment beyond the potentially active wedge yielding an overburden

of 12½ feet below ground surface. Where belled anchors are utilized, the capacity of belled anchors

may be designed by applying the skin friction over the surface area of the bonded anchor shaft. The

diameter of the bell may be utilized as the diameter of the bonded anchor shaft when determining the

surface area. This implies that in order for the belled anchor to fail, the entire parallel soil column

must also fail.

Depending on the techniques utilized, and the experience of the contractor performing the installation,

it is anticipated that a skin friction of 2,000 pounds per square foot could be utilized for post-grouted

Geotechnologies, inc.

File No. 19645

Page 59

anchors. Only the frictional resistance developed beyond the active wedge would be effective in

resisting lateral loads.

Anchors should be placed at least 6 feet on center to be considered isolated. It is recommended that

at least 3 of the initial anchors have their capacities tested to 200 percent of their design capacities

for a 24-hour period to verify their design capacity.

The total deflection during this test should not exceed 12 inches. The anchor deflection should not

exceed 0.75 inches during the 24 hour period, measured after the 200 percent load has been applied.

All anchors should be tested to at least 150 percent of design load. The total deflection during this

test should not exceed 12 inches.

The rate of creep under the 150 percent test load should not exceed 0.1 inches over a 15 minute

period in order for the anchor to be approved for the design loading. After a satisfactory test, each

anchor should be locked-off at the design load. This should be verified by rechecking the load in the

anchor. The load should be within 10 percent of the design load. Where satisfactory tests are not

attained, the anchor diameter and/or length should be increased or additional anchors installed until

satisfactory test results are obtained. The installation and testing of the anchors should be observed

by the geotechnical engineer. Minor caving during drilling of the anchors should be anticipated.

Geotechnologies, Inc.

Revised June 26, 2008

File No. 19645

Page 60

Anchor Installation

Tied-back anchors may be installed between 20 and 40 degrees below the horizontal. Caving of the

anchor shafts, particularly within sand deposits, should be anticipated and the following provisions

should be implemented in order to minimize such caving. The anchor shafts should be filled with

concrete by pumping from the tip out, and the concrete should extend from the tip of the anchor to

the active wedge. In order to minimize the chances of caving, it is recommended that the portion of

the anchor shaft within the active wedge be backfilled with sand before testing the anchor. This

portion of the shaft should be filled tightly and flush with the with the face of the excavation. The

sand backfill should be placed by pumping; the sand may contain a small amount of cement to

facilitate pumping.

Lateral Pressures

Temporary shoring piles necessary for the proposed grading associated with the proposed project

may be designed as cantilevered or restrained (tied-back) shoring. Cantilever shoring piles should

be designed per the Temporary Shoring Design Table, below, utilizing a triangular distribution of

pressure. Restrained shoring supporting a level backslope should be designed per the Temporary

Shoring Design Table, below, utilizing a trapezoidal distribution of earth pressure, as shown in the

Geotechnologies, inc.

May 8, 2007 Revised June 26, 2008 File No. 19645 Page 61

diagram in the 'Restrained Retaining Walls' section of this report. For design of individual soldier piles, the design lateral earth pressures, including any appropriate surcharge loads, should be multiplied by the pile spacing.

TEMPORARY SHORING DESIGN TABLE							
EXCAVATION HEIGHT (feet)	BACKSLOPE ANGLE (degrees)	EQUIVALENT FLUID WEIGHT (pounds per cubic foot)	DESIGN EARTH PRESSURE* (pounds per square foot)				
Up to 15	level	40	25H				
15 to 30	level	52	32.5H				

^{*} Where H is the retained height of the excavation bulkhead in feet.

For the recommended design equivalent fluid weight for cantilevered shoring and the design lateral earth pressure for restrained shoring to be valid, the excavation back-cut soils should be free draining and no excess hydrostatic pressure should develop behind the shored excavation bulkhead. Additional active pressures should be added to the shoring design lateral earth pressures for any surcharge condition due to sloping ground or adjacent structures.

In addition to the above recommended design lateral earth pressure, the upper ten feet of the shoring adjacent to streets, driveways or parking areas should be designed to resist a uniform lateral pressure

Geotechnologies, Inc.

File No. 19645

Page 62

of 100 pounds per square foot, acting as a result of an assumed 300 pounds per square foot surcharge

behind the walls due to normal street traffic. If the traffic is kept back at least ten feet from the

retaining walls, the traffic surcharge may be neglected.

Deflection

It is difficult to accurately predict the amount of deflection of a shored embankment. It should be

realized that some deflection will occur. It is estimated that the deflection could be on the order of

one inch at the top of the shored embankment. If greater deflection occurs during construction,

additional bracing may be necessary to minimize settlement of adjacent buildings and utilities in

adjacent street and alleys. If desired to reduce the deflection, a greater active pressure could be used

in the shoring design. Where internal bracing is used, the rakers should be tightly wedged to minimize

deflection. The proper installation of the raker braces and their wedging will be critical to the

performance of the shoring.

Deflection of the temporary shoring should be limited to ½-inch at the top of the shored embankment.

However, a maximum deflection of 1-inch may be allowed provided there are no structures within

a 1H:1V (45 degrees) plane drawn upward from the base of the excavation. Therefore, this increased

allowed deflection may be allowed where there are no structures within this zone.

Geotechnologies, inc.

File No. 19645

Page 63

Monitoring

Because of the depth of the excavation, some means of monitoring the performance of the shoring

system is suggested. The monitoring should consist of periodic surveying of the lateral and vertical

locations of the tops of all soldier piles and the lateral movement along the entire lengths of selected

soldier piles. Also, some means of periodically checking the load on selected anchors will be

necessary, where applicable.

Some movement of the shored embankments should be anticipated as a result of the relatively deep

excavation. It is recommended that photographs of the existing buildings on the adjacent properties

be made during construction to record any movements for use in the event of a dispute.

Shoring Observations

It is critical that the installation of shoring is observed by a representative of this office. Many

building officials require that shoring installation should be performed during the continuous

observations of the geotechnical engineer. The observations are made so that modifications of the

recommendations can be made if variations in the earth material or groundwater conditions occur.

Geotechnologies, Inc.

Revised June 26, 2008

File No. 19645

Page 64

Also the observations will allow for a report to be prepared on the installation of shoring for the use

of the local building official.

SLABS ON GRADE

Concrete Slabs-on Grade

Concrete floor slabs should be a minimum of 5 inches in thickness. Slabs-on-grade should be cast

over undisturbed natural earth materials or properly controlled fill materials. Any earth materials

loosened or over-excavated should be wasted from the site or properly compacted to 90 percent of

the maximum dry density.

Outdoor concrete flatwork should be a minimum of 4 inches in thickness. Outdoor concrete flatwork

should be cast over undisturbed natural earth materials or properly controlled fill materials. Any earth

materials loosened or over-excavated should be wasted from the site or properly compacted to 90

percent of the maximum dry density. Alternatively, if deepened friction pile foundations are utilized

for portions of the proposed structures to be constructed over deep existing, unsuitable fill materials,

then the slabs-on-grade should be structural slabs designed to span between pile foundation elements

and grade beams.

Geotechnologies, Inc.

May 8, 2007 Revised June 26, 2008 File No. 19645

Page 65

Structural Slabs

As an alternative to the recommended removal and recompaction of the existing fill materials, the

proposed structure may be supported on a system of friction piles, deriving support from the

underlying dense Older Alluvium. Where a system of friction piles are utilized for support of the

proposed structure, the proposed floor slabs shall be designed as a structural slab by the project

structural engineer spanning between the pile foundation system.

Design Of Slabs That Receive Moisture-Sensitive Floor Coverings

In any areas where dampness would be objectionable, it is recommended that the floor slab should

be waterproofed. A qualified waterproofing consultant should be retained in order to recommend

a product or method which would provide protection for concrete slabs-on-grade.

All concrete slabs-on-grade should be supported on vapor retarder. The design of the slab and the

installation of the vapor retarder should comply with ASTM E 1643-98 and ASTM E 1745-97.

Where a vapor retarder is used, a low-slump concrete should be used to minimize possible curling

of the slabs. The barrier should be covered with a thin layer of sand, to prevent punctures and aid

in the concrete cure.

Geotechnologies, inc.

File No. 19645

Page 66

Concrete Crack Control

The recommendations presented in this report are intended to reduce the potential for cracking of

concrete slabs-on-grade due to settlement. However even where these recommendations have been

implemented, foundations, stucco walls and concrete slabs-on-grade may display some cracking due

to minor soil movement and/or concrete shrinkage. The occurrence of concrete cracking may be

reduced and/or controlled by limiting the slump of the concrete used, proper concrete placement and

curing, and by placement of crack control joints at reasonable intervals, in particular, where re-entrant

slab corners occur.

For standard crack control maximum expansion joint spacing of 8-feet should not be exceeded.

Lesser spacings would provide greater crack control. Joints at curves and angle points are

recommended. The crack control joints should be installed as soon as practical following concrete

placement. Crack control joints should extend a minimum depth of one-fourth the slab thickness.

Construction joints should be designed by a structural engineer.

Complete removal of the existing fill soils beneath outdoor flatwork such as walkways or patio areas,

is not required, however, due to the rigid nature of concrete, some cracking, a shorter design life and

increased maintenance costs should be anticipated. In order to provide uniform support beneath the

Geotechnologies. Inc.

Revised June 26, 2008

File No. 19645

Page 67

flatwork it is recommended that a minimum of 12 inches of the exposed subgrade beneath the

flatwork be scarified and recompacted to 90 percent relative compaction.

Slab Reinforcing

Concrete slabs-on-grade should be reinforced with a minimum of #4 steel bars on 16-inch centers

each way. Outdoor flatwork should be reinforced with a minimum of #3 steel bars on 18-inch centers

each way.

PAVEMENTS

Prior to placing paving, the existing grade should be scarified to a depth of 12 inches, moistened as

required to obtain optimum moisture content, and recompacted to 90 percent of the maximum density

as determined by ASTM D 1557-02. The client should be aware that removal of all existing fill in

the area of new paving is not required, however, pavement constructed in this manner will most likely

have a shorter design life and increased maintenance costs. The following pavement sections are

recommended:

Geotechnologies, Inc.

May 8, 2007 Revised June 26, 2008 File No. 19645 Page 68

Service	Asphalt Pavement Thickness Inches	Base Course Inches
Passenger Cars	3	4
Moderate Truck	4	7
Heavy Truck	7	10

A subgrade modulus of 100 pounds per cubic inch may be assumed for design of concrete paving. Concrete paving shall be a minimum of 6 inches in thickness, and shall be underlain by 4-inches of aggregate base. For standard crack control maximum expansion joint spacing of 8-feet should not be exceeded. Lesser spacings would provide greater crack control. Joints at curves and angle points are recommended.

Aggregate base should be compacted to a minimum of 95 percent of the ASTM D 1557-02 laboratory maximum dry density. Base materials should conform with Sections 200-2.2 or 200-2.4 of the "Standard Specifications for Public Works Construction", (Green Book), current edition.

The performance of pavement is highly dependant upon providing positive surface drainage away from the edges. Ponding of water on or adjacent to pavement can result in saturation of the subgrade materials and subsequent pavement distress. If planter islands are planned, the perimeter curb should extend a minimum of 12 inches below the bottom of the aggregate base.

Geotechnologies, Inc.

File No. 19645

Page 69

SITE DRAINAGE

Proper surface drainage is critical to the future performance of the project. Saturation of a soil can

cause it to lose internal shear strength and increase its compressibility, resulting in a change in the

designed engineering properties. Proper site drainage should be maintained at all times.

All site drainage should be collected and transferred to the street in non-erosive drainage devices.

The proposed structure should be provided with roof drainage. Discharge from downspouts, roof

drains and scuppers should not be permitted on unprotected soils within five feet of the building

perimeter. Drainage should not be allowed to pond anywhere on the site, and especially not against

any foundation or retaining wall. Drainage should not be allowed to flow uncontrolled over any

descending slope. Planters which are located within retaining wall backfill should be sealed to prevent

moisture intrusion into the backfill.

DESIGN REVIEW

Engineering of the proposed project should not begin until approval of the geotechnical report by the

Building Official is obtained in writing. Significant changes in the geotechnical recommendations may

result during the building department review process.

Geotechnologies, inc.

File No. 19645

Page 70

It is recommended that the geotechnical aspects of the project be reviewed by this firm during the

design process. This review provides assistance to the design team by providing specific

recommendations for particular cases, as well as review of the proposed construction to evaluate

whether the intent of the recommendations presented herein are satisfied.

CONSTRUCTION MONITORING

Geotechnical observations and testing during construction are considered to be a continuation of the

geotechnical investigation. It is critical that this firm review the geotechnical aspects of the project

during the construction process. Compliance with the design concepts, specifications or

recommendations during construction requires review by this firm during the course of construction.

All foundations should be observed by a representative of this firm prior to placing concrete or steel.

Any fill which is placed should be observed, tested, and verified if used for engineered purposes.

Please advise this office at least twenty-four hours prior to any required site visit.

If conditions encountered during construction appear to differ from those disclosed herein, notify this

office immediately so the need for modifications may be considered in a timely manner.

Geotechnologies, Inc.

File No. 19645

Page 71

It is the responsibility of the contractor to ensure that all excavations and trenches are properly sloped

or shored. All temporary excavations should be cut and maintained in accordance with applicable

OSHA rules and regulations.

CLOSURE AND LIMITATIONS

The purpose of this report is to aid in the design and completion of the described project.

Implementation of the advice presented in this report is intended to reduce certain risks associated

with construction projects. The professional opinions and geotechnical advice contained in this report

are sought because of special skill in engineering and geology and were prepared in accordance with

generally accepted geotechnical engineering practice. Geotechnologies, Inc. has a duty to exercise

the ordinary skill and competence of members of the engineering profession. Those who hire

Geotechnologies, Inc. are not justified in expecting infallibility, but can expect reasonable professional

care and competence.

The scope of the geotechnical services provided did not include any environmental site assessment

for the presence or absence of organic substances, hazardous/toxic materials in the soil, surface water,

groundwater, or atmosphere, or the presence of wetlands.

Geotechnologies, inc.

Revised June 26, 2008 File No. 19645

Page 72

Proper compaction is necessary to reduce settlement of overlying improvements. Some settlement

of compacted fill should be anticipated. Any utilities supported therein should be designed to accept

differential settlement. Differential settlement should also be considered at the points of entry to the

structure.

GEOTECHNICAL TESTING

Classification and Sampling

The soil is continuously logged by a representative of this firm and classified by visual examination

in accordance with the Unified Soil Classification system. The field classification is verified in the

laboratory, also in accordance with the Unified Soil Classification System. Laboratory classification

may include visual examination, Atterberg Limit Tests and grain size distribution. The final

classification is shown on the boring logs.

Samples of the earth materials encountered in the exploratory excavations were collected and

transported to the laboratory. Undisturbed samples of soil are obtained at frequent intervals. Unless

noted on the boring logs as an SPT sample, samples acquired while utilizing a hollow-stem auger drill

rig are obtained by driving a thin-walled, California Modified Sampler with successive 30-inch drops

Geotechnologies, Inc.

File No. 19645

Page 73

of a 140-pound hammer. Samples from the test pits are obtained utilizing a safety-hammer with a

ring-lined hand sampler. The soil is retained in brass rings of 2.50 inches inside diameter and 1.00

inches in height. The central portion of the samples are stored in close fitting, waterproof containers

for transportation to the laboratory. Samples noted on the boring logs as SPT samples are obtained

in accordance with ASTM D 1586-99. Samples are retained for 30 days after the date of the

geotechnical report.

Moisture and Density Relationships

The field moisture content and dry unit weight are determined for each of the undisturbed soil

samples, and the moisture content is determined for SPT samples by ASTM D 4959-00 or ASTM

D 4643-00. This information is useful in providing a gross picture of the soil consistency between

exploration locations and any local variations. The dry unit weight is determined in pounds per cubic

foot and shown on the "Boring Logs", A-Plates. The field moisture content is determined as a

percentage of the dry unit weight.

Geotechnologies, inc.

File No. 19645

Page 74

Direct Shear Testing

Shear tests are performed by ASTM D 3080-04 with a strain controlled, direct shear machine

manufactured by Soil Test, Inc. or a Direct Shear Apparatus manufactured by GeoMatic, Inc. The

rate of deformation is approximately 0.025 inches per minute. Each sample is sheared under varying

confining pressures in order to determine the Mohr-Coulomb shear strength parameters of the

cohesion intercept and the angle of internal friction. Samples are generally tested in an artificially

saturated condition. Depending upon the sample location and future site conditions, samples may be

tested at field moisture content. The results are plotted on the "Shear Test Diagram," B-Plates.

Consolidation Testing

Settlement predictions of the soil's behavior under load are made on the basis of the consolidation

tests ASTM D 2435-04. The consolidation apparatus is designed to receive a single one-inch high

ring. Loads are applied in several increments in a geometric progression, and the resulting

deformations are recorded at selected time intervals. Porous stones are placed in contact with the

top and bottom of each specimen to permit addition and release of pore fluid. Samples are generally

tested at increased moisture content to determine the effects of water on the bearing soil. The normal

Geotechnologies, inc.

Revised June 26, 2008

File No. 19645

Page 75

pressure at which the water is added is noted on the drawing. Results are plotted on the

"Consolidation Test," C-Plates.

Expansion Index Testing

The expansion tests performed on the remolded samples are in accordance with the Expansion Index

testing procedures, as described in the ASTM D4829-03. The soil sample is compacted into a metal

ring at a saturation degree of 50 percent. The ring sample is then placed in a consolidometer, under

a vertical confining pressure of one pound per square inch and inundated with distilled water. The

deformation of the specimen is recorded for a period of 24 hour or until the rate of deformation

becomes less than 0.0002 inches per hour, whichever occurs first. The expansion index, EI, is

determined by dividing the difference between final and initial height of the ring sample by the initial

height, and multiplied by 1,000.

Laboratory Compaction Characteristics

The maximum dry unit weight and optimum moisture content of a soil are determined by use of

ASTM D 1557-02. A soil at a selected moisture content is placed in five layers into as mold of given

dimensions, with each layer compacted by 25 blows of a 10 pound hammer dropped from a distance

Geotechnologies, inc.

May 8, 2007 Revised June 26, 2008 File No. 19645

Page 76

of 18 inches subjecting the soil to a total compactive effort of about 56,000 pounds per cubic foot.

The resulting dry unit weight is determined. The procedure is repeated for a sufficient number of

moisture contents to establish a relationship between the dry unit weight and the water content of the

soil. The data when plotted, represent a curvilinear relationship know as the compaction curve. The

values of optimum moisture content and modified maximum dry unit weight are determined from the

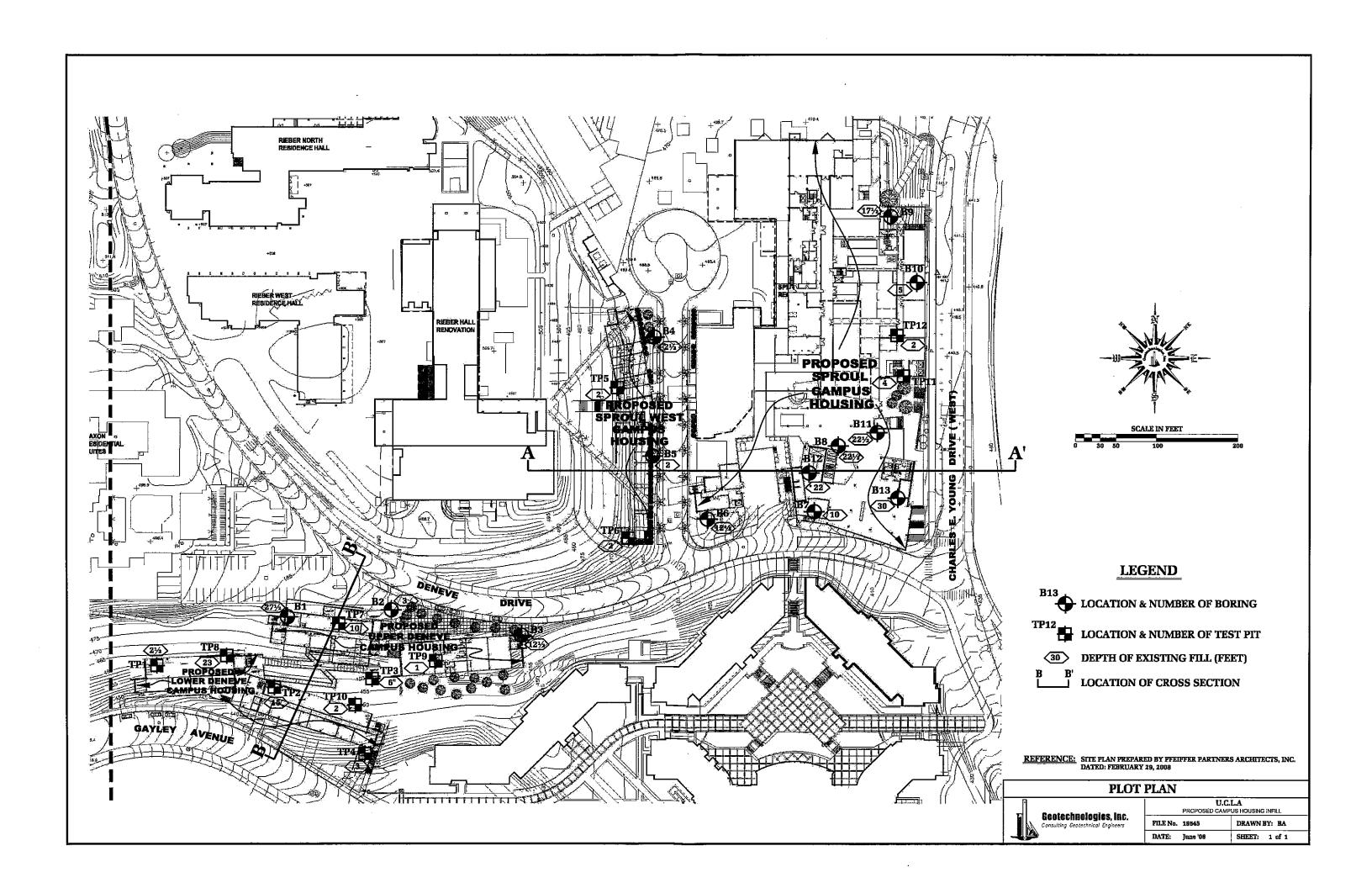
compaction curve.

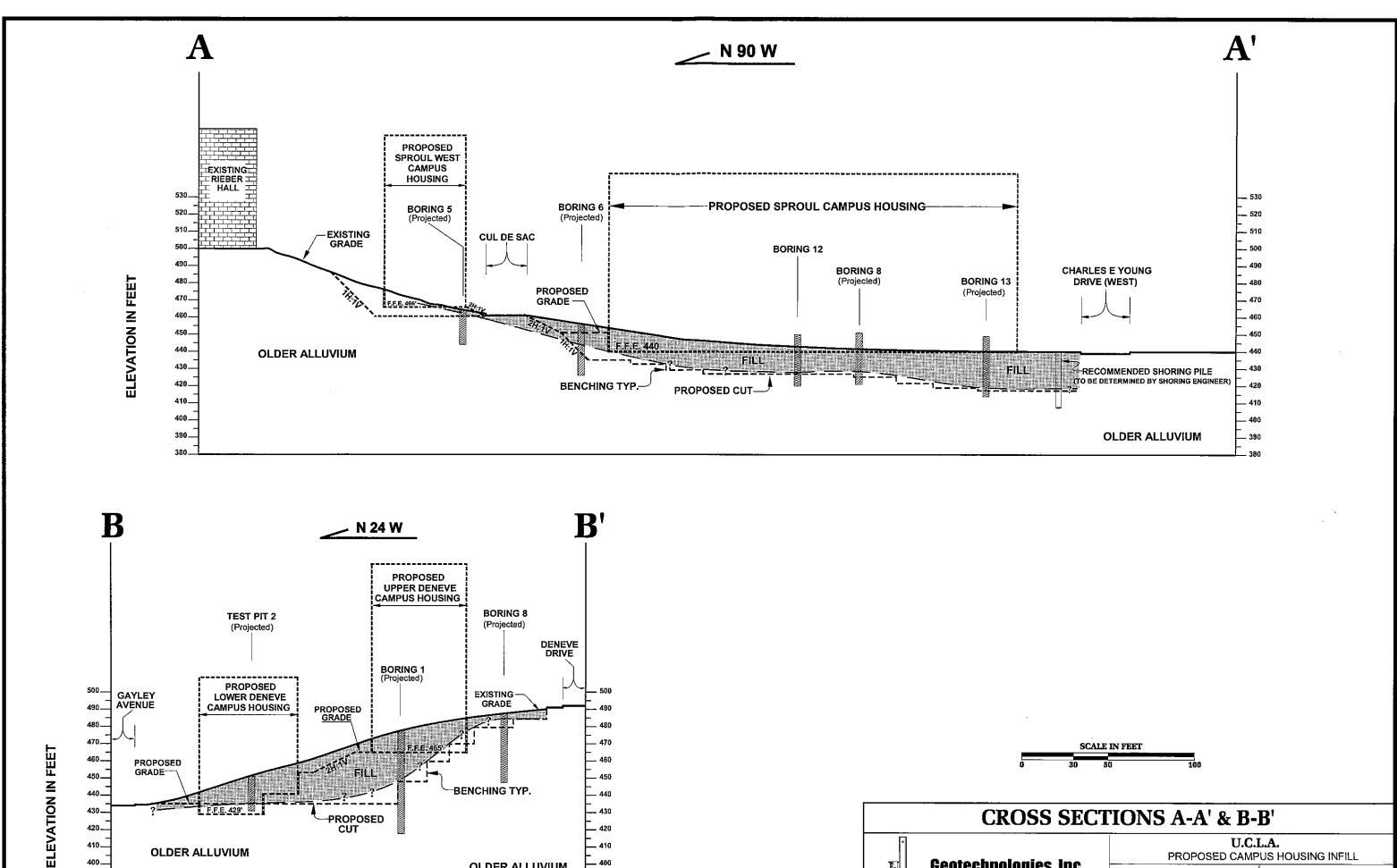
Geotechnologies, Inc.

日》

REFERENCES

- Abrahamson, N. A. and Silva, W. J. (1997) Empirical Response Spectral Attenuation Relations for Shallow Crustal Earthquakes. *Seismological Research Letters*, vol. 68, no. 1, pp. 94-127.
- Blake, T. F. (2000) EQFAULT A Computer Program for the Deterministic Prediction of Peak Horizontal Acceleration from Digitized California Faults.
- Blake, T. F. (2000) EQSEARCH A Computer Program for the Estimation of Peak Horizontal Acceleration from Digitized California Faults.
- Blake, T. F. (2000) FRISKSP A Computer Program for the Probabilistic Estimation of Peak Acceleration and Uniform Hazard Spectra Using 3-D Faults as Earthquake Sources.
- Boore, D. M., Joyner, W. B., and Fumal, T. E. (1997) Equations for Estimating Horizontal Response Spectra and Peak Acceleration from Western North American Earthquakes: A Summary of Recent Work, Seismological Research Letters, vol. 68, no. 1, pp. 128-153.
- Building Seismic Safety Council (2004) NEHRP (National Earthquake Hazards Reduction Program)
 Recommended Provisions for Seismic Regulations for New Buildings and Other Structures
 (FEMA 450), 2003 Edition, BSSC, National Institute of Building Sciences: Washington, D.C.
- California Building Standards Commission (2007) 2007 California Building Code, Based on the 2006 International Building Code, California Building Standards Commission: Sacramento, California.
- California Division of Mines and Geology (1997) Guidelines for Evaluation and Mitigation of Seismic Hazards in California, CDMG Special Publication 117, CDMG: Sacramento, California.
- California Division of Mines and Geology (1996, revised 2006) Seismic Hazard Zone Report 023, Seismic Hazard Zone Report of the Beverly Hills 7.5 Minute Quadrangle, Los Angeles County, California. CDMG: Sacramento, California.
- California Division of Mines and Geology (1999) State of California Seismic Hazard Zones, Beverly Hills Quadrangle, Official Map, CDMG: Sacramento, California.

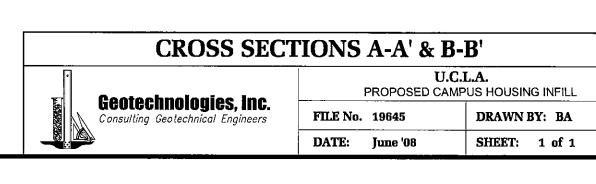



REFERENCES - continued

- Crook, R. and Proctor, R. J. (1992) The Santa Monica and Hollywood Faults and the Southern boundary of the Transverse Ranges Province. <u>Engineering Geology Practice in Southern California</u>; Special Publication No. 4 Association of Engineering Geologists, Southern California Section. B. Pipkin and R. Proctor, Eds. Star Publishing Co.: Belmont, California.
- Dibblee, T.W. (1991) Geologic Map of the Beverly Hills and Van Nuys (South ½) Quadrangles, Los Angeles County, California, #DF-31. Dibblee Geologic Foundation: Santa Barbara, California.
- Holtz, R. D., and Kovacs, W.D. (1981) <u>An Introduction to Geotechnical Engineering</u>, Prentice-Hall, Inc.: Upper Saddle River, New Jersey.
- International Code Council, Inc. (2006) 2006 International Building Code, International Code Council, Inc.: Country Club Hills, Illinois.
- International Conference of Building Officials (1997) The 1997 Uniform Building Code, Vols. 1 and 2, International Conference of Building Officials (ICBO): Whittier, California.
- ICBO, and California Building Standards Commission (2001) The 2001 California Building Code, Based on the 1997 UBC, ICBO: Whittier, California.
- Leighton and Associates, Inc. (1990) Technical Appendix to the Safety Element of the Los Angeles County General Plan: Hazard Reduction in Los Angeles County.
- Naval Facilities Engineering Command (1982) Design Manuals 7.1 & 7.2 (NAVFAC DM 7.1 & 7.2), Soil Mechanics, U.S. Department of the Navy.
- Southern California Earthquake Center (1999) Recommended Procedures for Implementation of DMG Special Publication 117 Guidelines for Evaluation and Mitigation of Seismic Hazards in California, SCEC: Los Angeles California.
- Yerkes, R.F., McCulloh, T.H., Schoellhamer, J.E., and Vedder, J.G. (1965) Geology of the Los Angeles Basin, Southern California- An Introduction, U.S. Geological Survey Professional Paper 420-A, U.S. Government Printing Office: Washington D.C.

Geotechnologies, inc.

OLDER ALLUVIUM


420...

410_

400_

390_

OLDER ALLUVIUM

BORING LOG NUMBER 1

Project: File No. 19645

UCLA Capital Programs

Sample		Moisture	Dry Density	Depth in	USCS	Description
Depth ft.	per ft.	content %	p.c.f.	feet	Class.	Description
				_		
				26		
]		- 27	İ	
27.5	65	15.3	117.5			
		1	=	28	SC	OLDER ALLUVIUM: Clayey Sand, yellowish-brown to light
				-		brown, slightly porous, moist, dense, fine grained, stiff
				29		, , , , , , , , , , , , , , , , , , ,
30	33	10.1	117.1	30	1	
	50/5"		117.1	-	SC/SW	Clayey Sand to Sand with Gravel, medium brown to yellowish-
				31	0,0,1	brown, moist, very dense, fine grained
	1			-	ĺ	, and granier
				32	F	
				33	İ	
		ļ	,	-		
				34		
35	100/04			-		
33	100/9"	6.7	110.7	35	CIVI	
				- 36	SW	Sand with Gravel, yellowish-brown, moist, very dense, fine to medium grained
				-		meurum grained
				37		
	[]	1		-		
				38	ľ	
				39		i
				-		
40	48	5.7	119.4	40		
	50/5"	İ		-		moist
			:	41		
				42	Ī	
				-		
				43	I	
				44		
				-	1	
45	62	25.0	104.0	45		
	50/5"	ļ	İ	-	CL/SM	Silty Clay to Silty Sand, yellowish-brown, moist, very dense, fine
				46		grained, very stiff, slight gravel
			İ	47		NOTE: The stratification lines represent the approximate boundary between earth types; the transition may be gradual
]	-	li li	Used 8-inch diameter Hollow-Stem Auger
		ļ		48	[]	140-lb. Slide Hammer, 30-inch drop
	ĺ	İ		- 49	1	Modified California Sampler used unless otherwise noted
	ļ			47		SPT=Standard Penetration Test
50	100/10"	9.2	119.7	50	_sw o	Gravelly Sand, yellowish-brown, moist, very dense, fine grained
					[-	Total depth: 50 feet; No Water; Fill to 27½ feet

BORING LOG NUMBER 2

Drilling Date: 03/25/08

Elevation: 479'

Project: File No. 19645

UCLA Capital Programs

Sample	Blows	Moisture	Dry Density	Depth in	USCS	
Depth ft.	per ft.	content %	p.c.f.	feet	Class.	Description Surface Conditions: Bare Ground
2	60	12.3	122.0	0 - 1 - 2		FILL: Silty to Clayey Sand, yellowish-brown, moist, medium dense, fine grained
5	72	11.5	118.0	3 - 4 - 5 - 6	SC/CL	OLDER ALLUVIUM: Clayey Sand to Sandy Clay, yellowish-brown moist, dense, fine grained, stiff, minor slate fragments
7	80	9.9	107.7	7 - 8	SC	Clayey Sand, yellowish-brown, moist, dense, fine grained
10	76	14.5	101.3	9 10 11 12 12 1	ML/SM	Sandy Silt to Silty Sand, yellowish-brown, moist, very dense, fine grained, very stiff, minor gravel
15	95	4.1	115.8	13 14 15 16	SP/SM	Sand, grayish-brown, moist, very dense, fine to medium grained, with gravel
20	36	4.5	106.7	17 18 19 20		
	50/5"	7.07	100./		SP/SM	Silty Sand to Sand, yellow to grayish-brown, moist, very dense, fine to medium grained
25	87	8.0	102.8	25	SM	Silty Sand, yellow and olive-brown mottling, moist, very dense, fine grained

Project: File No. 19645

Sample	Blows	Moisture	Dry Density	Depth in	USCS	Description
Depth ft.	per ft.	content %	p.c.f.	feet	Class.	Description
				26 27 28 29		
30	75/7"	13.5	113.1	30 31 32	MIL/CL	Clayey Silt to Silty Clay, dark to medium brown, moist, very stiff
35	75/7''	11.1	117.4	33 34 35 36 37	SC/ML	Clayey Sand to Clayey Silt, medium brown, moist, very dense, fine grained with slate fragments, very stiff
40	75/8"	13.4	106.3	38 39 40 41 42		Sand to Silty Sand, medium brown, moist, very dense, fine grained, gravel Total depth: 40 feet No Water
				43 44 45 46		Fill to 3 feet
				47 48 49 50		

Drilling Date: 03/26/08

Elevation: 468'

Project: File No. 19645

Sample	Blows	Moisture	Dry Density	Depth in	USCS	Description
Depth ft.	per ft.	content %	p.c.f.	fect	Class.	Surface Conditions: Bare Ground
2	18	14.9	110.3	0 1 - 2		FILL: Silty Sand, yellowish-brown, moist, medium dense, fine grained
4	45			3		Clayey to Silty Sand, yellowish-brown with gray mottling, moist, medium dense, fine grained, firm
4	45	14.3	112.2	4 - 5 - 6		Clayey Sand, medium brown with gray mottling, moist, medium dense, fine grained, firm
7	22	9.5	111.8	7 7 8 9		Silty Sand, yellowish-brown with medium brown mottling, moist, medium dense, fine grained, slight gravel
10	21	13.5	104.8	10 11		Clayey Sand to Sandy Clay, yellowish-brown to medium brown, moist, medium dense, fine grained, firm, slight gravel
12.5	30 50/5"	12.5	113.5	12 13	SM/SW	Sandy Clay with Sand, medium brown with yellowish-brown mottling, moist, medium dense, fine grained, firm, slight gravel
15	45	6.2	114.7	14 - 15		OLDER ALLUVIUM: Silty Sand to Gravelly Sand, yellowishbrown, caliche, moist, very dense, fine to medium grained
	50/5"			17		Sand with Gravel, yellowish-brown, moist, very dense, fine grained Silty Sand, yellowish-brown, moist, very dense, fine grained
20	77	5.0	108.6	18 19 20 21 22 23 24		moist, dense, fine grained, slight gravel
25	100/7"	5.5	109.9	25	SW/SM	Sand with Gravel to Sand, yellowish-brown, moist, very dense, fine grained

Project: File No. 19645

km Sample	Blows	Moisture	Dry Density	Depth in	USCS	Manufacture 1
Depth ft.		content %	p.c.f.	feet	Class.	Description
]			-		
				26		
				- 27		
				_		
	i			28		
				- 29		
				-	SW	Sand with Gravel, yellowish-brown, slightly moist, very dense, fine
30	150/8"	4.0	115.5	30		to medium grained
				-	`	T () 1 () 00 C (
				31		Total depth: 30 feet No Water
		•		32		Fill to 12½ feet
				-		
		,		33		
				34		
				-		
				35		
				36		
				-		
				37		
				38		
İ				-		
				39		
				-		
				40		
				41		
				-		
İ				42		
				43		
				-		
				44		
				45		
				-		
				46		
				47		
				-		
				48		
		İ		- [
				49		·
			ſ	50		
				-		

Drilling Date: 03/25/08

Elevation: 467'

Project: File No. 19645

Sample	Blows	Moisture	Dry Density	Depth in	USCS	Description
Depth ft.	per ft.	content %	p.c.f.	feet	Class.	Surface Conditions: Lawn Area
				0 - 1		FILL: Clayey Sand, yellowish-brown, moist, medium dense, fine to medium grained, firm
2	32	22.9	106.7	- 2		Sond with County and the state of the state
				3		Sand with Gravel, yellowish-brown, moist, medium dense, fine to medium grained
4	30	21.8	102.6	4 - 5	SM	OLDER ALLUVIUM: Silty Sand, yellowish-brown, moist, mediur dense, fine grained
ı		:		- 6	CL	Sandy Clay, yellowish-brown, moist, firm
7	60	11.8	122.4	7 -	SM/SW	Silty Sand to Sand with Court
				8	51725 17	Silty Sand to Sand with Gravel, yellowish-brown, moist, dense, fine to medium grained
10	62	13.2	112.9	9 - 10		
				11	SW/SM	Sand with Gravel to Silty Sand, yellowish-brown, moist, dense, fine to medium grained
				12		
į				13 - 14		
15	27 50/6"	5.7	118.2	15	sw	Sand with County 11
				16		Sand with Gravel, yellowish-brown, moist, dense, fine to medium grained
				17 18		
ļ				19		
20	57	18.3	109.3	20	7	Sandy Clay, medium brown to yellowish-brown, moist, firm
				21 22		Total depth: 20 feet No Water Fill to 2½ feet
				23		
				24		
				25		

Drilling Date: 03/25/08

Elevation: 465'

Project: File No. 19645

Sample	Blows	Moisture	Dry Density	Depth in	USCS	Description
Depth ft.	per ft.	content %	p.c.f.	feet	Class.	Surface Conditions: Lawn Area
]			0		FILL: Clayey Sand, yellowish-brown, moist, medium dense, fine
ļ	Ì			1		to medium grained, firm
				-		
2	32	14.2	120.0	2		
				-	CL	OLDER ALLUVIUM: Sandy Clay, yellowish-brown, moist, firm,
	, 			3		slight gravel
4	35	17.0	111.5	4		
				-		moist
				5		
				6		
				-	ı	
7	80	8.8	128.7	7		
				- 8	SM	Gravelly Sand, yellowish-brown, moist, very dense, fine to medium
				8		grained
				9		
1 ,	20		440.0	-		;
10	39	17.8	112.5	10	CL	Sandy Class will also be a second of the sec
				11	CL	Sandy Clay, yellowish-brown to medium brown, moist, firm, slight gravel
				-		8
				12		
				13	:	
			İ	-		·
				14		
15	100/8"	8.4	123.3	-		
13	100/6	0.4	123.3	15	sw	Sand with Gravel, yellowish-brown, moist, very dense, fine to
				16		medium grained
		ļ	,	17		
				18	j	
				-		
				19		
20	38	8.5	119.3	20		
20	50/5"	0.5	119.5		/	moist, very dense, fine to medium grained
				21		Total depth: 20 feet
			i	-	,	No Water
				22		Fill to 2 feet
				23		
İ		ŀ		-		
				24		
				25		
					.]	

Drilling Date: 03/25/08

Elevation: 461'

Project: File No. 19645

Sample	Blows	Moisture	Dry Density	Depth in	USCS	Description
Depth ft.	per ft.	content %	p.c.f.	feet	Class.	Surface Conditions: Lawn Area
				0		FILL: Sandy Clay, medium brown, moist, firm, slight gravel
	1			-		
	İ			1		
2	16	9.2	117.4	2		
_		7.2	11/.4	2		Clayer to Site Sand and
				3	Î	Clayey to Silty Sand, yellowish-brown, moist, medium dense, fine grained, firm, gravel
					ł	
4	14	12.3	117.9	4	<u>├</u>	
	1		į	-		Silty to Clayey Sand, yellowish-brown, moist, medium dense, fine
				5		to medium grained, firm, gravel
	1			_		
				6		
7	16	13.3	115.2	7		
1				-		Silty to Clayey Sand, yellowish-brown, moist, medium dense, fine
	}			8		to medium grained, firm, gravel
			ļ	-		g, , , , ,
				9		
10	20	15.2	100.6			
10	20	15.3	108.6	10		
]	- 11		Sand with Clay, yellowish-brown, moist, medium dense, fine to
						medium grained, firm, gravel
İ				12		
12.5	15	16.9	115.0	~		
l	50/5"			13	SC/SW	OLDER ALLUVIUM: Clayey Sand to Gravelly Sand, yellowish-
ĺ				~		brown, moist, dense, fine to medium grained, stiff
		1		14		
15	60	14.8	114.5	15		
	50/5"	1	114.5		SM/SC	Silty to Clayey Sand, yellowish-brown, moist, very dense, fine
	1			16	DIAL DC	grained grained
				-		8
				17		
17.5	40	9.4	120.8	- F		
	50/5"		İ	18	SW	Gravelly Sand, yellowish-brown, moist, very dense, fine grained
ļ				- 19		
Ī	}			19		
20	74	12.1	117.4	20		
				-		Sand with Gravel, yellowish-brown, moist, dense, fine grained
1				21		or or moist, dense, this granted
1				-		
	ĺ	1		22		
				-	ļ	
-	}			23	ľ	
			1	24		
				-		
25	34	17.6	111.6	25 -		
		<u></u>			CL	Sandy Clay, medium brown, moist, firm

Project: File No. 19645

Sample	Blows	Moisture	Dry Density	Depth in	USCS	Description
Depth ft.	per ft.		p.c.f.	feet	Class.	2 обольной
				26		
			' :	27		
				28		
30	72	12.5	1040	29		
30	14	12.5	124.9	30		gravel, moist, stiff
				31 32		Total depth: 30 feet No Water
				33		Fill to 12½ feet
				- 34	·	
				35		
				- 36		
				37		
				38		
				39		
				40	3	
			•	41		
				42		
				43		
				44		į
				45		
				46		
	-			47		
				48		
				49 50		
				-		

Drilling Date: 03/24/08

Elevation: 450'

Project: File No. 19645

km	: File No					UCLA Capital Programs
Sample	Blows	Moisture	Dry Density	Depth in	USCS	Description
Depth ft.	per ft.	content %	p.c.f.	feet	Class.	Surface Conditions: Lawn Area
		:		0 - 1 -		FILL: Sandy Clay, grayish-brown with yellowish-brown mottling, moist, firm
2.5	18	15.7	111.3	2		
4	17	100	107 =	3	:	medium brown with dark gray mottling, moist, firm, slight gravel
- 4	1/	19.9	106.7	4 - 5		moist
7	19	16.4	111.9	6 7 - 8 9		yellowish-brown with gray mottling, moist, firm
10	38	15.4	115.0	10 11	CL/SC	OLDER ALLUVIUM: Sandy Clay to Clayey Sand, medium brown moist, medium dense, fine grained, firm, gravel
12.5	45	11.7	114.7	12	SM	Silty Sand, yellowish-brown, moist, medium dense, fine to medium
15	100/11"	13.9	117.1	14	OSS/IOS F	grained
***************************************				16 - 17 - 18	SW/SM	Sand with Gravel to Silty Sand, yellowish-brown, moist, very dense, fine grained
20	71	15.3	116.3	19 — 20 —	SC/SM	Clayey to Silty Sand, yellowish-brown, moist, dense, fine grained,
		e de la companya de la companya de la companya de la companya de la companya de la companya de la companya de		21 22 23		stiff, gravel
				24		
25	44	19.7	110.7	25	-CL	Sandy Clay, yellowish-brown to medium brown, moist, firm, slight gravel

Project: File No. 19645

Sample Depth ft.	Blows	Moisture	Dry Density	Depth in	USCS	Description
Depth (t.	per ft.	content %	p.c.f.	feet -	Class.	
				26		
				- 27		
				- 28		
				-		
				29		
30	53	13.6	118.6	30 -	_	yellowish-brown, moist, firm
				31		Total depth: 30 feet
				- 32		No Water Fill to 10 feet
				-		
				33		
				34		
			1	35		
1				36		
				37		
				-		
				38		
				39		
		İ		40		
				- 41		
				-		
		ŀ		42		
				43		
				44		
		ļ		45		
		İ		- 46		
				-		
				47	1	
	ĺ			48		
				49		
			ĺ	- 50		
				-		

Drilling Date: 03/25/08

Elevation: 451'

Project: File No. 19645

Sample	Blows	Moisture	Dry Density	Den4l:	YIOOO	
Depth ft.	per ft.	content %	Dry Density p.c.f.	Depth in feet	USCS Class.	Description Surface Conditions: 4-inch Asphalt over 3-inch Base
	1	252 70		0	C1433.	FILL: Sandy Clay, dark brown, moist, firm
2	19	14.7	111.2	1 2 3		
5	24	15.8	SPT	4 5 6		Silty Clay, dark to medium brown, moist, stiff
7.5	43	17.5	111.8	7 - 8	,	
10	17	16.6	SPT	9 10 - 11		
12.5	65	14.2	116.2	- 12 - 13	<u> </u>	Silty Sand to Silty Clay, dark brown to medium brown mottling, moist, stiff
15	23	11.9	SPT	14 - 15 -		
17.5	23	No Re	ecovery	16 - 17 - 18 - 19		Clayey to Silty Sand, dark brown, moist, medium dense, fine grained
20	17	10.4	SPT	- 20 - 21		
22.5	75/8''	11.3	118.2	22	SM/SC	OLDER ALLUVIUM: Silty to Clayey Sand, medium brown, moist, very dense, fine grained, with slate fragments
25	30	11.1	SPT	25		

Project: File No. 19645

Sample	Blows	Moisture	Dry Density	Depth in	USCS	Description
Depth ft.	per ft.	content %	p.c.f.	feet	Class.	
				26		
				27		
	:			28		
				29		
30	84	14.9	116.3	30		
				- 31	SM	Silty Sand, medium brown, moist, dense, fine grained
			:	32		
				33		
				34		
35	35	15.6	SPT	35		
				36	CL	Sandy to Silty Clay, dark to medium brown, moist, stiff
				37		
				38		
			į	39		
40	75/7.5"	12.2	108.3	40		
				41	SM	Silty Sand with slate fragments, yellow to medium brown, moist, very dense, fine to coarse grained
				42		
				43		
				44		
45	80	9.1	SPT	45		
				46		
				47		
				48	`	
				- 49	SM/SP	Silty Sand to Sand, medium brown, moist, very dense, fine to medium grained
50	100/6"	4.7	115.6	50 -		Total depth: 50 feet; No Water; Fill to 22½ feet

Drilling Date: 03/24/08

Elevation: 455'

Project: File No. 19645

km						
Sample	Blows	Moisture	Dry Density	Depth in	USCS	Description
Depth ft.	per ft.	content %	p.c.f.	feet	Class.	Surface Conditions: 5-inch Concrete over 5-inch Base
į		ĺ		0		FILL: Silty Sand, medium brown, moist, medium dense, fine to
			ſ	1		medium grained, slight gravel
				j ^_		
2	14	11.4	109.1	2	⊢	<u> </u>
		İ		-		Sandy Clay, yellowish-brown with grayish-brown mottling, moist,
]	Ī	3		firm
4	56	8.2	125.1	-		
•	30	0.2	123.1	4	<u> </u>	Cilty Cand with Carrel - David L
]	İ		5	ĺ	Silty Sand with Gravel, yellowish-brown with grayish-brown mottling, moist, medium dense, fine grained
			1	_	!	i i i i i i i i i i i i i i i i i i i
			:	6		
7			ĺ	-		
7	95	No R	ecovery	7		+
				- 8		gravel
		ļ		o		
				9		
				-		
10	77	5.8	109.0	10		
				-		yellowish-brown, moist, dense, fine grained
				11		
			1	12		yellowish-brown with dark gray mottling, moist
12.5	15	5.7	106.7	-		
				13		Silty Sand, yellowish-brown, moist, medium dense, fine grained,
				-		slight gravel
	i			14		
15	26	4.8	108.2	15		
15	20	7.0	108.2	13		moist
				16		Moist
				- [
			l	17		
17.5	66	12.3	111.9	-		
	50/6"			18	SM/SC	OLDER ALLUVIUM: Silty to Clayey Sand, yellowish-brown,
				19		moist, very dense, fine grained, very stiff
			ļ	-		
20	58	5.2	119.1	20	<u>-</u> -	
3	50/5"			~	SM	Silty Sand with Gravel, yellowish-brown, moist, very dense, fine
				21		to medium grained
			•	-		
				22		
				23		
İ				24		
			ļ	-]	ł	
25	100/7"	4.2	114.8	25		
		<u></u>				moist

Project: File No. 19645

m Sample	Blows	Moisture	Dry Density	Depth in	USCS	Danastration
Depth ft.	per ft.	content %	p.c.f.	feet	Class.	Description
				- 26 -		
		;		27 -		
			!	28		
				29		
30	36 50/5"	6.6	124.2	30		medium brown, moist, very dense, fine grained
	20/2			31		Total depth: 30 feet
				32		No Water Fill to 17½ feet
İ				33		
				34		
	;			35		
	Ī			36		
	Ì			37		
				38		
				39		
	ŀ	i		40		
				41		
				42		
•				43		
İ				44		
				45		
İ		•		46		
				47		
ļ				48		
				49		
				50		

Drilling Date: 03/24/08

Elevation: 448'

Project: File No. 19645

Sample	Blows	Moisture	Dry Density	Depth in	USCS	Description
Depth ft.	per ft.	content %	p.c.f.	feet		Surface Conditions: Planter Area
				0	L	FILL: Silty Sand, yellowish-brown, porous, slightly moist, medium dense, fine grained
				1	`	
				- 2		grayish-brown, slightly moist
	! 					
3	23	12.6	115.6	3		
				- 4		Clayey Sand to Sandy Clay, grayish-brown to yellowish-brown, moist, medium dense, fine grained, firm, slight gravel
				-		inost, medium dense, mie gramed, min, siight gravei
5	53 50/4''	13.1	117.3	5	SM.	OLDED ALLINGUA, CH. C. I. V.
	30/4			- 6	SM	OLDER ALLUVIUM: Silty Sand, yellowish-brown to medium brown, moist, very dense, fine grained, slight gravel
_	0.0	. .	44.6			, , , , , , , , , , , , , , , , , , ,
7	86	8.5	116.0	7 -	SW	Sand with Gravel, yellowish-brown, moist, very dense, fine to
				8	5	medium grained
				- 9		
			·	<i>,</i> -		
10	46	17.2	108.9	10	Ch.f.	
				11	SM	Silty Sand, yellowish-brown, moist, medium dense, fine grained, slight gravel
				-		B
12.5	30	11.9	120.3	12		
22,0	50/6"	11. 2	12015	13	SM/SW	Silty Sand to Sand with Gravel, yellowish-brown, moist, very
			:	- 14		dense, fine grained
				-		
15	53	8.2	126.0	15	~~~	
	50/5"			- 16		Silty Sand with Gravel, yellowish-brown, moist, very dense, fine grained
		Į		-		B. miner
				17		
				18		
				- 10		
				19 -		
20	35	4.0	109.6	20		
	50/6"			- 21	SM/SW	Silty Sand to Sand with Gravel, yellowish-brown, moist, very dense, fine grained
						achse, into granieu
			ļ	22		
				23		
				-		
				24		
25	28	6.7	106.0	25	/	Silty Sand, yellowish-brown, moist, very dense, fine grained,
	50/5"				SM_	slight gravel

Project: File No. 19645

Sample Depth ft.	Blows per ft.	Moisture content %	Dry Density p.c.f.	Depth in feet	USCS Class.	Description
				- 26	Ciussi	
				-		
}				27 -		
				28		
				29		
30	100/7"	4.8	111.5	30		gravel, moist, very dense, fine grained
				31		Total depth: 30 feet
				32		No Water Fill to 5 feet
				33	ı	
				- 34		
				- 35		
				36		
		:		-		
				37 -		
				38		
				39 -		
				40		
				41		
				42		
				43		
				- 44		
				- 45		
				- 46		
				- 47		
			İ	- 48		
				-	ļ	
				49		
				50 -		

Drilling Date: 03/25/08

Elevation: 452'

Project: File No. 19645

km	, I HC IV	10. 17043				OCLA Capital Frograms
Sample	Blows	Moisture	Dry Density	Depth in	USCS	Description
Depth ft.	per ft.	content %	p.c.f.	feet	Class.	Surface Conditions: Lawn Area
	20	12.0		0 - 1 -		FILL: Silty Sand, medium brown, moist, medium dense, fine grained Clayey Sand, medium brown, moist, medium dense, fine grained,
2	29 29	13.0	110.5	2 - 3 - 4		Clayey Sand to Sandy Clay, medium brown, moist, medium dense, fine to medium grained, firm, gravel
		:		5 6 -		Sandy Clay with Gravel, medium brown to grayish-brown, moist, firm
7	42	15.0	110.9	7 - 8 - 9		Sandy Clay, yellowish-brown to medium brown with gray mottling, moist, firm, slight gravel

				-	$\vdash - \setminus$	grained
2	29	13.0	110.5	1 - 2		Clayey Sand, medium brown, moist, medium dense, fine grained, firm
	20	15.0	100 7	3		Clayey Sand to Sandy Clay, medium brown, moist, medium dense, fine to medium grained, firm, gravel
4	29	15.8	109.7	4 - 5		Sandy Clay with Gravel, medium brown to grayish-brown, moist, firm
7	42	15.0	110.9	6 - 7		Sandy Clay, yellowish-brown to medium brown with gray
				8 - 9		mottling, moist, firm, slight gravel
10	100/2"	No R	 ecovery 	10 -	:	
12.5	35	17.6	108.1	11		
15	30	13.5	117.2	13 14 15		medium brown with gray mottling, moist, firm
	30	13.3	117.2	- 16 -		yellowish-brown with gray mottling, moist
17.5	54	14.5	114.3	17		yellowish-brown to grayish-brown, moist
20	35	12.6	110.7	19 - 20		grayish-brown, moist
				21 - 22		grayish-brown, moist
22.5	27 50/6"	9.9	124.7	23 24	SC/SM	OLDER ALLUVIUM: Clayey to Silty Sand, yellowish-brown, porous, moist, dense, fine grained, stiff, slight gravel
25	35 50/6''	11.8	124.6	25 -	SC	Clayey Sand, yellowish-brown, moist, very dense, fine grained, very stiff, gravel

Project: File No. 19645

km

Sample	Blows	Moisture	Dry Density	Depth in	USCS	Description
Depth ft.	per ft.	content %	p.c.f.	feet	Class.	
27.5	75/6"	10.5	121.6	26 27 28 29	SM	Silty Sand, medium brown with light gray mottling, moist, dense, fine grained, gravel
30	100/4"	9.8	122.0	30 31 32 33 34 35 36 37 38 40 41 42 43 44 45 46 47 48	SM/SC	Silty to Clayey Sand, yellowish-brown, moist, very dense, fine grained, very stiff, gravel Total depth: 30 feet No Water Fill to 22½ feet
				49 - 50		

Drilling Date: 06/07/08

Elevation: 450'

Project: File No. 19645

km						
Sample	Blows	Moisture	Dry Density	Depth in	USCS	Description
Depth ft.	per ft.	content %	p.c.f.	feet	Class.	Surface Conditions: Lawn Area
	İ			0		FILL: Silty Clay, dark to medium brown, moist, firm
				1		
			!	2		
				3		
				_		
				4		
				_		
5	Push/12"	17.4	110.5	5	L	<u> </u>
				-		Silty Clay, dark to medium brown, very moist, firm
				6		
,	l			-		
				7		
				-		
				8		·
				-		
				9		
10	D 1/1011	4 = 4	110 =	-		
10	Push/12"	15.4	112.7	10		
				-		Silty Clay, dark brown and dark gray mottling, moist, firm
				11		
				12		
				12		
				13		
				_		
				14		
				-		
15	4/12"	13.2	115.1	15		<u> </u>
				-		Silty Clay, dark brown, moist, stiff to very stiff
				16		
				17		
				-		
				18		
				-		
				19		
20	2/12"	17.6	107.3	20		
20	2/12	1 /.0	107.5	20		Sondy to Clayer Sit down many majet stiff min way I for
				21		Sandy to Clayey Silt, dark gray, moist, stiff, minor wood fragments
				22		
				-	ML	OLDER ALLUVIUM: Sandy to Clayey Silt, dark brown, moist,
				23		very stiff, minor slate fragments
				_		, ,
	'			24		
				-		
25	12/12"	10.9	122.5	25		

Project: File No. 19645

km					<u> </u>	
Sample	Blows	Moisture	Dry Density	Depth in	USCS	Description
Depth ft.	per ft.	content %	p.c.f.	feet	Class.	
Sample		I			Class	Total depth: 30 feet No Water Fill to 22 feet NOTE: The stratification lines represent the approximate boundary between earth types; the transition may be gradual Used 24-inch diameter Bucket Auger Kelly Weight 0' - 24' 1590 lbs. 25' - 57' 760 lbs. Modified California Sampler used unless otherwise noted
				34 35 36 37 38 - 40		boundary between earth types; the transition may be gradual Used 24-inch diameter Bucket Auger Kelly Weight 0' - 24' 1590 lbs. 25' - 57' 760 lbs.
				43 44 45 46 47 48		
				49 - 50		

Drilling Date: 06/07/08

Elevation: 449'

Project: File No. 19645

	KJ	1	1	
Ŧ	_	_		•

Sample	Blows	Moisture	Dry Density	Depth in	USCS	Description
Depth ft.	per ft.	content %	p.c.f.	feet	Class.	Surface Conditions: Lawn Area
				0		FILL: Silty Clay, dark and grayish brown mottling, moist,
				-		stiff
				1		
		Į		-		
]			2		
	İ			3		
				-		
				4		
				-	}	
5	1/12"	15.9	106.3	5	<u> </u>	
				-		Silty Clay, dark and grayish brown mottling, moist, stiff
	İ			6		
				7		
				8		
				0		
				9		
				_		
10	Push/12"	17.5	107.2	10	<u> </u>	
				-		Silty Clay, dark and grayish brown mottling, moist to very moist,
				11		firm
				-		
				12		
	l			- 10		
				13		
				- 14		
				14		
15	3/12"	14.0	117.6	15		
				-		Silty Clay, dark brown, moist, very stiff
				16		, , , , , , , ,
				-		
				17		
				-		
				18		
				- 19		
				19		
20	5/12"	13.2	114.2	20		
		.5.2	114.2	-		Clayey Silt to Silty Clay, dark gray, moist, very stiff
				21		omy of one to only oldy, dark gray, moist, very still
				-		
				22		
				-		
				23		
				-		
				24	1	
25	4/12"	25.6	64.7	25		Silty Sand with wood and done for the same state of the same state
23	7/12	45.0	U**•/	23	— <i>— *</i>	Silty Sand with wood and glass fragments, dark gray, moist, medium dense, fine grained
	<u></u>					medium delise, fille grained

Project: File No. 19645

Sample	Blows	Moisture	Dry Density	Depth in	USCS	Description
Depth ft.	per ft.	content %	p.c.f.	feet	Class.	
				26 27		
		ļ		28 - 29		
30	12/12"	7.7	100.3	30 31 32	MIL	OLDER ALLUVIUM: Sandy to Clayey Silt, dark brown, moist very stiff
35	15/12"	14.2	116.2	33 34 35	SM/MI	Ciltur Cond to Conder Cilt de La language
35	15/12"	14.2	116.3	35 - 36	SM/ML	Silty Sand to Sandy Silt, dark brown, moist, very dense, fine grained, very stiff
				37 38		Total depth: 35 feet No Water Fill to 30 feet
				39		NOTE: The stratification lines represent the approximate boundary between earth types; the transition may be gradual Used 24-inch diameter Bucket Auger
·				41		Kelly Weight 0' - 24' 1590 lbs. 25 ' - 57' 760 lbs.
			:	43		Modified California Sampler used unless otherwise noted
:				45 46		
				- 47 -		
:				48 - 49		
			:	50 -		

Drilling Date: 03/18/08

Elevation: 460'

Project: File No. 19645

|--|

Sample	Moisture	Dry Density	Depth	USCS	The state of the s
Depth ft.	Content %	p.c.f.	in feet	Class.	Description Surface Conditions: Bare Ground
2 2/211 14	- Content /0	1/10/11	0	CIASSI	FILL: Clayey Sand to Sandy Clay with rock fragments, dark
			_		brown, very moist, medium dense, fine grained
1	15.5	110.8	1	İ	l amen
_	10.0	110.0	_	1	
			2		
			_		
3	11.0	114.1	3	SM	OLDER ALLUVIUM: Silty Sand, medium brown, moist to very moist,
			_		medium dense, fine grained, minor rock fragments
			4		The second sec
			_		
5	15.7	110.9	5	SC/CL	Clayey Sand to Sandy Clay, dark to medium brown, moist,
			_		medium dense, fine grained, stiff
			6		8
			· <u>-</u>		
7	7.0	131.0	7		
			-	SC/SM	Clayey to Silty Sand, medium brown, moist, dense, fine grained,
			8		with slate fragments
			_		Ü
			9		
			-		
10	10.9	122.9	10		
			-	SM	Silty Sand, medium brown, moist, dense, fine grained, minor
			11		gravel
			-		
			12		
			-		
			13		
			_		
			14		
		1000	_		
15	10.7	103.9	15	3.67. (63.6	
			-	ML/SM	Sandy Silt to Silty Sand, medium brown, slightly moist, dense,
			16		fine grained, stiff
1.55		100 5	-		
17	4.7	109.5	17	CM	
			- 18	SM	Silty Sand with Slate fragments, slightly moist, dense, fine grained
			10	-	Total depth: 18 feet
		l	 19		No Water
		ł	., ~- -		Fill to 2½ feet
		l	20		A MA 60 #/4 1001
		j	_		
.		l	21		
		1	22		
		i			
			23		
			_		
[24		
	ļ		-		
			25		
				<u> </u>	

Drilling Date: 03/14/08

Elevation: 455'

Project: File No. 19645

UCLA Capital Program

km_

Sample	Moisture	Dry Density	Depth	USCS	
Depth ft.	Content %	p.c.f.	in feet	Class.	Description Surface Conditions: Bushes and Trees
			0		FILL: Clayey to Silty Sand, dark brown, moist, medium dense,
			-		fine grained, minor gravel
		•	1		
2	8.7	121.4	-		
	0.7	121.4	2		
			3		
			-		
4	11.6	119.5	4		
			-		
1.			5		
			- 6		
7	9.1	121.0	7	<u> </u>	
			-		Silty Sand, brown, moist, dense, fine grained, minor gravel
			8		
			-		
			9		
10	9.2	126.9	10		
		2-017	-		
			11		
			-		
12.5		1150	12		
12.5	11.4	115.3	- 13		Silter County devil to marking I
			- 13		Silty Sand, dark to medium brown, moist, dense, fine grained, minor gravel
ļ			14		minor graver
·			-		
15	11.4	103.8	15		
			-	SM	OLDER ALLUVIUM: Silty Sand with rock fragments and slate
			16		fragments, medium brown, moist, dense, fine grained
			17	SM	Silty Sand with Gravel, medium brown, moist, dense, fine grained
				JITA.	one, onto the Graves, medium brown, moist, dense, fine grained
18	5.6	121.8	18	1	
			-		
[.			19		
20	8.5	123.3	20		
40	0.5	143.3	20		Total depth: 20 feet
			21		No Water
			-		Fill to 15 feet
			22		
			-		
		ŀ	23		
·	ļ		24		
	İ		_		
			25		

Drilling Date: 03/17/08

Elevation: 460'

Project: File No. 19645

km

Sample	Moisture	Dry Density	Depth	USCS	Description
Depth ft.	Content %	p.c.f.	in feet		Surface Conditions: Bare Ground
			0		FILL: Silty Sand, dark brown, moist, medium dense, fine grained
1	10.7	118.9	1 2	SM	OLDER ALLUVIUM: Silty Sand, dark to medium brown, moist, medium dense, fine grained, minor rock fragments (Santa Monica Slate)
3	19.2	109.6	3 - 4	SC/SM	Clayey to Silty Sand, dark brown, moist, medium dense, fine grained
5	5.0	120.3	5 - 6	SP/SW	Sand with rock fragments and gravel, yellow to grayish-brown, moist, dense, fine to coarse grained
7	6.4	125.8	- 7 - 8		
10	20.8	103.1	9 10 11	SM	Silty Sand, dark to medium brown, moist, medium dense, fine grained
12.5	8.9	130.3	12	SC/SM	Clayey Sand to Silty Sand, dark to medium brown, moist, dense, fine grained
			14 15 16 17 18 19		Total depth: 13 feet No Water Fill to 6 inches
			20 21 22 23 24		
			25		

Drilling Date: 03/18/08

Elevation: 434'

Project: File No. 19645

UCLA Capital Program

km

Sample	Moisture	Dry Density	Depth	USCS	Description
Depth ft.	Content %	p.c.f.	in feet	Class.	Surface Conditions: Bare Ground
		-	0		FILL: Sandy Silt to Sandy Clay, dark and grayish-brown, moist,
			-		stiff
			1		
			-		
2	15.9	114.5	2		
			-		
			3	NTI (CI	OVER ALL VINITAGE OF THE COLUMN TO THE COLUM
4	16.3	111.6	- 4	MIL/CL	OLDER ALLUVIUM: Sandy Silt to Sandy Clay, medium brown,
"	10.5	111.0	4		moist, stiff
]			5		
			-	SC/MT.	Clayey Sand to Clayey Silt, medium brown, moist, stiff
			6	30/1132	land to charge one, medium brown, moist, still
			_		
7	11.2	114.1	7		
			_	ML	Sandy to Clayey Silt, medium brown, moist, very stiff
8	7.8	113.6	8	<u> </u>	
			-	SM	Silty Sand, medium brown, moist, very dense, fine grained,
]			9		minor gravel
			-		
· 10	6.8	115.8	10		
			-		Total depth: 10 feet
			11		No Water
			12		Fill to 3 feet
		i	12		
			13		
			-		
			14		
			-		
			15		
			-		
			16		
			17		
			10		
			18		
			- 19		
•			-		
			20		
			_		
			21		
			-		į
			22		
			-		
			23		
,			-	1	
		į	24		
			- 25		
			25		
				<u> </u>	

Drilling Date: 03/25/08

Elevation: 475'

Project: File No. 19645

<u>km</u>	

Sample	Moisture	Dry Density	Depth	USCS	Description
Depth ft.	Content %	p.c.f.	in feet	Class.	Surface Conditions: Bare Ground
·			0		FILL: Clayey Sand, dark brown, moist, medium dense to dense.
	11.7	100.4		1	fine grained, minor gravel
1	11.7	108.4	1		
			2		
				SM	OLDER ALLUVIUM: Silty Sand, dark brown, moist, medium
3	13.1	110.4	3		dense, fine grained with slate fragments
			-	1	, g
			4		
5	7.0	124.2	-	SP/SW	Sand with Gravel, dark to medium brown, moist, dense, fine to
3	7.0	124.2	5	l	coarse grained
			6		
			-		
7	7 . 5	122.0	7		
ļ					
			8		
			- 9		
			<i>y</i>		
10	13.5	102.1	10		
			-	ML	Sandy Silt, yellowish-brown, moist, stiff
]		11		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
12		1170	-		
12	8.0	117.0	12	SM	Cildar Cound well and I have a second to the country of the countr
			13		Silty Sand, yellowish-brown, moist, dense, fine grained, with slate fragments
	i		-		a aginoitis
.			14		
	44.5		-		
15	11.0	119.4	15		
	}		- 16		
İ		1	-		
17	11.6	120.1	17		
			-		
			18		Total depth: 17½ feet
·	ļ		- 10		No Water
	İ		19		Fill to 2 feet
ł			20		
		İ			
			21		
					İ
			22		
			23		
		ĺ	<i>2.5</i>		
			24		
	Ì		-		
			25		ļ

Drilling Date: 03/25/08

Elevation: 470'

Project: File No. 19645

Į	(i	n	

Sample	Moisture	Dry Density	Depth	USCS	Description
Depth ft.	Content %	p.c.f.	in feet		Surface Conditions: Ivy
******			0		FILL: Silty Sand, dark to medium brown, moist, dense, fine grained
			-	İ	, , , , , , , , , , , , , , , , , , ,
			1		
			-		
2	8.1	123.8	2		
			-	SM	OLDER ALLUVIUM: Silty Sand, medium to yellowish-brown, moist,
			3		medium dense, fine grained
4	5.6	116.8	_	CD/CXX	
4	5.0	110.8	4	51/5W	Sand with Slate fragments, yellowish-brown, moist, dense, fine to
<u> </u>			5		coarse grained
				ľ	
			6		
			_		
7	12.9	109.9	7		
			-	SM	Silty Sand, yellowish-brown, moist, dense, fine grained
			8		, ,
			-		
			9		
			-		
10	5.2	123.3	10	<u> </u>	
			-	SP/SW	Sand, yellow and grayish-brown, moist, dense, fine to coarse grained
			11		
			12		
			12		
{			13		
·			-		
			14		
			-	SM	Silty Sand, medium brown, moist, dense, fine grained
15	12.6	105.2	15		, , , , , , , , , , , , , , , , , , , ,
			-		Total depth: 15 feet
			16		No Water
			-		Fill to 2 feet
			17		
			-		
			18		
			10		
			19		
			- 20		
			_		
			21		
]			22		
.			_		
			23		
			-]	
			24]	
			-	5	
			25		
				<u> </u>	

Drilling Date: 06/03/08

Elevation: 477'

Project: File No. 19645

km	

Sample	Moisture	Dry Density	Depth	USCS	Description
Depth ft.	Content %	p.c.f.	in feet	Class.	Description Surface Conditions: Bare Ground
,		1	0		FILL: Sandy to Clayey Silt with rock fragments, dark to
			_		yellowish brown, moist, stiff
1	7.3	113.5	1		
		-	_		
			2		
			_		
3	9.8	116.5	3		<u> </u>
			-		Sandy Silt to Clayey Sand, dark brown, moist, stiff to medium
			4		dense, fine grained
			-		
5	10.6	122.7	5	<u> </u>	
			-	1	Sandy to Silty Clay, dark brown, moist, stiff
			6		
			-		
7	10.3	114.6	7	<u> </u>	
			-		Sandy to Silty Clay, dark and yellowish brown mottling, moist, stiff
1			8		
			-		
	j		9		
			-		
. 10	7.7	114.7	10		
			-	SM	OLDER ALLUVIUM: Silty Sand, yellowish brown, slightly moist,
ł			11		dense, fine grained with slate fragments
			-		-
			12		
12.5	4.5	120.3	-		
			13	SM/SP	Silty Sand to Sand, yellowish brown, slightly moist, dense, fine to
			-		medium grained
			14		
		1066	-		
15	4.7	106.6	15	~~	
			-	SM	Silty Sand, dark brown, moist, dense, fine grained
			16		
			-		
			17		
10	4.2	D:-41	- 10		
18	4.2	Disturbed	18		
			10		Silty Sand, dark and yellowish-brown mottling, slightly moist,
			19		very dense, fine grained
	ĺ		20	`	Total double 10 forther as C
			20		Total depth: 19 feet by refusal
			21		No Water Fill to 10 feet
			21		LIII 10 10 leet
			22	1	
			22		
		İ	23		
			24		
	!		2-7		
	Ì		25	1	
				1	
		1		<u> </u>	

Drilling Date: 06/03/08

Elevation: 465'

Project: File No. 19645

k	ľ	ĭ	۱	

Sample	Moisture	Dry Density	Depth	USCS	Description
Depth ft.	Content 1/%	p.c.f.	in feet	Class.	Surface Conditions: Bare Ground
			0		FILL: Sandy to Silty Clay, dark to medium brown, moist, stiff
•			1		
2	140	103.0			
	14.9	102.0	2	<u> </u>	
			3		Silty Clay, dark brown, moist, stiff
1			- 3 		
4	11.4	105.3	4		
1.		1000	· <u>.</u>		Clayey to Sandy Silt, dark brown, moist, stiff
			5		one of the bandy one, dark brown, moist, still
1			-		
			6		
			-		
7	8.1	118.5	7	├	+
			-		Clayey to Silty Sand, dark brown, moist, dense, fine grained
			8		
			-		
			9		
10	115	107.0	- 10		
10	11.5	107.8	10		
			- 11		
			11		
			12		
12.5	11.9	124.9	-		<u> </u>
	·		13		Sandy to Silty Clay, dark and medium brown mottling, moist, stiff
			-		j was and j was a mountain of over informing, moist, still
'			14		
			-		Silty Sand with rock fragments, dark and yellowish brown mottling,
15	9.9	117.4	15		moist, dense, fine grained
			_		
			16		
			-		
17.5	9.0	107.1	17		
17.5	9.0	107.1	18		
].			10		
]		19		
	ŀ		~		
20	10.7	108.6	20		<u> </u>
			_		Silty Sand, dark and grayish brown mottling, moist, dense,
			21		fine grained
			-		-
]			22		
00		40.5.5	-		
- 23	8.2	106.6	23		
24	9.6	112.2	_	SM	OLDER ALLUVIUM: Silty Sand, dark brown, moist, dense, fine
4	9.0	112.3	24		grained
			25		Total depth: 24½ feet; No Water; Fill to 23 feet
]			-		A Otal depth. 24/2 leet; no water; fill to 25 feet

Drilling Date: 06/03/08

Elevation: 465'

Project: File No. 19645

k	ľ	ĭ	1	

Sample Depth ft.	Moisture Content %	Dry Density p.c.f.	Depth in feet	USCS Class.	Description Surface Conditions: Bare Ground
	Content /#	, , , , , , , , , , , , , , , , , , ,	0	Classi	FILL: Silty Clay, dark and yellowish brown mottling, moist, stiff
1	146	1154	-		
1	14.6	115.4	1 -	CL/ML	OLDER ALLUVIUM: Silty Clay to Clayey Silt with slate fragments,
			2	OL, III	brown and yellowish brown mottling, moist, stiff
	10.4	100 =	-	ļ	
3	18.4	108.7	3	SC	Clayey Sand, dark and yellowish brown, moist, medium dense to
			4		dense, fine grained
_	24.5	100 6	-		_
5	24.5	100.6	5 -	SC/SM	Clayey to Silty Sand, yellowish brown, moist, medium dense to dense,
			6		fine grained
_	15.5	1051	-	•	-
7	17.7	107.1	7		
			8		
			-		
			9		
10	13.7	105.8	10	<u> </u>	**************************************
			-	SM	Silty Sand, yellowish brown, moist, dense, fine grained
			11		
			12		
			-		_
			13	SP	Sand with Gravel, gray to yellowish brown, moist, dense, fine to
			14	51	medium grained
1		440.0			-
15	7.0	118.0	15	SP/SW	Sand, yellowish brown, moist, dense, fine to coarse grained
			16	75.1	Sand, yenowish brown, moist, dense, fine to coarse granted
			-		Total depth: 15½ feet by refusal
			17		No Water Fill to 1 foot
			18		
			-		
			19 -		
			20		
			-		
			21		
			22		
			-		
			23		
			24		
			25		
			25		

Drilling Date: 06/03/08

Elevation: 450'

Project: File No. 19645

	k	Ì	ĭ	١	
ľ		=	=	=	=

KIII	r	<u> </u>		T	
Sample Depth ft.	Moisture Content 1%	Dry Density p.c.f.	Depth in feet	USCS Class.	Description Countries B. C.
Depth it.	Content 70	p.c.r.	0	Class.	Surface Conditions: Bare Ground
			0		FILL: Silty Clay to Sandy Silt, dark to medium brown, moist, stiff
ł			1		
			_	}	
2	16.1	105.5	2		
		100.0		CL/SM	OLDER ALLUVIUM: Silty Clay to Silty Sand, dark to yellowish
			3		brown, moist to slightly moist, dense, fine grained to stiff
			_		strong moist to sugnery moist, dense, time grained to sunt
4	7.4	120.2	4		
			-	SM	Silty Sand with Gravel, dark to medium brown, moist, dense, fine
			5	İ	grained
ļ			-		
			6		
			-		
7	5.8	117.0	7	<u> </u>	
			-		Silty Sand, yellowish brown, slightly moist, dense, fine to medium
			8		grained
			-		
			9		
,,			-		
10	9.9	98.4	10	SM/MIL	Sandy Silt to Silty Sand, dark to medium brown, slightly
			-		moist, dense, fine grained to stiff
			11		
			- 12		
•			12		
			13		
			13		
		,	14		
			_		
15	9.0	100.3	15	$oldsymbol{L}$	
	Ī				Sandy Silt to Silty Sand, medium brown, moist, stiff to dense,
			16		fine grained
			-		6 ·······
17	8.3	111.2	17		i
			-		
			18		Total Depth: 17 ½ feet by refusal
			-		No Water
			19] [Fill to 2 feet
		İ	-	1	
		l	20		
	ŀ	l	-		
		l	21		
		l			
		l	22		·
		ļ	23		
		1	43		
		l	24	ļ Ì	
		l		[]	
		l	25		
		l			

Drilling Date: 06/05/08

Elevation: 451'

Project: File No. 19645

UCLA Campus Housing

Sample	Moisture	Dry Density	Depth	USCS	Description
Depth ft.	Content %	p.c.f.	in feet	Class.	Surface Conditions: Ivv
1	8.3	110.5	0 - 1 -		FILL: Sandy Silt to Silty Sand, dark and yellowish brown mottling moist, medium dense to dense, fine grained, stiff
3	12.2	116.0	2 - 3 -		
5	9.8	117.0	4 - 5 -	SM/SP	OLDER ALLUVIUM: Silty Sand, dark to yellowish brown, moist, dense, fine grained
. 7	7.5	118.9	6 - 7 -	SP	Silty Sand to Sand with Gravel, dark to grayish brown, moist, dense, fine to medium grained Sand with Gravel, dark to grayish brown, moist, dense, fine to
!			8 - 9		coarse grained
10	7.2	113.2	10 - 11		Total Depth: 10 feet No Water
	32		12 13		Fill to 4 feet
			- 14 - 15		
			- 16 -		
			17 18		
			19 -		

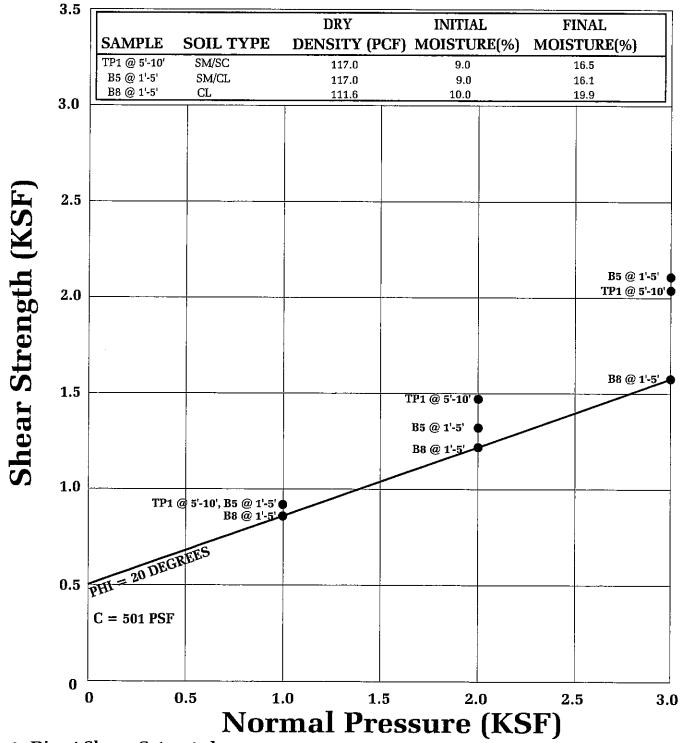
20 ---

22 ---

24 ---

25 ---

Drilling Date: 06/05/08


Elevation: 451'

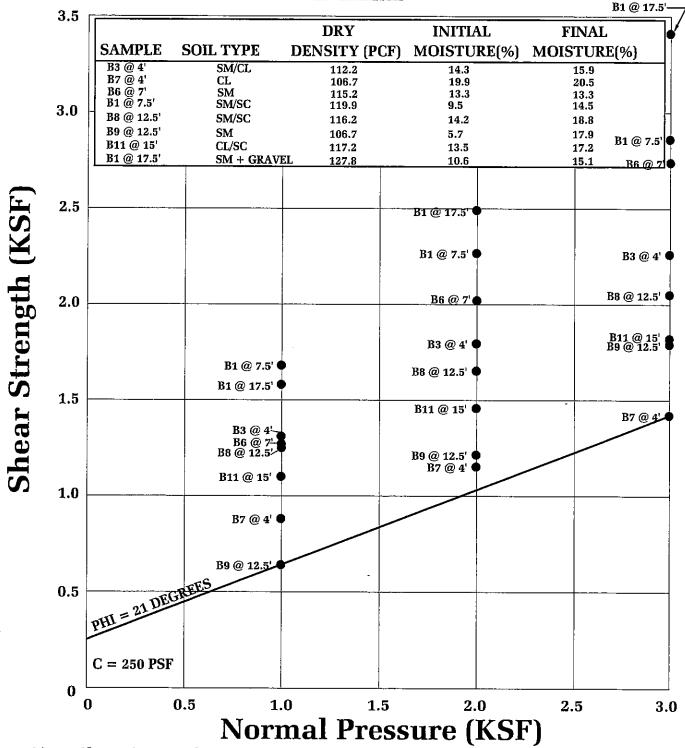
Project: File No. 19645

ı	<	Ì	1	1	

Sample	Moisture	Dry Density	Depth	USCS	Description
Depth ft.	Content %	p.c.f.	in feet		Surface Conditions: Ivv
			0		FILL: Sandy to Clayey Silt, dark brown, slightly moist, stiff
			-		
			1		
	0.4	40.5	-	i	
2	9.6	106.5	2		
			-		
			3	ML	OT DED ALT YNTHM, C. A. CHAIL I. I. A. CHAIL
4	9.5	122.9	4	IVILL	OLDER ALLUVIUM: Sandy Silt, dark brown, moist, stiff, minor rock fragments
	7.5	122.5	_		1 ock ii aginents
			5		
			-		
			6		
		l	-		
7	9.7	125.0	7		
•			-		Sandy to Clayey Silt, dark brown, moist, stiff
			8		
			-		
			9		
10	7.6	115.2	- 10	. CNA	CSI4: Conducta Consul doubt to see 11
10	7.0	113.2	10	SIVI	Silty Sand with Gravel, dark to grayish brown, moist, dense, fine grained
			11		inne granneu
			-	,	Total Depth: 10 feet
,			12		No Water
			-		Fill to 3 feet
	ĺ		13		
İ			-		
			14		
			-		
			15		
			- 16		
			10		
			17		
			-		
			18		
	Ì		-		
			19		
			-		
			20		
			-		
			21		
		ĺ	22		
			-		
[l	23		
		l	2 3 —		
			24		
			-		
	ļ		25		
	<u> </u>		-		

BULK SAMPLE REMOLDED TO 90 PERCENT OF THE MAXIMUM LABORATORY DENSITY

Direct Shear, Saturated



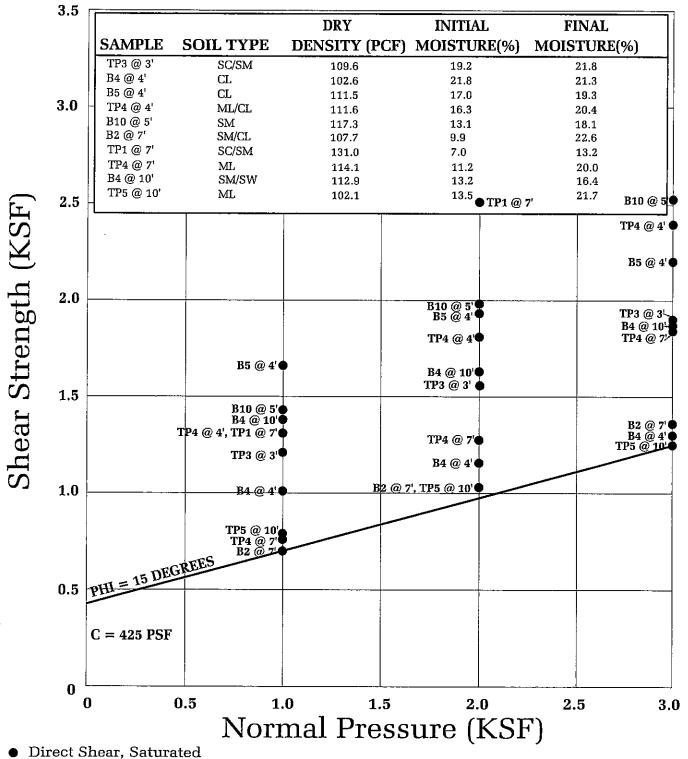
Geotechnologies, Inc.Consulting Geotechnical Engineers

FILE NO. 19645

PLATE: B-1

Direct Shear, Saturated

Geotechnologies, Inc.
Consulting Geotechnical Engineers


UCLA Capital Programs

FILE NO. 19645

PLATE: B-2

ALLUVIUM

SHEAR TEST DIAGRAM

Geotechnologies. Inc. Consulting Geotechnical Engineers

UCLA Capital Programs

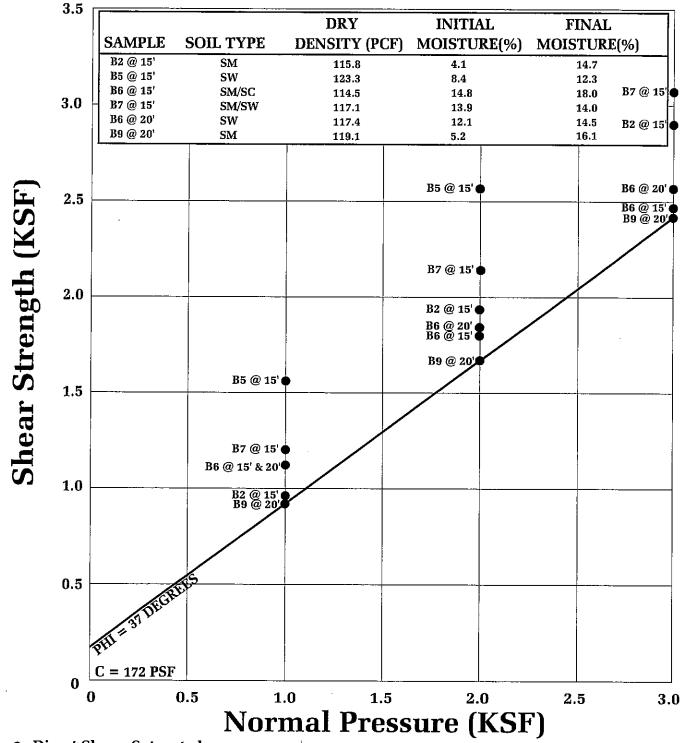
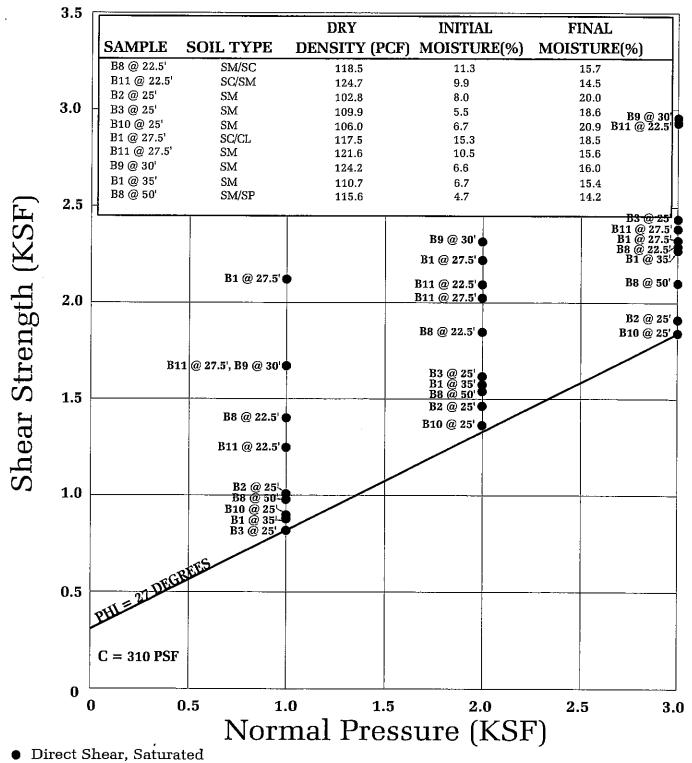

FILE NO. 19645

PLATE: B-3

ALLUVIUM

B5 @ 15' ●

• Direct Shear, Saturated

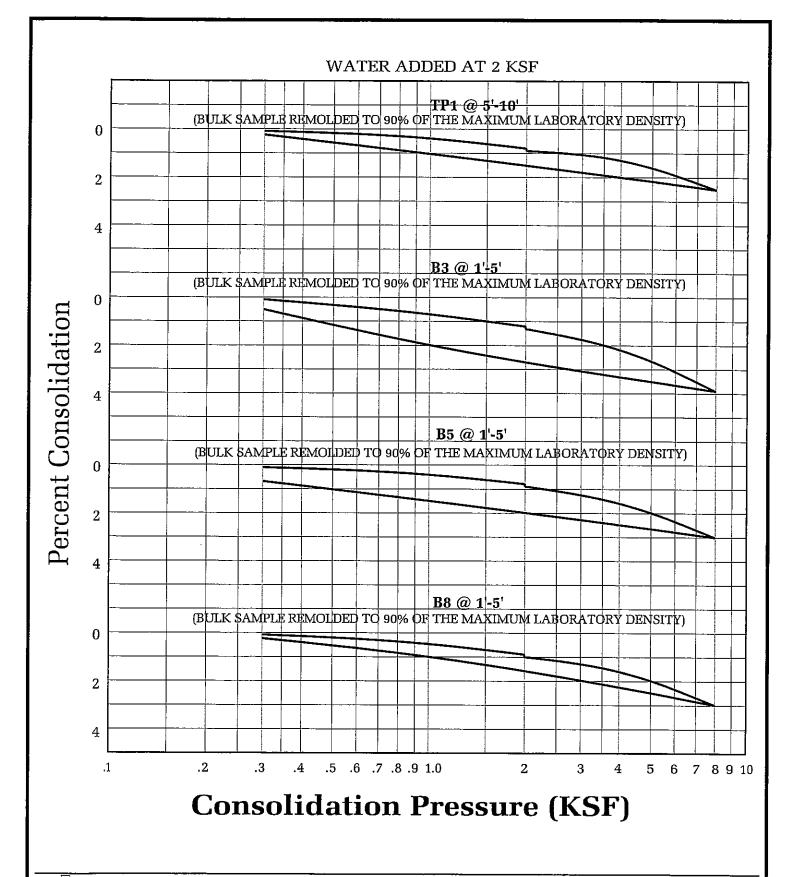

Geotechnologies, Inc. Consulting Geotechnical Engineers

UCLA Capital Programs

FILE NO. 19645

PLATE: B-4

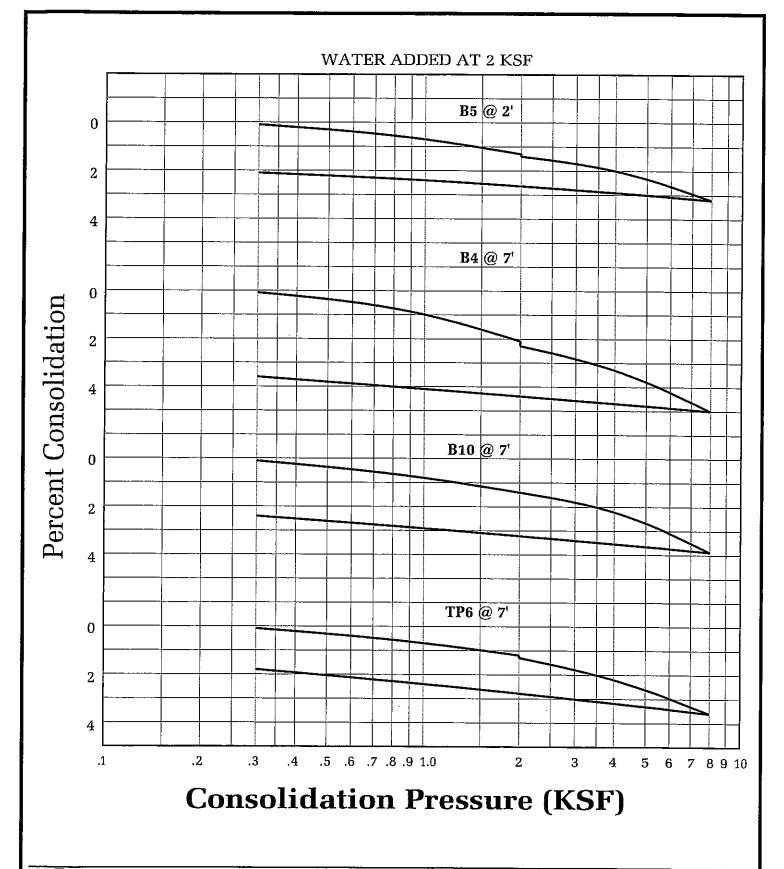
ALLUVIUM



Geotechnologies. Inc. Consulting Geotechnical Engineers

UCLA Capital Programs

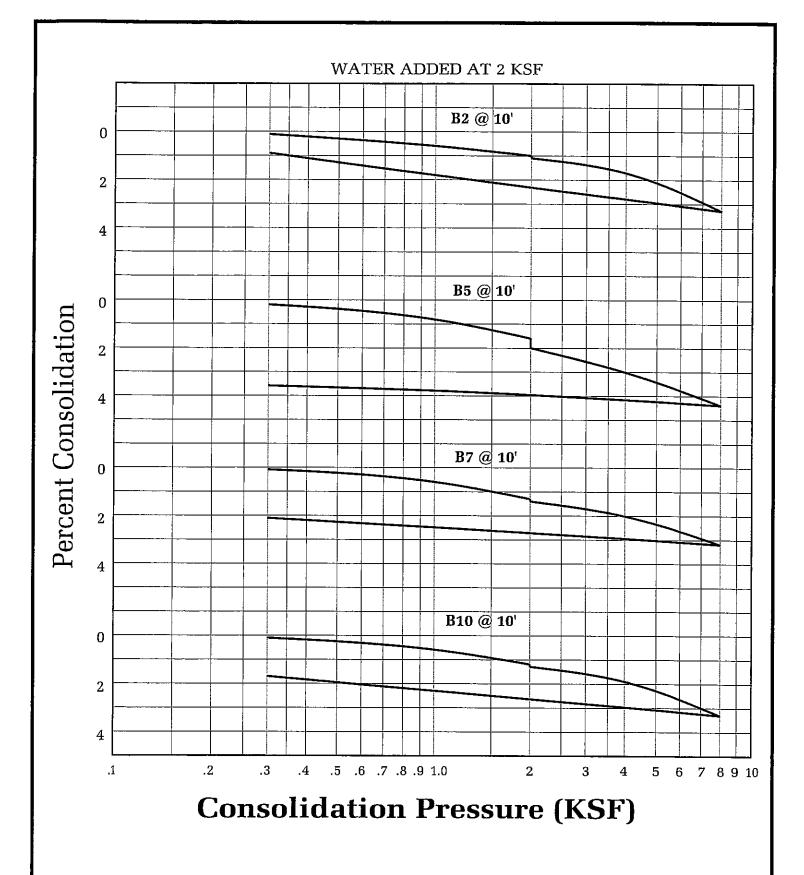
FILE NO. 19645

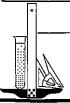

PLATE: B-5

Geotechnologies, Inc.Consulting Geotechnical Engineers

UCLA Capital Programs

FILE NO. 19645

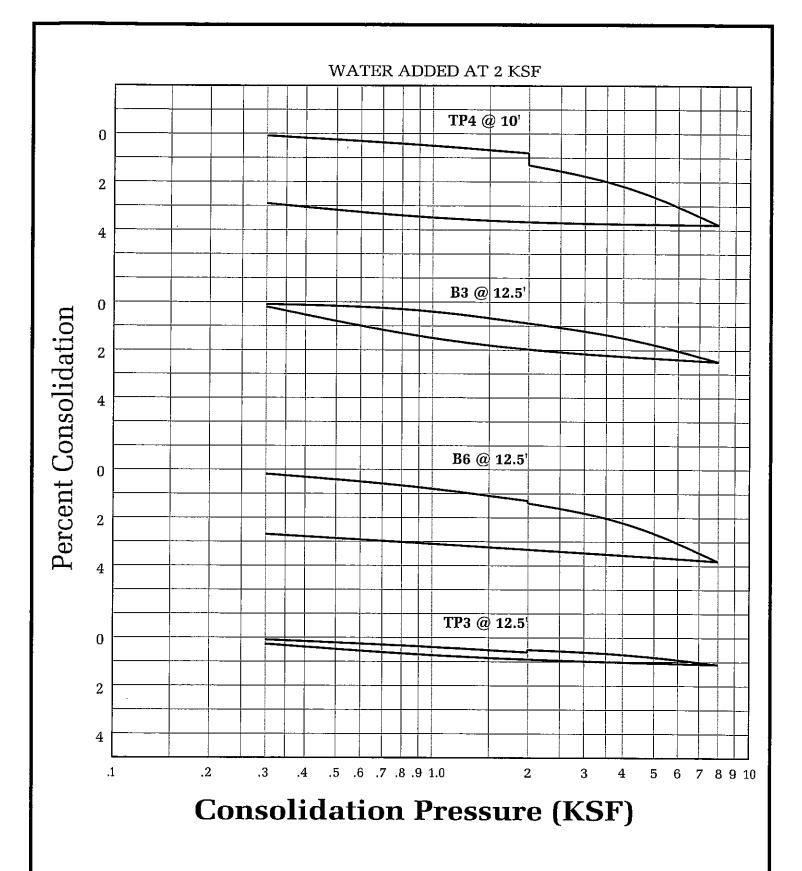


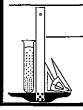


Geotechnologies, Inc.Consulting Geotechnical Engineers

UCLA Capital Programs

FILE NO. 19645

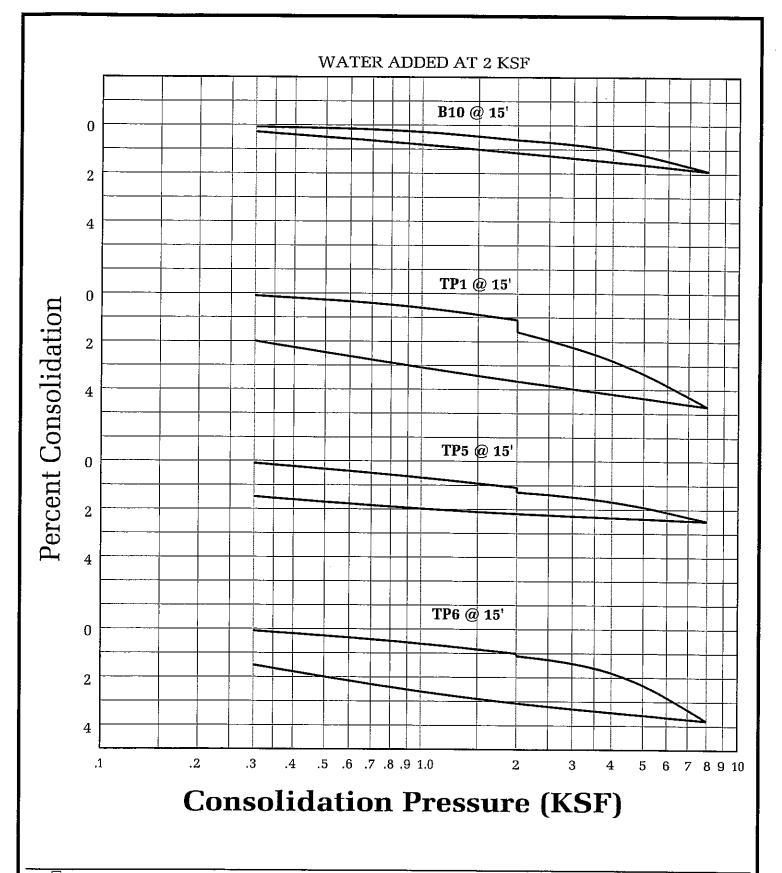




Geotechnologies, Inc.Consulting Geotechnical Engineers

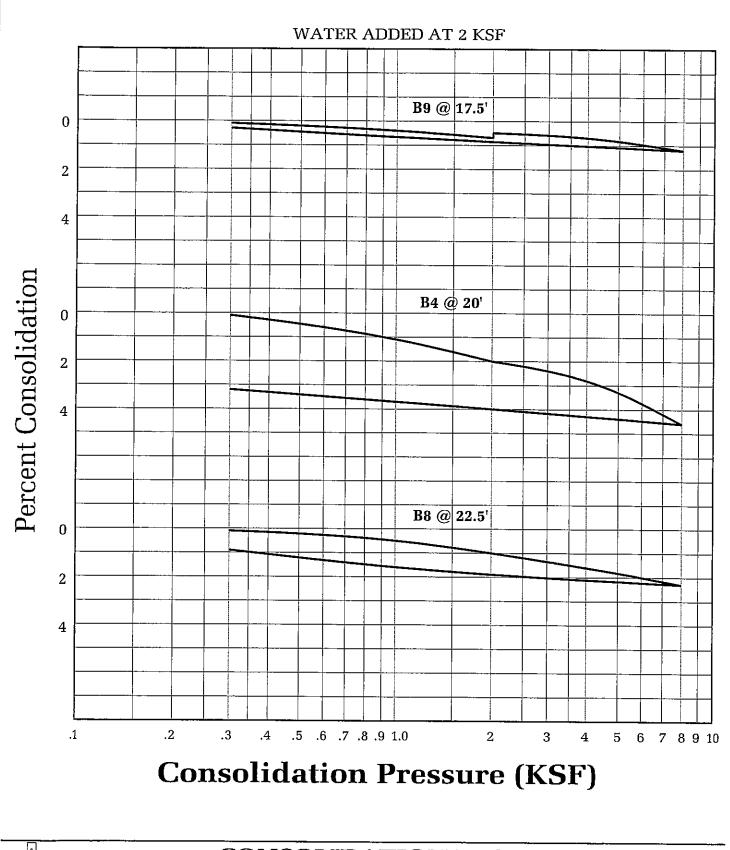
UCLA Capital Programs

FILE NO. 19645



Geotechnologies, Inc.Consulting Geotechnical Engineers

UCLA Capital Programs

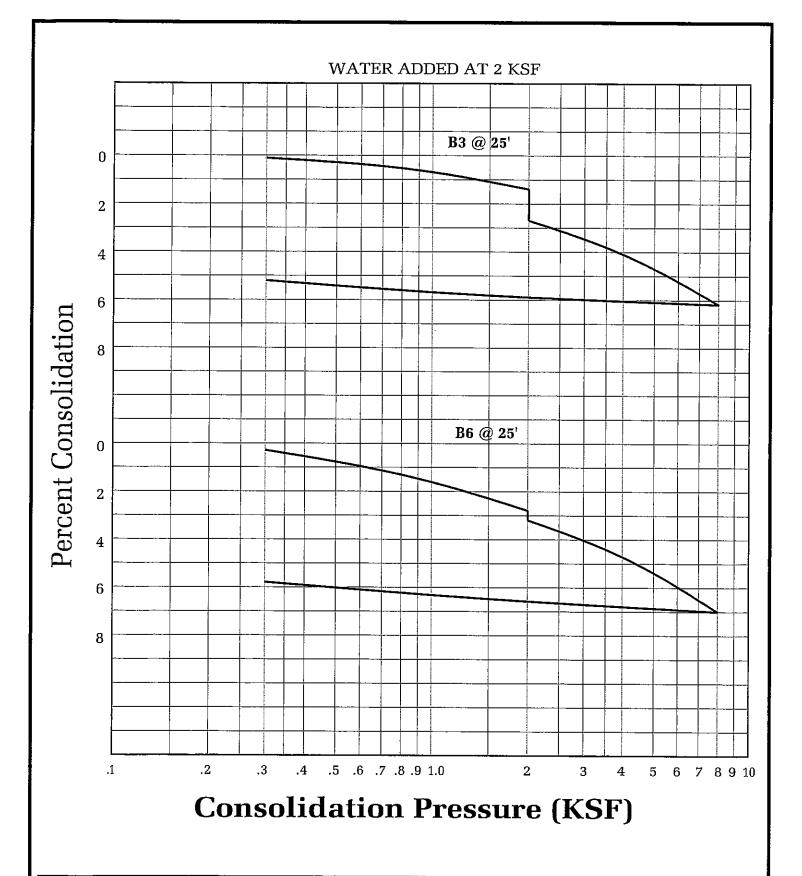

FILE NO. 19645



Geotechnologies, Inc.
Consulting Geotechnical Engineers

UCLA Capital Programs

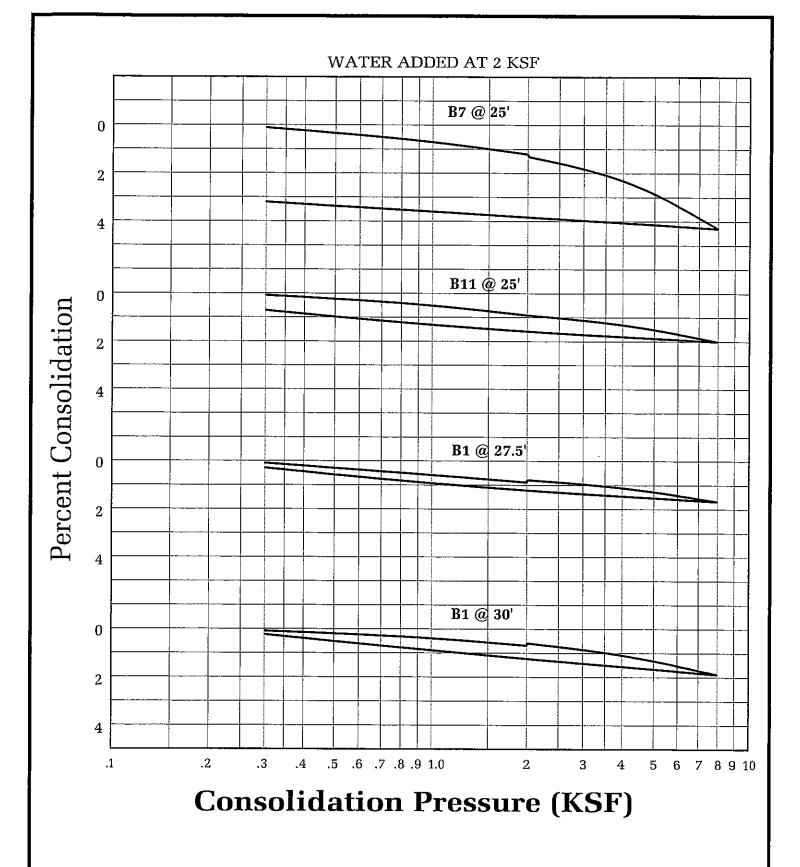
FILE NO. 19645

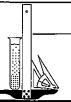


Geotechnologies, Inc.Consulting Geotechnical Engineers

UCLA Capital Programs

FILE NO. 19645

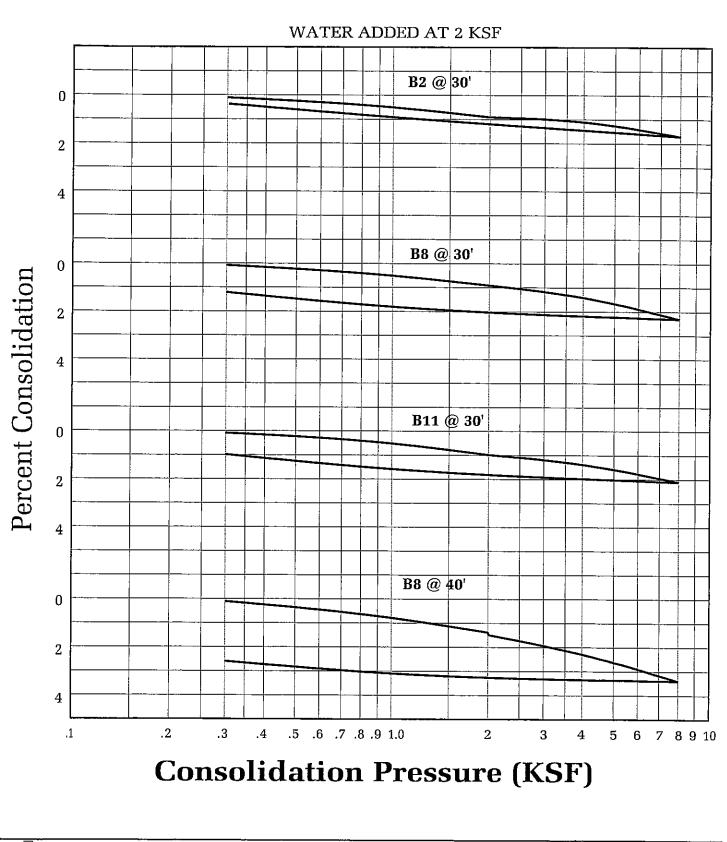




Geotechnologies, Inc. Consulting Geotechnical Engineers

UCLA Capital Programs

FILE NO. 19645



Geotechnologies, Inc. Consulting Geotechnical Engineers

UCLA Capital Programs

FILE NO. 19645

Geotechnologies, Inc.Consulting Geotechnical Engineers

UCLA Capital Programs

FILE NO. 19645

ASTM D-1557

SAMPLE	B3 @ 1- 5'	B5 @ 1-5'
SOIL TYPE:	SM/CL	SM/CL
MAXIMUM DENSITY pcf.	125.0	130.0
OPTIMUM MOISTURE %	10.0	9.0

ASTM D 4829-03

SAMPLE	B3 @ 1- 5'	B5 @ 1-5'	B8 @ 1-5'	TP1 @ 5-10'	B5 @ 2'
SOIL TYPE:	SM/CL	SM/CL	SM/SC	SM/SC	CL
EXPANSION INDEX UBC STANDARD 18-2	66	54	90	62	16
EXPANSION CHARACTER	MODERATE	MODERATE	HIGH	MODERATE	VERY LOW

SULFATE CONTENT

SAMPLE	B3 @ 1- 5'	B5 @ 1-5'	B8 @ 1-5'	TP1 @ 5-10'	B4 @ 2'	TP5 @ 3'
SULFATE CONTENT: (percentage by weight)	< 0.1 %	< 0.1 %	< 0.1 %	< 0.1 %	< 0.1 %	< 0.1 %

COMPACTION/EXPANSION/SULFATE DATA SHEET

Geotechnologies, Inc.Consulting Geotechnical Engineers

UCLA Capital Programs

FILE NO. 19645

PLATE: D-1

ASTM D-1557

SAMPLE	B8 @ 1- 5'	TP1 @ 5-10'
SOIL TYPE:	SM/SC	SM/SC
MAXIMUM DENSITY pcf.	124.0	130.0
OPTIMUM MOISTURE %	10.0	9.0

ASTM D 4829-03

SAMPLE	B4 @ 4'	B6 @ 25'	B7 @ 25'
SOIL TYPE:	CL	CL	CL
EXPANSION INDEX UBC STANDARD 18-2	17	16	16
EXPANSION CHARACTER	VERY LOW	VERY LOW	VERY LOW

SULFATE CONTENT

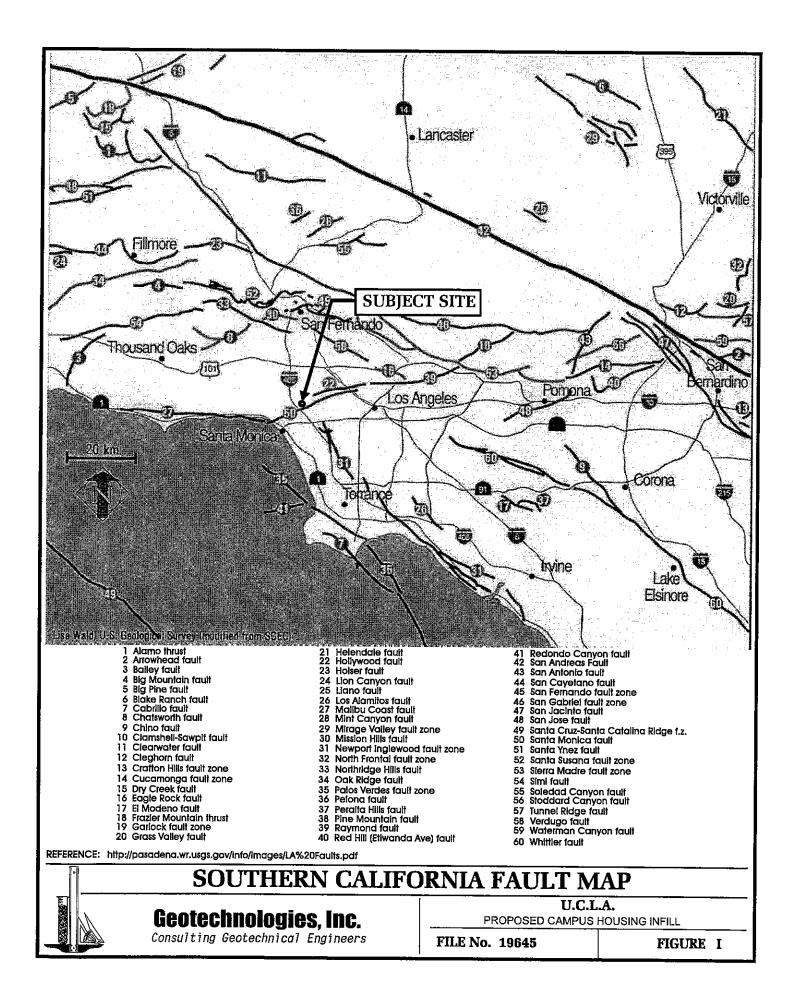
SAMPLE	TP6 @ 7'	TP5 @ 10'	B1 @ 27.5'
SULFATE CONTENT: (percentage by weight)	< 0.10%	< 0.10%	< 0.10%

COMPACTION/EXPANSION DATA SHEET

UCLA Capital Programs

FILE NO. 19645

PLATE: D-2


TABLE I - FAULTS IN THE VICINITY OF THE SITE

	 		 ESTIMATED N	 1AX. EARTHQ	UAKE EVENT
ABBREVIATED FAULT NAME	APPROX DIST: mi	ANCE	 MAXIMUM EARTHQUAKE		EST. SITE
======================================	 		MAG. (Mw)	ACCEL. g	MOD.MERC.
SANTA MONICA	0.0{	0.0)	6.6	1.021	XI
HOLLYWOOD	2.7(0.767	XI
NEWPORT-INGLEWOOD (L.A.Basin)	4.0		•		XI
MALIBU COAST	4.5(7.3)	i 6.7 i		XI
NORTHRIDGE (E. Oak Ridge)	5.6(9.0)	7.0	0.766	
PUENTE HILLS BLIND THRUST	8.8(14.2)	7.1		l X
UPPER ELYSIAN PARK BLIND THRUST				0.406	l X
PALOS VERDES	11.2(0.470	•
VERDUGO	11.5(0.455	•
	13.5(0.328	
ANACAPA-DUME	15.2(•		0.510	•
SIERRA MADRE (San Fernando)	15.4(,		0.330	•
SANTA SUSANA	16.7(26.9)			IX
SIERRA MADRE SAN GABRIEL	16.8(0.404	•
	19.6(31.6)		0.295	
	21.1(,		0.306	
	21.6(24.6(34.7) 39.6)		0.231	
	24.6(25.5(•			IX
	25.5(25.5(,		0.196	•
	30.9	49.7)	,		VIII
SAN JOSE	31.6		,		! IX VIII
	37.2(VIII VIII
SAN ANDREAS - Whole M-1a	38.2	61.4)			I IX
	38.2(61.4)	1 7.4 I		I VIII
SAN ANDREAS - 1857 Rupture M-2a	38.2(61.4)			I IX
SAN ANDREAS - Cho-Moj M-1b-1	38.2(,		I IX
SAN JOAQUIN HILLS	39.4(63.4)	, ,		VIII
CUCAMONGA	39.8(64.0)			VIII
SANTA YNEZ (East)	42.8	68.9)			VIII
SAN ANDREAS - Carrizo M-1c-2	43.4(69.9)	7.4 i	0.178	
VENTURA - PITAS POINT	43.8(70.5)	6.9 j	0.166	VIII
OAK RIDGE (Blind Thrust Offshore)	44.3(71.3)	7.1		VIII
NEWPORT-INGLEWOOD (Offshore)	45.2(72.7)	7.1	0.148	VIII
CHANNEL IS. THRUST (Eastern)	46.6(75.0)	7.5	0.217	VIII
OAK RIDGE MID-CHANNEL STRUCTURE	•	78.6)		0.130	VIII
ELSINORE (GLEN IVY)	48.9(78.7)	6.8	0.119	VII
M.RIDGE-ARROYO PARIDA-SANTA ANA		79.4)	7.2	0.177	VIII
RED MOUNTAIN	52.7(84.8)	,		VIII
SAN JACINTO-SAN BERNARDINO	55.2(88.9)	. ,		VII
SAN ANDREAS - San Bernardino M-1		91.0)	•	0.153	VIII
SAN ANDREAS - SB-Coach. M-1b-2		91.0)		0.170	
SAN ANDREAS - SB-Coach. M-2b	56.5(91.0)		0.170	
GARLOCK (West)	57.6(, ,			VIII
PLEITO THRUST	58.1(93.5)		0.140	VIII
CLEGHORN	58.8(94.7)	6.5	0.088	VII
				^ ^ X X X X X X X X X	. * * * * * * * * * * * * * * * * * * *

⁻END OF SEARCH- 46 FAULTS FOUND WITHIN THE SPECIFIED SEARCH RADIUS.

THE SANTA MONICA FAULT IS CLOSEST TO THE SITE. IT IS ABOUT 0.0 MILES (0.0 km) AWAY.

LARGEST MAXIMUM-EARTHQUAKE SITE ACCELERATION: 1.0214 g

Geotechnologies, Inc. Consulting Geotechnical Engineers

TABLE II - HISTORICAL EARTHQUAKE EPICENTERS

		1		TIME	I 1		SITE	ISITE	APPROX.
${ t FILE}$	LAT.	LONG.	DATE	(UTC)	DEPTH	OUAKE	ACC.	MM !	DISTANCE
CODE	NORTH	WEST	!	H M Sec				INT.	
	+	· 	+- 	, +	+			,, , -+	
MGI	34.0000	118.5000	11/19/1918	12018 0.0	0.01	5.00	0.264	IX	5.7(9.1)
DMG	134.0000	1118.5000	08/04/1927	11224 0.0		. 5.00 I		IX I	
MGI	134.0000	1118.3000	09/03/1905	1 540 0 0	0.01				
			07/16/1920						
GSP	134 2130	1118 5370	01/17/1994	1122055 4	18.0				
GSP	134 2310	1118 4750	03/20/1994	1222022.4	13.0	· - ·			
ω-¤	134.2010	1110.4750	09/23/1827	1 0 0 0 0	1 72.01				
			09/23/162/			5.00		IVIII	
					,			VIII	
			03/26/1860					VIII	
			08/31/1930			- 1		ITIIV	
PAS	133.9190	1118.62/0	01/19/1989	65328.8	11.9				
PAS	33.9440	178.6810	01/01/1979	231438.9	11.3	•			
DMG	34.3080	118.4540	02/09/1971	144346.7	6.2			AIII	16.3(26.3)
GSB	[34.3010]	118.5650	01/17/1994	204602.4	9.0]			VIII	
GSP	[34.3050]	118.5790	01/29/1994	112036.0	1.0	5.10	0.128	VIII	17.7(28.5)
DMG	34.3000	118.6000	04/04/1893	1940 0.0	0.0	6.00	0.204	VIII	17.9(28.9)
DMG	33.8500	118.2670	03/11/1933	1425 0.0	0.0	5.00	0.118	VII	18.5(29.8)
MGI	34.1000	118.1000	07/11/1855	415 0.0	0.0	6.30	0.219	IX	20.1 (32.4)
PAS	34.0730	118.0980	10/04/1987	105938.2	8.2	5.30	0.129	VIII	20.2(32.4)
PAS	34.0610	118.0790	10/01/1987	144220.0	9.51	5.90		İVIIIİ	
GSP	34.3260	118.6980	01/17/1994	233330.7	9.01	5.60	0.139	VIII	· ·
DMG	[33.7830]	118.2500	11/14/1941	84136.3	0.0i	5.40		VII	
GSP	34.3780	118.6180	01/19/1994	211144.9	11.0				23.2(37.4)
			02/09/1971						
			02/09/1971			•			23.6(38.0)
			02/09/1971			5.80			23.6(38.0)
			02/09/1971		,	6.40			23.6(38.0)
			04/26/1997						
			01/18/1994			- ,			
			06/26/1995					AII	
			01/19/1994			5.501			
			12/25/1903			5.001			
			10/02/1933		0.01	,			26.2 (42.2)
			06/28/1991						
			03/13/1933			5.40		VII]	
			03/13/1933			5.30		VIII	, ,
			03/11/1933			5.00		VII	30.6(49.2)
					-	5.10		VII	
			03/11/1933						30.6(49.2)
DMG	33.7500	118.08301	03/11/1933	323 0.01	0.01				
			09/24/1827			•			31.8 (51.2)
			12/14/1912	(0.0			VII	
			08/28/1889		0.0]	5.50	0.099	VII	32.7 (52.6)
DMG	34.0650	119.0350	02/21/1973	144557.3	8.01	5.90	0.120	VII!	33.4 (53.8)
DMG	33.70001	118.0670	03/11/1933	51022.0		5.10		VII	33.8 (54.3)
DMG	33.70001	118.0670	03/11/1933	85457.0	0.0	5.10	0.078	VII	33.8 (54.3)
DMG	34.5190	118.1980	08/23/1952	10 9 7.1	13.1	5.00	0.074	VII	34.1 (54.9)
			03/11/1933		0.0	5.50	0.094		35.3 (56.8)
DMG	33.6170	118.0170	03/14/1933	19 150.01	0.0			VI	40.0(64.4)
DMG	33.6170	117.96701	03/11/1933	154 7.8i	0.0			VII	41.9(67.4)
GSP	34.14001	117.7000i	02/28/1990	234336.61		5.20		VI	
DMG	33.5750	117.9830i	03/11/1933	518 4.01		5.20		VI	43.5(70.0)
PAS I	33.6710	119.1110i	09/04/1981	155050.31		5.30		VI	46.9(75.4)
			12/08/1812						50.1(80.7)
•	•		· ·	7	1			1	~~~ \ 00.77

Geotechnologies, Inc. Consulting Geotechnical Engineers

EARTHQUAKE SEARCH RESULTS

Page 2

	~					
	DATE	(UTC) H M Sec		ACC.	INT.	APPROX. DISTANCE mi [km]
DMG 34.3000 117.6000 MGI 33.8000 117.6000 DMG 34.7000 119.0000 DMG 34.2700 117.5400 DMG 34.1000 119.4000 MGI 34.0000 117.5000 T-A 34.8300 118.7500 DMG 34.3000 117.5000 DMG 33.9860 119.4750 DMG 33.6990 117.5110	07/30/1894 04/22/1918 10/23/1916 09/12/1970 05/19/1893 12/16/1858 11/27/1852 07/22/1899 08/06/1973	1 512 0.0 12115 0.0 1 254 0.0 1 43053.0 1 035 0.0 10 0 0.0 1 0 0 0.0 1 2032 0.0 1 232917.0	0.0 6.00 0.0 5.00 0.0 5.50 8.0 5.40 0.0 5.50 0.0 7.00 0.0 7.00	0.092 0.053 0.068 0.064 0.067 0.147 0.146 0.110	AI AII AII AI AI AI	51.1(82.2) 52.2(84.0) 53.5(86.1) 53.8(86.6) 54.3(87.4) 54.6(87.9) 55.1(88.6) 56.5(91.0) 58.9(94.8)

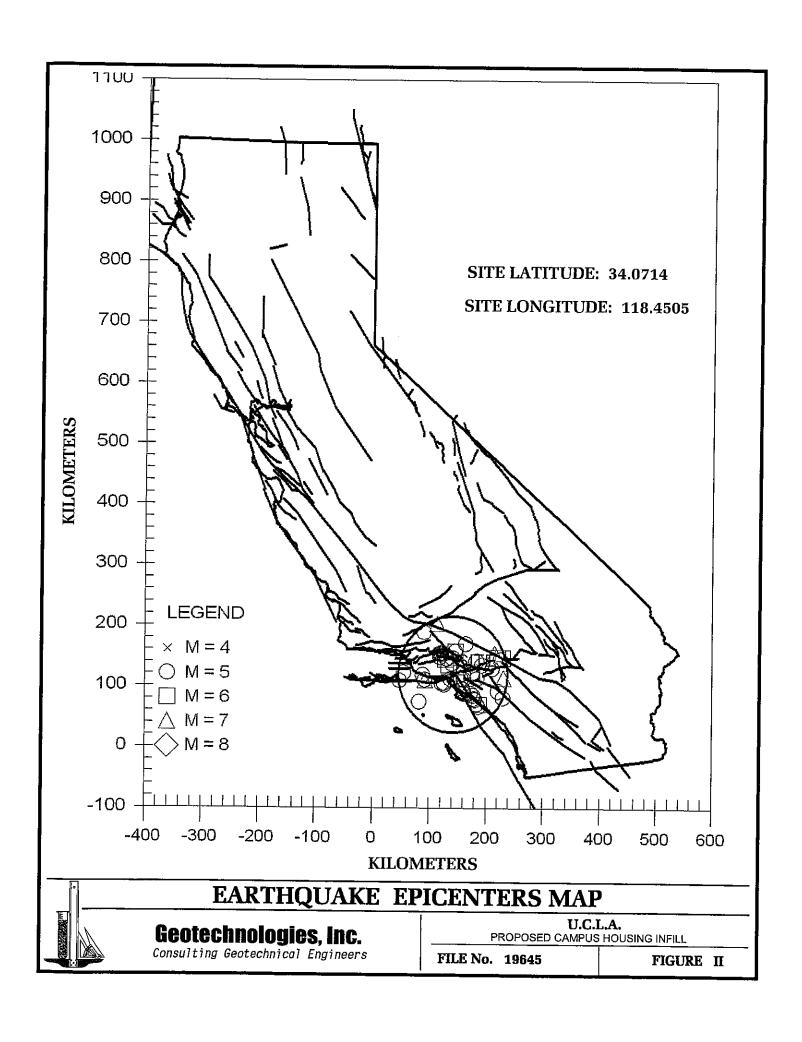
-END OF SEARCH- 63 EARTHQUAKES FOUND WITHIN THE SPECIFIED SEARCH AREA.

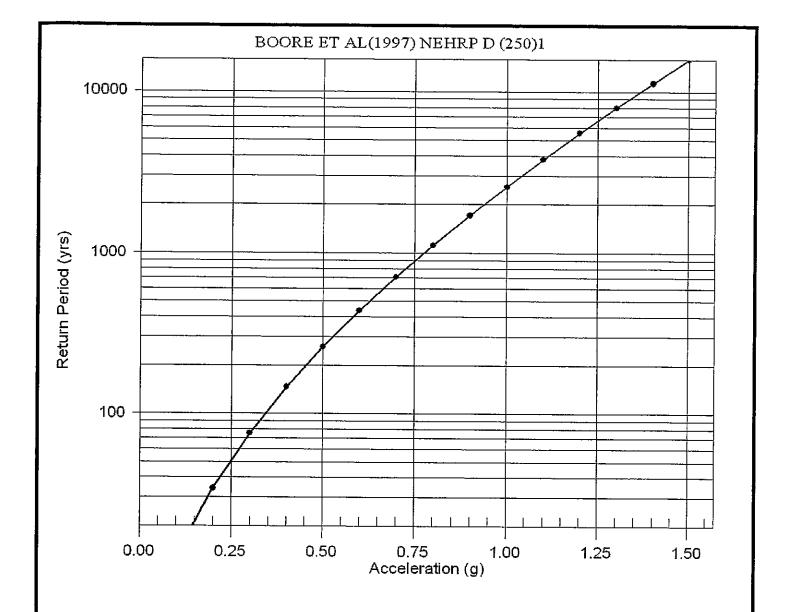
TIME PERIOD OF SEARCH: 1800 TO 2008

LENGTH OF SEARCH TIME: 209 years

THE EARTHQUAKE CLOSEST TO THE SITE IS ABOUT 5.7 MILES (9.1 km) AWAY.

LARGEST EARTHQUAKE MAGNITUDE FOUND IN THE SEARCH RADIUS: 7.0


LARGEST EARTHQUAKE SITE ACCELERATION FROM THIS SEARCH: 0.423 g

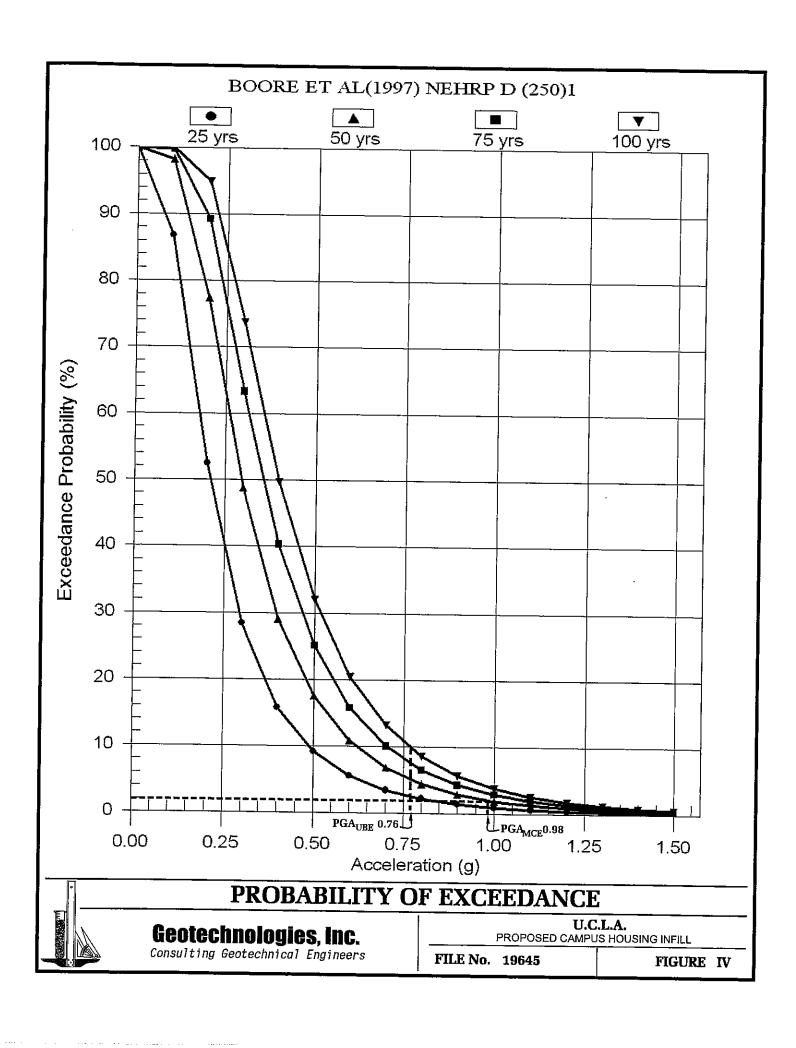

COEFFICIENTS FOR GUTENBERG & RICHTER RECURRENCE RELATION:

a-value= 1.194 b-value= 0.391 beta-value= 0.900

TABLE OF MAGNITUDES AND EXCEEDANCES:

Earthquake Magnitude	Number of Times Exceeded		Cumulative No. / Year
4.0	63	1	0.30288
4.5	63	Ĺ	0.30288
5.0	63	1	0.30288
5.5	23	1	0.11058
6.0	11	1	0.05288
6.5	6	-	0.02885
7.0	4		0.01923

RETURN PERIOD vs ACCELERATION


Geotechnologies, Inc.

Consulting Geotechnical Engineers

U.C.L.A.PROPOSED CAMPUS HOUSING INFILL

FILE No. 19645

FIGURE III

Geotechnologies, Inc.

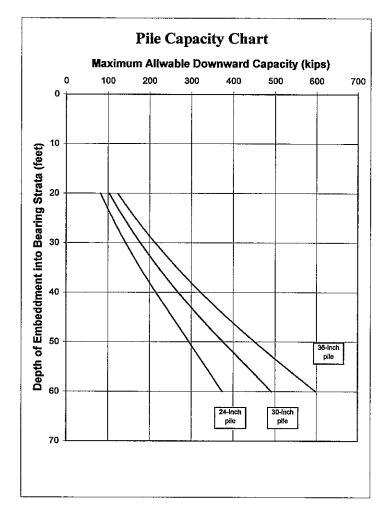
Project: UCLA File No.: 19645

Description: Foundation Pile Design

Drilled Friction Pile Capacity Calculation

Input Data: Unit Weight of Overlying Soil Layer	γ ₁	120 pcf	Pile Desig Drilled	n: < <driven drilled<="" th=""></driven>
Thickness of Overlying Soil Layer	$\mathbf{H_{1}}$	0 feet	Circular	<< Circular/Square Pile
Unit Weight of Bearing Strata	γ ₂	125 pcf	Pile Dime	nsion:
Friction Angle of Bearing Strata	$\dot{\phi}_2$	18 degrees	24	inch diameter pile
Cohesion of Bearing Strata	c ₂	900 psf	30	inch diameter pile
Minimum Embedment into Bearing Strata	H_2	20 feet	36	inch diameter pile
Unit Weight of Water	$\gamma_{\rm w}$	62.4 pcf		•
Depth to Groundwater from Pile Cap	H_{w}	60 feet	Critical D	epth Limit (Dc):
			20	В

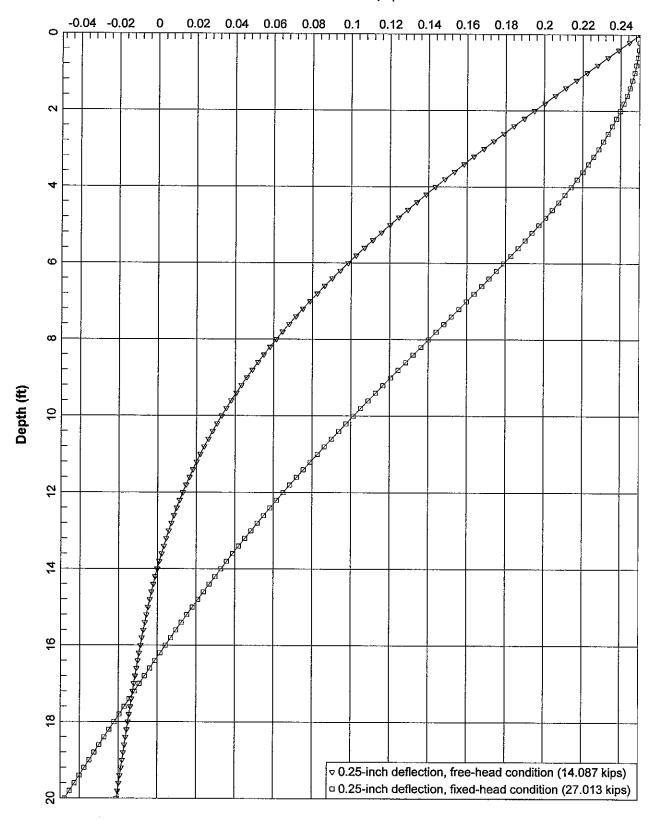
Lateral Earth Pressure Coefficient: Applied Factor of Safety:

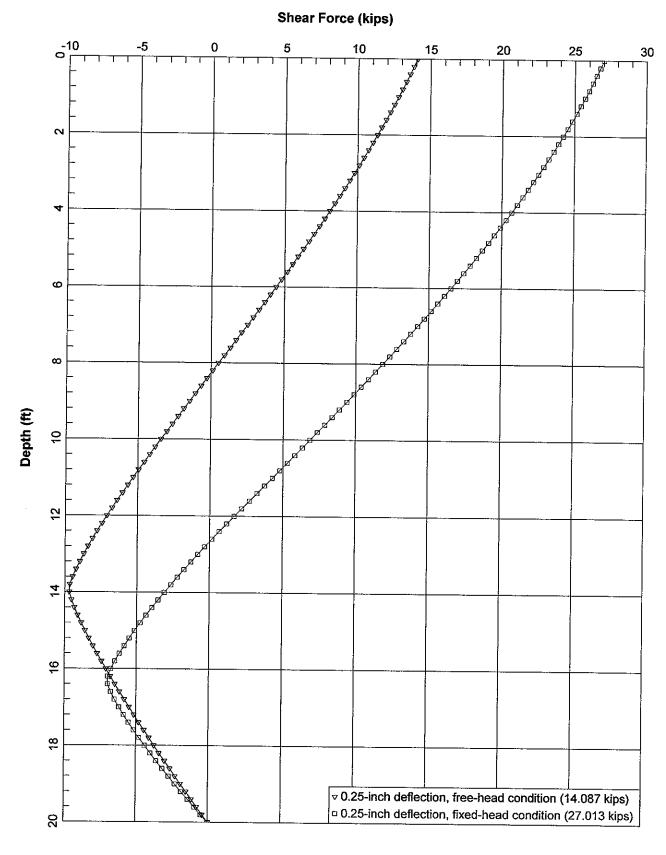

Factored Skin Friction

 $K_c = 1.00$ FS = 2

 $f_s/FS = [c_2+K_c*\sigma'_v*(tan \phi_2)]/FS$

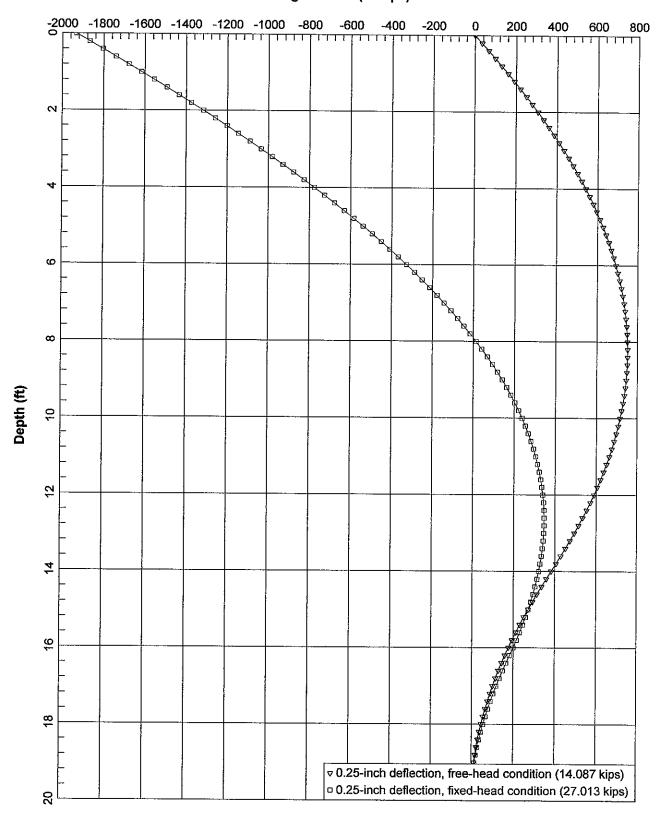
Pile Capacity:


Inc Capacity	•					
	Depth of	Maximum Allowable Downward Pile Capacity				
Total	Embeddment	Capacity of	Capacity of	Capacity of		
Depth of	into Bearing	24 inch	30 inch	36 inch		
Pile	Strata	diameter pile	diameter pile	diameter pile		
(feet)	(feet)	(kips)	(kips)	(kips)		
20	20	82.1	102.6	123.1		
21	21	87.5	109.4	131.3		
22	22	93.1	116.4	139,6		
23	23	98,8	123.5	148.2		
24	24	104.6	130.8	156,9		
25	25	110,6	138.2	165,8		
26	26	116,6	145.8	175.0		
27	27	122.8	153.6	184.3		
28	28	129.2	161.5	193.8		
29	29	135.6	169.6	203.5		
30	30	142.2	177.8	213.4		
31	31	149.0	186.2	223.4		
32	32	155.8	194.8	233.7		
33	33	162.8	203,5	244.2		
34	34	169.9	212.4	254.8		
35	35	177.1	221,4	265.7		
36	36	184.5	230.6	276,7		
37	37	192.0	239,9	287.9		
38	38	199.6	249.5	299.3		
39	39	207.3	259.1	311,0		
40	40	215,2	269.0	322,8		
41	41	223.1	279.0	334,8		
42	42	231.0	289.1	346.9		
43	43	239,0	299,4	359.3		
44	44	246.9	309.9	371.9		
45	45	254.8	320,5	384.6		
46	46	262.8	331.3	397.6		
47	47	270.7	342.3	410.7		
48	48	278.6	353,4	424.1		
49	49	286.6	364.7	437.6		
50	50	294.5	376.1	451.3		
51	51	302.4	387.6	465,2		
52	52	310,3	399.1	479.3		
53	53	318,3	410.6	493.6		
54	54	326.2	422.1	508.1		
55	55	334.1	433.6	522.7		
56	56	342.1	445.1	537.6		
57	57	350.0	456,6	552.7		
58	58	357.9	468,2	567.9		
59	59	365.9	479.7	583.3		
60	60	373.8	491.2	599.0		
•••	••	3.3.0	7/1.4	377.0		


Note: 1. Minimum pile embeddment depth of 20 feet

- 2. Uplift capacity may be designed using 50% of the downward capacity 3. Pile should be spaced a minimum of 2-1/2 diameters on center
- 4. See text of report for pile details and installation recommendations

Lateral Deflection (in)



File No. 19645, UCLA, 24-inch diameter pile

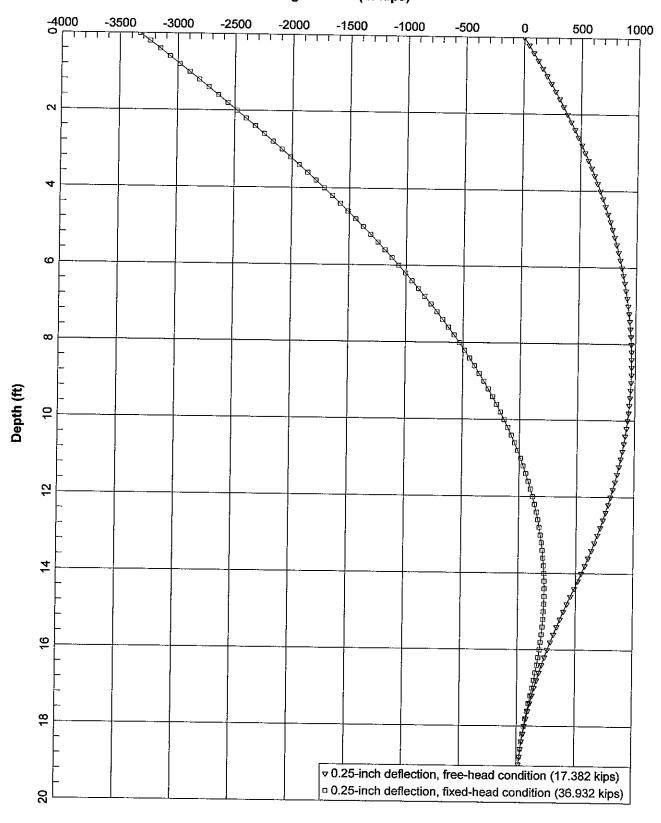
File No. 19645, UCLA, 24-inch diameter pile

Bending Moment (in-kips)

File No. 19645, UCLA, 24-inch diameter pile

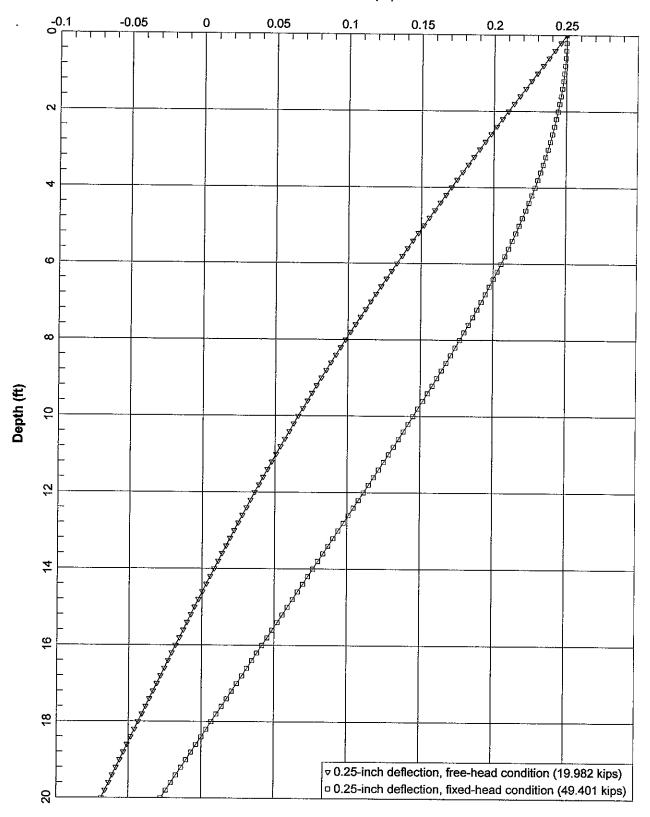
Lateral Deflection (in) -0.1 -0.05 0.05 0.1 0.15 0.2 0.25 N ဖ ω Depth (ft) $\frac{7}{2}$ 4 16 <u>⇔</u> □ 0.25-inch deflection, free-head condition (17.382 kips) □ 0.25-inch deflection, fixed-head condition (36.932 kips)

File No. 19645, UCLA, 30-inch diameter pile


20

Shear Force (kips) -20 □ -15 -10 -5 0 5 10 15 20 25 30 35 40 ~ ဖွ œ Depth (ft) 9 2 16 8

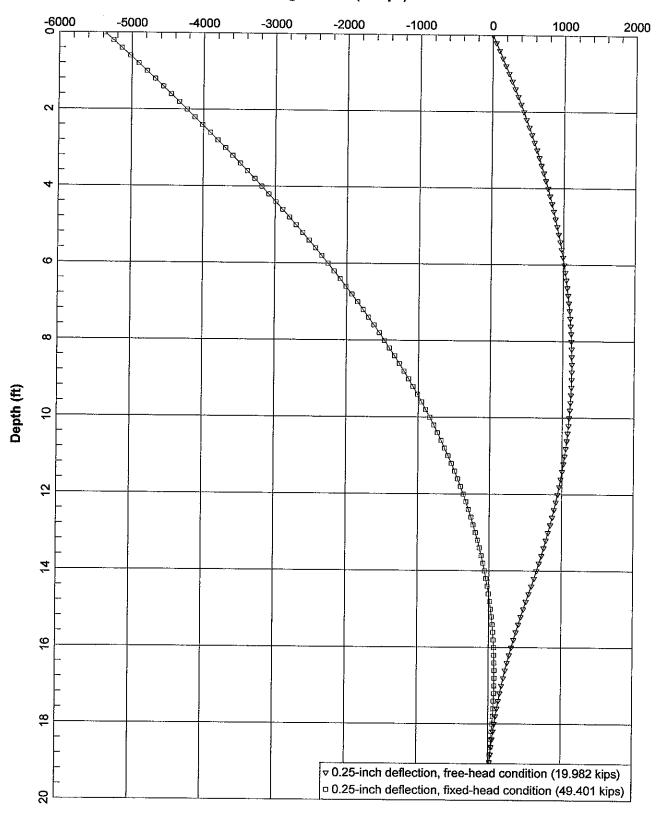
File No. 19645, UCLA, 30-inch diameter pile


v 0.25-inch deflection, free-head condition (17.382 kips)
□ 0.25-inch deflection, fixed-head condition (36.932 kips)

Bending Moment (in-kips)


File No. 19645, UCLA, 30-inch diameter pile

Lateral Deflection (in)


File No. 18645, UCLA, 36-inch diameter pile

Shear Force (kips)

File No. 19645, UCLA, 36-inch diameter pile

Bending Moment (in-kips)

File No. 19645, UCLA, 36-inch diameter pile

BORING LOG NUMBER 1

Drilling Date: 03/26/08

Elevation: 478'

Project: File No. 19645

UCLA Capital Programs

km						——————————————————————————————————————
Sample Depth ft.	Blows per ft.	Moisture content %	Dry Density	Depth in	USCS	Description
Берини.	per it.	content %	p.c.f.	feet 0	Class.	Surface Conditions: Bare Ground
				_		FILL: Silty Sand, yellowish-brown, moist, medium dense, fine grained, slight gravel
				1	İ	B
		1		-		
				2		
		1		3		
				_		
				4		
				-		
5	58 50/5''	10.9	119.2	5	<u> </u>	
	20/5			_		gravel, moist, very dense, fine grained
				6		
		İ		7		
7.5	26	9.5	119.9	-		
	50/5"			8		moist
				-		
		1		9	'	
10	24	7.1	125.3	10		
	50/6"			-		moist
				11		
				-		
12.5	77	8.7	121.2	12		
12.0	''	"'	121.2	13		
				-		110/30
	[14		
15	71	7.0	1041	-	i	
15	/1	7.0	124.1	15	— — †	moist
				16		moist
				-		
				17		,
17.5	50	10.6	127.8			
				18		Silty Sand with Gravel, yellowish-brown, moist, medium dense,
				- 19	1	fine grained
				-		slightly porous
20	43	6.3	122.6	20	4	
İ				-		moist
				21	ļ	
				22	ŀ	
22.5	31	7.4	109.4	-		
	50/5"			23		moist
				-		į
				24		
25	100/9"	8.2	118.4	25	/	rollowish over a few Health
			~ XU-1		`	yellowish-orange to yellowish-brown, moist, very dense, fine grained, gravel

Appen	dix l	
-------	-------	--

Hazards and Hazardous Materials

Appendix F1 EDR Report Executive Summary

The EDR Radius Map with GeoCheck®

UCLA LRDP Amendment and NHIP Charles E Young Drive West/Strathmore Los Angeles, CA 90024

Inquiry Number: 2147363.1s

February 19, 2008

The Standard in Environmental Risk Information

440 Wheelers Farms Road Milford, Connecticut 06461

Nationwide Customer Service

Telephone: 1-800-352-0050 Fax: 1-800-231-6802 Internet: www.edrnet.com

TABLE OF CONTENTS

SECTION	PAGE				
Executive Summary	ES1				
Overview Map.	2				
Detail Map.					
Map Findings Summary	4				
Map Findings.	6				
Orphan Summary.	313				
Government Records Searched/Data Currency Tracking.	GR-1				
GEOCHECK ADDENDUM					
Physical Setting Source Addendum	A-1				
Physical Setting Source Summary	A-2				
Physical Setting Source Map.	A-7				
Physical Setting Source Map Findings.					
Physical Setting Source Records Searched					

Thank you for your business.Please contact EDR at 1-800-352-0050 with any questions or comments.

Disclaimer - Copyright and Trademark Notice

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, Inc. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. NO WARRANTY EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, INC. BE LIABLE TO ANYONE, WHETHER ARISING OUT OF ERRORS OR OMISSIONS, NEGLIGENCE, ACCIDENT OR ANY OTHER CAUSE, FOR ANY LOSS OF DAMAGE, INCLUDING, WITHOUT LIMITATION, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES. ANY LIABILITY ON THE PART OF ENVIRONMENTAL DATA RESOURCES, INC. IS STRICTLY LIMITED TO A REFUND OF THE AMOUNT PAID FOR THIS REPORT. Purchaser accepts this Report "AS IS". Any analyses, estimates, ratings, environmental risk levels or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk for any property. Only a Phase I Environmental Site Assessment performed by an environmental professional can provide information regarding the environmental risk for any property. Additionally, the information provided in this Report is not to be construed as legal advice.

Copyright 2008 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, Inc. or its affiliates. All other trademarks used herein are the property of their respective owners.

EXECUTIVE SUMMARY

A search of available environmental records was conducted by Environmental Data Resources, Inc (EDR). The report was designed to assist parties seeking to meet the search requirements of EPA's Standards and Practices for All Appropriate Inquiries (40 CFR Part 312), the ASTM Standard Practice for Environmental Site Assessments (E 1527-05) or custom requirements developed for the evaluation of environmental risk associated with a parcel of real estate.

TARGET PROPERTY INFORMATION

ADDRESS

CHARLES E YOUNG DRIVE WEST/STRATHMORE LOS ANGELES, CA 90024

COORDINATES

Latitude (North): 34.068800 - 34° 4' 7.7" Longitude (West): 118.448200 - 118° 26' 53.5"

Universal Tranverse Mercator: Zone 11 UTM X (Meters): 366361.4 UTM Y (Meters): 3770536.0

Elevation: 381 ft. above sea level

USGS TOPOGRAPHIC MAP ASSOCIATED WITH TARGET PROPERTY

Target Property Map: 34118-A4 BEVERLY HILLS, CA

Most Recent Revision: 1999

TARGET PROPERTY SEARCH RESULTS

The target property was not listed in any of the databases searched by EDR.

DATABASES WITH NO MAPPED SITES

No mapped sites were found in EDR's search of available ("reasonably ascertainable ") government records either on the target property or within the search radius around the target property for the following databases:

FEDERAL RECORDS

NPL..... National Priority List

CERCLIS No Further Remedial Action Planned

RCRA-CESQG...... RCRA - Conditionally Exempt Small Quantity Generator

US ENG CONTROLS...... Engineering Controls Sites List US INST CONTROL...... Sites with Institutional Controls

HMIRS_____ Hazardous Materials Information Reporting System

DOT OPS. Incident and Accident Data
US CDL. Clandestine Drug Labs
US BROWNFIELDS. A Listing of Brownfields Sites
DOD. Department of Defense Sites
FUDS. Formerly Used Defense Sites

LUCIS Land Use Control Information System
CONSENT Superfund (CERCLA) Consent Decrees

ROD Records Of Decision
UMTRA Uranium Mill Tailings Sites

DEBRIS REGION 9...... Torres Martinez Reservation Illegal Dump Site Locations

TRIS...... Toxic Chemical Release Inventory System

RAATS....... RCRA Administrative Action Tracking System

STATE AND LOCAL RECORDS

CA BOND EXP. PLAN...... Bond Expenditure Plan

SCH...... School Property Evaluation Program

SWRCY Recycler Database
SLIC Statewide SLIC Cases

AOCONCERN...... San Gabriel Valley Areas of Concern

AST..... Aboveground Petroleum Storage Tank Facilities

LIENS Environmental Liens Listing

Notify 65 Proposition 65 Records

LA Co. Site Mitigation Site Mitigation List

DEED Deed Restriction Listing

VCP......Voluntary Cleanup Program Properties WIP......Well Investigation Program Case List

HAULERS Registered Waste Tire Haulers Listing

TRIBAL RECORDS

INDIAN RESERV..... Indian Reservations

INDIAN LUST..... Leaking Underground Storage Tanks on Indian Land

INDIAN UST..... Underground Storage Tanks on Indian Land

EDR PROPRIETARY RECORDS

Manufactured Gas Plants ... EDR Proprietary Manufactured Gas Plants

SURROUNDING SITES: SEARCH RESULTS

Surrounding sites were identified in the following databases.

Elevations have been determined from the USGS Digital Elevation Model and should be evaluated on a relative (not an absolute) basis. Relative elevation information between sites of close proximity should be field verified. Sites with an elevation equal to or higher than the target property have been differentiated below from sites with an elevation lower than the target property. Page numbers and map identification numbers refer to the EDR Radius Map report where detailed data on individual sites can be reviewed.

Sites listed in **bold italics** are in multiple databases.

Unmappable (orphan) sites are not considered in the foregoing analysis.

FEDERAL RECORDS

RCRA-LQG: RCRAInfo is EPA's comprehensive information system, providing access to data supporting the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984. The database includes selective information on sites which generate, transport, store, treat and/or dispose of hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). Large quantity generators (LQGs) generate over 1,000 kilograms (kg) of hazardous waste, or over 1 kg of acutely hazardous waste per month.

A review of the RCRA-LQG list, as provided by EDR, and dated 09/11/2007 has revealed that there are 2 RCRA-LQG sites within approximately 1 mile of the target property.

Equal/Higher Elevation	Address	Dist / Dir	Map ID	Page
UNIVERSITY OF CALIFORNIA, LOS	405 HILGARD AVENUE	1/2 - 1 ENE	AM165	152
Lower Elevation	Address	Dist / Dir	Map ID	Page

RCRA-SQG: RCRAInfo is EPA's comprehensive information system, providing access to data supporting the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984. The database includes selective information on sites which generate, transport, store, treat and/or dispose of hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). Small quantity generators (SQGs) generate between 100 kg and 1,000 kg of hazardous waste per month.

A review of the RCRA-SQG list, as provided by EDR, and dated 09/11/2007 has revealed that there are 13 RCRA-SQG sites within approximately 1 mile of the target property.

Equal/Higher Elevation	Address	Dist / Dir	Map ID	Page
UNIVERSITY APARTMENTS	558 GLENROCK AVE	1/8 - 1/4SW	B7	10
INTERNAL MEDICINE	100 UCLA MEDICAL PLAZA	1/8 - 1/4NE	C11	14
WEST COAST SPINE INSTITUTE	100 UCLA MEDICAL PLAZA	1/8 - 1/4NE	C13	17
Lower Elevation	Address	Dist / Dir	Map ID	Page
CHEVRON STATION NO 93100	10984 LE CONTE AVE	1/4 - 1/2S	K49	44
SHELL SERVICE STATION	900 GAYLEY / LE CONTE	1/4 - 1/2S	L52	48
HOME DEPOT USA INC HD 1051	10861 WEYBURN AVE	1/4 - 1/2SSE	T87	81
LONDON CLEANERS	1073 GAYLEY AVE	1/2 - 1 S	AB120	105
PIP PRINTING	1080 GLENDON AVE	1/2 - 1 SSE	AC124	115
WESTWOOD CENTER	1100 GLENDON AVE SUTIE	1/2 - 1 SSE	AE133	121
SYSTEM ONE	1105 GAYLEY AVE	1/2 - 1 S	AG141	129
30 MIN FOTO QUICK	1145 WESTWOOD BLVD	1/2 - 1 SSE	AL160	144

Lower Elevation	Address	Dist / Dir	Map ID	Page
FEILER BROS WILSHIRE CONDOS	10580 WILSHIRE BLVD	1/2 - 1 ESE	BN310	303
WESTWOOD ELECTRICAL	1200 S SEPULVEDA BLVD	1/2 - 1 S	BO319	311

RCRA-NonGen: RCRAInfo is EPA's comprehensive information system, providing access to data supporting the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984. The database includes selective information on sites which generate, transport, store, treat and/or dispose of hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). Non-Generators do not presently generate hazardous waste.

A review of the RCRA-NonGen list, as provided by EDR, and dated 09/11/2007 has revealed that there are 2 RCRA-NonGen sites within approximately 1 mile of the target property.

Lower Elevation	Address	Dist / Dir	Map ID	Page
UNIV OF CA LOS ANGELES DENTAL	10833 LE CONTE AVE RM10	1/4 - 1/2 SE	R79	70
LA FIRE STATION 37	1090 VETERAN AVE	1/2 - 1 S	AH143	131

ERNS: The Emergency Response Notification System records and stores information on reported releases of oil and hazardous substances. The source of this database is the U.S. EPA.

A review of the ERNS list, as provided by EDR, and dated 12/31/2006 has revealed that there are 9 ERNS sites within approximately 1 mile of the target property.

Equal/Higher Elevation	Address	Dist / Dir	Map ID	Page
741 CIRCLE DRIVE SOUTH FLEET S FLEET SERVICES,741 CIRCLE DR S FLEET SERVICE AREA, 741 CIRCLE 401 LAND FAIR AVE 10570 SUNSET BLVD	741 CIRCLE DRIVE SOUTH FLEET SERVICES,741 CIRC FLEET SERVICE AREA, 741 401 LAND FAIR AVE 10570 SUNSET BLVD	1/4 - 1/2N	-	21 28 28 30 192
Lower Elevation	Address	Dist / Dir	Map ID	Page
10943 WEYBURN AVE UNOCAL #1065, 1157 W. GAYLEY BREA WELL B 15 VA HOSPITAL 11301 WILSHIRE BLV	10943 WEYBURN AVE UNOCAL #1065, 1157 W. G BREA WELL B 15 VA HOSPITAL 11301 WILSH	1/2 - 1 SSE 1/2 - 1 SW	71 AN172 AX250 BC265	66 178 262 273

FTTS: FTTS tracks administrative cases and pesticide enforcement actions and compliance activities related to FIFRA, TSCA and EPCRA (Emergency Planning and Community Right-to-Know Act) over the previous five years. To maintain currency, EDR contacts the Agency on a quarterly basis.

A review of the FTTS list, as provided by EDR, and dated 01/15/2008 has revealed that there are 4 FTTS sites within approximately 1 mile of the target property.

Lower Elevation	Address	Dist / Dir	Map ID	Page
MR. CHRISTAL INC (DONALD CHRI UNIVERSITY OF CALIFORNIA LOS A ORGANICLEAN	1100 GLENDON AVE #1250 10920 WILSHIRE BLVD	1/2 - 1 SSE 1/2 - 1 SSE 1/2 - 1 SSE	AP193	124 202
ALTERNA INC	10877 WILSHIRE BLVD 12T 10877 WILSHIRE BLVD	1/2 - 1 SSE 1/2 - 1 SSE		229 236

HIST FTTS: A complete administrative case listing from the FIFRA/TSCA Tracking System (FTTS) for all ten EPA regions. The information was obtained from the National Compliance Database (NCDB). NCDB supports the implementation of FIFRA (Federal Insecticide, Fungicide, and Rodenticide Act) and TSCA (Toxic Substances Control Act). Some EPA regions are now closing out records. Because of that, and the fact that some EPA regions are not providing EPA Headquarters with updated records, it was decided to create a HIST FTTS database. It included records that may not be included in the newer FTTS database updates. This database is no longer updated.

A review of the HIST FTTS list, as provided by EDR, and dated 10/19/2006 has revealed that there are 4 HIST FTTS sites within approximately 1 mile of the target property.

Lower Elevation	Address	Dist / Dir	Map ID	Page
MR. CHRISTAL INC (DONALD CHRI	1100 GLENDON AVE #1250	1/2 - 1 SSE	AE134	124
UNIVERSITY OF CALIFORNIA LOS A	10920 WILSHIRE BLVD	1/2 - 1 SSE	AP193	202
ORGANICLEAN	10877 WILSHIRE BLVD 12T	1/2 - 1 SSE	AS216	229
ALTERNA INC	10877 WILSHIRE BLVD	1/2 - 1 SSE	AS221	236

ICIS: The Integrated Compliance Information System (ICIS) supports the information needs of the national enforcement and compliance program as well as the unique needs of the National Pollutant Discharge Elimination System (NPDES) program.

A review of the ICIS list, as provided by EDR, and dated 07/27/2007 has revealed that there are 3 ICIS sites within approximately 1 mile of the target property.

Equal/Higher Elevation	Address	Dist / Dir	Map ID	Page
UCLA MAIN CAMPUS	405 HILGARD AVE	1/2 - 1 ENE	AM170	176
Lower Elevation	Address	Dist / Dir	Map ID	Page
LUZ ENGINEERING CORP				

MLTS: The Material Licensing Tracking System is maintained by the Nuclear Regulatory Commission and contains a list fo approximately 8,100 sites which possess or use radioactive materials and are subject to NRC licensing requirements.

A review of the MLTS list, as provided by EDR, and dated 10/04/2007 has revealed that there is 1 MLTS site within approximately 1 mile of the target property.

Lower Elevation	Address	Dist / Dir	Map ID	Page
CALIFORNIA, UNIVERSITY OF	10833 LE CONTE AVENUE	1/4 - 1/2SE	R82	76

FINDS: The Facility Index System contains both facility information and "pointers" to other sources of information that contain more detail. These include: RCRIS; Permit Compliance System (PCS); Aerometric Information Retrieval System (AIRS); FATES (FIFRA [Federal Insecticide Fungicide Rodenticide Act] and TSCA Enforcement System, FTTS [FIFRA/TSCA Tracking System]; CERCLIS; DOCKET (Enforcement Docket used to manage and track information on civil judicial enforcement cases for all environmental statutes); Federal Underground Injection Control (FURS); Federal Reporting Data System (FRDS); Surface Impoundments (SIA); TSCA Chemicals in Commerce Information System (CICS); PADS; RCRA-J (medical waste transporters/disposers); TRIS; and TSCA. The source of this database is the U.S. EPA/NTIS.

A review of the FINDS list, as provided by EDR, and dated 10/18/2007 has revealed that there are 27

FINDS sites within approximately 1 mile of the target property.

Equal/Higher Elevation	Address	Dist / Dir	Map ID	Page
INTERNAL MEDICINE WEST COAST SPINE INSTITUTE UNIVERSITY OF CALIFORNIA, LOS UCLA MAIN CAMPUS	100 UCLA MEDICAL PLAZA 100 UCLA MEDICAL PLAZA 405 HILGARD AVENUE 405 HILGARD AVE	.,	C11 C13 AM165 AM167	14 17 152 175
Lower Elevation	Address	Dist / Dir	Map ID	Page
CHEVRON STATION NO 93100 SHELL SERVICE STATION LUZ ENGINEERING CORP UNIV OF CA LOS ANGELES DENTAL HOME DEPOT USA INC HD 1051 WESTWOOD MARQUIS HOTEL & GARDE LONDON CLEANERS PIP PRINTING WESTWOOD CENTER MR. CHRISTAL INC (DONALD CHRI SYSTEM ONE LA FIRE STATION 37 CITY OF LA GENERAL SERVICES 30 MIN FOTO QUICK UNIVERSITY OF CALIFORNIA LOS A ORGANICLEAN ALTERNA INC 10960 PROPERTY CORPORATION KAUFMAN & BROAD HOME CORP WARNER AVENUE ELEMENTARY FEILER BROS WILSHIRE CONDOS CALTRANS DISTRICT 7 WESTWOOD ELECTRICAL	10984 LE CONTE AVE 900 GAYLEY / LE CONTE 924 WESTWOOD BLVD 10833 LE CONTE AVE RM10 10861 WEYBURN AVE 930 HILGARD AVE. 1073 GAYLEY AVE 1080 GLENDON AVE 1100 GLENDON AVE SUTIE 1100 GLENDON AVE #1250 1105 GAYLEY AVE 1090 VETERAN AVE 1090 VETERAN AVE 1145 WESTWOOD BLVD 10920 WILSHIRE BLVD 10877 WILSHIRE BLVD 10960 WILSHIRE BLVD 10990 WILSHIRE BLVD 110580 WILSHIRE BLVD 1200 S SEPULVEDA BLVD 1200 S SEPULVEDA BLVD	1/2 - 1 S 1/2 - 1 S 1/2 - 1 S 1/2 - 1 SSE 1/2 - 1 SSE 1/2 - 1 SSE	K49 L52 O65 R79 T88 Z112 AB120 AC124 AE133 AE134 AG141 AH143 AH147 AL160 AP193 AS216 AS221 AT228 AV242 BD272 BD272 BN310 BO318 BO319	44 48 62 70 83 99 105 115 121 124 129 131 136 144 202 229 236 242 253 276 303 310 311

STATE AND LOCAL RECORDS

HIST CAL-SITES: Formerly known as ASPIS, this database contains both known and potential hazardous substance sites. The source is the California Department of Toxic Substance Control. No longer updated by the state agency. It has been replaced by ENVIROSTOR.

A review of the HIST Cal-Sites list, as provided by EDR, and dated 08/08/2005 has revealed that there is 1 HIST Cal-Sites site within approximately 1 mile of the target property.

Lower Elevation	Address	Dist / Dir	Map ID	Page
WILSHIRE WESTWOOD ASSOCIATES	10936 WILSHIRE BOULEVAR	1/2 - 1 SSE	AR206	219

WDS: California Water Resources Control Board - Waste Discharge System.

A review of the CA WDS list, as provided by EDR, and dated 06/19/2007 has revealed that there are 4 CA WDS sites within approximately 1 mile of the target property.

Equal/Higher Elevation	Address	Dist / Dir	Map ID	Page
UC LOS ANGELES	405 HILGARD AVE	1/2 - 1 ENE	AM164	151

Lower Elevation	Address	Dist / Dir	Map ID	Page
HIGH-RISE CONDOMINIUM WILSHIRE OWNERS ASSOCIATION THE WILSHIRE CONDOS INC	10808 WILSHIRE BLVD 10520 WILSHIRE BLVD 10580 WILSHIRE BLVD	1/2 - 1 SE 1/2 - 1 ESE 1/2 - 1 ESE	BK302	262 299 306

CORTESE: This database identifies public drinking water wells with detectable levels of contamination, hazardous substance sites selected for remedial action, sites with known toxic material identified through the abandoned site assessment program, sites with USTs having a reportable release and all solid waste disposal facilities from which there is known migration. The source is the California Environmental Protection Agency/Office of Emergency Information.

A review of the Cortese list, as provided by EDR, and dated 04/01/2001 has revealed that there are 10 Cortese sites within approximately 1 mile of the target property.

Equal/Higher Elevation	Address	Dist / Dir	Map ID	Page
UCLA FLEET MAINTENANCE COMMERCIAL/RESIDENTIAL PROP. PACIFIC HOLDING CO.	405 HILGARD AVE 248 COMSTOCK AVE 10644 BELLAGIO RD	1/2 - 1 ENE 1/2 - 1 NE 1/2 - 1 NNE	AM161 255 BF280	147 265 281
Lower Elevation	Address	Dist / Dir	Map ID	Page
UCLA MEDICAL CENTER CHEVRON #9-3100 SHELL #204-4530-4007 TOSCO - 76 STATION #1065 HERTZ - WEST LA CENTER WEST MURDOCK PLAZA	10833 LE CONTE 10984 LE CONTE 900 GAYLEY AVE 1157 GAYLEY AVE W 10951 WILSHIRE BLVD 10877 WILSHIRE BLVD 10900 WILSHIRE	1/2 - 1 SSE 1/2 - 1 SSE	39 K45 L56 AN179 AR212 AS222 AW248	35 41 54 185 227 236 262

LUST: The Leaking Underground Storage Tank Incident Reports contain an inventory of reported leaking underground storage tank incidents. The data come from the State Water Resources Control Board Leaking Underground Storage Tank Information System.

A review of the LUST list, as provided by EDR, and dated 01/07/2008 has revealed that there are 9 LUST sites within approximately 1 mile of the target property.

Equal/Higher Elevation	Address	Dist / Dir	Map ID	Page
UCLA FLEET MAINTENANCE Facility Status: Case Closed	405 HILGARD AVE	1/2 - 1 ENE	AM161	147
COMMERCIAL/RESIDENTIAL PROP. Facility Status: Case Closed	248 COMSTOCK AVE	1/2 - 1 NE	255	265
PACIFIC HOLDING CO. Facility Status: Case Closed	10644 BELLAGIO RD	1/2 - 1 NNE	BF280	281
Lower Elevation	Address	Dist / Dir	Map ID	Page
UCLA MEDICAL CENTER Facility Status: Leak being confirmed	Address 10833 LE CONTE	Dist / Dir 1/4 - 1/2 SE	Map ID 39	Page 35
UCLA MEDICAL CENTER	<u></u>			

Lower Elevation	Address	Dist / Dir	Map ID	Page
HERTZ - WEST LA Facility Status: Preliminary site assess	10951 WILSHIRE BLVD ment underway	1/2 - 1 SSE	AR209	223
CENTER WEST Facility Status: Case Closed	10877 WILSHIRE BLVD	1/2 - 1 SSE	AS222	236
MURDOCK PLAZA Facility Status: Case Closed	10900 WILSHIRE BLVD W	1/2 - 1 SSE	AW246	258

CA FID: The Facility Inventory Database contains active and inactive underground storage tank locations. The source is the State Water Resource Control Board.

A review of the CA FID UST list, as provided by EDR, and dated 10/31/1994 has revealed that there are 38 CA FID UST sites within approximately 1 mile of the target property.

Equal/Higher Elevation	Address	Dist / Dir	Map ID	Page
FLEET SERVICES, CSB-I, ROOM 12	741 S CIRCLE DR	1/4 - 1/2 ESE	F24	24
CENTRAL STEAM PLANT	710 S CIRCLE DR	1/4 - 1/2 ESE		31
UCLA	420 WESTWOOD PLZ	1/4 - 1/2NE	138	34
UNIVERSITY OF CALIFORNIA	705 S CIRCLE DR	1/4 - 1/2 ESE	57	56
UNK	10701 SUNSET	1/4 - 1/2 NNE		66
UNIVERSITY OF CAL LOS ANGEL	801 HILGARD AVE	1/2 - 1 ESE		90
MARYMOUNT HIGH SCHOOL	10643 W SUNSET BLVD	1/2 - 1 NNE	X107	95
UNIVERSITY OF CALIFORNIA, LOS	405 HILGARD AVENUE	1/2 - 1 ENE	AM165	152
BEL-AIR COUNTRY CLUB	10768 BELLAGIO RD	1/2 - 1 NNW	BA258	268
DAVID H MURDOCK	10644 BELLAGIO RD	1/2 - 1 NNE	BF282	284
Lower Elevation	Address	Dist / Dir	Map ID	Page
UCLA AMBULATORY CARE COMPLEX	100 MEDICAL PZ	1/4 - 1/2SSE	30	29
CHEVRON STATION #3100	10984 LE CONTE AVE	1/4 - 1/2S	K44	39
R/S OIL COMPANY/C	900 GAYLEY AVE	1/4 - 1/2S	L55	53
FACILITIES/HOSPITAL	10833 LE CONTE AVE	1/4 - 1/2SE	R80	73
WARREN HALL	900 VETERAN AVE	1/2 - 1 SSW	U93	86
FACILITIES/REHABILITATION BLDG	1000 VETERAN AVE	1/2 - 1 SSW	Y104	93
WEST MEDICAL CAMPUS HEAT/COOL	1020 VETERAN AVE	1/2 - 1 SSW	AA114	101
UNIVERSITY CENTRAL OFFICE	1041 TIVERTON AVE	1/2 - 1 SSE	AF137	125
LOS ANGELES FIRE STATION 37	1090 VETERAN AVE	1/2 - 1 S	AH144	134
WESTWOOD TUNE-UP	1155 GLENDON AVE	1/2 - 1 SSE	AK155	139
SERVICE STATION 1065	1157 W GAYLEY AVE	1/2 - 1 SSE	AN176	181
TISHMAN MIDVALE	10920 WILSHIRE BLVD	1/2 - 1 SSE	AP198	207
WESTWOOD TUNE-UP	10889 WILSHIRE BLVD	1/2 - 1 SSE	AQ204	217
C L PECK	10936 WILSHIRE BLVD		AR207	221
HERTZ CORPORATION	10951 WILSHIRE BLVD	1/2 - 1 SSE	AR210	225
TISHMAN WEST MANAGEMENT CORP	10880 WILSHIRE BLVD	1/2 - 1 SSE	AS218	232
WILSHIRE GLENDON ASSOCIATES LT	10877 WILSHIRE BLVD	1/2 - 1 SSE	AS224	239
HINES INTERESTS	10960 WILSHIRE BLVD	1/2 - 1 S	AT229	242
WESTWOOD PLACE	10866 WILSHIRE BLVD	1/2 - 1 SSE	AS236	248
ONE WESTWOOD OFFICE BUILDING	10990 WILSHIRE BLVD	1/2 - 1 S	AV240	251
FREDERICK W FIELD	10900 WILSHIRE BLVD	1/2 - 1 SSE	AW244	255
LONGFORD CONDOMINIUM ASSOC	10790 WILSHIRE BLVD	1/2 - 1 SE	AZ256	267
PARK WILSHIRE LTD	10720 WILSHIRE BLVD	1/2 - 1 SE	BE275	279
LOS ANGELES NATIONAL CEMETERY	950 S SEPULVEDA BLVD	1/2 - 1 S	BH295	293
VILLAGE CAR WASH	1360 WESTWOOD BLVD		BI298	295
URBAN PACIFIC CORP	10520 WILSHIRE BLVD	1/2 - 1 ESE	BK303	299

Lower Elevation	Address	Dist / Dir	Map ID	Page
THAYER LTD INC	10580 WILSHIRE BLVD	1/2 - 1 ESE		307
OVERLAND PLUR	10490 WILSHIRE BLVD	1/2 - 1 ESE		309

UST: The Underground Storage Tank database contains registered USTs. USTs are regulated under Subtitle I of the Resource Conservation and Recovery Act (RCRA). The data come from the State Water Resources Control Board's Hazardous Substance Storage Container Database.

A review of the UST list, as provided by EDR, and dated 01/07/2008 has revealed that there are 30 UST sites within approximately 1 mile of the target property.

Equal/Higher Elevation	Address	Dist / Dir	Map ID	Page
UCLA AMBULATORY CARE COMPLEX UCLA UCLA - KERKHOFF STATE OF CALIFORNIA UNIVERSITY OF CALLOS ANGELES SO. REGIONAL LIBRARY @ UCLA UNIV. OF CALIF LOS ANGELES UCLA BEL-AIR COUNTRY CLUB DAVID H MURDOCK	100 UCLA MEDICAL PLZ 420 WESTWOOD PLZ 308 WESTWOOD PLZ 805 HILGARD AVE 801 HILGARD AVE 305 DE NEVE DR 609 E CIRCLE DR 405 HILGARD AVE 10768 BELLAGIO RD 10644 BELLAGIO RD		W98 W100 110 140 AM162 BA260	18 34 39 90 91 98 129 149 270 284
Lower Elevation	Address	Dist / Dir	Map ID	Page
REGENTS OF THE UNIV. OF CA. CHEVRON STATION #9-3100 SHELL OIL CO- ENVRMNT ANALYST FACILITIES/HOSPITAL GTE-UNIVERSITY C.O. LOS ANGELES FIRE STATION 37 TOSCO CORPORATION #30377 REGENTS UCLA SWISS BANK CORP. WESTWOOD PLACE MURDOCK PLAZA LONGFORD CONDOMINIUM ASSOC VETERANS ADMINISTRATION VETERAN AFFAIRS VETERANS ADMINISTRATION PARK WILSHIRE LTD URBAN PACIFIC CORP THAYER LTD INC BRESLOW DEVEL CORP	200 UCLA MEDICAL PLZ 10984 LE CONTE AVE 900 GAYLEY AVE 10833 LE CONTE AVE 1041 TIVERTON AVE 1090 VETERAN AVE 1157 GAYLEY AVE 10920 WILSHIRE BLVD 10960 WILSHIRE BLVD 10960 WILSHIRE BLVD 10900 WILSHIRE BLVD 11301 WILSHIRE BLVD BLD 11301 WILSHIRE BLVD BLD 11301 WILSHIRE BLVD BLD 11301 WILSHIRE BLVD BLD 11301 WILSHIRE BLVD BLD 11301 WILSHIRE BLVD BLD 11301 WILSHIRE BLVD BLD 10720 WILSHIRE BLVD 10520 WILSHIRE BLVD 10580 WILSHIRE BLVD	1/2 - 1 S 1/2 - 1 SSE 1/2 - 1 SSE 1/2 - 1 SE 1/2 - 1 S 1/2 - 1 S 1/2 - 1 S 1/2 - 1 S 1/2 - 1 S	AH145 AN174 AP197 AT230 AS235 AW245 AZ257 BC267 BC268 BC269 BC270 BE276 BK304 BN314	20 43 52 73 125 134 179 207 242 247 256 268 274 274 275 279 300 307 308

HIST UST: Historical UST Registered Database.

A review of the HIST UST list, as provided by EDR, and dated 10/15/1990 has revealed that there are 21 HIST UST sites within approximately 1 mile of the target property.

Equal/Higher Elevation	Address	Dist / Dir	Map ID	Page
FLEET SERVICES, CSB-I, ROOM 12	741 CIRCLE DR S	1/4 - 1/2ESE	D21	22

Equal/Higher Elevation	Address	Dist / Dir	Map ID	Page
CENTRAL STEAM PLANT FACILITIES/PARKING STRUCTURE # SAWTELLE PRESSURE BREAK MARYMOUNT HIGH SCHOOL DEPARTMENT OF CHEMISTRY MIRA HERSHEY HALL	710 CIRCLE DR S 555 WESTWOOD PLZ 10673 W SUNSET BLVD 10643 SUNSET BLVD 405 HILGARD AVE 405 HILGARD AVE	1/4 - 1/2 ESE 1/4 - 1/2 NNE 1/2 - 1 NNE 1/2 - 1 NNE 1/2 - 1 ENE 1/2 - 1 ENE	D29 I42 X102 X109 AM166 AM169	28 39 92 98 174 176
Lower Elevation	Address	Dist / Dir	Map ID	Page
93100 R&S OIL COMPANY FACILITIES/HOSPITAL WARREN HALL FACILITIES/REHABILITATION BLDG WEST MEDICAL CAMPUS HEAT/COOL FIRE STATION 37 WESTWOOD TUNE-UP SERVICE STATION 1065 UNION OIL SERVICE STATION LEAS WESTWOOD TUNE-UP HERTZ CORPORATION LOS ANGELES NATIONAL CEMETERY VILLAGE CAR WASH	10984 LE CONTE 900 GAYLEY AVE 10833 LE CONTE AVE 900 VETERAN AVE 1000 VETERAN AVE 1020 VETERAN AVE 1090 VETERAN AVE 1155 GLENDON AVE 1157 W GAYLEY AVE 1157 GAYLEY AVE 10889 WILSHIRE BLVD 10951 WILSHIRE BLVD 1360 WESTWOOD BLVD		Y103 AA113 AH146 AK154	43 52 73 86 92 101 135 138 181 184 218 226 291 295

SWEEPS: Statewide Environmental Evaluation and Planning System. This underground storage tank listing was updated and maintained by a company contacted by the SWRCB in the early 1980's. The listing is no longer updated or maintained. The local agency is the contact for more information on a site on the SWEEPS list.

A review of the SWEEPS UST list, as provided by EDR, and dated 06/01/1994 has revealed that there are 39 SWEEPS UST sites within approximately 1 mile of the target property.

Equal/Higher Elevation	Address	Dist / Dir	Map ID	Page
FLEET SERVICES, CSB-I, ROOM 12	741 S CIRCLE DR	1/4 - 1/2 ESE	F24	24
CENTRAL STEAM PLANT	710 S CIRCLE DR	1/4 - 1/2 ESE	F35	31
UNIVERSITY OF CALIFORNIA	705 S CIRCLE DR	1/4 - 1/2 ESE	<i>57</i>	56
UNK	10701 SUNSET	1/4 - 1/2 NNE	72	66
STATE OF CALIFORNIA	805 HILGARD ST	1/2 - 1 ESE	W97	90
UNIVERSITY OF CAL LOS ANGEL	801 HILGARD AVE	1/2 - 1 ESE	W99	90
MARYMOUNT HIGH SCHOOL	10643 W SUNSET BLVD	1/2 - 1 NNE	X107	95
UNIVERSITY OF CALIFORNIA, LOS	405 HILGARD AVENUE	1/2 - 1 ENE	AM165	152
BEL-AIR COUNTRY CLUB	10768 BELLAGIO RD	1/2 - 1 NNW	/ BA260	270
DAVID H MURDOCK	10644 BELLAGIO RD	1/2 - 1 NNE	BF281	284
Lower Elevation	Address	Dist / Dir	Map ID	Page
CHEVRON STATION #3100	10984 LE CONTE AVE	1/4 - 1/2S	K44	39
R/S OIL COMPANY/C	900 GAYLEY AVE	1/4 - 1/2 S	L55	53
FACILITIES/HOSPITAL	10833 LE CONTE AVE	1/4 - 1/2 SE	R81	73
WARREN HALL	900 VETERAN AVE	1/2 - 1 SSW	' U93	86
FACILITIES/REHABILITATION BLDG	1000 VETERAN AVE	1/2 - 1 SSW	Y104	93
WEST MEDICAL CAMPUS HEAT/COOL	1020 VETERAN AVE	1/2 - 1 SSW	AA114	101
UNIVERSITY OF CALIFORNIA LA	1060 VETERAN AVE	1/2 - 1 S	132	121
UNIVERSITY CENTRAL OFFICE	1041 TIVERTON AVE	1/2 - 1 SSE	AF137	125

Lower Elevation	Address	Dist / Dir	Map ID	Page
LOS ANGELES FIRE STATION 37	1090 VETERAN AVE	1/2 - 1 S	AH145	134
WESTWOOD TUNE-UP	1155 GLENDON AVE	1/2 - 1 SSE	AK155	139
SERVICE STATION 1065	1157 W GAYLEY AVE	1/2 - 1 SSE	AN176	181
TISHMAN MIDVALE	10920 WILSHIRE BLVD	1/2 - 1 SSE	AP198	207
WESTWOOD TUNE-UP	10889 WILSHIRE BLVD	1/2 - 1 SSE	AQ204	217
C L PECK	10936 WILSHIRE BLVD	1/2 - 1 SSE	AR207	221
HERTZ CORPORATION	10951 WILSHIRE BLVD	1/2 - 1 SSE	AR210	225
HERTZ CORP	10951 WILSHIRE BLVD	1/2 - 1 SSE	AR214	227
TISHMAN WEST MANAGEMENT CORP	10880 WILSHIRE BLVD	1/2 - 1 SSE	AS218	232
WILSHIRE GLENDON ASSOCIATES LT	10877 WILSHIRE BLVD	1/2 - 1 SSE	AS224	239
HINES INTERESTS	10960 WILSHIRE BLVD 222	1/2 - 1 S	AT227	241
WESTWOOD PLACE	10866 WILSHIRE BLVD	1/2 - 1 SSE	AS235	247
ONE WESTWOOD OFFICE BUILDING	10990 WILSHIRE BLVD	1/2 - 1 S	AV240	251
FREDERICK W FIELD	10900 WILSHIRE BLVD	1/2 - 1 SSE	AW244	255
LONGFORD CONDOMINIUM ASSOC	10790 WILSHIRE BLVD	1/2 - 1 SE	AZ257	268
PARK WILSHIRE LTD	10720 WILSHIRE BLVD	1/2 - 1 SE	BE275	279
LOS ANGELES NATIONAL CEMETERY	950 S SEPULVEDA BLVD	1/2 - 1 S	BH295	293
VILLAGE CAR WASH	1360 WESTWOOD BLVD	1/2 - 1 SSE	BI298	295
URBAN PACIFIC CORP	10520 WILSHIRE BLVD	1/2 - 1 ESE	BK304	300
THAYER LTD INC	10580 WILSHIRE BLVD	1/2 - 1 ESE	BN314	307
OVERLAND PLUR	10490 WILSHIRE BLVD	1/2 - 1 ESE	BL317	309

CHMIRS: The California Hazardous Material Incident Report System contains information on reported hazardous material incidents, i.e., accidental releases or spills. The source is the California Office of Emergency Services.

A review of the CHMIRS list, as provided by EDR, and dated 12/31/2005 has revealed that there are 8 CHMIRS sites within approximately 1 mile of the target property.

Equal/Higher Elevation	Address	Dist / Dir	Map ID	Page
Not reported Date Completed: 19-JUN-91	UCLA BUILDING 39 B	1/8 - 1/4 ENE	5	8
Not reported Not reported Not reported Not reported Not reported	606 LEVERING STREET 10570 SUNSET BLVD, NEXT 10768 BELLAGIO RD. 10950 BELLAGIO RD 10976 BELLAGIO ROAD, O	1/4 - 1/2WSW 1/2 - 1 NNE 1/2 - 1 NNW 1/2 - 1 NNW 1/2 - 1 NNW	AO182 BA261 274	33 191 271 277 287
Lower Elevation	Address	Dist / Dir	Map ID	Page
Not reported TOSCO - 76 STATION #1065	951 WESTWOOD BLVD 1157 GAYLEY AVE W	1/4 - 1/2SSE 1/2 - 1 SSE	O69 AN179	64 185

DRYCLEANERS: A list of drycleaner related facilities that have EPA ID numbers. These are facilities with certain SIC codes: power laundries, family and commercial; garment pressing and cleaners' agents; linen supply; coin-operated laundries and cleaning; drycleaning plants except rugs; carpet and upholster cleaning; industrial launderers; laundry and garment services.

A review of the CLEANERS list, as provided by EDR, and dated 07/31/2007 has revealed that there are 2 CLEANERS sites within approximately 1 mile of the target property.

Lower Elevation	Address	Dist / Dir	Map ID	Page
LONDON CLEANERS	1073 GAYLEY AVE	1/2 - 1 S	AB120	105
RITZ DRY CLEANERS	1074 GAYLEY	1/2 - 1 S	AB123	112

HMS: Los Angeles County Industrial Waste and Underground Storage Tank Sites.

A review of the LOS ANGELES CO. HMS list, as provided by EDR, and dated 11/29/2007 has revealed that there is 1 LOS ANGELES CO. HMS site within approximately 1 mile of the target property.

Lower Elevation	Address	Dist / Dir	Map ID	Page
HERTZ CORP	10951 W WILSHIRE BLVD	1/2 - 1 SSE	AR213	227

RESPONSE: Identifies confirmed release sites where DTSC is involved in remediation, either in a lead or oversight capacity. These confirmed release sites are generally high-priority and high potential risk.

A review of the RESPONSE list, as provided by EDR, and dated 11/27/2007 has revealed that there is 1 RESPONSE site within approximately 1 mile of the target property.

Lower Elevation	Address	Dist / Dir	Map ID	Page
WILSHIRE WESTWOOD ASSOCIATES	10936 WILSHIRE BOULEVAR	1/2 - 1 SSE	AR206	219

HAZNET: The data is extracted from the copies of hazardous waste manifests received each year by the DTSC. The annual volume of manifests is typically 700,000-1,000,000 annually, representing approximately 350,000-500,000 shipments. Data from non-California manifests & continuation sheets are not included at the present time. Data are from the manifests submitted without correction, and therefore many contain some invalid values for data elements such as generator ID, TSD ID, waste category, & disposal method. The source is the Department of Toxic Substance Control is the agency

A review of the HAZNET list, as provided by EDR, and dated 12/31/2006 has revealed that there are 177 HAZNET sites within approximately 1 mile of the target property.

Equal/Higher Elevation	Address	Dist / Dir	Map ID	Page
1X PHI KAPPA SIGMA HOUSING COR	10938 STRATHMORE DRIVE	1/8 - 1/4SW	1	6
UNIV COOPERATIVE HOUSING ASSOC	500 LANDFAIR AVE	1/8 - 1/4W	2	6
UNIVERSITY APARTMENTS	558 GLENROCK AVE	1/8 - 1/4SW	B6	10
UCLA/LANDFAIR APARTMENT	558 GLENROCK AVE	1/8 - 1/4SW	B8	11
UCLA	564 GLENROCK	1/8 - 1/4SW	B9	12
ROY A MEALS MD INC	SUITE 305 100 UCLA MED	1/8 - 1/4NE	C10	12
UNIVERSITY SPINE ASSOCIATES	100 UCLA MEDICAL PLAZA	1/8 - 1/4NE	C12	15
UNIVERSITY CARDIOVASCULAR	100 UCLA MEDICAL PLAZA	1/4 - 1/2NE	C15	18
JOHN WEISS	655 LEVERING	1/4 - 1/2SW	16	20
VILLAGE HOUSE CONDOMINIUM HOME	11044 OPHIR DR	1/4 - 1/2W	18	20
UCLA MED CENTER	480 GAYLEY ST	1/4 - 1/2WNW	/ 19	21
PARSONS ENERGY & CHEMICALS GRO	721 CIRCLE DR SOUTH	1/4 - 1/2ESE	D25	26
ONYX HOLDINGS INC	11023 STRATHMORE DR	1/4 - 1/2SSW	G26	27
UCLA LIFE SCIENCES BUILDING	731 CHARLES YOUNG DR S	1/4 - 1/2ESE	D31	29
TILDEN STUDY CENTER	11024 STRATHMORE DR	1/4 - 1/2SSW	G33	30
DELTA-NU CHAPTER OF KAPPA SIGM	11024 STRATHMORE DR	1/4 - 1/2SSW	G34	30
PARSONS ENERGY & CHEMICALS GRO	721 CHARLES E YOUNG DR	1/4 - 1/2ESE	J40	37
PARSONS ENERGY & CHEMICALS GRO	721 CHARLES E YOUNG DR	1/4 - 1/2ESE	J41	38
UCLA MEDICAL CENTER	650 CIRCLE DR SOUTH	1/4 - 1/2ESE	64	61

Equal/Higher Elevation	Address	Dist / Dir	Map ID	Page
ADVANCE ELEVATOR INC ALPHA EPSILON PHI MARYMOUNT HIGH SCHOOL THE LOS ANGELES HILLEL COUNCIL YALE UNIVERSITY MARY WHITE UNIVERSITY OF CALIFORNIA-LOS A UNIVERSITY OF CALIFORNIA, LOS UCLA/FOWLER MUSEUM OF CULTURAL UNIVERSITY OF CALIFORNIA-LA JOAN REAL ESTATE INC BEL AIR COUNTRY CLUB BARBARA COPELAND UCLA ENVIRONMENT HEALTH SAFETY DOUG'S TUG INC MALIBU COLONY BEACH TRUST	618 CHARLES E YOUNG DR 632 HILGARD AVE 10643 SUNSET BLVD 574 HILGARD AVE 520 SO SEPULVEDA 555 PERUGIA WAY 405 HILGARD AVE 405 HILGARD AVE 405 HILGARD AVE 200 BENTLEY CIRCLE 10768 BELLAGIO ROAD 223 N GLENROY 626 SIENA WAY 222 WOODRUFF AVENUE 671 SIENA WAY	1/4 - 1/2 E 1/2 - 1 E 1/2 - 1 NNE 1/2 - 1 ENE 1/2 - 1 WSW 1/2 - 1 N 1/2 - 1 ENE 1/2 - 1 ENE 1/2 - 1 ENE 1/2 - 1 ENE 1/2 - 1 NW 1/2 - 1 NW 1/2 - 1 NW 1/2 - 1 NE 1/2 - 1 NE 1/2 - 1 NE 1/2 - 1 NE 1/2 - 1 NE 1/2 - 1 NE	116 7 157 159 AM163 AM165 AM168 AM171 184	68 91 96 103 142 143 149 152 175 177 192 269 289 291 297 302
Lower Elevation	Address	Dist / Dir	Map ID	Page
MILLAR ELEVATOR COMPANY UCLA CLUB CALIFORNIA APT WESTWOOD COMMONS LLC CHEVRON #9-3100 CHEVRON 93100 CHEVRON STATION NO 93100 UCLA / ENVIRONMENT HEALTH & SA SHELL SHELL SERVICE STATION 1X THREE-S PROPERTIES GEFFEN PLAYHOUSE INC UCLA COPYMAT VILLAGE 1-HR CALIFORNIA STATE TEACHERS RETI WESTWOOD PLAZA_TRUST CO OF THE THE VILLAGE THEATRE L B PROPERTY MANAGEMENT PICK FAMILY TRUST C/O LB PROP CVS PHARMACY WESTWOOD PROMENADE DUESENBERG INVESTMENT CO UNIV OF CA LOS ANGELES DENTAL WESTWOOD HORIZONS TRUST CO MADISON MARQUETTE RETAIL SR TIVERTON APARTMENTS VERIZON CALIFORNIA INC MARK A COLLONS DDS, INC PAUL BECKSTEAD DDS WESTWOOD PROF BLDG FACILITIES/REHABILITATION BLDG CYTOGENETIC REHAB BUILDING 1X WESTWOOD MARQUIS HOTEL	641 LANDFAIR 641 LANDFAIR 10982 ROEBLING AVE 10984 LE CONTE 10984 LE CONTE 10984 LE CONTE AVE 10984 LE CONTE AVE 855 LEVERING AVE 900 GAYLEY 900 GAYLEY / LE CONTE 939 BROXTON 10886 LE CONTE AVE 10886 LE CONTE AVE 923 WESTWOOD BLVD 929 WESTWOOD BLVD 929 WESTWOOD BLVD 924 WESTWOOD BLVD 924 WESTWOOD BLVD 917 WEYBURN 10911 WEYBURN 10911 WEYBURN 1001 WESTWOOD BLVD 1000 WESTWOOD BLVD 10833 LE CONTE AVE RM10 1015 GAYLEY AVE 10861 WEYBURN AVE 10861 WEYBURN AVE 10861 WEYBURN AVE 10861 WEYBURN AVE 1033 GAYLEY AVE 1033 GAYLEY AVE, #102 1033 GAYLEY AVE 1000 VETERAN AVE 1000 VETERAN AVE	1/8 - 1/4 S 1/8 - 1/4 S 1/8 - 1/4 S 1/4 - 1/2 S S W 1/4 - 1/2 S 1/4 - 1/2 S 1/4 - 1/2 S 1/4 - 1/2 S 1/4 - 1/2 S 1/4 - 1/2 S 1/4 - 1/2 S 1/4 - 1/2 S 1/4 - 1/2 S 1/4 - 1/2 S 1/4 - 1/2 S 1/4 - 1/2 S 1/4 - 1/2 S 1/4 - 1/2 S 1/4 -	E23 K45 K48 K49 50 L51 L52 M58 N59 N60 O61 O62 O63 O66 O68 M70 P73 P74 Q76 Q77 Q78 R79 S84 T85 R86 T89 R90 91 S94 V95 V96	7 8 23 23 41 44 47 47 47 48 58 59 60 60 61 62 63 66 67 68 69 69 70 70 79 80 81 83 85 85 85 87 88 89 94 95

Lower Elevation	Address	Dist / Dir	Map ID	Page
WESTWOOD MARQUIS	930 HILLGUARD AVE	1/2 - 1 SE	Z111	98
JAKOSKY TRUST	1063 GAYLEY AVE	1/2 - 1 S	AB115	103
CASDEN PROPERTIES LLC	1067 GLENDEN AVE		AC117	104
HELENS CYCLES	1071 GAYLEY AVE	1/2 - 1 S	AB118	104
CASDEN GLENDON LLC	1070 GLENDON AVE		AC119	105
LONDON CLEANERS	1073 GAYLEY AVE	1/2 - 1 S	AB120	105
UCLA - ENVIRONMENT HEALTH & SA	1072 GAYLEY	1/2 - 1 S	AB121	109
PICK FAMILY TRUST	1072 GAYLEY AVE	1/2 - 1 S	AB122	111
RITZ DRY CLEANERS MARIA HERSHOVIC	1074 GAYLEY	1/2 - 1 S 1/2 - 1 SSE	AB123 AD125	112 116
WESTWOOD DOME PARTNERS	1095 BROXTON 1099 WESTWOOD BLVD		AD125 AD126	116
THRIFTY PAYLESS DRUGS	1101 WESTWOOD BLVD		AD120 AD127	117
RITE AID #5433	1101 WESTWOOD BLVD		AD127 AD128	118
PARK WESTWOOD TOWER HOA	969 HILGARD AVE	1/2 - 1 SE	129	119
UCLA ENVIRONMENT HEALTH & SAFE	10845 WEYBURN AVE	1/2 - 1 SE	130	120
WELLS FARGO BANK	10925 KINROSS AVE		AD131	120
WESTWOOD CENTER	1100 GLENDON AVE SUTIE	1/2 - 1 SSE		121
JOGOPULOS CHIROPRACTIC CENTER	1100 GLENDON AVE	1/2 - 1 SSE	AE135	125
VERIZON	1041 TIVERTON	1/2 - 1 SSE	AF138	126
FLEET AND TRANSIT SERVICES	10960 KINROSS AVE	1/2 - 1 S	AG139	128
SYSTEM ONE	1105 GAYLEY AVE	1/2 - 1 S	AG141	129
SYSTEM ONE	1105 GAYLEY AVENUE	1/2 - 1 S	AG142	131
LA FIRE STATION 37	1090 VETERAN AVE	1/2 - 1 S	AH143	131
THE ITALIAN CONSULATE	1023 HILGARD AVENUE	1/2 - 1 SE	148	136
30 MINUTE FOTO QUICK	1144 WESTWOOD BLVD	1/2 - 1 SSE	AI149	136
CINAMERICA THEATRES	10925 LINDBROOK DRIVE		AJ150	137
VILLA WESTWOOD ASSOCIATES	10920 LINDBROOK AVE		AI151	137
ALPHA GRAPHICS	10910 LINDBROOK DR	1/2 - 1 SSE 1/2 - 1 SSE	152	138
MANN THEATRES	10887 LINDBROOK DR 1157 W GAYLE AVE		AK153 AJ156	138 140
TOSCO CORPORATION, STATION #30 TERI ANN GIBSON DDS	10845 LINDBROOK DRIVE	1/2 - 1 SSE	158	140
30 MIN FOTO QUICK	1145 WESTWOOD BLVD		AL160	144
JOHN FAWCETT UNION #2	1157 GAYLEY AVE		AN173	178
UNOCAL SVC STA #1065	1157 W GAYLEY AVE		AN175	179
CONOCO PHILLIPS #251065	1157 W GAYLEY AVE		AN178	184
FOX PHOTO INC	1161 WESTWOOD BLVD		AL180	189
WOLF CAMERA #05017	1165 WESTWOOD BLVD	1/2 - 1 SSE	AL181	190
DR DENISE GALANTER DDS	10921 WILSHIRE BLVD SUI	1/2 - 1 SSE	AP185	194
THE WESTWOOD MEDICAL PLAZA LP	10921 WILSHIRE BLVD STE	1/2 - 1 SSE	AP186	195
DONALD J ESLICK DDS	10921 WILSHIRE BLVD SUI		AP187	197
ALAN ROBERTS MD INC	10921 WILSHIRE BLVD STE		AP188	197
SUSAN GORAN DDS	10921 WILSHIRE BLVD STE	1/2 - 1 SSE	AP189	198
WEST WOOD PEDIATRIC DENTAL GRO	10921 WILSHIRE BLVD STE		AP190	200
LABEX CORPORATION	10921 WILSHIRE BL. SUIT		AP191	201
WASHINGTON MUTUAL	10901 WILSHIRE BLVD		AP192	202
TRACY GOLDEN DMD MULLER COMPANY WW WESTWOOD LP	10921 WILSHIRE BLVD 10921 WILSHIRE BLVD		AP194 AP195	203 205
TISHMAN MIDVALE VENTURE	10921 WILSHIRE BLVD		AP199	203 208
TOMAS ANDERKVIST DDS	10920 WILSHIRE BLVD #11		AP 199 AP 200	211
EDWARD M LEHRNER DDS	10921 WILSHIRE BLVD		AP201	213
OXY WESTWOOD CORPORATION	10889 WILSHIRE BLVD,#10		AQ202	214
OCCIDENTAL PETROLEUM CORP	10889 WILSHIRE BLVD STE		AQ203	215
EQUITY OFFICE LP	10940 WILSHIRE BLVD		AR208	222
TISHMAN SPEYER	10940 WILSHIRE BLVD	1/2 - 1 SSE		228
WILSHIRE WEST PLAZA	10880 WILSHIRE BLVD		AS217	230
TISHMAN WEST MANAGEMENT CORP	10880 WILSHIRE BLVD	1/2 - 1 SSE	AS218	232

Lower Elevation	Address	Dist / Dir	Map ID	Page
EQUITY OFFICE	10880 WILSHIRE BLVD	1/2 - 1 SSE		233
EQUITY OFFICE PROP MANAGEMENT	10880 WILSHIRE BLVD		AS220	234
CALIFORNIA SUN CARE	10877 WILSHIRE BLVD	1/2 - 1 SSE		239
OPPENHEIMER	10880 WILSHIRE BLVD	1/2 - 1 SSE		240
BEACON PROPERTIES LP	10880 WILSHIRE BLVD	1/2 - 1 SSE		240
SABIN PLAZA	10960 WILSHIRE BLVD	1/2 - 1 S	AT231	243
BEACON PROPERTIES LP	10960 WILSHIRE BLVD	1/2 - 1 S	AT232	243
EQUITY OFFICE PROPERTIES	10960 WILSHIRE BLVD	1/2 - 1 S	AT233	244
TISHMAN WEST MANAGEMENT CORP	10960 WILSHIRE BLVD	1/2 - 1 S	AT234	246
AVCO CENTER	10850 WILSHIRE BLVD STE		AU237	249
AVCO CENTER CORP	10850 WILSHIRE BLVD		AU238	250
DOUGLAS EMMETT & COMPANY	10990 WILSHIRE BLVD	1/2 - 1 S 1/2 - 1 S	AV239	251
LASALLE PARTNERS CORP	10990 WILSHIRE BLVD	1/2 - 1 S 1/2 - 1 S	AV241 AV243	252 254
GENERAL SERVICES ADMINISTRATIO	11000 WILSHIRE BLVD	-	_	_
MURDOCK PLAZA	10900 WILSHIRE BLVD		AW245	256
PM REALISTATE GROUP INC	10900 WILSHIRE BLVD. SU		AW247 AY252	260
UNIVERSITY BIBLE CHURCH	10801 WILSHIRE BLVD		AY252 AY253	263 264
AMERICANA GLENDALE INC WEBCOR BUILDERS	1201 MALCOM AVE 10800 WILSHIRE BLVD	1/2 - 1 SE 1/2 - 1 SE	AY253 AY254	264 264
DFK CORPORATION	10777 WILSHIRE	1/2 - 1 SE 1/2 - 1 SE	BB262	272
WILSHIRE CARLYLE PARTNERS LLC	10777 WILSTINE 10776 WILSHIRE BLVD	1/2 - 1 SE 1/2 - 1 SE	BB263	273
WOODBRIDGE CAPITAL LLC	10776 WILSHIRE BLVD	1/2 - 1 SE	BB264	273
VETERAN ADMIN BLDG	11301 WILSHIRE BLDG 114	1/2 - 1 SE	BC266	273
MILLAR ELEVATOR	11301 WILSHIRE BLVD BL	1/2 - 1 S	BC271	275
LAUSD/ WARNER AVE	615 HOLMBY AVE	1/2 - 1 E	BD273	277
DOUBLE TREE HOTEL, INC	10740 WILSHIRE BLVD	1/2 - 1 SE	BE277	280
DOUBLETREE	10741 WILSHIRE BLVD	1/2 - 1 SE	BE278	281
1267 VETERAN AVE APARTMENTS LP	1260 VETERAN AVE	1/2 - 1 S	279	281
JAMES UDALLA	1301 WESTWOOD BLVD	1/2 - 1 SSE		285
WELLWORTH REGENCY	10960 WELLWORTH AVE	1/2 - 1 SSE		285
SAV-ON #9576	10889 WELLWORTH AVE	1/2 - 1 SSE		286
CVS PHARMACY # 9576	10889 WELLWORTH AVE	1/2 - 1 SSE		287
REALTY AMERICAN GROUP	10704 WILSHIRE BLVD	1/2 - 1 SE	287	287
HABIBI PROPERTIES	10817 WELLWORTH AVE	1/2 - 1 SSE	290	289
NATIONAL GENETICS INSTITUTE	1333 WESTWOOD BLVD	1/2 - 1 SSE	291	290
L A NATIONAL CEMERTARY INC	950 S SEPULVEDA BLVD	1/2 - 1 S	BH294	292
LOS ANGELES NATIONAL CEMETERY	950 S SEPULVEDA BLVD	1/2 - 1 S	BH295	293
BORDERS BOOKS & MUSIC	1360 WESTWOOD BLVD	1/2 - 1 SSE	BI296	294
RED BULL CONSTRUCTION INC	10601 WILSHIRE BLVD	1/2 - 1 ESE	BJ299	297
THE DORCHESTER	10520 WILSHIRE BLVD	1/2 - 1 ESE		298
WILSHIRE REGENTS	10501 WILSHIRE	1/2 - 1 ESE	BL305	300
WILSHIRE WESTWOOD	10530-40 WILSHIRE BLVD.	1/2 - 1 ESE	306	301
THE HOTEL DE CAPRI	10587 WILSHIRE BLVD	1/2 - 1 ESE	BJ307	302
MCQUAY	10535 WILSHIRE	1/2 - 1 ESE		303
FEILER BROS WILSHIRE CONDOS	10580 WILSHIRE BLVD	1/2 - 1 ESE		303
TEN FIVE SIXTY WILSHIRE CONDO	10560 WILSHIRE BLVD	1/2 - 1 ESE	-	306
THE WILSHIRE CONDOS INC	10580 WILSHIRE BLVD	1/2 - 1 ESE		306
THE BLAIR HOUSE	10490 WILSHIRE BLVD	1/2 - 1 ESE		308
7-ELEVEN STORES #16226	1400 WESTWOOD AVE	1/2 - 1 SSE	320	312

ENVIROSTOR: The Department of Toxic Substances Control's (DTSC's) Site Mitigation and Brownfields Reuse Program's (SMBRP's) EnviroStor database identifes sites that have known contamination or sites for which there may be reasons to investigate further. The database includes the following site types: Federal Superfund sites (National Priorities List (NPL)); State Response, including Military Facilities and State Superfund; Voluntary Cleanup; and School sites. EnviroStor provides similar information to the information that was available in CalSites, and provides additional site information, including, but not limited to, identification of formerly-contaminated properties that have been released for reuse, properties where environmental deed restrictions have been recorded to prevent inappropriate land uses, and risk characterization information that is used to assess potential impacts to public health and the environment at contaminated sites.

A review of the ENVIROSTOR list, as provided by EDR, and dated 11/27/2007 has revealed that there is 1 ENVIROSTOR site within approximately 1 mile of the target property.

Lower Elevation	Address	Dist / Dir	Map ID	Page
WILSHIRE WESTWOOD ASSOCIATES	10936 WILSHIRE BOULEVAR	1/2 - 1 SSE	AR206	219
Facility Status: Certified				

Due to poor or inadequate address information, the following sites were not mapped:

Site Name	Database(s)
UC LOS ANGELES	FTTS
UC LOS ANGELES	FTTS
HOMESAFE, INC.	FTTS
UC LOS ANGELES	HIST FTTS
UC LOS ANGELES	HIST FTTS
VEH STOP @ SO ON HWY 5/N OF ST	CDL
UCLA CO-GENERATION FACILITY	LUST, Cortese
CHEVRON #9-7748 (FORMER)	LUST
CHEVRON #9-3100	LUST
UNOCAL #5275	LUST
WARREN HALL	HIST UST
BREIT BURN ENERGY CO SAWTELLE LEAS	HAZNET
EUGENE KOH	HAZNET
ZACH LINDSAY	HAZNET
BARNARD TRANSPORTATION	HAZNET
UNOCAL SO CAL. DIV. PIPE LINE	HAZNET
LYDIA YU	HAZNET
TRAVIS BARR	HAZNET
KORDA CONSTRUCTION	HAZNET
1X MOUNTAINS RECRTN & CONCV AUTHOR	HAZNET
PACIFIC RIM TRANSPORTATION INC UCLA	HAZNET HAZNET
MILES JAPANESE AUTO REPAIR	HAZNET
MILES JAPANESE AUTO REPAIR MILES JAPANESE AUTO REPAIR	HAZNET
CVS PHARMACY # 9766	HAZNET
SUSANNE L TERNOVSKY DDS DENTAL OFF	HAZNET
WELLSLY MANOR CORP	HAZNET
SODEXHO	HAZNET
VETERAN ADMIN BLDG	HAZNET
BEACON PROPERTY LP	HAZNET
GENERAL SERVICES ADMINISTRATION	HAZNET
OXY WESTWOOD CORPORATION	HAZNET
RAMIN SHABTAIE DDS INC	HAZNET
FEDERAL BLDG/GENERAL SERVICES ADMI	HAZNET
WESTWOOD PEDIATRIC DENTAL GROUP	HAZNET
WOODSIDE DENTAL	HAZNET
UCLA PHYSICS DEPT	HAZNET
MARTIN CHAIANG	HAZNET
PETROS SAKKIS	HAZNET
SHELL OIL #204-2928-0538	LOS ANGELES CO. HMS

Appendix F2
Clarification Table

CLARIFICATION TABLE HAZARDOUS MATERIALS LOCATIONS

(This information updates, verifies, and/or corrects the information presented in the 2008 EDR Report)

Location	Address	Comments
	ce Conservation and Recovery	
UCLA	405 Hilgard Avenue	This is the general address for the UCLA
0021	Too Tiligara / Worldo	campus; UCLA generates, stores, treats, and/or disposes of hazardous wastes in compliance with all applicable federal and State laws.
West Coast Spine Institute	100 UCLA Medical Plaza	100 UCLA Medical Plaza is owned and operated by a private developer.
Internal Medicine	100 UCLA Medical Plaza	100 UCLA Medical Plaza is owned and operated by a private developer.
741 Charles E. Young Drive South	741 Charles E. Young Drive South	These underground storage tanks (USTs) were remediated and replaced in 1993.
	Cortese List	
UCLA Fleet Maintenance	405 Hilgard Avenue	While this is the general address for the UCLA campus, it is assumed to refer to the USTs located at 741 Charles E. Young Drive South, which was remediated and replaced in 1993.
UCLA Medical Center	10833 Le Conte Avenue	These USTs were removed in 1998.
UCLA Fleet Service Garage	741 Charles E. Young Drive South	These underground storage tanks (USTs) were remediated and replaced in 1993.
Leakin	g Underground Storage Tank In	cident Report
UCLA Fleet Service Garage	741 Charles E. Young Drive South	These underground storage tanks (USTs) were remediated and replaced in 1993.
UCLA Fleet Maintenance	405 Hilgard Avenue	While this is the general address for the UCLA campus, it is assumed to refer to the USTs located at 741 Charles E. Young Drive South, which was remediated and replaced in 1993.
UCLA Fleet Maintenance	405 Hilgard Avenue	While this is the general address for the UCLA campus, it is assumed to refer to the USTs located at 741 Charles E. Young Drive South, which was remediated and replaced in 1993.
UCLA Medical Center	10833 Le Conte Avenue	These USTs were removed in 1998.
	Underground Storage Tank Dat	
Fleet Services	721 Charles E. Young Drive South	This site contains three USTs that were remediated and replaced in 1993 (one waste oil and two gasoline).
UCLA Chiller/Cogeneration	741 Charles E. Young Drive South	This site contains three USTs (three diesel).
UCLA-Ackerman	308 Westwood Plaza	This site contains one UST (diesel).
UCLA-Kerkhoff	308 Westwood Plaza	This site contains one UST (diesel).
UCLA	420 Westwood Plaza	This site contains one UST (diesel).
State of California	805 Hilgard Avenue	This UST was removed in 1993.
UCLA (Mira Hershey Hall)	801 Hilgard Avenue	This UST was filled with LAFD approval and in accordance with all applicable code requirements in 1990.
Southern Regional Library	305 De Neve Drive	This site contains one UST (diesel).
UCLA	405 Hilgard Avenue	This is the general address for the UCLA campus, and it is assumed to refer to all USTs located on campus.

HAZARDOUS MATERIALS LOCATIONS (Continued)

Location	Address	Comments
Facilities Hospital	10833 Le Conte Avenue	This site contains two USTs (diesel); in addition, four USTs were removed from this site in 1998.
Young Hall	609 Charles E. Young Drive East	This site contains one UST (diesel).
Medical Plaza	200 Medical Plaza	This site contains one UST (diesel).
Gonda Building	695 Charles E. Young Drive South	This site contains one UST (diesel).
Boetler Hall	580 Portola Plaza	This site contains one UST (diesel).
Central Steam Plant	710 Charles E. Young Drive South	One UST was filled with LAFD approval and in accordance with all applicable code requirements and five USTs were removed from this site in 1995.
Western Medical Stream Plant	1020 Veteran Avenue	Three USTs were removed from this site prior to 1990.
Rehabilitation Building	1000 Veteran Avenue	One UST was removed from this site prior to 1990.
Parking Structure 8	555 Westwood Plaza	One UST was removed from this site prior to 1990.
Dykstra Hall	401 Charles E. Yung Drive West	One UST was removed from this site in 1990.
	Facility Inventory Databas	se
Fleet Services	741 Charles E. Young Drive South	These underground storage tanks (USTs) were remediated and replaced in 1993.
Central Steam Plant		One UST was filled with LAFD approval and in accordance with all applicable code requirements and five USTs were removed from this site in 1995.
University of California	705 Charles E. Young Drive South	This is the general site of the cogeneration building. There is no actual building on campus with this address.
UCLA	420 Westwood Plaza	This is the general site of the cogeneration building. There is no actual building on campus with this address.
University of Cal – Los Angeles	801 Hilgard Avenue	This UST was filled in 1990.
University of California Los Angeles	405 Hilgard Avenue	This is the general address for the UCLA campus, and it is assumed to refer to all USTs located on campus.
University Central Office	1041 Tiverton Avenue	This is an off-campus location.
	Historical UST Registered Dat	abase
Fleet Services	741 Charles E. Young Drive South	These underground storage tanks (USTs) were remediated and replaced in 1993.
Central Steam Plant		One UST was filled with LAFD approval and in accordance with all applicable code requirements and five USTs were removed from this site in 1995.
Parking Structure 8	555 Westwood Plaza	One UST was removed from this site prior to 1990.
Mira Hershey Hall	405 Hilgard Avenue	This UST was filled with LAFD approval and in accordance with all applicable code requirements in 1990.
Department of Chemistry	405 Hilgard Avenue	This site contains one UST (diesel).
Warren Hall	900 Veteran Avenue	Current campus records indicate that there are no USTs on this site.

HAZARDOUS MATERIALS LOCATIONS (Continued)

Location	Address	Comments
Facilities Hospital	10833 Le Conte Avenue	This site contains two USTs (diesel); in addition, four USTs were removed from this site in 1998.
Facilities/Rehabilitation Building	1000 Veteran Avenue	One UST was removed from this site Prior to 1990.
West Medical Campus Heat/Cool (Steam Plant)	1020 Veteran Avenue	Three USTs were removed from this site prior to 1990.
	Facility Index System	
West Coast Spine Institute	100 UCLA Medical Plaza	100 UCLA Medical Plaza is owned and operated by a private developer.
Internal Medicine	100 UCLA Medical Plaza	100 UCLA Medical Plaza is owned and operated by a private developer.
UCLA	405 Hilgard Avenue	This is the general address for the UCLA campus; UCLA generates, stores, treats, and/or disposes of hazardous wastes in compliance with all applicable federal and State laws.
University of CA Los Angeles Dental	10833 Le Conte Avenue	UCLA generates, stores, treats, and/or disposes of hazardous wastes in compliance with all applicable federal and State laws at this location.
University of California Los Angeles	10920 Wilshire Boulevard	This is an off-campus location.
	Material Licensing Tracking S	System
California, University of	10833 Le Conte Avenue	UCLA uses radioactive materials in compliance with all applicable federal and State laws at this location.
	FTTS	
No listing for UCLA		
	State of Local ASTM Suppler	nental
No listing for UCLA		
	Waste Discharge Syster	n
University of California Los Angeles	405 Hilgard Avenue	This is the general address for the UCLA campus, but the entry likely refers to oncampus construction dewatering.
	Haznet Database	
Parsons Energy & Chemicals	721 Charles E. Young Drive South	This is the cogeneration facility, which receives and/or disposes of hazardous materials.
UCLA Medical Center	650 Charles E. Young Drive South	This is the hospital, which receives and/or disposes of hazardous materials
Advanced Elevator (Life Sciences Bldg.)	618 Charles E. Young Drive South	The precise type of hazardous materials received by, or disposed of, at this location is unknown.
UCLA/Environmental Health and Safety	885 Levering Avenue	It is assumed that this entry refers to the previous disposal of asbestos as part of seismic remediation activities.
University of CA Los Angeles Dental	10833 Le Conte Avenue	This is the hospital, which receives and/or disposes of hazardous materials.
Facilities/Rehabilitation Building	1000 Veteran Avenue	This is the rehabilitation building, which receives and/or disposes of hazardous materials.
Note: In September of 1998 Circle	Drive was renamed Charles F Y	oung Drive in recognition of Chancellor Young's

Appendix G

Hydrology Report

HYDROLOGY REPORT FOR UCLA – Campus Housing Infill

Los Angeles, CA

September 29, 2008

Prepared For:

Pfeiffer Partners Architects, Inc.

Prepared By:

14725 Alton Parkway Irvine, CA 92618 (949) 472-3505

Victoria Whitaker, P.E.

Job No. 10-105651

TABLE OF CONTENTS

INTRODUCTION		
Preface		. 3
•		
.,		
Hydrology		
		ç
	onclusions	
Regulatory Requirements		c
Recommendations		12
recommendations		12
LIST OF FIGURES		
Figure 1: Vicinity Map		4
Figure 2: Location Map		
riguro 2. Location map		
APPENDICES		
Appendix A: Hydrology Ca	alculations	1/
	bit – Existing Conditions	
	bit – Proposed Conditionsbit	
Appendix C. Subarea Exfil	DIL - F1000560 COHOILIONS	ا ک.

 $H: \ \ H: \ \ \ Land \ \ \ \ Hydrology. doc$

SECTION 1: INTRODUCTION


A. Preface

The purpose of this report is to study the existing and proposed hydrology for the Northwest Campus Housing Infill project and to determine, what, if any, storm drain improvements are necessary.

B. Project Description

The proposed Northwest Campus Housing Infill project is located within the UCLA campus (see Figures 1& 2). The site is approximately 6.7 acres, and includes undeveloped vegetated areas, buildings, sidewalks, and streets. The project site is bounded to the north by Covel Commons, to the east by Drake Stadium, to the south by De Neve Commons and Gayley Avenue, and to the west by Rieber Hall/Rieber Dining and its associated open space. The project will include four residence halls, and a commons building consisting of student dining, meeting rooms, housing maintenance facilities and a small fitness center.

Figure 1: Vicinity Map

Project Site -

Figure 2: Location Map

C. Existing Conditions

The project site consists primarily of landscaped areas with some concrete pedestrian walks. In addition, the site includes an existing loading dock/service area and a three story building with parking, both of which will be removed as part of this project. Charles Young Drive West and De Neve Drive intersect the project site. The site is located within the Los Angeles County Coastal Watershed and has a Soil Number of 13.

For the purposes of this study, seven subareas have been defined as shown in the Subarea Exhibit – Existing Conditions in Appendix B. Each of these subareas is described below

Subarea One: Lower De Neve

Subarea one is located along Gayley Drive, immediately west of the existing DeNeve Commons complex. It consists primarily of a landscaped area, generally sloping to the street at a grade of approximately three to one. This area sheet flows down the slope to area drains. These drains are connected to the street gutter via curb drains and outlets. The street gutter flows southerly to a catch basin in Gayley Avenue located approximately 1300 feet south of the project site which in turn connects to a 63" storm drain arch within Gayley Avenue. The storm drain has an approximate capacity of 825 CFS.

Subarea Two: Upper De Neve

The Upper DeNeve subarea is located along DeNeve Drive and consists primarily of a parking lot that has recently been converted to basketball courts, a concreted pedestrian sidewalk and the street itself. This area drains into a 3.5' catch basin in DeNeve Drive, which connects to the 24" storm drain pipe also within DeNeve Drive.

Subarea Three: Sproul West

This subarea area is located west of existing Sproul Circle and consists almost entirely of landscape that generally slopes at a grade of three to one to the existing roadway. Also in this area are two concrete pedestrian stairways connecting the lower area of this portion of the campus to the Rieber Precinct above. The area sheet flows into Sproul Circle and drains to a grated inlet within the Circle. This inlet eventually connects to the 24" storm drain in DeNeve Drive.

Subarea Four: Sproul South Complex

Subarea Four consists of a driveway/loading dock, a three story and a one story building to be removed, concrete walks, a stair to Sproul Hall and a landscape buffer along Charles Young Drive. This area generally sheet flows to DeNeve Drive and Charles E. Young Drive West.

Subarea Five: DeNeve Commons

This subarea is primarily landscape, generally sloping at a grade of three to one. In addition it includes concrete pedestrian walks in support of De Neve Commons and a transformer enclosure. This subarea drains into an area drain system that connects to the 42" storm drain pipe in Charles E. Young Drive West.

Subarea Six: De Neve Drive

This subarea is primarily a street with concrete sidewalks and landscape slopes that vary from approximately 10%-30%. This subarea drains southerly to a catch basin within Charles Young E. Drive West, which then connects to a 42" storm drain also within the drive.

Subarea Seven: Charles E. Young Drive West

Subarea Seven is a street (Charles Young E. Drive West) that drains southerly to a catch basin within the street, which then connects to a 42" storm drain also within the drive.

D. Proposed Conditions

The summaries provided below describe the "post project conditions" for each of the subareas.

Subarea One: Lower De Neve

Subarea One will be developed with a residence hall - Lower De Neve, along with supporting pedestrian concrete walks, an access drive with porous pavement, a series of gently sloping concrete/brick ramps and stairs. A portion of the existing slope and landscape will remain. This area will continue to drain to Gayley Avenue utilizing storm drain pipes connecting beneath the sidewalks into existing curb drain outlets.

Subarea Two: Upper De Neve

This subarea will be developed to include Upper De Neve Residence Hall, with supporting concrete pedestrian walks and a service drive. This area will utilize storm drain pipes and curb drain outlets, draining into a 3.5' catch basin in De Neve Drive, which connects to the 24" storm drain pipe within De Neve.

Subarea Three: Sproul West

Subarea Three will be developed to include Sproul West Residence Hall and supporting concrete walks, ramps and stairs, replacing existing stairs up to Rieber Hall. A portion of the existing slope will remain. In addition, a new landscape court will be created along Sproul Circle. This area will both sheet flow into Sproul Circle and drain to a grated inlet within Sproul Circle and be collected via an area drain system connected to the 24" storm drain in De Neve Drive.

Subarea Four: Sproul South Complex

This subarea will be developed to include the Sproul South Complex as well as concrete pedestrian walks, ramps, stairs and a small plaza. This area will connect by storm drain pipe to the 33" storm drain pipe in Charles E. Young Drive West.

Subarea Five: De Neve Commons

Subarea Five will be reduced due to the construction of the Upper De Neve Residence Hall and the Garden Walk. The Garden Walk will replace existing sidewalks in this area with a new concrete pedestrian walk combined with landscape areas. The remaining area will be primarily landscaped and will retain the concrete walks in support of De Neve Commons and the transformer enclosure. This area drains into an area drain system that connects to the 42" storm drain pipe in Charles E. Young Drive West.

Subarea Six: DeNeve Drive

This area will be enlarged to include the area of the Garden Walk. It will remain primarily a street with some new landscaped areas. This subarea drains southerly to a catch basin within Charles Young E. Drive West, which then connects to a 42" storm drain also within the drive.

Subarea Seven: Charles E. Young Drive West

This area will remain street much as it is today and will continue to drain southerly to a catch basin within Charles E. Young Drive West, which connects to the 42" storm drain within the drive.

SECTION TWO: HYDROLOGY

A. Methodology

The hydrology for the Northwest Campus Housing Infill project was calculated using the methodology described in the Los Angeles County Hydrology Manual (dated 2006). The Hydrologic Map for Beverly Hills, excerpted from the Los Angeles County Hydrology Manual, is provided in Appendix B – Map 17 and indicates that the soils over the site are classified as Soil Number 13. The Modified Rational Method was then used to calculate the storm water runoff rates, which is based on the Rational Formula. Design discharges were computed using the computer program "TC Calculator", by LA County Department of Public Works.

Hydrologic calculations were generated to determine the 50-year and 10-year discharges for the project site.

B. Results of Analysis and Conclusions

Results of the hydrology calculations for 50-year, and 10-year storm events are summarized and provided in table form in Appendix A. The analysis assumes changes in surface permeability and the proposed project drainage system of sheet flows and storm drain pipes.

The analysis demonstrates that post construction total peak flows for the project will remain largely unchanged from existing levels. The exception to this is Subarea Two: Upper De Neve which is calculated to have an increase of 2.1 CFS during a 50-year storm event. Included in Appendix A is a calculation for the catch basin capacity of a grated catch basin with 4.2 cfs flow. This illustrates that the street under post project conditions would have a flood depth of 0.29 feet during a 50-year storm event. Given the existing street design of a 6" curb face and a 2% sidewalk, this falls within acceptable City of Los Angeles levels which typically allows for a flood depth of up to 0.60 feet within the street right-of-way.

C. Regulatory Requirements

This hydrology study is being prepared to describe existing and proposed hydrological changes as a result of development of the proposed Northwest Housing Infill Project (NHIP)). In addition, the regulatory requirements as established by the State (California) Water Resources Control Board (SWRCB) for construction related activities and recommended Best Management Practices (BMPs) have also been outlined.

Current Regulatory Framework

Construction of the NHIP will require coverage under the National Pollutant Discharge Elimination System (NPDES) General Construction Permit (General Construction Permit) for storm water discharges associated with construction activities. The General Permit requires all dischargers where construction activity disturbs one acre or more, to develop and implement a Storm Water Pollution Prevention Plan (SWPPP) which specifies erosion and sediment control Best Management Practices (BMPs) that will prevent all construction pollutants from discharging into receiving waters.

Required elements of a SWPPP include: (1) site description addressing the elements and characteristics specific to the site, (2) descriptions of BMPs for erosion and sediment controls, (3) BMPs for construction waste handling and disposal, (4) implementation of approved local plans, (5) proposed post-construction controls, and (6) non-storm water management.

The existing General Construction Permit does not include numeric effluent limitations (NELs) or volumetric discharge restrictions. However, the intent of the SWPPP is to ensure that projects identify BMPs that will focus on erosion and sediment controls, and non-stormwater management to protect downstream receiving waters. Postconstruction BMPs proposed for the project are also noted in the SWPPP.

Pending Draft Regulatory Framework

On March 18, 2008, the SWRCB issued a Preliminary Draft General NPDES Permit for Construction Activities (Draft Permit). Significant changes are proposed in the Draft Permit. Requirements under the Draft Permit include the following:

- A site-specific Numeric Action Levels (NAL) for turbidity and pH shall be calculated prior to submittal of the SWPPP and shall remain the same for the life of the project.
 - The purpose of the NAL and associated monitoring requirements are to provide operational information regarding the performance of the site's measures used to minimize the discharge of pollutants and to protect beneficial uses and receiving waters from construction-related storm water discharges.
 - This will require field testing (i.e., sampling) with a pH range established between 6.5 and 8.5.
- Establishes a threshold for Numeric Effluent Limitations (NELs)
 - Project sites have to employ the traditional Best Available Technology Economically Achievable (BAT)/ Best Conventional Pollutant Control Technology (BCT) standard) and the numeric receiving water limitations for turbidity. The turbidity NEL is 1000 NTUs.¹
 - The pH NEL will require a field test with a pH range established between 6.0 and 9.0.
- Erosion Control
 - This requires specific BMPs that are designed to cover or stabilize disturbed areas (i.e., exposed soils) within a project construction site that are not scheduled for re-disturbance for at least 14 days.
 - Examples of erosion control BMPs include straw mulch, hydroseeding, and geotextiles.
- Runon and Runoff Controls
 - Runon refers to storm waters originating off the project site that have potential to flow across the site and pick up pollutants or sediment.
 - Runoff is stormwater that fall onto the project site and flows offsite.

¹ NTUs: The units of turbidity from a calibrated nephelometer are called Nephelometric Turbidity Units (NTU) and they are used to describe the clarity of water. When water has suspended particulates, these particles reflect light dependent upon properties such as their shape, color, and reflectivity. For this reason (and the reason that heavier particles settle quickly and do not contribute to a turbidity reading), there is a correlation between turbidity and total suspended solids (TSS).

 Runon and Runoff BMPs include such BMPs as sediment basins, fiber rolls, and straw bale barriers.

Sediment Controls

- Sediment control is any practice that traps soil particles after they have been detached and moved by rain or flowing water. Sediment control measures are usually passive (i.e., non-structural) and rely on filtering or settling of particles out of the water.²
- BMPs to control sediment include sediment traps, silt fencing, and storm drain inlet projection.
- Non-Stormwater Management
 - Non-stormwater BMPs include procedures and practices designed to minimize or eliminate discharge of water or pollutants from activities such as vehicle and equipment cleaning, fueling, and dewatering operations.
- New and Redevelopment Storm Water Performance Standards
 - The discharger shall, through the use of BMPs (both non-structural and structural), replicate the pre-project water balance (i.e., the amount of rainfall that ends up as runoff) for the smallest storms up to the 85th percentile storm event (or the smallest storm event that generates runoff, whichever is larger). The discharger shall obtain Regional Water Board staff approval for the use of any structural control measures used to comply with this requirement.
 - For projects whose disturbed project area exceeds two acres, the discharger shall preserve the pre-construction drainage density (miles of stream length per square mile of drainage area) for all drainage areas serving a first order stream or larger stream and ensure that post-project time of runoff concentration is equal or greater than pre-project time of concentration.
- Inspection, Maintenance and Repair of BMPs
- SWPPP Preparation, Implementation, and Oversight
- Rain Event Action Plan (REAP)
 - The discharger shall develop a REAP within 48 hours prior to any likely precipitation event. A likely precipitation event is any weather pattern that is forecasted to have a 50 percent or greater chance of producing precipitation in the project area. The discharger shall obtain printed likely precipitation forecast information from the National Weather Service Forecast Office.

The Draft Permit has not been adopted by the State Water Board at this time, but is anticipated that it may be either as currently written or revised, within the near term.

Development of Project (NHIP) Pursuant to Existing General Construction Permit and the Proposed Draft Permit

For purposes of the proposed project (NHIP), and development of an Environmental Impact Report (EIR) as required by the California Environmental Quality Act (CEQA), it is assumed that the project will comply with the existing General Construction Permit as that is the current enforceable Statewide regulatory requirement applicable to the proposed project. Unless and until the new Draft Permit is adopted, the General Permit

UCLA - Campus Housing Infill

² California Stormwater Quality Association, California Stormwater BMP Construction Handbook, January 2003.

constitutes the governing regulatory requirement for the proposed project. As such, this Hydrology Report will make conclusions and recommendation for BMPs that would be included in the project's SWPPP to satisfy the requirements of the General Permit.

However, it is currently anticipated that the Draft Permit could be adopted in the near term. Therefore, the proposed NHIP would also consider incorporating measures in the project design to meet the requirements of the Draft Permit, should it be subsequently adopted and therefore applicable to the proposed project. This Hydrology Report will discuss the BMPs and project design features that could be incorporated to address the water quality and water balance requirements of the Draft Permit.

Phase II NPDES Permit for Small Non-Traditional MS4s (e.g., Schools and Universities)

As part of Phase II, the State Water Resources Control Board adopted a General Permit for the Discharge of Storm Water from Small MS4s (WQ Order No. 2003-0005-DWQ) to provide permit coverage for smaller municipalities, including non-traditional Small MS4s, which include public campuses. Currently, the UCLA campus is not enrolled under the Phase II MS4 permit program and is not required to implement requirements under this program. The State Board is expected to release a new Phase II MS4 permit which will require the campus to enroll and implement requirements under the new Phase II permit. At the time of the preparation of this Hydrology Report, the State Board has not released the new permit and no recommendations are developed based on an anticipated new permit. It is anticipated that the new permit will include requirements on treatment BMPs and site design requirements.

D. Recommendations

The following recommendations are put forth to mitigate the possibility of erosion associated with the implementation of the Northwest Campus Infill Project.

- 1. On-site flows should be directed to appropriate drainage devices.
- 2. Groundcover should be selected for its ability to minimize erosion
- 3. Off-site drainage should occur in a pipe system.

In addition, to insure against building flooding, on-site grading should be designed to drain away from buildings (Again, it should be noted, that the 50-year storm peak flow is unchanged between existing and proposed conditions, and therefore no increased risk of flooding is anticipated).

Since peak flow for the overall project during a 50-year storm event, will remain unchanged between existing and proposed conditions, the report does not recommend any changes to the existing stormwater drainage systems.

Best Management Practices

Appropriate Best Management Practices (BMP's) will be provided as required by state law. In addition, UCLA is considering the following BMP's to comply with and/or exceed the current General Permit:

Non-Structural BMP's

- Landscape Maintenance
- Catch Basin Stenciling & Clean-out

- Efficient Irrigation Practices
- Litter Control
- Fertilizer Management
- Public Education

Structural BMP's

- Efficient Irrigation
- Permanent Vegetative Controls
- Runoff Minimizing Landscape Design

Treatment Control BMP's

In addition to the BMPs outlined above, the purpose of the following BMP's would be to minimize storm water pollutants of concern. The pollutants of concern for Ballona Creek are Sediment, Bacteria/Viruses, Toxicity, Trash, and Metals.

- Vegetated Swale(s) An open, shallow channel with vegetation covering side slopes and the bottom
- Bioretention Functions as a soil and plant-based filtration device that removes pollutants through a variety of physical, biological, and chemical treatment processes.
- Turf Block A grass area that has a structural component that allows it to be used in drive aisles and parking lots.
- Drain Inserts A manufactured filter placed in a drop inlet to remove sediment and debris.

In particular, UCLA is currently studying the following BMP's that could comply with the draft General Permit, dated March 18, 2008. If implemented, all of the BMPs could be located within the existing areas of the project.

BMPs for Draft Construction Permit

- Vegetated Swales. These strips, if implemented would be approximately 100 feet long and two feet wide at their lowest point, with gently sloping grades to each side. These would be located within landscape areas already defined as part of the project.
- Wet Vault(s). Vaults with a permanent water pool, generally 3 to 5 feet deep, located under sidewalks, roadways or access drives to allow for maintenance access.
- Cisterns or Storage Tanks. The cisterns for volume reduction would have a
 capacity of approximately 0.42 acre-ft. or 137,000 gal. The feasibility of
 incorporating storage tanks into the proposed lower levels of one or more of the
 new residence halls (within existing proposed building footprints) is currently
 being studied.

Appendix A: Hydrology Calculations

Table 1: Summary of Peak Flows for a 50-Year Storm

Area	Existing Condition Peak Flow (cfs)	Proposed Condition Peak Flow (cfs)	Delta (cfs)	
Lower De Neve	4.2	3.9	-0.3	
Upper De Neve	2.2	4.3	2.1	
Sproul West	4.6	4.6	0	
Sproul South/Complex	7.0	7.0	0	
De Neve Commons	6.0	3.6	-2.4	
De Neve Drive	3.1	3.6	0.5	
Charles E. Young Drive West	2.2	2.2	0	
TOTAL	29.2	29.1	-0.1	

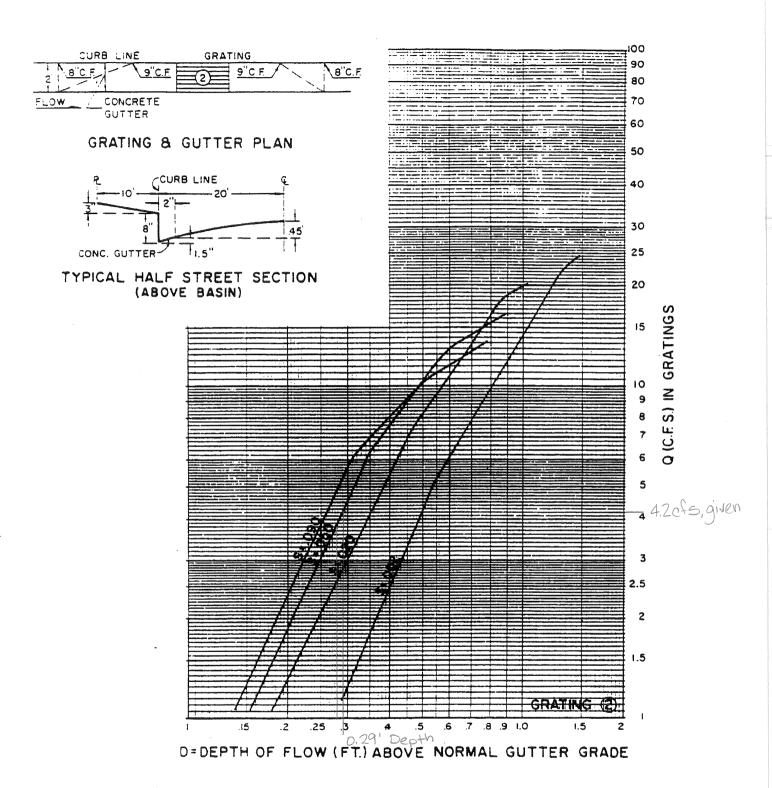
Table 2: Summary of Peak Flows for a 10-Year Storm

Area	Existing Condition Peak Flow (cfs)	Proposed Condition Peak Flow (cfs)	Delta (cfs)	
Lower De Neve	3.0	2.8	-0.2	
Upper De Neve	1.6	3.1	1.5	
Sproul West	3.3	3.3	0	
Sproul South/Complex	5.0	5.0	0	
De Neve Commons	4.3	2.6	-1.7	
De Neve Drive	2.0	2.4	0.4	
Charles E. Young Drive West	1.5	1.5	0	
TOTAL	20.7	20.6	-0.1	

Table 3: Summary of Volumes for a 2-Year Storm

Area	Existing Condition	Proposed Condition	Delta	
Alea	Volume (acre-ft)	Volume (acre-ft)	(acre-ft)	
Lower De Neve	0.04	0.11	0.07	
Upper De Neve	0.11	0.20	0.09	
Sproul West	0.04	0.13	0.09	
Sproul South/Complex	0.20	0.35	0.15	
De Neve Commons	0.07	0.05	-0.02	
De Neve Drive	0.14	0.18	0.04	
Charles E. Young Drive West	0.13	0.13	0	
TOTAL	0.73	1.15	0.42	

Results from TC Calculator - 50 Year Storm Event


Project	Subarea	Area (acres)	%imp	Frequency	Soil Type	Length (ft)	Slope (ft/ft)	Isohyet (in.)	Tc (min.)	Intensity (in./hr)	Cu	Cd	Flow rate (cfs)	Volume (acre-ft)
Lower DeNeve Existing	1a	1.1	0.01	50	13	200	0.290	7.1	5	4.24	0.90	0.90	4.2	0.13
Lower DeNeve Proposed	2a	1.0	0.47	50	13	135	0.290	7.1	5	4.24	0.90	0.90	3.9	0.32
Upper DeNeve Existing	3a	0.6	0.94	50	13	430	0.042	7.1	5	4.24	0.90	0.90	2.2	0.29
Upper DeNeve Proposed	4a	1.1	0.85	50	13	430	0.042	7.1	5	4.24	0.90	0.90	4.3	0.52
Sproul West Existing	5a	1.2	0.01	50	13	120	0.300	7.1	5	4.24	0.90	0.90	4.6	0.15
Sproul West Proposed	6a	1.2	0.47	50	13	120	0.300	7.1	5	4.24	0.90	0.90	4.6	0.38
Sproul South/Complex Existing	7a	1.8	0.47	50	13	170	0.094	7.1	5	4.24	0.90	0.90	7.0	0.57
Sproul South/Complex Proposed	8a	1.8	0.95	50	13	170	0.020	7.1	5	4.24	0.90	0.90	7.0	0.92
DeNeve Commons Existing	9a	1.6	0.10	50	13	190	0.213	7.1	5	4.24	0.90	0.90	6.0	0.25
DeNeve Commons Proposed	10a	0.9	0.15	50	13	60	0.292	7.1	5	4.24	0.90	0.90	3.6	0.17
DeNeve Drive Existing	11a	0.9	0.78	50	13	730	0.060	7.1	6	3.89	0.90	0.90	3.1	0.38
DeNeve Drive Proposed	12a	1.0	0.85	50	13	730	0.060	7.1	6	3.89	0.90	0.90	3.6	0.47
Charles E. Young Drive West Existing	13a	0.7	0.95	50	13	690	0.022	7.1	7	3.62	0.90	0.90	2.2	0.35
Charles E. Young Drive West Proposed	14a	0.7	0.90	50	13	690	0.022	7.1	7	3.62	0.90	0.90	2.2	0.33
TOTAL EXISTING		7.8											29.2	2.12
TOTAL PROPOSED		7.8											29.1	3.11

Results from TC Calculator - 10 Year Storm Event

Project	Subarea	Area	%imp	Frequency	Soil	Length	Slope	Isohyet	Tc	Intensity	Cu	Cd	Flow rate	Volume
		(acres)			Type	(ft)	(ft/ft)	(in.)	(min.)	(in./hr)			(cfs)	(acre-ft)
Lower DeNeve Existing	1a	1.1	0.01	10	13	200	0.290	5.1	5	3.04	0.90	0.90	3.0	0.08
Lower DeNeve Proposed	2a	1.0	0.47	10	13	135	0.290	5.1	5	3.04	0.90	0.90	2.8	0.22
Upper DeNeve Existing	3a	0.6	0.94	10	13	430	0.042	5.1	5	3.04	0.90	0.90	1.6	0.21
Upper DeNeve Proposed	4a	1.1	0.85	10	13	430	0.042	5.1	5	3.04	0.90	0.90	3.1	0.37
Sproul West Existing	5a	1.2	0.01	10	13	120	0.300	5.1	5	3.04	0.90	0.90	3.3	0.09
Sproul West Proposed	6a	1.2	0.47	10	13	120	0.300	5.1	5	3.04	0.90	0.90	3.3	0.26
Sproul South/Complex Existing	7a	1.8	0.47	10	13	170	0.094	5.1	5	3.04	0.90	0.90	5.0	0.40
Sproul South/Complex Proposed	8a	1.8	0.95	10	13	170	0.020	5.1	5	3.04	0.90	0.90	5.0	0.66
DeNeve Commons Existing	9a	1.6	0.10	10	13	190	0.213	5.1	5	3.04	0.90	0.90	4.3	0.16
DeNeve Commons Proposed	10a	0.9	0.15	10	13	60	0.292	5.1	5	3.04	0.90	0.90	2.6	0.11
DeNeve Drive Existing	11a	0.9	0.78	10	13	730	0.060	5.1	7	2.60	0.90	0.90	2.0	0.27
DeNeve Drive Proposed	12a	1.0	0.85	10	13	730	0.060	5.1	7	2.60	0.90	0.90	2.4	0.34
Charles E. Young Drive West Existing	13a	0.7	0.95	10	13	690	0.022	5.1	8	2.44	0.88	0.90	1.5	0.25
Charles E. Young Drive West Proposed	14a	0.7	0.90	10	13	690	0.022	5.1	8	2.44	0.88	0.90	1.5	0.24
TOTAL EXISTING		7.8											20.7	1.46
TOTAL PROPOSED		7.8											20.6	2.20

Results from TC Calculator - 2 Year Storm Event

Project	Subarea	Area	%imp	Frequency	Soil	Length	Slope (ft/ft)	Isohyet	Tc	Intensity	Cu	Cd	Flow rate	Volume
5.11		(acres)	0.04		Туре	(ft)	, ,	(in.)	(min.)	(in./hr)			(cfs)	(acre-ft)
Lower DeNeve Existing	1a	1.1	0.01	2	13	200	0.290	2.7	5	1.61	0.73		1.3	0.04
Lower DeNeve Proposed	2a	1.0	0.47	2	13	135	0.290	2.7	5	1.61	0.73	0.81	1.3	0.11
Upper DeNeve Existing	3a	0.6	0.94	2	13	430	0.042	2.7	9	1.22	0.57	0.88	0.6	0.11
Upper DeNeve Proposed	4a	1.1	0.85	2	13	430	0.042	2.7	9	1.22	0.57	0.85	1.2	0.20
Sproul West Existing	5a	1.2	0.01	2	13	120	0.300	2.7	5	1.61	0.73	0.73	1.4	0.04
Sproul West Proposed	6a	1.2	0.47	2	13	120	0.300	2.7	5	1.61	0.73	0.81	1.6	0.13
Sproul South/Complex Existing	7a	1.8	0.47	2	13	170	0.094	2.7	5	1.61	0.73	0.81	2.4	0.20
Sproul South/Complex Proposed	8a	1.8	0.95	2	13	170	0.020	2.7	5	1.61	0.73	0.89	2.6	0.35
DeNeve Commons Existing	9a	1.6	0.10	2	13	190	0.213	2.7	5	1.61	0.73	0.75	1.9	0.07
DeNeve Commons Proposed	10a	0.9	0.15	2	13	60	0.292	2.7	5	1.61	0.73	0.76	1.2	0.05
DeNeve Drive Existing	11a	0.9	0.78	2	13	730	0.060	2.7	12	1.07	0.50	0.81	8.0	0.14
DeNeve Drive Proposed	12a	1.0	0.85	2	13	730	0.060	2.7	12	1.07	0.50	0.84	0.9	0.18
Charles E. Young Drive West Existing	13a	0.7	0.95	2	13	690	0.022	2.7	13	1.03	0.48	0.88	0.6	0.13
Charles E. Young Drive West Proposed	14a	0.7	0.90	2	13	690	0.022	2.7	13	1.03	0.48	0.86	0.6	0.13
TOTAL EXISTING		7.8											8.9	0.73
TOTAL PROPOSED		7.8											9.4	1.15

Los Angeles County Flood Control Distric

GRATING CAPACITIES
To Be Used For C.B. Nos. 4,587

Appendix B: Subarea Exhibit – Existing Conditions

Appendix C: Subarea Exhibit – Proposed Conditions

Appendix H

Noise Calculations

Model Number: 824

Serial Number: A3007

Firmware Rev: 4.261 Software Version: 3.12

Name: EDAW, Inc.

Descr1: 1420 Kettner Blvd., Ste. 620
Descr2: San Diego, CA 92101

Setup: 1M-1S.ssa

Setup Descr: SLM & RTA 1min-1Sec

Location: MS 1

Note 1: Note 2:

Overall Any Data

Start Time: 11-Jun-08 10:26:01

Elapsed Time: 15:01.6

A Weight C Weight Flat
Leq: 62.0 dBA 75.7 dBC 76.4 dBF
SEL: 91.6 dBA 105.2 dBC 106.0 dBF
Peak: 86.4 dBA 100.5 dBC 100.3 dBF

6/11/2008 10:36 6/11/2008 10:39 6/11/2008 10:39

Lmax (slow): 72.5 dBA 90.2 dBC 90.6 dBF

6/11/2008 10:36 6/11/2008 10:39 6/11/2008 10:39

Lmin (slow): 52.7 dBA 66.2 dBC 67.3 dBF

6/11/2008 10:34 6/11/2008 10:32 6/11/2008 10:32

Lmax (fast): 74.5 dBA 94.0 dBC 94.4 dBF

6/11/2008 10:39 6/11/2008 10:39 6/11/2008 10:39

Lmin (fast): 50.5 dBA 64.7 dBC 65.9 dBF

6/11/2008 10:32 6/11/2008 10:32 6/11/2008 10:32

Lmax (impulse): 75.1 dBA 94.8 dBC 95.2 dBF

6/11/2008 10:39 6/11/2008 10:39 6/11/2008 10:39

Lmin (impulse): 52.3 dBA 66.9 dBC 68.0 dBF

6/11/2008 10:40 6/11/2008 10:32 6/11/2008 10:32

Spectra							
Start Time:		11-Jun-08		Run Time:	15:01.6		
Freq Hz			Leq 1/1 Oct		Max 1/1 Oct		Min 1/1 Oct
	12.5	57.5		63.7		39.2	
	16	59.5	63.9		72.4		46
	20	60.1		71.2		43.4	
	25	62.3		65.2		48.2	
	31.5	64.3	69.7		74.8		53.7
	40	67		73.3		48	
	50	67.4		80.6		51.9	
	63	69	73.8		84		55.6
	80	70.3		78		50.4	
	100	67.1		77		48.1	
	125	64.4	69.6		81.8		50.6
	160	60.9		71.1		42.9	
	200	56.4		64.3		39.1	
	250	54.8	59.7		73.4		43.2
	315	52.9		71.1		37.5	
	400	52.3		76.1		37.9	
	500	52.1	57.3		76.3		43.6
	630	53		60.7		39.9	
	800	53		59.3		41.2	
	1000	52.8	57.5	58.2	63.5		45.8
	1250	52.3		58.6		39.9	
	1600	50.7		57.8		38.3	
	2000	48.9	53.9	57	61.3		41.3
	2500	46.8		54.1		34.3	
	3150	44.2		53.6		31.4	
	4000	42.2	47.1	51.6	56.6		34.2
	5000	39.5		49.3		26.6	
	6300	37.8		50.1		23.3	
	8000	35.5	40.5		53.8		26.5
	10000	32.4		47.7		20	
	12500	31.1		42		19.7	
	16000	27.7	33.7		43.6		25.8
	20000	26.6		31.3		22.3	
Ln Start Level:	15	5 dB					
L 1.00		69.9	dBA				
L 5.00		67.2	dBA				
L 50.00		60.4	dBA				
L 90.00		55.3	dBA				
L 95.00		54.4	dBA				
1 00 00		50 5	ID 4				

53.5 dBA

Model Number: 824

Serial Number: A3007

Firmware Rev: 4.261 Software Version: 3.12

Name: EDAW, Inc.

Descr1: 1420 Kettner Blvd., Ste. 620
Descr2: San Diego, CA 92101

Setup: 1M-1S.ssa

Setup Descr: SLM & RTA 1min-1Sec

Location: MS 2

Note 1:

Note 2:

Overall Any Data

Start Time: 11-Jun-08 11:24:00

Elapsed Time: 15:02.3

A Weight C Weight Flat
Leq: 64.6 dBA 77.6 dBC 78.3 dBF
SEL: 94.2 dBA 107.2 dBC 107.9 dBF
Peak: 89.7 dBA 102.0 dBC 102.4 dBF

6/11/2008 11:26 6/11/2008 11:30 6/11/2008 11:30

Lmax (slow): 76.3 dBA 93.7 dBC 94.3 dBF

6/11/2008 11:33 6/11/2008 11:30 6/11/2008 11:30

Lmin (slow): 51.2 dBA 63.8 dBC 65.3 dBF

6/11/2008 11:27 6/11/2008 11:27 6/11/2008 11:27

Lmax (fast): 80.6 dBA 96.0 dBC 96.5 dBF

6/11/2008 11:33 6/11/2008 11:30 6/11/2008 11:30

Lmin (fast): 50.0 dBA 62.7 dBC 63.9 dBF

6/11/2008 11:27 6/11/2008 11:27 6/11/2008 11:27

Lmax (impulse): 81.8 dBA 96.7 dBC 97.1 dBF

6/11/2008 11:33 6/11/2008 11:30 6/11/2008 11:30

Lmin (impulse): 50.3 dBA 64.8 dBC 66.2 dBF

6/11/2008 11:27 6/11/2008 11:27 6/11/2008 11:24

Spectra							
Start Time:		1-Jun-08		Run Time:	15:02.3		
Freq Hz	Leq 1/3 C		Leq 1/1 Oct	Max 1/3 Oct	Max 1/1 Oct	Min 1/3 Oct	Min 1/1 Oct
	12.5	62	05.0	82.4	00.5	40.4	
	16	60.9	65.8				
	20	60		71.2		42.6	
	25	60.9		66		43.8	
	31.5	65.2	70.3		71.2		
	40	67.9		66		48.8	
	50	66	75.0	67.9		47.9	
	63	73.6	75.9				
	80	70.8		63.3		49	
	100	68.9		66.3		49.2	
	125	66.7	71.7				
	160	63.4		59.4		43.4	
	200	61.7	04.4	59.4		42.6	
	250	59.2	64.4				
	315	56.6		55.3		39.9	
	400	54.5	50	55.5		38.2	
	500	54.3	59				
	630	54		56.9		38.5	
	800	55	50.0	59.7		39.6	
	1000	55.3	59.8				
	1250	54.8		58.2		38.6	
	1600	53.1	50.5	58.1	C4	36.7	
	2000	51.6	56.5				
	2500	50.1		54.3		33.5	
	3150	48.2	54.0	51.6		29.8	
	4000	46.3	51.2				
	5000	43.4		47.6		25.1	
	6300	40.8	40	58		23.4	
	8000	37.3	43				
	10000	34.3		49.9		19.9	
	12500	53.1	50.0	81.6		19.3	
	16000	43.4	53.6				
	20000	31.5		58.4		21.9	1
Ln Start Level:	15 dB						
L 1.00		71.8	dBA				
L 5.00		68.7	dBA				
L 50.00		63.1					
L 90.00		56.8	dBA				
L 95.00		55.4	dBA				
1 00 00		=0.4	ID 4				

53.1 dBA

Model Number: 824

Serial Number: A3007

Firmware Rev: 4.261 Software Version: 3.12

Name: EDAW, Inc.

Descr1: 1420 Kettner Blvd., Ste. 620 Descr2: San Diego, CA 92101

Setup: 1M-1S.ssa

Setup Descr: SLM & RTA 1min-1Sec

Location: MS 3

Note 1:

Note 2:

Overall Any Data

Start Time: 11-Jun-08 11:53:00

Elapsed Time: 15:03.1

A Weight C Weight Flat
Leq: 60.1 dBA 72.7 dBC 73.6 dBF
SEL: 89.7 dBA 102.3 dBC 103.2 dBF
Peak: 88.6 dBA 97.5 dBC 97.0 dBF

6/11/2008 12:06 6/11/2008 12:01 6/11/2008 12:01

Lmax (slow): 72.2 dBA 85.8 dBC 86.3 dBF

6/11/2008 12:01 6/11/2008 12:01 6/11/2008 12:01

Lmin (slow): 45.3 dBA 64.8 dBC 66.5 dBF

6/11/2008 11:59 6/11/2008 11:59 6/11/2008 11:59

Lmax (fast): 74.1 dBA 87.9 dBC 88.7 dBF

6/11/2008 12:01 6/11/2008 12:01 6/11/2008 12:01

Lmin (fast): 44.8 dBA 63.2 dBC 64.3 dBF

6/11/2008 11:59 6/11/2008 11:59 6/11/2008 11:59

Lmax (impulse): 74.6 dBA 89.9 dBC 90.8 dBF

6/11/2008 12:01 6/11/2008 12:01 6/11/2008 12:01

Lmin (impulse): 45.3 dBA 65.5 dBC 66.4 dBF

6/11/2008 11:59 6/11/2008 11:53 6/11/2008 11:53

Spectra							
Start Time:		11-Jun-08	11:53:00	Run Time:	15:03.1		
Freq Hz	Leq	1/3 Oct	Leq 1/1 Oct	Max 1/3 Oct		Min 1/3 Oct	Min 1/1 Oct
•	12.5	56.5	•	61.4		38.1	
	16	59.2	62.7	62.1	66.2	42.6	46.5
	20	57.7		60.8		43	
	25	59		63.2		46.3	
	31.5	60.5	67.3			47.3	52.1
	40	65.4		69.3		48.2	
	50	66.5		72.9		51.7	
	63	66.1	70.9	76.1	78.1	52.5	56.1
	80	65.6		66.9		49.3	
	100	63.8		82.5		48.5	
	125	59.5	65.8	59.7	82.5	46	51
	160	57.3		60.3		41.7	
	200	57.7		69.5		39	
	250	52.6	59.6	61.1	71	36.3	41.6
	315	51.5		63.6		33.7	
	400	50.4		63.2		32.9	
	500	49.7	55.2	62.5	69.8	33.2	38.1
	630	51.2		67.6		33.7	
	800	52		68.6		32.1	
	1000	51.4	56.3	64.7	70.5	32.3	36.8
	1250	51.1		60.4		31.7	
	1600	49.3		60.4		30.6	
	2000	46.7	51.9			29.8	34.4
	2500	43.9		52.4		28.1	
	3150	41.6		47.4		25.1	
	4000	38.8	44.3	41.9	49.1	23	28.1
	5000	36.9		40		20.7	
	6300	35.1		40.2		18.9	
	8000	32.6	37.8			18.5	23.5
	10000	30		32.1		18.9	
	12500	27.3		29.7		19.1	
	16000	25.5	35	30.7	33.7	20.2	25.4
	20000	33.5		24.1		22	
Ln Start Level:	15 d	R					
L 1.00	13 u	68.8	dΒΔ				
L 5.00		65.5					
L 50.00		57.7					
L 90.00		50.7					
L 95.00		49.7					
L 99.00		47.5					
2 00.00		47.0	45 , (

Model Number: 824

Serial Number: A3007

Firmware Rev: 4.261 Software Version: 3.12

Name: EDAW, Inc.

Descr1: 1420 Kettner Blvd., Ste. 620 Descr2: San Diego, CA 92101

Setup: 1M-1S.ssa

Setup Descr: SLM & RTA 1min-1Sec

Location: MS 4

Note 1: Note 2:

Overall Any Data

Start Time: 11-Jun-08 12:19:00

Elapsed Time: 15:02.3

A Weight C Weight Flat
Leq: 60.0 dBA 75.8 dBC 77.2 dBF
SEL: 89.5 dBA 105.4 dBC 106.7 dBF
Peak: 92.4 dBA 96.9 dBC 97.4 dBF

6/11/2008 12:27 6/11/2008 12:23 6/11/2008 12:23

Lmax (slow): 73.1 dBA 86.6 dBC 87.2 dBF

6/11/2008 12:23 6/11/2008 12:23 6/11/2008 12:23

Lmin (slow): 46.1 dBA 62.2 dBC 64.1 dBF

6/11/2008 12:19 6/11/2008 12:21 6/11/2008 12:21

Lmax (fast): 76.1 dBA 88.2 dBC 88.8 dBF

6/11/2008 12:23 6/11/2008 12:23 6/11/2008 12:23

Lmin (fast): 45.7 dBA 60.4 dBC 62.4 dBF

6/11/2008 12:19 6/11/2008 12:21 6/11/2008 12:21

Lmax (impulse): 77.0 dBA 89.6 dBC 90.6 dBF

6/11/2008 12:23 6/11/2008 12:34 6/11/2008 12:34

Lmin (impulse): 45.8 dBA 63.1 dBC 65.4 dBF

6/11/2008 12:19 6/11/2008 12:21 6/11/2008 12:21

Spectra Start Time:		11-Jun-08	12:19:00	Run Time:	15:02.3		
Freq Hz	Lea 1		Leq 1/1 Oct	Max 1/3 Oct	Max 1/1 Oct		Min 1/1 Oct
- 1	12.5	64		61.8		38.3	
	16	63	67.7			40.1	44.6
	20	61.6		61.9		40.7	
	25	67.7		70.9		45.3	
	31.5	66.5	72.8	68.6	76.6	49	52.4
	40	69.3		74.2		47.8	
	50	71.6		78.6		48.1	
	63	68.8	74.3	79.4	84.9	48.3	52.8
	80	66.9		81.8		47.6	
	100	64.9		82.7		45.8	
	125	61.8	67.1	80.4	85.3	43.4	48.5
	160	57		76.2		40.4	
	200	55.8		72.8		38.6	
	250	56	59.7				43.1
	315	51.9		60.4		38	
	400	50.3		57.5		35.8	
	500	49.8	55.2	64.7	68.7	36	40.7
	630	51.1		66		35.9	
	800	50.8		67.4		35.4	
	1000	50.9	55.4			34.7	39.3
	1250	50.2		64.1		33.3	
	1600	48.1		63.6		30.3	
	2000	46.2	51.1	62.3		28.4	33.4
	2500	43.8		60		26.4	
	3150	41.9		58.9		24.7	
	4000	40.1	45.1	57			27.7
	5000	38.1		55		20.4	
	6300	37		54.4		19	
	8000	35	39.8		56.2	18.7	23.7
	10000	31.6		45.1		19	
	12500	29		40.6		19.4	
	16000	25.5	31.4		41.9	20.7	
	20000	23.9		30.1		22.2	
Ln Start Level:	15 dE	3					
L 1.00		68.5	dBA				
L 5.00		64.6	dBA				
L 50.00		57.8	dBA				
L 90.00		50.1	dBA				
L 95.00		48.3	dBA				
1 00 00		16 0	4D V				

46.8 dBA

Model Number: 824

Serial Number: A3007

Firmware Rev: 4.261
Software Version: 3.12

Name: EDAW, Inc.

Descr1: 1420 Kettner Blvd., Ste. 620

Descr2: San Diego, CA 92101

Setup: 1M-1S.ssa

Setup Descr: SLM & RTA 1min-1Sec

Location: MS 5

Note 1: Note 2:

Overall Any Data

Start Time: 11-Jun-08 13:11:01

Elapsed Time: 15:09.6

A Weight C Weight Flat
Leq: 63.9 dBA 79.5 dBC 80.4 dBF
SEL: 93.5 dBA 109.1 dBC 110.0 dBF
Peak: 93.4 dBA 104.7 dBC 104.7 dBF

6/11/2008 13:20 6/11/2008 13:23 6/11/2008 13:23

Lmax (slow): 78.0 dBA 95.7 dBC 96.2 dBF

6/11/2008 13:23 6/11/2008 13:23 6/11/2008 13:23

Lmin (slow): 55.4 dBA 68.7 dBC 70.5 dBF

6/11/2008 13:12 6/11/2008 13:19 6/11/2008 13:19

Lmax (fast): 81.3 dBA 97.5 dBC 97.9 dBF

6/11/2008 13:20 6/11/2008 13:23 6/11/2008 13:23

Lmin (fast): 54.4 dBA 67.3 dBC 68.9 dBF

6/11/2008 13:19 6/11/2008 13:19 6/11/2008 13:12

Lmax (impulse): 82.0 dBA 98.2 dBC 98.6 dBF

6/11/2008 13:20 6/11/2008 13:23 6/11/2008 13:23

Lmin (impulse): 54.8 dBA 69.7 dBC 71.9 dBF

6/11/2008 13:19 6/11/2008 13:19 6/11/2008 13:19

Spectra						
Start Time:	11-Jun-08		Run Time:	15:09.6		
•		Leq 1/1 Oct		Max 1/1 Oct		Min 1/1 Oct
12.5	63.7		71.1		43.5	
16	64.4	68.6	67.4	73.8	47.8	
20	63.4		67.5		47.4	
25	67		69.9		48.9	
31.5	69.2	74.2	68.2	82	53.8	57.2
40	71.1		81.5		53.1	
50	72.1		78.5		54	
63	74.8	78.3	77.8	97.6	55	
80	73.1		97.5		52.5	
100	69.7		71.7		50	
125	66.7	72	73.4	88.2	49.7	
160	62.5		88		47.4	
200	59.1		68.5		45.3	
250	58.4	62.7	71.3	74.5	44.6	49.4
315	55.7		68.8		43.7	
400	55.4		71.3		44	
500	55.7	60	70.5	74.4	43.1	48.5
630	54.5		64.3		44.1	
800	54.4		64.4		44.8	
1000	54.1	58.6	63.5	68.3	44.4	49.1
1250	52.7		62.3		43.8	
1600	51.7		61.9		41.5	
2000	49.8	54.9	59.8	65.1	39.3	44.5
2500	48		58.6		37.2	
3150	46.9		57.1		34.8	
4000	45.5	50.3	55.9	60.9	31.8	37.1
5000	43.6		55.3		28.1	
6300	41.6		52.3		24.9	
8000	42.4	46.1	49.2	54.7	22.9	28
10000	39.4		46.4		21	
12500	36.7		42.8		20.1	
16000	34.4	39.4	37.1	44.1	20.7	25.8
20000	30.9		31		22.1	

Ln Start Level:	15 dB
L 1.00	73.8 dBA
L 5.00	69.6 dBA
L 50.00	60.2 dBA
L 90.00	57.2 dBA
L 95.00	56.7 dBA
L 99.00	55.8 dBA

Model Number: 824

Serial Number: A3007

Firmware Rev: 4.261 Software Version: 3.12

Name: EDAW, Inc.

Descr1: 1420 Kettner Blvd., Ste. 620
Descr2: San Diego, CA 92101

Setup: 1M-1S.ssa

Setup Descr: SLM & RTA 1min-1Sec

Location: MS 6

Note 1: Note 2:

Overall Any Data

Start Time: 11-Jun-08 15:38:06

Elapsed Time: 15:03.8

A Weight C Weight Flat
Leq: 58.1 dBA 70.3 dBC 71.4 dBF
SEL: 87.7 dBA 99.9 dBC 101.0 dBF
Peak: 85.4 dBA 94.8 dBC 94.8 dBF

6/11/2008 15:45 6/11/2008 15:45 6/11/2008 15:45

Lmax (slow): 71.2 dBA 83.0 dBC 83.2 dBF

6/11/2008 15:38 6/11/2008 15:45 6/11/2008 15:45

Lmin (slow): 54.0 dBA 65.3 dBC 66.6 dBF

6/11/2008 15:41 6/11/2008 15:43 6/11/2008 15:43

Lmax (fast): 72.3 dBA 85.9 dBC 86.2 dBF

6/11/2008 15:38 6/11/2008 15:45 6/11/2008 15:45

Lmin (fast): 53.5 dBA 63.8 dBC 65.2 dBF

6/11/2008 15:43 6/11/2008 15:41 6/11/2008 15:41

Lmax (impulse): 72.9 dBA 87.1 dBC 87.5 dBF

6/11/2008 15:38 6/11/2008 15:45 6/11/2008 15:45

Lmin (impulse): 53.9 dBA 65.9 dBC 67.5 dBF

6/11/2008 15:41 6/11/2008 15:43 6/11/2008 15:43

Spectra							
Start Time:		11-Jun-08	15:38:06	Run Time:	15:03.8		
Freq Hz	Leq 1/3	3 Oct	Leq 1/1 Oct		Max 1/1 Oct	Min 1/3 Oct	Min 1/1 Oct
	12.5	54.8		58.6		39.5	
	16	56.1	61	60.6	64.9	42	46.9
	20	57.4		60.9		43.8	
	25	59		67.3		44.4	
	31.5	63.8	67.5	66.6	72.5	47.5	52.9
	40	63.9		69		50.5	
	50	62.7		67.2		52.4	
	63	62.5	67.1	66.6	72.9	50.6	55.6
	80	61.6		69.9		48.6	
	100	60.8		65.1		47.1	
	125	57.2	63.4	68.4	71.6	44.5	50.1
	160	56.6		66.2		43.7	
	200	54		69		45.5	
	250	52.6	57.5		74.8		49.4
	315	51.2		69.2		43.7	
	400	50.7		65.7		42.6	
	500	49.9	54.9	62.9	69.3	43.1	47.7
	630	49.7		64.5		43.2	
	800	50		61.3		43.5	
	1000	49.9	54.2	61.2	65.7	44.5	48.2
	1250	48.1		60.1		42.1	
	1600	45.8		58.3		40.4	
	2000	43.4	48.6	56.8	62	38.6	43.4
	2500	41.2		56.5		35.7	
	3150	39.1		55.5		32.9	
	4000	37	41.9	55.2	59.2	29.5	35.2
	5000	33.9		51.7		26.5	
	6300	32.2		52		23	
	8000	31	35.6	50.5	55.3	20.5	25.9
	10000	28.6		48.4		19	
	12500	26.4		45.9		18.7	
	16000	24.3	29.7	42.3	47.7	20	25
	20000	23.4		34.4		21.6	
Ln Start Level:	15 dB						
L 1.00		67.8					
L 5.00		61.6					
L 50.00		56.3					
L 90.00			dBA				
L 95.00		54.7					
L 99.00		54.3	ara				

Model Number: 824

Serial Number: A3007

Firmware Rev: 4.261 Software Version: 3.12

Name: EDAW, Inc.

Descr1: 1420 Kettner Blvd., Ste. 620
Descr2: San Diego, CA 92101

Setup: 1M-1S.ssa

Setup Descr: SLM & RTA 1min-1Sec

Location: MS 7

Note 1: Note 2:

Overall Any Data

Start Time: 11-Jun-08 14:25:11

Elapsed Time: 15:03.3

A Weight C Weight Flat
Leq: 66.3 dBA 78.1 dBC 79.1 dBF
SEL: 95.8 dBA 107.6 dBC 108.7 dBF
Peak: 93.3 dBA 103.0 dBC 103.2 dBF

6/11/2008 14:36 6/11/2008 14:31 6/11/2008 14:31

Lmax (slow): 80.3 dBA 92.9 dBC 93.4 dBF

6/11/2008 14:31 6/11/2008 14:31 6/11/2008 14:31

Lmin (slow): 55.4 dBA 69.3 dBC 71.0 dBF

6/11/2008 14:38 6/11/2008 14:26 6/11/2008 14:26

Lmax (fast): 82.1 dBA 95.0 dBC 95.6 dBF

6/11/2008 14:31 6/11/2008 14:31 6/11/2008 14:31

Lmin (fast): 54.4 dBA 68.0 dBC 69.7 dBF

6/11/2008 14:38 6/11/2008 14:38 6/11/2008 14:26

Lmax (impulse): 82.7 dBA 95.8 dBC 96.5 dBF

6/11/2008 14:31 6/11/2008 14:31 6/11/2008 14:31

Lmin (impulse): 54.7 dBA 70.4 dBC 72.0 dBF

6/11/2008 14:38 6/11/2008 14:36 6/11/2008 14:26

Spectra							
Start Time:		11-Jun-08		Run Time:	15:03.3		N: 4/4 O 4
Freq Hz			Leq 1/1 Oct		Max 1/1 Oct		Min 1/1 Oct
	12.5 16	61.8 64.1	69.7	62.8 69.8	74.7	40.7 47.4	54
	20	67.2		72.6	74.7	52.6	54
	25	68.5		77.2		54.7	
	31.5	67.1	73.7		92.4		58.3
	40	70.6		91.1	32.4	53.6	30.3
	50	72.9		93		55	
	63	70.3	75.6		95.4	53	58.3
	80	67.6		79.4	00.1	52	00.0
	100	68.8		86.2		51	
	125	67			89.2	51.2	55.6
	160	63.4		75.6		50.1	
	200	60.3		76.4		48	
	250	61.4			84.2	47.4	51.8
	315	59.5		76		45.1	
	400	57.3		73.4		43.8	
	500	57.4	61.9	77.5	79.9	43.7	48.2
	630	56.8		73.1		42.7	
	800	57.5		73.4		43.3	
	1000	57.9	62.1		76.6	44.2	48.5
	1250	56.5		68.4		43.5	
	1600	55.4		65.2		41.9	
	2000	53.1	58.3		69.1	41	45.8
	2500	51		63.6		40	
	3150	48.9		61.6		37.6	
	4000	47.1	52		64.8	36.6	41
	5000	44.6		58.4		33.4	
	6300	42.4		55.4		30	
	8000	40.6			58.5	25.9	31.8
	10000	37.3		49.6		21.4	
	12500	34.4		44	45.5	20.1	05.0
	16000	33.6	38		45.5	20.9	25.9
	20000	31		33.2		22.2	
Ln Start Level:		15 dB					
L 1.00			dBA				
L 5.00			dBA				
L 50.00		64.9					
L 90.00		60.6	dBA				
1 05 00		F0 0	ID A				

58.9 dBA

56.7 dBA

L 95.00

Model Number: 824

Serial Number: A3007

Firmware Rev: 4.261 Software Version: 3.12

Name: EDAW, Inc.

Descr1: 1420 Kettner Blvd., Ste. 620
Descr2: San Diego, CA 92101

Setup: 1M-1S.ssa

Setup Descr: SLM & RTA 1min-1Sec

Location: MS 8

Note 1:

Note 2:

Overall Any Data

Start Time: 11-Jun-08 10:00:01

Elapsed Time: 15:00.8

A Weight C Weight Flat
Leq: 54.1 dBA 67.6 dBC 68.6 dBF
SEL: 83.7 dBA 97.1 dBC 98.2 dBF
Peak: 90.5 dBA 95.3 dBC 96.2 dBF

6/11/2008 10:05 6/11/2008 10:04 6/11/2008 10:04

Lmax (slow): 69.6 dBA 85.7 dBC 86.3 dBF

6/11/2008 10:04 6/11/2008 10:04 6/11/2008 10:04

Lmin (slow): 46.9 dBA 59.9 dBC 61.7 dBF

6/11/2008 10:02 6/11/2008 10:07 6/11/2008 10:06

Lmax (fast): 71.3 dBA 89.5 dBC 90.0 dBF

6/11/2008 10:04 6/11/2008 10:04 6/11/2008 10:04

Lmin (fast): 46.5 dBA 58.3 dBC 59.8 dBF

6/11/2008 10:01 6/11/2008 10:07 6/11/2008 10:06

Lmax (impulse): 73.6 dBA 90.9 dBC 91.3 dBF

6/11/2008 10:05 6/11/2008 10:04 6/11/2008 10:04

Lmin (impulse): 46.8 dBA 61.2 dBC 62.6 dBF

6/11/2008 10:02 6/11/2008 10:02 6/11/2008 10:06

Spectra Start Time:		11-Jun-08	10:00:01	Run Time:	15:00.8		
Freq Hz	Lea 1		Leq 1/1 Oct	Max 1/3 Oct	Max 1/1 Oct	Min 1/3 Oct	Min 1/1 Oct
1104112	12.5	57	204 171 001	64.7		36.5	
	16	55.4	60.7				
	20	55.1		64.1		37.5	
	25	55.6		61.1		39.4	
	31.5	55.6	61.2		72.4		
	40	57.8		70.2		43.6	
	50	58.8		70.5		45.4	
	63	61.8	65.9			46.9	50.6
	80	62		84.7		44.9	
	100	59.4		78.1		42.8	
	125	54.6	61	71.4	79.5	41.2	46.1
	160	50.1		70.2		39.1	
	200	48.1		70.8		37.2	
	250	47.2	52				
	315	46.1		67.6		35.4	
	400	44.5		64.8		34.6	
	500	44.5	49.4			36	
	630	44.9		62.4		35.9	
	800	45.5		61.5		37	
	1000	45.7	50.1	60.5			
	1250	44.6		59.4		34.4	
	1600	42.8		57.8		31.3	
	2000	40.1	45.6			28.6	
	2500	38.2		55.2		26.7	
	3150	36.2		54.3		24.3	
	4000	33.9	39.2				
	5000	32.2		52		20.1	
	6300	31.1		52.7		19.2	
	8000	30.2	35.1				
	10000	29.7		54.6		18.5	
	12500	28.3		53.5		18.6	
	16000	27.1	31.6				
	20000	24.3		46.8		21.4	
Ln Start Level:	15 dE	3					
L 1.00		62.9					
L 5.00		57	dBA				
L 50.00		52.2					
L 90.00		48.9					
L 95.00		48.4					
1 00 00		47.2	4D V				

47.2 dBA

Model Number: 824

Serial Number: A3007

Firmware Rev: 4.261 Software Version: 3.12

Name: EDAW, Inc.

Descr1: 1420 Kettner Blvd., Ste. 620
Descr2: San Diego, CA 92101

Setup: 1M-1S.ssa

Setup Descr: SLM & RTA 1min-1Sec

Location: MS 9

Note 1: Note 2:

Overall Any Data

Start Time: 11-Jun-08 14:56:00

Elapsed Time: 15:02.7

A Weight C Weight Flat
Leq: 60.0 dBA 74.5 dBC 75.6 dBF
SEL: 89.5 dBA 104.0 dBC 105.2 dBF
Peak: 93.9 dBA 97.8 dBC 99.1 dBF

6/11/2008 14:57 6/11/2008 15:02 6/11/2008 15:02

Lmax (slow): 77.1 dBA 88.6 dBC 89.8 dBF

6/11/2008 14:57 6/11/2008 15:02 6/11/2008 15:02

Lmin (slow): 48.2 dBA 66.9 dBC 68.3 dBF

6/11/2008 15:00 6/11/2008 14:58 6/11/2008 14:58

Lmax (fast): 79.6 dBA 90.3 dBC 91.5 dBF

6/11/2008 14:57 6/11/2008 15:02 6/11/2008 15:02

Lmin (fast): 47.5 dBA 64.9 dBC 66.1 dBF

6/11/2008 14:58 6/11/2008 14:58 6/11/2008 14:58

Lmax (impulse): 80.6 dBA 91.5 dBC 92.6 dBF

6/11/2008 14:57 6/11/2008 15:02 6/11/2008 15:02

Lmin (impulse): 47.8 dBA 68.2 dBC 69.6 dBF

6/11/2008 14:58 6/11/2008 14:56 6/11/2008 14:56

Spectra Start Time:		11-Jun-08	14:56:00	Run Time:	15:02.7		
Freq Hz	Leq 1/3		Leq 1/1 Oct	Max 1/3 Oct	Max 1/1 Oct	Min 1/3 Oct	Min 1/1 Oct
•	12.5	59.1	•	60		39	
	16	59.3	65.1	61.9	81.3	33.9	42.9
	20	61.9		81.2		39.5	
	25	61.1		67.5		44.7	
	31.5	64.2	70.5	69	78.6	46.1	51.9
	40	68.7		77.7		49.3	
	50	72.3		70		51.8	
	63	64.8	73.4	72.7	75.4	46.4	53.9
	80	63		67.7		47.1	
	100	61.4		65.2		46.6	
	125	58.6	64.3		80.1	43	
	160	57.9		77.6		37.5	
	200	51.8		68.9		36.5	
	250	52.6	56.7		73.2		
	315	51.2		67.8		35.7	
	400	50.8		70.1		34.9	
	500	50.2	55.3		73.9		
	630	50.5		68.6		34.9	
	800	51.5		71.1		36.2	
	1000	51.6	56.2		74.4		
	1250	51.3		68.2		35	
	1600	48.6		67		32.9	
	2000	46.9	51.8		71.5		
	2500	44.8		66		29.8	
	3150	42.6	45.4	60.8		27.4	
	4000	40	45.4		62.7		
	5000	38.3		51		22.9	
	6300	37.6	44.0	46.4		21.4	
	8000	37.5	41.9				25.2
	10000 12500	36 34		33.4 23.1		19.4 19.3	
	16000	32.4	38.9		27.9		
	20000	35.4	30.9	23.8		21.9	
	20000	33.4		23.0		21.9	
Ln Start Level:	15 dB						
L 1.00		71.4					
L 5.00		63.5					
L 50.00			dBA				
L 90.00			dBA				
L 95.00		50.5					
1 00 00		40	AD V				

49 dBA

Model Number: 824

Serial Number: A3007

Firmware Rev: 4.261
Software Version: 3.12

Name: EDAW, Inc.

Descr1: 1420 Kettner Blvd., Ste. 620

Descr2: San Diego, CA 92101 Setup: 1M-1S.ssa

Setup Descr: SLM & RTA 1min-1Sec

Location: MS 10

Location: MS Note 1:

Note 2:

Overall Any Data

Start Time: 11-Jun-08 13:46:01

Elapsed Time: 15:05.1

A Weight C Weight Flat
Leq: 64.5 dBA 78.8 dBC 79.7 dBF
SEL: 94.1 dBA 108.4 dBC 109.3 dBF
Peak: 95.1 dBA 106.1 dBC 106.5 dBF

6/11/2008 13:49 6/11/2008 13:50 6/11/2008 13:50

Lmax (slow): 79.9 dBA 97.1 dBC 97.5 dBF

6/11/2008 13:58 6/11/2008 13:50 6/11/2008 13:50

Lmin (slow): 53.6 dBA 69.5 dBC 71.1 dBF

6/11/2008 13:53 6/11/2008 13:56 6/11/2008 13:55

Lmax (fast): 82.8 dBA 100.4 dBC 100.7 dBF

6/11/2008 13:58 6/11/2008 13:50 6/11/2008 13:50

Lmin (fast): 53.1 dBA 68.0 dBC 69.9 dBF

6/11/2008 13:53 6/11/2008 14:00 6/11/2008 13:54

Lmax (impulse): 83.7 dBA 101.0 dBC 101.4 dBF

6/11/2008 13:58 6/11/2008 13:50 6/11/2008 13:50

Lmin (impulse): 53.4 dBA 70.4 dBC 72.5 dBF

6/11/2008 13:53 6/11/2008 14:00 6/11/2008 13:55

Spectra							
Start Time:		11-Jun-08	13:46:01	Run Time:	15:05.1		
Freq Hz	Le	eq 1/3 Oct	Leq 1/1 Oct		Max 1/1 Oct	Min 1/3 Oct	Min 1/1 Oct
	12.5	63.9		68		45.8	
	16	62.8	68	63.6	72.1	46.5	51.8
	20	63		68.8		48.3	
	25	66.7		73.8		48.4	
	31.5	69.1	73.9	77.7	83	53.9	57.2
	40	70.6		80.6		53.1	
	50	70.1		78.5		54.5	
	63	72.2	77	72.2	80.7	54.3	58.9
	80	73.6		74.7		53.5	
	100	69.6		70.9		53.4	
	125	67.3	72.1	89.7	89.8	50	55.9
	160	62.8		66.4		48.2	
	200	58.8		66.7		45.5	
	250	56.9	62.1	70	74.3	44.8	49.5
	315	55.9		70.8		43.6	
	400	58		84.8		42.5	
	500	55.8	61.3	66.2	84.9	42.9	47.3
	630	55.3		66		42.1	
	800	55.4		74.6		43	
	1000	55.2	59.6	69.1	75.9	42.1	46.8
	1250	53.6		62.1		40.8	
	1600	51.9		58.9		38.8	
	2000	50.6	55.5	56.6	61.9	36.3	41.8
	2500	49.2		54.8		35.1	
	3150	47.2		52.2		33.4	
	4000	45.1	50.4	50.8	55.4	32.9	37.1
	5000	44.1		47.7		29.9	
	6300	43.2		45.3		26.6	
	8000	41.4	46.4	44.4	48.8	22.9	28.9
	10000	39.7		41.4		20.8	
	12500	41.1		37.7		19.6	
	16000	37.3	45.5	33.6	39.5	20.7	25.7
	20000	42.4		29.1		22.1	
Ln Start Level:	15	5 dB					
L 1.00			dBA				
L 5.00			dBA				
L 50.00		61.8					
L 90.00		56.9					
L 95.00			dBA				
L 99.00		54.5	dBA				

Model Number: 824

Serial Number: A3007

Firmware Rev: 4.261 Software Version: 3.12

Name: EDAW, Inc.

Descr1: 1420 Kettner Blvd., Ste. 620 Descr2: San Diego, CA 92101

Setup: 1M-1S.ssa

Setup Descr: SLM & RTA 1min-1Sec

Location: MS 11

Note 1: Note 2:

Overall Any Data

Start Time: 11-Jun-08 12:44:00

Elapsed Time: 15:03.6

A Weight C Weight Flat
Leq: 69.7 dBA 82.3 dBC 83.0 dBF
SEL: 99.3 dBA 111.9 dBC 112.6 dBF
Peak: 97.6 dBA 103.9 dBC 105.1 dBF

6/11/2008 12:50 6/11/2008 12:51 6/11/2008 12:50

Lmax (slow): 80.6 dBA 95.1 dBC 95.6 dBF

6/11/2008 12:50 6/11/2008 12:54 6/11/2008 12:54

Lmin (slow): 54.0 dBA 68.7 dBC 70.1 dBF

6/11/2008 12:46 6/11/2008 12:46 6/11/2008 12:46

Lmax (fast): 82.7 dBA 97.9 dBC 98.5 dBF

6/11/2008 12:50 6/11/2008 12:54 6/11/2008 12:54

Lmin (fast): 53.2 dBA 66.5 dBC 67.9 dBF

6/11/2008 12:46 6/11/2008 12:46 6/11/2008 12:46

Lmax (impulse): 83.5 dBA 98.8 dBC 99.3 dBF

6/11/2008 12:50 6/11/2008 12:54 6/11/2008 12:54

Lmin (impulse): 53.9 dBA 69.5 dBC 70.9 dBF

6/11/2008 12:46 6/11/2008 12:46 6/11/2008 12:46

Spectra							
Start Time:		11-Jun-08	12:44:00	Run Time:	15:03.6		
Freq Hz	Leq 1/3	3 Oct	Leq 1/1 Oct	Max 1/3 Oct	Max 1/1 Oct	Min 1/3 Oct	Min 1/1 Oct
	12.5	66.5		73.3		42.5	
	16	67	71	71.8	77.5	45.1	49.9
	20	64.9		73		46.8	
	25	65.6		78.5		48.4	
	31.5	66.5	73.9	83.5	88.1	45.8	56
	40	72.1		85.5		54.7	
	50	74.8		74.6		52.5	
	63	77.7	80.7	96.5	96.8	54.9	57.7
	80	74.7		84.3		50	
	100	74.5		89.8		50	
	125	70.8	76.4	84.1	91	48	52.8
	160	64.9		77.4		44.5	
	200	62.7		74.1		45.1	
	250	64.4	67.9	83.4	84.2	46	50.1
	315	61.8		73.1		44.8	
	400	60.3		71.6		44.5	
	500	61.5	65.7			44.6	49.1
	630	60.8		72.2		44	
	800	61		72.5		44.3	
	1000	60.9	65.4	73	77	43.5	48.1
	1250	59.8		70.8		41.8	
	1600	58.3		68.6		38.6	
	2000	56.6	61.7	66.9	72.3	36.6	41.7
	2500	55.2		67		34.7	
	3150	52.3		64.1		32.4	
	4000	50.1	55.2	61.4	66.9	30.4	35.3
	5000	47.7		59.7		27.7	
	6300	45.7		56.8		25.4	
	8000	45.2	49.2	54.4	59.5	22.3	28
	10000	41.1		51.6		20.6	
	12500	42.6		53		20	
	16000	37	43.8	44	53.7	20.9	25.9
	20000	29.8		38.7		22.2	
Ln Start Level:	15 dB						
L 1.00			dBA				
L 5.00		75.8					
L 50.00		66.8					
L 90.00		60.3					
L 95.00		57.8					
L 99.00		55	dBA				

Model Number: 824

Serial Number: A3007

Firmware Rev: 4.261
Software Version: 3.12

Name: EDAW, Inc.

Descr1: 1420 Kettner Blvd., Ste. 620

Descr2: San Diego, CA 92101

Setup: 1M-1S.ssa

Setup Descr: SLM & RTA 1min-1Sec

Location: MS 12

Note 1: Note 2:

Overall Any Data

Start Time: 11-Jun-08 10:57:00

Elapsed Time: 15:02.6

A Weight C Weight Flat
Leq: 68.2 dBA 76.8 dBC 77.7 dBF
SEL: 97.7 dBA 106.3 dBC 107.3 dBF
Peak: 102.7 dBA 101.1 dBC 101.5 dBF

6/11/2008 11:02 6/11/2008 11:02 6/11/2008 11:02

Lmax (slow): 80.5 dBA 88.3 dBC 88.7 dBF

6/11/2008 11:02 6/11/2008 10:58 6/11/2008 10:58

Lmin (slow): 51.8 dBA 65.5 dBC 67.0 dBF

6/11/2008 10:58 6/11/2008 11:02 6/11/2008 10:58

Lmax (fast): 88.6 dBA 90.4 dBC 90.9 dBF

6/11/2008 11:02 6/11/2008 10:58 6/11/2008 10:58

Lmin (fast): 50.5 dBA 64.5 dBC 65.5 dBF

6/11/2008 10:58 6/11/2008 10:58 6/11/2008 10:58

Lmax (impulse): 91.8 dBA 91.6 dBC 91.9 dBF

6/11/2008 11:02 6/11/2008 11:08 6/11/2008 11:08

Lmin (impulse): 51.0 dBA 66.4 dBC 68.1 dBF

6/11/2008 10:58 6/11/2008 11:02 6/11/2008 10:58

Spectra							
Start Time:		11-Jun-08		Run Time:	15:02.6		
Freq Hz	Leq 1/		Leq 1/1 Oct		Max 1/1 Oct	Min 1/3 Oct	Min 1/1 Oct
	12.5	66		68.7		40.9	
	16	64.8	69.8		74.1	44.4	48.1
	20	64		70.2		44	
	25	63		67.5		47.1	
	31.5	64.3	69.4		75.7	49.3	53.4
	40	66.1		68.3		49.2	
	50	68.3		72.6		49.5	
	63	69.6	74.1	76.1	78	51.1	54.9
	80	69.8		66.5		49.5	
	100	67.2		65.8		49.3	
	125	66.7	70.9	66.3	70.3	52.3	
	160	64		64.2		45.6	
	200	59.4		63.8		43.4	
	250	57.1	62.6	59.1	71.1	40.5	
	315	56.3		69.9		39.6	
	400	55.8		72.2		39.8	
	500	57.4	62.2	57	73.9	39.7	44.7
	630	58.6		68.8		40.2	
	800	60.2		81		40.5	
	1000	61	65.2	63.8	81.1	40.4	45.1
	1250	59.9		61.7		40.2	
	1600	57.9		69.1		38	
	2000	55.6	60.7	79.1	80.8	34.2	40.3
	2500	53		74.9		32.2	
	3150	51.7		79.7		29.1	
	4000	48.3	54	70.8	80.3	26.1	31.6
	5000	45.6		60		23.7	
	6300	42.9		62.8		22.4	
	8000	40.2	45.6	60.3	65.5	21.5	26.2
	10000	37.8		57.7		20.1	
	12500	34.5		52.6		19.7	
	16000	31	36.7	49.3	54.9	20.8	25.8
	20000	27.4		45.9		22.2	
Ln Start Level:	15 dB						
L 1.00		75.1	dBA				
L 5.00		72.3					
L 50.00		67.3					
L 90.00		59.1					
L 95.00			dBA				
1 00 00			ID A				

53 dBA

Model Number: 824

Serial Number: A3007

Firmware Rev: 4.261 Software Version: 3.12

Name: EDAW, Inc.

Descr1: 1420 Kettner Blvd., Ste. 620 Descr2: San Diego, CA 92101

Setup: 1M-1S.ssa

Setup Descr: SLM & RTA 1min-1Sec

Location: MS 13

Note 1:

Note 2:

Overall Any Data

Start Time: 11-Jun-08 16:26:17

Elapsed Time: 15:43.6

A Weight C Weight Flat
Leq: 56.2 dBA 69.8 dBC 71.5 dBF
SEL: 86.0 dBA 99.6 dBC 101.3 dBF
Peak: 85.9 dBA 90.5 dBC 92.6 dBF

6/11/2008 16:39 6/11/2008 16:40 6/11/2008 16:40

Lmax (slow): 67.9 dBA 78.9 dBC 79.3 dBF

6/11/2008 16:31 6/11/2008 16:31 6/11/2008 16:31

Lmin (slow): 50.9 dBA 65.4 dBC 66.8 dBF

6/11/2008 16:38 6/11/2008 16:38 6/11/2008 16:38

Lmax (fast): 72.4 dBA 82.2 dBC 82.6 dBF

6/11/2008 16:39 6/11/2008 16:31 6/11/2008 16:31

Lmin (fast): 50.5 dBA 63.8 dBC 65.0 dBF

6/11/2008 16:38 6/11/2008 16:38 6/11/2008 16:38

Lmax (impulse): 75.9 dBA 83.7 dBC 84.6 dBF

6/11/2008 16:39 6/11/2008 16:31 6/11/2008 16:27

Lmin (impulse): 50.8 dBA 66.0 dBC 67.5 dBF

6/11/2008 16:38 6/11/2008 16:26 6/11/2008 16:26

Spectra							
Start Time:		11-Jun-08		Run Time:	15:43.6		
Freq Hz	Leq 1/3		_eq 1/1 Oct		Max 1/1 Oct	Min 1/3 Oct	Min 1/1 Oct
	12.5	61.9		64.6		43	
	16	61.7	66.9		66.6		
	20	62.6		58.7		43.3	
	25	62.3		62.4		47.1	
	31.5	61.4	66.3		68.7		53.2
	40	60.9		64.6		50.1	
	50	61.9		69.4		49.9	
	63	62.4	66.8		78		55.3
	80	61.9		76.4		48.9	
	100	59.9		65.8		48	
	125	59.3	63.2		70.7		52.7
	160	54.1		67.4		45.2	
	200	53.5		64.4		44	
	250	51.2	56.5		72.1	41.7	46.8
	315	49.6		67.8		39.1	
	400	46.8		64.8		37.6	
	500	46.6	51.3		68.3		
	630	46.1		58.9		38.3	
	800	46.7		59		39.5	
	1000	47.1	51.6		61.7		44.3
	1250	46.7		54.7		39.2	
	1600	45.4		53.2		38.2	
	2000	43.2	48.3	48.7	55.3	35.8	40.9
	2500	40.6		47.3		32.6	
	3150	38.1		48.6		29.6	
	4000	35.4	40.7	43.2	50.3	25.9	31.6
	5000	32.6		41.1		21.9	
	6300	30.3		37.6		20.1	
	8000	28	33	35.2	40.4	18.8	23.9
	10000	24.6		32.8		18.4	
	12500	22.7		29.7		18.4	
	16000	22	27.2	26.9	32.2	19.9	24.9
	20000	22.5		23.9		21.6	
Ln Start Level:	15 dB						
L 1.00		62.7	dBA				
L 5.00		59.5					
L 50.00		55.1					
L 90.00		52.8					
L 95.00		52 (
		54.0					

51.3 dBA

Model Number: 824

Serial Number: A3007

Firmware Rev: 4.261 Software Version: 3.12

Name: EDAW, Inc.

Descr1: 1420 Kettner Blvd., Ste. 620
Descr2: San Diego, CA 92101

Setup: 1M-1S.ssa

Setup Descr: SLM & RTA 1min-1Sec

Location: MS 14

Note 1: Note 2:

Overall Any Data

Start Time: 11-Jun-08 16:48:00

Elapsed Time: 15:02.8

A Weight C Weight Flat
Leq: 61.8 dBA 74.9 dBC 76.6 dBF
SEL: 91.4 dBA 104.5 dBC 106.1 dBF
Peak: 109.9 dBA 107.1 dBC 108.4 dBF

6/11/2008 16:55 6/11/2008 16:55 6/11/2008 16:55

Lmax (slow): 74.4 dBA 82.4 dBC 86.0 dBF

6/11/2008 16:55 6/11/2008 16:56 6/11/2008 16:56

Lmin (slow): 52.6 dBA 68.4 dBC 70.0 dBF

6/11/2008 16:49 6/11/2008 16:53 6/11/2008 16:53

Lmax (fast): 81.8 dBA 88.9 dBC 92.9 dBF

6/11/2008 16:55 6/11/2008 16:56 6/11/2008 16:56

Lmin (fast): 52.1 dBA 67.2 dBC 68.6 dBF

6/11/2008 16:49 6/11/2008 16:53 6/11/2008 16:53

Lmax (impulse): 86.4 dBA 91.9 dBC 95.8 dBF

6/11/2008 16:55 6/11/2008 16:56 6/11/2008 16:56

Lmin (impulse): 52.5 dBA 69.5 dBC 70.8 dBF

6/11/2008 16:49 6/11/2008 16:53 6/11/2008 16:53

Spectra Start Time:	1	1-Jun-08	16:48:00	Run Time:	15:02.8		
Freq Hz	Leq 1/3		eq 1/1 Oct	Max 1/3 Oct	Max 1/1 Oct	Min 1/3 Oct	Min 1/1 Oct
1109112	12.5	59.6	04 1/1 000	63.3	Max 171 Oot	40.8	
	16	59.2	64.5		68.5		46.5
	20	60.3		63.9		42.4	
	25	59.4		63		44.4	
	31.5	75.1	75.4		75.4		61.4
	40	61.8		66.5		50.9	
	50	65.2		68.4		53.5	
	63	66.4	70	71.9	74	54.1	57.9
	80	63.8		64.4		51.4	
	100	63.6		67.7		50.3	
	125	61.8	66.4	66.5	70.4	49.8	54.1
	160	57.1		57.2		47.2	
	200	55.8		60.9		44.7	
	250	52.7	58.7		64.1	42.2	47.6
	315	52.4		58.2		40.5	
	400	50.7		63.2		40.4	
	500	49.8	55.4		68.7		45.6
	630	51.2		61.6		41.9	
	800	54.5		64.9		41.7	
	1000	54.2	58.9		72.8		46.3
	1250	53.5		70		41.1	
	1600	49.8		65.6		39	
	2000	48.7	53.5				42.3
	2500	47.5		64		36	
	3150	45.1		68.6		34.9	
	4000	43.6	48.2		71.5		37.8
	5000	40.6		61.8		29.2	
	6300	41.1	40.7	69.4		26.9	20.0
	8000	38.9	43.7				30.2
	10000	34.8		60		22.9	
	12500	34.6	00.0	56		20.8	
	16000	31.1	36.6		59.7		
	20000	26.2		51.5		22	
Ln Start Level:	15 dB						
L 1.00		66.5 dl	BA				
L 5.00		65.1 dl	BA				
L 50.00		61.4 dl	BA				
L 90.00		54.5 dl	BA				
L 95.00		53.9 dl	BA				
1 00 00		E2 41	DΛ				

53 dBA

SLM & RTA Summary

Translated: 25-Sep-08 6:09:24

File Translated: C:\LARDAV\824 Measurements\UCLA\061208__021.slmdl

Model Number: 824

Serial Number: A3007

Firmware Rev: 4.261 Software Version: 3.12

Name: EDAW, Inc.

Descr1: 1420 Kettner Blvd., Ste. 620

Descr2: San Diego, CA 92101

Setup: 1M-1S.ssa

Setup Descr: SLM & RTA 1min-1Sec

Location: MS 15

Note 1: Note 2:

Overall Any Data

Start Time: 11-Jun-08 17:06:22

Elapsed Time: 15:38.7

A Weight C Weight Flat
Leq: 62.9 dBA 85.4 dBC 88.6 dBF
SEL: 92.7 dBA 115.1 dBC 118.3 dBF
Peak: 98.4 dBA 108.9 dBC 111.6 dBF

6/11/2008 17:15 6/11/2008 17:20 6/11/2008 17:20

Lmax (slow): 71.4 dBA 95.8 dBC 99.9 dBF

6/11/2008 17:14 6/11/2008 17:13 6/11/2008 17:08

Lmin (slow): 51.5 dBA 67.1 dBC 70.9 dBF

6/11/2008 17:14 6/11/2008 17:09 6/11/2008 17:09

Lmax (fast): 77.9 dBA 99.9 dBC 103.9 dBF

6/11/2008 17:14 6/11/2008 17:19 6/11/2008 17:08

Lmin (fast): 49.4 dBA 65.4 dBC 68.4 dBF

6/11/2008 17:15 6/11/2008 17:09 6/11/2008 17:09

Lmax (impulse): 82.3 dBA 103.4 dBC 106.4 dBF

6/11/2008 17:15 6/11/2008 17:19 6/11/2008 17:08

Lmin (impulse): 51.5 dBA 68.9 dBC 72.6 dBF

6/11/2008 17:14 6/11/2008 17:09 6/11/2008 17:09

Spectra							
Start Time:		11-Jun-08		Run Time:	15:38.7		
Freq Hz	Leq 1/3		_eq 1/1 Oct	Max 1/3 Oct	Max 1/1 Oct		Min 1/1 Oct
	12.5	82.6		68.4		51	
	16	81	86.1	66.8	72.6		53.9
	20	80.1		68.1		48.2	
	25	77.3		73.8		46.6	
	31.5	81	86.3		79.2		54.8
	40	83.9		69.2		51.1	
	50	74.3		74.5		47.6	
	63	67.5	75.8		75.4		53.5
	80	67.2		61.6		47.9	
	100	66.9		63.8		47.6	
	125	65.7	69.8	66.4	71.6		51.4
	160	60.2		68.9		43.1	
	200	60.9		73.2		40.5	
	250	57.9	63.3		74.6		44.6
	315	54.7		63.2		38.2	
	400	53.9		61.5		37.2	
	500	56.3	60.1	66.9	69.4		44.4
	630	55.5		63.7		40.2	
	800	52.8		64.2		37.8	
	1000	53.7	57.5	65.3	70		41.9
	1250	51.3		66.1		35.7	
	1600	49.8		62.7		35.4	
	2000	47.9	52.9	65.6	69.3	30.2	37.2
	2500	46		64.7		28.3	
	3150	42.1		62.5		25.9	
	4000	39.6	45	58.1	65.2	24.1	28.9
	5000	37.8		59.4		21	
	6300	39.5		60.7		19.5	
	8000	36.6	41.9	57.3	65.2	18.8	23.8
	10000	32.7		62.1		18.9	
	12500	27.4		51.6		19	
	16000	29.5	32.5	43.9	52.7		25.2
	20000	25.1		42.4		21.7	
Ln Start Level:	15 dB						
	13 05	60.2	ND A				
L 1.00		68.3					
L 5.00		66.8					
L 50.00		62.1 0					
L 90.00		57.8 0					
L 95.00		57.1 0	IBA				

55.6 dBA

L 99.00

SLM & RTA Summary

Model Number: 824

Serial Number: A3007

Firmware Rev: 4.261
Software Version: 3.12

Name: EDAW, Inc.

Descr1: 1420 Kettner Blvd., Ste. 620 Descr2: San Diego, CA 92101

Setup: 1M-1S.ssa

Setup Descr: SLM & RTA 1min-1Sec

Location: MS 16

Note 1: Note 2:

Overall Any Data

Start Time: 11-Jun-08 17:34:49

Elapsed Time: 15:13.8

A Weight C Weight Flat
Leq: 67.7 dBA 87.4 dBC 90.0 dBF
SEL: 97.3 dBA 117.0 dBC 119.6 dBF
Peak: 95.5 dBA 109.7 dBC 113.4 dBF

6/11/2008 17:36 6/11/2008 17:35 6/11/2008 17:35

Lmax (slow): 76.5 dBA 95.2 dBC 101.5 dBF

6/11/2008 17:36 6/11/2008 17:36 6/11/2008 17:38

Lmin (slow): 61.2 dBA 73.4 dBC 76.0 dBF

6/11/2008 17:48 6/11/2008 17:47 6/11/2008 17:47

Lmax (fast): 82.6 dBA 101.6 dBC 105.6 dBF

6/11/2008 17:36 6/11/2008 17:36 6/11/2008 17:38

Lmin (fast): 56.0 dBA 71.4 dBC 73.6 dBF

6/11/2008 17:48 6/11/2008 17:43 6/11/2008 17:43

Lmax (impulse): 85.0 dBA 104.3 dBC 108.2 dBF

6/11/2008 17:36 6/11/2008 17:35 6/11/2008 17:38

Lmin (impulse): 63.0 dBA 73.6 dBC 77.3 dBF

6/11/2008 17:37 6/11/2008 17:47 6/11/2008 17:47

Spectra							
Start Time:		11-Jun-08		Run Time:	15:13.8		
Freq Hz		Leq 1/3 Oct	Leq 1/1 Oct	Max 1/3 Oct	Max 1/1 Oct	Min 1/3 Oct	Min 1/1 Oct
	12.5	80.2		80.4	00	55.8	53. 0
	16	82.4			89		
	20	82.7		83.8		51.7	
	25	78.8		83.2		55 57.6	61.1
	31.5 40	82 85.1		85.3 93.1	94.1	57.6 56	61.1
	50	78.1		83.8		56.9	
	63	73.7			85.6		59.5
	80	73.7		79.3		50.7	39.3
	100	73.7 74.4		86.9		54.1	
	125	74.4			88.9		59.2
	160	68		78		50.7	39.2
	200	64.7		77.3		51.3	
	250	62					53.3
	315	60.5		65.6	70.0	45.5	00.0
	400	58.8		69.4		44.8	
	500	58.1			77		50
	630	59.5		75.3		45.1	
	800	58.1		64.7		46.2	
	1000	58.6			73		49.1
	1250	56.1		70		41.7	
	1600	55.2		64.6		40.1	
	2000	51.3	57.4	57.8	67.4	37.8	42.9
	2500	49.2		63		35.2	
	3150	45.9		60		32.3	
	4000	43.4	48.5	54.4	61.3	27.9	34.2
	5000	39.9		47.9		25.1	
	6300	40.5		48.4		22.4	
	8000	39.8			53.4		26.1
	10000	34.8		43.6		20.1	
	12500	28.8		38		19.8	
	16000	28.8			39		25.8
	20000	29.9		27.9		22.3	
Ln Start Level:		15 dB					
L 1.00			dBA				
L 5.00			dBA				
L 50.00			dBA				
L 90.00			dBA				
1 05 00		00.0					

63.8 dBA

62.7 dBA

L 95.00

L 99.00

SLM & RTA Summary

Model Number: 824

Serial Number: A3007

Firmware Rev: 4.261 Software Version: 3.12

Name: EDAW, Inc.

Descr1: 1420 Kettner Blvd., Ste. 620 Descr2: San Diego, CA 92101

Setup: San Diego, CA s

Setup Descr: SLM & RTA 1min-1Sec

Location: MS 17

Note 1: Note 2:

Overall Any Data

Start Time: 11-Jun-08 18:29:01

Elapsed Time: 15:25.7

A Weight C Weight Flat
Leq: 67.9 dBA 80.0 dBC 81.0 dBF
SEL: 97.5 dBA 109.7 dBC 110.6 dBF
Peak: 97.5 dBA 102.0 dBC 102.6 dBF

6/11/2008 18:41 6/1/2008 18:36 6/11/2008 18:36

Lmax (slow): 82.2 dBA 91.3 dBC 91.6 dBF

6/11/2008 18:36 6/11/2008 18:36 6/11/2008 18:36

Lmin (slow): 54.8 dBA 70.0 dBC 71.6 dBF

6/11/2008 18:30 6/11/2008 18:42 6/11/2008 18:41

Lmax (fast): 83.9 dBA 93.0 dBC 93.4 dBF

6/11/2008 18:36 6/11/2008 18:33 6/11/2008 18:33

Lmin (fast): 53.8 dBA 68.7 dBC 70.0 dBF

6/11/2008 18:42 6/11/2008 18:41 6/11/2008 18:41

Lmax (impulse): 85.3 dBA 93.9 dBC 94.3 dBF

6/11/2008 18:38 6/11/2008 18:33 6/11/2008 18:33

Lmin (impulse): 54.3 dBA 70.6 dBC 72.8 dBF

6/11/2008 18:41 6/11/2008 18:42 6/11/2008 18:42

Spectra							
Start Time:		1-Jun-08		Run Time:	15:25.7		Nr. 4/4 O 4
Freq Hz	Leq 1/3 (q 1/1 Oct	Max 1/3 Oct	Max 1/1 Oct	Min 1/3 Oct	Min 1/1 Oct
	12.5	67.8	72.7	75.8		45.6	
	16	68.8	12.1				
	20	67		71.5		49.4	
	25	69.4	74.0	78.4		49.4	
	31.5	70.7	74.9			53.1 53.7	
	40 50	70.1		78.8 73		55.7 55.5	
		70.5	77.4				
	63 80	72.6 73.3	77.1	83.2		55.2 55.7	
	100	73.3 68.7		74.9		55. <i>1</i> 52.2	
		71	74.5				
	125 160	69	74.5	90.4		54 51.5	
	200			75.4		47.5	
	250	64.6 63.7	68.1				
	315	60.9	00.1	71.4		45.1	
	400	59.9		69.2		44.6	
	500	59.5	64.1				
	630	58.5	04.1	69.5		43.5 42.6	
	800	58.2		76.1		42.0	
	1000	58.1	62.5				
	1250	56.9	02.5	69		41.7	
	1600	56		71.9		39.5	
	2000	54.6	59.3				
	2500	52.4	55.5	66.6		33.7	
	3150	51.1		63.6		31.4	
	4000	48.6	53.9			29.3	
	5000	46.7	33.3	60.9		25.6	
	6300	44.8		57.3		22	
	8000	40.4	46.6				
	10000	36.5	10.0	45.1		19.5	
	12500	36.3		36.8		19.7	
	16000	28.4	37.2				
	20000	24.7	0	25.8		22.3	
	20000			20.0			
Ln Start Level:	15 dB						
L 1.00		76.2 dB	SA.				
L 5.00		73 dB					
L 50.00		65.1 dB	SA.				
L 90.00		60.4 dB	SA.				
L 95.00		58.9 dB	SA.				
1 00 00		E0 4 ID					

56.1 dBA

L 99.00

WCREP Construction Noise Impacts

Project Name

Tojectivane	UCL	A LDRP Amei	ndment/NHIP - Pa	vement Saw-o	cutting						
Location	Equipment	Noise Level (dBA) @ 50 feet	Receiver form	Surface Type		Receiver Height (feet)	ound surface Barrier Height (feet)	Cut Depth ¹	Horizontal Slope Distance ² (feet)	Trench Depth ³	Usage/Hour (100% = 1) ⁴
	Concrete Saw	90	50	Hard 🔻	14	5	0	0	0	(feet)	5%
	Front End Loader (Large)	85	50	Hard \blacktriangledown	14	5	0	0	0	0	40%
	Nothing	0	0	Hard ▼	0	0	0	0	0	0	0%
	Nothing	0	0	Hard ▼	0	0	0	0	0	0	0%
	Nothing ▼	0	0	Hard ▼	0	0	0	0	0	0	0%
	Nothing	0	0	Hard ▼	0	0	0	0	0	0	0%
	Nothing	0	0	Hard ▼	0	0	0	0	0	0	0%
	Nothing	0	0	Hard ▼	0	0	0	0	0	0	0%
	Nothing v	0	0	Hard ▼	0	0	0	0	0	0	0%
N.	Nothing ▼	0	0	Hard ▼	0	0	0	0	0	0	0%

1 of 2 Pavement Breaking.xls

Notes
* When the receiver is elevated above the base of a barrier and cut, and the barrier height is greater than the cut height, the cut height must be subtracted from the barrier height prior to entering barrier height information. If the barrier is less than the cut do not enter barrier height only the cut height.

¹ Only provide cut depth if distance from receiver to the nearest edge of the cut is less than half the distance from the nearest edge of the cut to the source.

² Only provide slope distance if the slope distance is greater than half the distance from the receiver to the source.

³ Do not provide a barrier height, the trench acts as a barrier. Only provide trech depth if the trech width is greater than half the distance from the receiver to the source.

⁴ If no usage factor (load rating) is provided then the program assumes a 100% load factor.

Lynwood Hills Tank B Construction Noise Impacts

UCLA LDRP Amendment/NHIP - Pavement Saw-cutting

	Predicted Construction	on Noise Levels	•	
Location	Equipment	At Receiver		Composite Noise Level
None Identified	Concrete Saw	77	77	
None Identified	Front End Loader (Large)	81	82	
None Identified	Nothing	0	82	
None Identified	Nothing	0	82	
None Identified	Nothing	0	82	82
None Identified	Nothing	0	82	02
None Identified	Nothing	0	82	
None Identified	Nothing	0	82	
None Identified	Nothing	0	82	
None Identified	Nothing	0	82	

2 of 2 Pavement Breaking.xls

WCREP Construction Noise Impacts

Project Name

		UCLA LDRI	P Amendment/NH	IP - Grading							
		Noise Level	Distance to		Fill in ONLY if ground surface is soft (leave blank for hard surface)						
Location	Equipment	(dBA) @ 50 feet	Receiver form Construction Effort (feet)	Surface Type	Source Height (feet)	Receiver Height (feet)	Barrier Height (feet)		Horizontal Slope Distance ² (feet)		Usage/Hour $(100\% = 1)^4$
	Dozer ▼	85	50	Hard ▼	14	5	0	0	0	0	40%
	Dozer ▼	85	50	Hard ▼	14	5	0	0	0	0	40%
	Front End Loader (Large)	85	50	Hard ▼	14	5	0	0	0	0	40%
	Backhoe ▼	85	50	Hard ▼	14	5	0	0	0	0	20%
	Nothing ▼	0	0	Hard ▼	0	0	0	0	0	0	0%
	Nothing	0	0	Hard ▼	0	0	0	0	0	0	0%
	Nothing ▼	0	0	Hard ▼	0	0	0	0	0	0	0%
	Nothing ▼	0	0	Hard ▼	0	0	0	0	0	0	0%
	Nothing ▼	0	0	Hard ▼	0	0	0	0	0	0	0%
N.	Nothing ▼	0	0	Hard ▼	0	0	0	0	0	0	0%

1 of 2 Grading.xls

Notes
* When the receiver is elevated above the base of a barrier and cut, and the barrier height is greater than the cut height, the cut height must be subtracted from the barrier height prior to entering barrier height information. If the barrier is less than the cut do not enter barrier height only the cut height.

¹ Only provide cut depth if distance from receiver to the nearest edge of the cut is less than half the distance from the nearest edge of the cut to the source.

² Only provide slope distance if the slope distance is greater than half the distance from the receiver to the source.

³ Do not provide a barrier height, the trench acts as a barrier. Only provide trech depth if the trech width is greater than half the distance from the receiver to the source.

⁴ If no usage factor (load rating) is provided then the program assumes a 100% load factor.

Lynwood Hills Tank B Construction Noise Impacts

UCLA LDRP Amendment/NHIP - Grading

	Predicted Construction Noise Levels									
Location	Equipment	At Receiver		Composite Noise Level						
None Identified	Dozer	81	81							
None Identified	Dozer	81	84							
None Identified	Front End Loader (Large)	81	86							
None Identified	Backhoe	78	86							
None Identified	Nothing	0	86	86						
None Identified	Nothing	0	86	00						
None Identified	Nothing	0	86							
None Identified	Nothing	0	86							
None Identified	Nothing	0	86							
None Identified	Nothing	0	86							

2 of 2 Grading.xls

UCLA LRDP/NHIP Existing Conditions

Existing

			Reference			
			CNEL at	Distanc	e to Noise Co	ntour 1
Roadway Segment	Traffic Volume	Speed	75 Feet ¹	70 CNEL	65 CNEL	60 CNEL
Sunset Boulevard, Veteran Avenue to Bellagio Road	2,822	30	68	50	157	497
Sunset Boulevard, Bellagio Road to Westwood Boulevard	2,324	30	67	41	129	409
Sunset Boulevard, Westwood Boulevard to Stone Canyon Road	2,708	30	68	48	151	477
Sunset Boulevard, Stone Canyon Road to Copa de Oro Road	2,426	30	68	43	135	427
Hilgard Avenue, Sunset Boulevard to Wyton Drive	1,087	35	65	23	72	228
Hilgard Avenue, Wyton Drive to Westholme Avenue	1,431	35	66	30	95	300
Hilgard Avenue, Westholme Avenue to Manning Avenue	1,605	35	67	34	106	336
Hilgard Avenue, Manning Avenue to Le Conte Avenue	1,449	35	66	30	96	304
Le Conte Avenue, Gayley Avenue to Westwood Boulevard	1,258	25	63	14	44	140
Le Conte Avenue, Westwood Boulevard to Tiverton Avenue	1,362	25	63	15	48	152
Le Conte Avenue, Tiverton Avenue to Hilgard Avenue	1,125	25	62	13	40	126
Gayley Avenue, Le Conte Avenue to Strathmore Place	1,818	35	66	30	94	297
Gayley Avenue, Strathmore Place to Veteran Avenue	1,015	35	63	17	52	166
Veteran Avenue, Sunset Boulevard to Gayley Avenue	1,170	35	64	19	61	192
Westwood Plaza, north of Le Conte Avenue	1,244	25	64	19	59	188
Westwood Boulevard, south of Sunset Boulevard	526	25	60	8	25	79
Strathmore Place, east of Gayley Avenue	1,201	25	64	18	57	181
Bellagio Road, south of Sunset Boulevard	490	25	60	7	23	74
Stone Canyon Road, south of Sunset Boulevard	551	25	60	8	26	83
Wyton Drive, west of Hilgard Avenue	646	25	61	10	31	97
Westholme Avenue, west of Hilgard Avenue	863	25	62	13	41	130

Existing

		Traffic			
Location	Land Use	Volume	Speed	Distance	CNEL
Wilshire Boulevard, Glendon Avenue to Malcolm Avenue	Multi-Family	3,649	35	80	70
Wilshire Boulevard, Malcolm Avenue to Westholme Avenue	Multi-Family	3,617	35	80	70
Wilshire Boulevard, Westholme Avenue to Warner Avenue	Multi-Family	3,759	35	80	70
	Church	3,759	35	85	70
Wilshire Boulevard, Warner Avenue to Beverly Glen Boulevard	Multi-Family	3,844	35	85	70
	Church	3,844	35	80	70
Wilshire Boulevard, east of Beverly Glen Boulevard	Multi-Family	3,538	35	75	70
Sunset Boulevard, west of Church Street	Single Family	3,363	30	60	70
Sunset Boulevard, Church Street to Sepulveda Boulevard	Single Family	3,177	30	65	69
Sunset Boulevard, Sepulveda Boulevard to Veteran Avenue	Single Family	2,210	30	65	68
Sunset Boulevard, Veteran Avenue to Bellagio Road	Single Family	2,822	30	65	69

UCLA LRDP/NHIP Existing Conditions

Sunset Boulevard, Bellagio Road to Westwood Boulevard Sunset Boulevard, Westwood Boulevard to Stone Canyon Road Sunset Boulevard, Stone Canyon Road to Copa de Oro Road Sunset Boulevard, Copa de Oro Road to Bel-Air Road Sunset Boulevard, Bel-Air Road to Beverly Glen Boulevard Sunset Boulevard, east of Beverly Glen Boulevard Hilgard Avenue, Sunset Boulevard to Wyton Drive Hilgard Avenue, Wyton Drive to Westholme Avenue	Single Family Single Family High School Elementary School/Day Care Single Family Single Family Single Family Single Family Single Family Single Family Single Family Single Family	2,324 2,708 2,708 2,708 2,426 2,398 3,516 2,375	30 30 30 30 30 30 30 30	65 75 125 100 60 60	68 68 66 67 69
Sunset Boulevard, Stone Canyon Road to Copa de Oro Road Sunset Boulevard, Copa de Oro Road to Bel-Air Road Sunset Boulevard, Bel-Air Road to Beverly Glen Boulevard Sunset Boulevard, east of Beverly Glen Boulevard Hilgard Avenue, Sunset Boulevard to Wyton Drive	High School Elementary School/Day Care Single Family Single Family Single Family Single Family Single Family Single Family	2,708 2,708 2,426 2,398 3,516 2,375	30 30 30 30 30	125 100 60	66 67
Sunset Boulevard, Copa de Oro Road to Bel-Air Road Sunset Boulevard, Bel-Air Road to Beverly Glen Boulevard Sunset Boulevard, east of Beverly Glen Boulevard Hilgard Avenue, Sunset Boulevard to Wyton Drive	Elementary School/Day Care Single Family Single Family Single Family Single Family Single Family Single Family	2,708 2,426 2,398 3,516 2,375	30 30 30 30	100 60	67
Sunset Boulevard, Copa de Oro Road to Bel-Air Road Sunset Boulevard, Bel-Air Road to Beverly Glen Boulevard Sunset Boulevard, east of Beverly Glen Boulevard Hilgard Avenue, Sunset Boulevard to Wyton Drive	Single Family Single Family Single Family Single Family Single Family Single Family	2,426 2,398 3,516 2,375	30 30 30	60	
Sunset Boulevard, Copa de Oro Road to Bel-Air Road Sunset Boulevard, Bel-Air Road to Beverly Glen Boulevard Sunset Boulevard, east of Beverly Glen Boulevard Hilgard Avenue, Sunset Boulevard to Wyton Drive	Single Family Single Family Single Family Single Family	2,398 3,516 2,375	30 30		69
Sunset Boulevard, Bel-Air Road to Beverly Glen Boulevard Sunset Boulevard, east of Beverly Glen Boulevard Hilgard Avenue, Sunset Boulevard to Wyton Drive	Single Family Single Family Single Family	3,516 2,375	30	60	
Sunset Boulevard, east of Beverly Glen Boulevard Hilgard Avenue, Sunset Boulevard to Wyton Drive	Single Family Single Family	2,375			68
Hilgard Avenue, Sunset Boulevard to Wyton Drive	Single Family			60	70
			30	60	68
Hilgard Avenue, Wyton Drive to Westholme Avenue	Single- and Multi-Family	1,087	35	75	65
		1,431	35	75	66
Hilgard Avenue, Westholme Avenue to Manning Avenue	Church	1,605	35	65	67
	Multi-Family	1,605	35	75	67
Hilgard Avenue, Manning Avenue to Le Conte Avenue	Multi-Family	1,449	35	65	67
Hilgard Avenue, Le Conte Avenue to Weyburn Avenue	Multi-Family	845	35	55	65
	Church	845	35	55	65
Hilgard Avenue, Weyburn Avenue to Lindbrook Drive	Multi-Family	1,127	35	55	66
Le Conte Avenue, east of Hilgard Avenue	Multi-Family	378	25	30	61
Gayley Avenue, Weyburn Avenue to Le Conte Avenue	Multi-Family	1,411	30	60	64
Gayley Avenue, Le Conte Avenue to Strathmore Place	Multi-Family	1,818	30	55	66
Gayley Avenue, Strathmore Place to Veteran Avenue	Multi-Family	1,015	30	50	64
Strathmore Place, west of Gayley Avenue	Multi-Family	315	30	35	62
Levering Avenue, Montana Avenue to Veteran Avenue	Multi-Family	385	30	55	61
Levering Avenue, Veteran Avenue to Le Conte Avenue	Multi-Family	369	30	55	61
Levering Avenue, Le Conte Avenue to Weyburn Avenue	Multi-Family	1,411	30	35	69
Veteran Avenue, Sunset Boulevard to Gayley Avenue	Single and Multi-Family	1,170	35	60	67
Veteran Avenue, Gayley Avenue to Levering Avenue	Multi-Family	910	35	50	66
Veteran Avenue, Levering Avenue to Wilshire Boulevard	Multi-Family	3,389	35	40	73
Veteran Avenue, Wilshire Boulevard to Ohio Avenue	Multi-Family	1,548	35	50	69
Veteran Avenue, Ohio Avenue to Santa Monica Boulevard	Multi-Family	1,115	35	50	67
Montana Avenue, Veteran Avenue to Levering Avenue	Multi-Family	732	35	60	65
Montana Avenue, Levering Avenue to Sepulveda Boulevard	Single Family	1,032	35	40	68
Montana Avenue, west of Sepulveda Boulevard	Single Family	539	35	40	65
Sepulveda Boulevard, Ovada Place to Sunset Boulevard	Single Family	3,723	35	65	71
Sepulveda Boulevard, Sunset Boulevard to Montana Avenue	Multi-Family	1,920	35	85	67
Sepulveda Boulevard, Wilshire Boulevard to Ohio Avenue	Multi-Family	2,096	35	45	70
Sawtelle Boulevard, Ohio Avenue to Santa Monica Boulevard	Multi-Family	920	30	40	66
Sawtelle Boulevard, south of Santa Monica Boulevard	Multi-Family	1,652	30	40	69
Weyburn Avenue, Glendon Avenue to Westwood Boulevard	Multi-Family	487	30	40	63
Weyburn Avenue, Westwood Boulevard to Gayley Avenue	Multi-Family	659	30	40	65
Lindbrook Avenue, Westwood Boulevard to Gayley Avenue	Multi-Family	472	25	40	62
Wyton Drive, east of Hilgard Avenue	Single Family	244	25	40	59
Westholme Avenue, east of Hilgard Avenue	Single Family Single Family	459	25	50	61
Manning Avenue, east of Hilgard Avenue	Single Family Single Family	105	25	30	56

UCLA LRDP/NHIP Existing Conditions

Beverly Glen Boulevard, Wilshire Boulevard to Comstock Avenue	Single Family	1,265	30	75	65
Beverly Glen Boulevard, Comstock Avenue to Sunset Boulevard	Single Family	1,467	30	65	66
Beverly Glen Boulevard, Sunset Boulevard to Greendale Drive	Single Family	1,467	30	40	68
Beverly Glen Boulevard, Greendale Drive to Mulholland Drive	Single Family	1,342	30	60	66
Ohio Avenue, Westwood Boulevard to Veteran Avenue	Multi-Family	1,068	30	30	68
Ohio Avenue, Veteran Avenue to Sepulveda Boulevard	Multi-Family	1,274	30	35	68
Ohio Avenue, Sepulveda Boulevard to Beloit Avenue	Multi-Family	1,202	30	35	68
Ohio Avenue, Beloit Avenue to Sawtelle Boulevard	Multi-Family	1,202	30	35	68
Ohio Avenue, west of Sawtelle Boulevard	Multi-Family	1,220	30	35	68
Bellagio Road, Chalon Road to Sunset Boulevard	Single Family	738	25	40	64
Bel-Air Road, north of Sunset Boulevard	Single Family	453	25	50	61

UCLA LRDP/NHIP 2013 Without Project

2013 Without Project

1			Reference			
			CNEL at	Distanc	e to Noise Co	ntour 1
Roadway Segment	Traffic Volume	Speed	75 Feet ¹	70 CNEL	65 CNEL	60 CNEL
Sunset Boulevard, Veteran Avenue to Bellagio Road	3,106	35	70	75	236	746
Sunset Boulevard, Bellagio Road to Westwood Boulevard	2,485	35	69	60	189	597
Sunset Boulevard, Westwood Boulevard to Stone Canyon Road	2,886	35	70	69	219	693
Sunset Boulevard, Stone Canyon Road to Copa de Oro Road	2,590	35	69	62	197	622
Hilgard Avenue, Sunset Boulevard to Wyton Drive	1,268	35	65	27	84	266
Hilgard Avenue, Wyton Drive to Westholme Avenue	1,628	35	67	34	108	341
Hilgard Avenue, Westholme Avenue to Manning Avenue	1,811	35	67	38	120	379
Hilgard Avenue, Manning Avenue to Le Conte Avenue	1,698	35	67	36	112	356
Le Conte Avenue, Gayley Avenue to Westwood Boulevard	1,315	25	63	15	46	147
Le Conte Avenue, Westwood Boulevard to Tiverton Avenue	1,156	25	62	13	41	129
Le Conte Avenue, Tiverton Avenue to Hilgard Avenue	900	25	61	10	32	100
Gayley Avenue, Le Conte Avenue to Strathmore Place	1,910	35	66	31	99	312
Gayley Avenue, Strathmore Place to Veteran Avenue	1,066	35	64	17	55	174
Veteran Avenue, Sunset Boulevard to Gayley Avenue	1,431	25	61	10	33	104
Westwood Plaza, north of Le Conte Avenue	1,165	25	64	18	56	176
Westwood Boulevard, south of Sunset Boulevard	553	25	60	8	26	83
Strathmore Place, east of Gayley Avenue	1,275	25	64	19	61	192
Bellagio Road, south of Sunset Boulevard	515	25	60	8	25	78
Stone Canyon Road, south of Sunset Boulevard	581	25	61	9	28	88
Wyton Drive, west of Hilgard Avenue	699	25	61	11	33	105
Westholme Avenue, west of Hilgard Avenue	803	25	62	12	38	121

2013 Without Project

		Traffic			
Location	Land Use	Volume	Speed	Distance	CNEL
Wilshire Boulevard, Glendon Avenue to Malcolm Avenue	Multi-Family	4,812	35	80	71
Wilshire Boulevard, Malcolm Avenue to Westholme Avenue	Multi-Family	4,826	35	80	71
Wilshire Boulevard, Westholme Avenue to Warner Avenue	Multi-Family	4,965	35	80	71
	Church	4,965	35	85	71
Wilshire Boulevard, Warner Avenue to Beverly Glen Boulevard	Multi-Family	5,042	35	85	71
	Church	5,042	35	80	71
Wilshire Boulevard, east of Beverly Glen Boulevard	Multi-Family	4,862	35	75	71
Sunset Boulevard, west of Church Street	Single Family	3,569	30	60	70
Sunset Boulevard, Church Street to Sepulveda Boulevard	Single Family	3,388	30	65	70
Sunset Boulevard, Sepulveda Boulevard to Veteran Avenue	Single Family	2,489	30	65	68
Sunset Boulevard, Veteran Avenue to Bellagio Road	Single Family	3,106	30	65	69

UCLA LRDP/NHIP 2013 Without Project

Sunset Boulevard, Bellagio Road to Westwood Boulevard	Single Family	2,485	30	65	68
Sunset Boulevard, Westwood Boulevard to Stone Canyon Road	Single Family	2,886	30	75	68
	High School	2,886	30	125	66
	Elementary School/Day Care	2,886	30	100	67
Sunset Boulevard, Stone Canyon Road to Copa de Oro Road	Single Family	2,590	30	60	69
Sunset Boulevard, Copa de Oro Road to Bel-Air Road	Single Family	2,655	30	60	69
Sunset Boulevard, Bel-Air Road to Beverly Glen Boulevard	Single Family	3,915	30	60	71
Sunset Boulevard, east of Beverly Glen Boulevard	Single Family	2,644	30	60	69
Hilgard Avenue, Sunset Boulevard to Wyton Drive	Single Family	1,268	35	75	65
Hilgard Avenue, Wyton Drive to Westholme Avenue	Single- and Multi-Family	1,628	35	75	67
Hilgard Avenue, Westholme Avenue to Manning Avenue	Church	1,811	35	65	68
	Multi-Family	1,811	35	75	67
Hilgard Avenue, Manning Avenue to Le Conte Avenue	Multi-Family	1,698	35	65	67
Hilgard Avenue, Le Conte Avenue to Weyburn Avenue	Multi-Family	1,221	35	55	67
, ,	Church	1,221	35	55	67
Hilgard Avenue, Weyburn Avenue to Lindbrook Drive	Multi-Family	1,221	35	55	67
Le Conte Avenue, east of Hilgard Avenue	Multi-Family	397	25	30	62
Gayley Avenue, Weyburn Avenue to Le Conte Avenue	Multi-Family	2,386	30	60	66
Gayley Avenue, Le Conte Avenue to Strathmore Place	Multi-Family	1,910	30	55	66
Gayley Avenue, Strathmore Place to Veteran Avenue	Multi-Family	1,066	30	50	64
Strathmore Place, west of Gayley Avenue	Multi-Family	331	30	35	62
Levering Avenue, Montana Avenue to Veteran Avenue	Multi-Family	478	30	55	62
Levering Avenue, Veteran Avenue to Le Conte Avenue	Multi-Family	789	30	55	64
Levering Avenue, Le Conte Avenue to Weyburn Avenue	Multi-Family	2,386	30	35	71
Veteran Avenue, Sunset Boulevard to Gayley Avenue	Single and Multi-Family	1,431	35	60	68
Veteran Avenue, Gayley Avenue to Levering Avenue	Multi-Family	1,132	35	50	67
Veteran Avenue, Levering Avenue to Wilshire Boulevard	Multi-Family	3,644	35	40	73
Veteran Avenue, Wilshire Boulevard to Ohio Avenue	Multi-Family	1,877	35	50	70
Veteran Avenue, Ohio Avenue to Santa Monica Boulevard	Multi-Family	1,217	35	50	68
Montana Avenue, Veteran Avenue to Levering Avenue	Multi-Family	874	35	60	65
Montana Avenue, Levering Avenue to Sepulveda Boulevard	Single Family	1,157	35	40	68
Montana Avenue, west of Sepulveda Boulevard	Single Family	566	35	40	65
Sepulveda Boulevard, Ovada Place to Sunset Boulevard	Single Family	4,117	35	65	72
Sepulveda Boulevard, Sunset Boulevard to Montana Avenue	Multi-Family	2,893	35	85	69
Sepulveda Boulevard, Wilshire Boulevard to Ohio Avenue	Multi-Family	2,325	35	45	71
Sawtelle Boulevard, Ohio Avenue to Santa Monica Boulevard	Multi-Family	968	30	40	66
Sawtelle Boulevard, south of Santa Monica Boulevard	Multi-Family	1,656	30	40	69
Weyburn Avenue, Glendon Avenue to Westwood Boulevard	Multi-Family	1,222	30	40	67
Weyburn Avenue, Westwood Boulevard to Gayley Avenue	Multi-Family	1,264	30	40	67
Lindbrook Avenue, Westwood Boulevard to Gayley Avenue	Multi-Family	497	25	40	62
Wyton Drive, east of Hilgard Avenue	Single Family	230	25	40	59
Westholme Avenue, east of Hilgard Avenue	Single Family	483	25	50	61

UCLA LRDP/NHIP 2013 Without Project

Manning Avenue, east of Hilgard Avenue	Single Family	110	25	30	57
Beverly Glen Boulevard, Wilshire Boulevard to Comstock Avenue	Single Family	1,444	30	75	65
Beverly Glen Boulevard, Comstock Avenue to Sunset Boulevard	Single Family	1,625	30	65	66
Beverly Glen Boulevard, Sunset Boulevard to Greendale Drive	Single Family	1,621	30	40	69
Beverly Glen Boulevard, Greendale Drive to Mulholland Drive	Single Family	1,479	30	60	66
Ohio Avenue, Westwood Boulevard to Veteran Avenue	Multi-Family	1,154	30	30	68
Ohio Avenue, Veteran Avenue to Sepulveda Boulevard	Multi-Family	1,374	30	35	68
Ohio Avenue, Sepulveda Boulevard to Beloit Avenue	Multi-Family	1,307	30	35	68
Ohio Avenue, Beloit Avenue to Sawtelle Boulevard	Multi-Family	1,307	30	35	68
Ohio Avenue, west of Sawtelle Boulevard	Multi-Family	1,319	30	35	68
Bellagio Road, Chalon Road to Sunset Boulevard	Single Family	832	25	40	64
Bel-Air Road, north of Sunset Boulevard	Single Family	475	25	50	61

UCLA LRDP/NHIP 2013 With Project

2013 With Project

2010 111111 101001			Reference			
			CNEL at	Distance to Noise Contour 1		
Roadway Segment	Traffic Volume	Speed	75 Feet ¹	70 CNEL 65 CNEL 60 C		60 CNEL
Sunset Boulevard, Veteran Avenue to Bellagio Road	3,109	35	70	75	236	747
Sunset Boulevard, Bellagio Road to Westwood Boulevard	2,485	35	69	60	189	597
Sunset Boulevard, Westwood Boulevard to Stone Canyon Road	2,886	35	70	69	219	693
Sunset Boulevard, Stone Canyon Road to Copa de Oro Road	2,594	35	69	62	197	623
Hilgard Avenue, Sunset Boulevard to Wyton Drive	1,191	35	65	25	79	249
Hilgard Avenue, Wyton Drive to Westholme Avenue	1,640	35	67	34	109	344
Hilgard Avenue, Westholme Avenue to Manning Avenue	1,778	35	67	37	118	372
Hilgard Avenue, Manning Avenue to Le Conte Avenue	1,753	35	67	37	116	367
Le Conte Avenue, Gayley Avenue to Westwood Boulevard	1,319	25	63	15	47	147
Le Conte Avenue, Westwood Boulevard to Tiverton Avenue	1,051	25	62	12	37	117
Le Conte Avenue, Tiverton Avenue to Hilgard Avenue	906	25	61	10	32	101
Gayley Avenue, Le Conte Avenue to Strathmore Place	1,920	35	66	31	99	314
Gayley Avenue, Strathmore Place to Veteran Avenue	1,076	35	64	18	56	176
Veteran Avenue, Sunset Boulevard to Gayley Avenue	1,425	25	61	10	33	103
Westwood Plaza, north of Le Conte Avenue	1,305	25	64	20	62	197
Westwood Boulevard, south of Sunset Boulevard	553	25	60	8	26	83
Strathmore Place, east of Gayley Avenue	1,262	25	64	19	60	190
Bellagio Road, south of Sunset Boulevard	515	25	60	8	25	78
Stone Canyon Road, south of Sunset Boulevard	583	25	61	9	28	88
Wyton Drive, west of Hilgard Avenue	679	25	61	10	32	102
Westholme Avenue, west of Hilgard Avenue	803	25	62	12	38	121

2013 With Project

		Traffic			
Location	Land Use	Volume	Speed	Distance	CNEL
Wilshire Boulevard, Glendon Avenue to Malcolm Avenue	Multi-Family	4,860	35	80	71
Wilshire Boulevard, Malcolm Avenue to Westholme Avenue	Multi-Family	4,873	35	80	71
Wilshire Boulevard, Westholme Avenue to Warner Avenue	Multi-Family	5,009	35	80	71
	Church	5,009	35	85	71
Wilshire Boulevard, Warner Avenue to Beverly Glen Boulevard	Multi-Family	5,008	35	85	71
	Church	5,008	35	80	71
Wilshire Boulevard, east of Beverly Glen Boulevard	Multi-Family	4,877	35	75	71
Sunset Boulevard, west of Church Street	Single Family	3,587	30	60	70
Sunset Boulevard, Church Street to Sepulveda Boulevard	Single Family	3,433	30	65	70
Sunset Boulevard, Sepulveda Boulevard to Veteran Avenue	Single Family	2,506	30	65	68
Sunset Boulevard, Veteran Avenue to Bellagio Road	Single Family	3,109	30	65	69

UCLA LRDP/NHIP 2013 With Project

Sunset Boulevard, Bellagio Road to Westwood Boulevard	Single Family	2,485	30	65	68
Sunset Boulevard, Westwood Boulevard to Stone Canyon Road	Single Family	2,886	30	75	68
	High School	2,886	30	125	66
	Elementary School/Day Care	2,886	30	100	67
Sunset Boulevard, Stone Canyon Road to Copa de Oro Road	Single Family	2,594	30	60	69
Sunset Boulevard, Copa de Oro Road to Bel-Air Road	Single Family	2,673	30	60	69
Sunset Boulevard, Bel-Air Road to Beverly Glen Boulevard	Single Family	3,935	30	60	71
Sunset Boulevard, east of Beverly Glen Boulevard	Single Family	2,661	30	60	69
Hilgard Avenue, Sunset Boulevard to Wyton Drive	Single Family	1,191	35	75	65
Hilgard Avenue, Wyton Drive to Westholme Avenue	Single- and Multi-Family	1,640	35	75	67
Hilgard Avenue, Westholme Avenue to Manning Avenue	Church	1,778	35	65	68
	Multi-Family	1,778	35	75	67
Hilgard Avenue, Manning Avenue to Le Conte Avenue	Multi-Family	1,753	35	65	68
Hilgard Avenue, Le Conte Avenue to Weyburn Avenue	Multi-Family	1,424	35	55	67
,	Church	1,424	35	55	67
Hilgard Avenue, Weyburn Avenue to Lindbrook Drive	Multi-Family	1,188	35	55	67
Le Conte Avenue, east of Hilgard Avenue	Multi-Family	397	25	30	62
Gayley Avenue, Weyburn Avenue to Le Conte Avenue	Multi-Family	2,476	30	60	67
Gayley Avenue, Le Conte Avenue to Strathmore Place	Multi-Family	1,920	30	55	66
Gayley Avenue, Strathmore Place to Veteran Avenue	Multi-Family	1,076	30	50	64
Strathmore Place, west of Gayley Avenue	Multi-Family	331	30	35	62
Levering Avenue, Montana Avenue to Veteran Avenue	Multi-Family	478	30	55	62
Levering Avenue, Veteran Avenue to Le Conte Avenue	Multi-Family	792	30	55	64
Levering Avenue, Le Conte Avenue to Weyburn Avenue	Multi-Family	2,476	30	35	71
Veteran Avenue, Sunset Boulevard to Gayley Avenue	Single and Multi-Family	1,425	35	60	68
Veteran Avenue, Gayley Avenue to Levering Avenue	Multi-Family	1,143	35	50	67
Veteran Avenue, Levering Avenue to Wilshire Boulevard	Multi-Family	3,843	35	40	74
Veteran Avenue, Wilshire Boulevard to Ohio Avenue	Multi-Family	1,710	35	50	69
Veteran Avenue, Ohio Avenue to Santa Monica Boulevard	Multi-Family	1,239	35	50	68
Montana Avenue, Veteran Avenue to Levering Avenue	Multi-Family	874	35	60	65
Montana Avenue, Levering Avenue to Sepulveda Boulevard	Single Family	1,157	35	40	68
Montana Avenue, west of Sepulveda Boulevard	Single Family	566	35	40	65
Sepulveda Boulevard, Ovada Place to Sunset Boulevard	Single Family	4,123	35	65	72
Sepulveda Boulevard, Sunset Boulevard to Montana Avenue	Multi-Family	2,902	35	85	69
Sepulveda Boulevard, Wilshire Boulevard to Ohio Avenue	Multi-Family	2,341	35	45	71
Sawtelle Boulevard, Ohio Avenue to Santa Monica Boulevard	Multi-Family	974	30	40	66
Sawtelle Boulevard, south of Santa Monica Boulevard	Multi-Family	1,662	30	40	69
Weyburn Avenue, Glendon Avenue to Westwood Boulevard	Multi-Family	1,228	30	40	67
Weyburn Avenue, Westwood Boulevard to Gayley Avenue	Multi-Family	1,269	30	40	67
Lindbrook Avenue, Westwood Boulevard to Gayley Avenue	Multi-Family	503	25	40	62
Wyton Drive, east of Hilgard Avenue	Single Family	257	25	40	59
Westholme Avenue, east of Hilgard Avenue	Single Family	483	25	50	61
and the second of the second o	9.39		~		<u> </u>

UCLA LRDP/NHIP 2013 With Project

Manning Avenue, east of Hilgard Avenue	Single Family	115	25	30	57
Beverly Glen Boulevard, Wilshire Boulevard to Comstock Avenue	Single Family	1,418	30	75	65
Beverly Glen Boulevard, Comstock Avenue to Sunset Boulevard	Single Family	1,629	30	65	66
Beverly Glen Boulevard, Sunset Boulevard to Greendale Drive	Single Family	1,624	30	40	69
Beverly Glen Boulevard, Greendale Drive to Mulholland Drive	Single Family	1,482	30	60	66
Ohio Avenue, Westwood Boulevard to Veteran Avenue	Multi-Family	1,163	30	30	68
Ohio Avenue, Veteran Avenue to Sepulveda Boulevard	Multi-Family	1,394	30	35	68
Ohio Avenue, Sepulveda Boulevard to Beloit Avenue	Multi-Family	1,322	30	35	68
Ohio Avenue, Beloit Avenue to Sawtelle Boulevard	Multi-Family	1,322	30	35	68
Ohio Avenue, west of Sawtelle Boulevard	Multi-Family	1,337	30	35	68
Bellagio Road, Chalon Road to Sunset Boulevard	Single Family	835	25	40	64
Bel-Air Road, north of Sunset Boulevard	Single Family	475	25	50	61

UCLA LRDP/NHIP Manual Traffic Counts

Roadway	ay Traffic Counts During Noise Measurments			ırments	А	verages	
Vetran	171	1	1	173			
	0.988	0.006	0.006	1			
Sunset	700	24	12	736			
	0.951	0.033	0.016	1			
Sunset	604	22	11	637			
	0.948	0.035	0.017	1	0.950	0.034	0.017
Hilgard	156	2	0	158			
	0.987	0.013	0.000	1			
Hilgard	172	16	0	188			
	0.915	0.085	0.000	1			
Hilgard	253	25	1	279			
	0.907	0.090	0.004	1	0.936	0.062	0.001
Le Conte	253	24	3	280			
	0.904	0.086	0.011	1			
Le Conte	215	5	1	221			
	0.973	0.023	0.005	1	0.938	0.054	0.008
Gayley	374	6	1	381			
	0.982	0.016	0.003	1			
Gayley	208	2	1	211			
	0.986	0.009	0.005	1	0.984	0.013	0.004
Local	65	6	1	72			
	0.903	0.083	0.014	1	0.903	0.083	0.014

Reference 75

Vehicle Mix A	uto	Med Truck Hvy	Trck	Total
Hilgard Ave	93.6%	6.2%	0.1%	100.0%
Vetran Ave	98.8%	0.6%	0.6%	100.0%
Sunset Bor	95.0%	3.4%	1.7%	100.0%
Gayley Ave	98.4%	1.3%	0.4%	100.0%
Le Conte A	93.8%	5.4%	0.8%	100.0%
Local Road	90.3%	8.3%	1.4%	100.0%

Appendix I

Traffic Report

FINAL REPORT

University of California, Los Angeles Northwest Housing Infill Project and Long Range Development Plan Amendment Traffic Impact Study

Prepared for:

BonTerra Consulting 151 Kalmus Drive, Suite E-200 Costa Mesa, CA 92626

Prepared by:

400 Oceangate, Suite 480 Long Beach, CA 90802-4307

October 2008

J08-2108

EXECUTIVE SUMMARY

The University of California, Los Angeles (UCLA) is considering the development of additional undergraduate student housing in the Northwest zone of the campus to help alleviate the unmet demand for on-campus undergraduate housing. The proposed Northwest Housing Infill Project (NHIP) was not part of the original 2002 Long Range Development Plan (LRDP) that guides physical development of the campus through 2010. Because the proposed NHIP would exceed the 2002 LRDP development entitlement in the Northwest zone, UCLA proposes to amend the 2002 LRDP to accommodate the proposed NHIP.

To assess the potential impacts of the UCLA NHIP and LRDP Amendment, this study provides an evaluation of existing and future traffic conditions at 58 study intersections and seven freeway segments on the San Diego (I-405) and Santa Monica (I-10) Freeways. Future traffic conditions were modeled to account for projected regional growth, specific related development projects in the area, implementation of previously adopted mitigation measures, and continued implementation of the campus Transportation Demand Management programs.

As part of the proposed NHIP, UCLA proposes to construct four new residence halls and associated support facilities for undergraduate students on land immediately adjacent to existing residence halls in the Northwest zone of the campus. The proposed NHIP in its entirety would include approximately 550,000 gross square feet (gsf) of new development and would accommodate approximately 1,525 student beds (including beds for Resident Assistants). Of the 1,525 student beds provided by the proposed NHIP, approximately 70 percent (1,068 beds) would be filled by students currently commuting to/from campus from an off-campus location. The other 30 percent (approximately 457 beds) would be filled by students who currently live on-campus, and who would move from a triple occupancy room to a double occupancy room once the proposed NHIP is complete. The proposed NHIP would result in no new student trips, and actually decreases the overall number of student trips to the campus by providing additional on-campus housing (1,068 new beds) to current student commuters. The proposed NHIP would also include approximately 151 (or 131 full-time-equivalent (FTE)) new non-student employees. Although some employee trips would occur during the AM and PM peak hour, the reduction of student trips by the proposed NHIP would offset the addition of employee trips, resulting in an overall net decrease of daily, AM and PM peak hour trips.

Because the proposed NHIP was not contemplated under the 2002 LRDP, an LRDP Amendment to provide additional square footage necessary to accommodate the NHIP is required. The proposed Amendment would involve an increase of 550,000 square feet of new development allocation in the Northwest zone. The LRDP Amendment will identify the existing developed campus square footage (approximately 16.8 million square feet of occupied space and 7.6 million square feet of parking structures that provide approximately 24,000 parking spaces) and the remaining development allocation under the 2002 LRDP (1.3 million square feet) available for future campus development. In addition, because the proposed NHIP has a completion date of 2013, for purposes of this analysis, population growth for the campus through 2013 is estimated. The LRDP Amendment will not involve any modifications to the previously adopted campus wide vehicle trip generation and parking limits (139,500 average daily trips and 25,169 parking spaces, respectively).

i

The on-campus population associated with the NHIP and LRDP Amendment includes an increase of approximately 1,087 faculty/staff (362 medical faculty/staff and 725 other faculty/staff), 1,562 resident students (1,050 undergraduate resident students and 512 graduate resident students), and 694 daily parking permit sales (includes kiosk and pay stations). The number of commuter students is expected to decrease from 24,210 to 23,473 (net decrease of 737 commuter students), as well as a decrease in the number of quarterly guests and emeriti permits (includes vendors, donors, contractors, and emeriti). Quarterly guests and emeriti permits are expected to decrease from 5,132 permits to 3,867 permits (net decrease of 1,265 permits).

The on-campus population growth would result in an increased demand for on-campus parking. This traffic study shows that with the development of the NHIP and LRDP Amendment, future campus demand can be accommodated within the adopted parking cap of 25,169 on-campus spaces, established in the 1990 LRDP. The on-campus population growth and anticipated parking utilization on-campus would result in an increase in vehicle trip generation from the current (Fall 2007) trip generation of 119,269 to approximately 125,666 average daily trips by 2013 (net increase of 6,397 average daily trips). The projected 2013 trip generation with the NHIP and LRDP Amendment is approximately ten percent below the vehicle trip cap of 139,500 trips established in the 1990 LRDP.

The trip generation associated with implementation of the NHIP and LRDP Amendment would increase traffic volumes on the local street network and the adjacent freeways. Eight study intersections would be significantly impacted by project-related traffic based on City of Los Angeles Department of Transportation (LADOT) guidelines for significant traffic impacts. No feasible mitigation measures are available to mitigate the impacts at all eight intersections; thus, implementation of the UCLA NHIP and LRDP Amendment would result in eight significant and unavoidable intersection impacts. The San Diego Freeway (I-405) and the Santa Monica Freeway (I-10) would experience a project-related increase in traffic demand by less than two percent, which falls below the Congestion Management Program (CMP) threshold; thus, no significant freeway impacts occur as a result of the NHIP and LRDP Amendment.

ii Iteris Inc.

TABLE OF CONTENTS

EXECUTIVE SUMMARY]
INTRODUCTION	1
PROJECT DESCRIPTION	
Northwest Housing Infill Project	
2002 LRDP Amendment	
ENVIRONMENTAL SETTING	6
Freeways	6
STREETS AND HIGHWAYS	
FUTURE PROJECTS	1
STUDY INTERSECTIONS	14
Freeway Analysis	15
ALTERNATIVE TRANSPORTATION	22
Public Transit	
Campus Transportation Demand Management (TDM) Program	
Carpool Matching	
VanpoolCampus Transit	
Emergency Ride Home Program	
Bicycles	
iWalk Pedestrian Program	
Motorcycles and Scooters	
Telecommuting and Alternative Work Schedules	
Car Share	
Alternative Fuel Infrastructure	
TDM OutreachBruinGo! Transit Program	
Non-Stop Bus Service to LAX	
Go Metro "TAP" Passes	
CAMPUS PARKING AND TRIP GENERATION	35
Parking Supply	35
Parking Allocation	38
CAMPUS VEHICLE TRIPS.	39
CAMPUS TRIP GENERATION RATES	39
TRAFFIC OPERATIONS ANALYSIS METHODOLOGY	43
Freeway Segment Mainline Analysis	
THRESHOLDS OF SIGNIFICANCE	4
AUTOMATED TRAFFIC SURVEILLANCE AND CONTROL AND ADAPTIVE TRAFFIC CONTROL SYSTEM	EM45
REDUCED CAPACITY AT SELECT STUDY INTERSECTIONS	46
SCRAMBLE CROSSWALK AT WESTWOOD BOULEVARD AND LE CONTE AVENUE	40

1raffic Impact Analysis	Finai Keport
Existing Traffic Volumes	47
EXISTING TRAFFIC OPERATIONS ANALYSIS	47
Analysis of Existing Freeway Conditions	54
FUTURE 2013 WITHOUT PROJECT CONDITIONS	58
Ambient Growth and Related Projects	58
FUTURE WITHOUT PROJECT LEVEL OF SERVICE	58
FUTURE 2013 WITH PROJECT CONDITIONS	76
FUTURE CAMPUS PARKING DEMAND	76
FUTURE 2013 TRIP GENERATION RATES	77
FUTURE CAMPUS TRIP GENERATION	78
TRIP DISTRIBUTION AND ASSIGNMENT	79
FUTURE 2013 WITH PROJECT (NHIP AND LRDP AMENDMENT) LEVEL OF SERVICE	81
INTERSECTION IMPACTS	88
Analysis of Future 2013 Freeway Conditions	93
CONGESTION MANGEMENT PROGRAM ANALYSIS	99
CMP Intersection Analysis	99
CMP Mainline Freeway Segment Analysis	100
CMP TRANSIT IMPACT REVIEW CMP Measures to Encourage Public Transit Patronage	
MITIGATION MEASURES	104
RESIDUAL SIGNIFICANT IMPACTS	106
CONCLUCIONS	105

Appendix A – Traffic Counts

Appendix B – Level of Service Worksheets

Appendix C –Related Project Notes

LIST OF FIGURES

FIGURE 1A – UCLA CAMPUS ZONES	4
FIGURE 1B - CONCEPTUAL NHIP SITE PLAN	5
FIGURE 2- VICINITY MAP	13
FIGURE 3A- STUDY INTERSECTIONS	16
FIGURE 3B- LOCATION OF PARKING LOT 36 AND THE WILSHIRE CENTER	17
FIGURE 3C- STUDY FREEWAY ANALYSIS SEGMENTS	18
FIGURE 4A- EXISTING LANE CONFIGURATIONS	19
FIGURE 4B- EXISTING LANE CONFIGURATIONS	20
FIGURE 4C- EXISTING LANE CONFIGURATIONS	21
FIGURE 5- EXISTING TRANSIT	27
FIGURE 6- UCLA CAMPUS SHUTTLE SYSTEM	31
FIGURE 7- UCLA BICYCLE COMMUTER MAP	32
FIGURE 8- UCLA PARKING FACILITIES LOCATIONS	37
FIGURE 9A- EXISTING AM/PM PEAK HOUR VOLUMES	51
FIGURE 9B- EXISTING AM/PM PEAK HOUR VOLUMES	52
FIGURE 9C- EXISTING AM/PM PEAK HOUR VOLUMES	53
FIGURE 10A- FUTURE WITHOUT PROJECT PEAK HOUR TURNING MOVEMENT VOLUMES- AMBIENT	
GROWTH ONLY	59
FIGURE 10B- FUTURE WITHOUT PROJECT PEAK HOUR TURNING MOVEMENT VOLUMES- AMBIENT	
GROWTH ONLY	60
FIGURE 10C- FUTURE WITHOUT PROJECT PEAK HOUR TURNING MOVEMENT VOLUMES- AMBIENT	
GROWTH ONLY	61
FIGURE 11- RELATED PROJECT LOCATIONS	66
FIGURE 12A- FUTURE WITHOUT PROJECT PEAK HOUR TURNING MOVEMENT VOLUMES- RELATED	
PROJECTS ONLY	67
FIGURE 12B- FUTURE WITHOUT PROJECT PEAK HOUR TURNING MOVEMENT VOLUMES- RELATED	
PROJECTS ONLY	68
FIGURE 13A- FUTURE WITHOUT PROJECT PEAK HOUR VOLUMES	73
FIGURE 13B- FUTURE WITHOUT PROJECT PEAK HOUR VOLUMES	74
FIGURE 13C- FUTURE WITHOUT PROJECT PEAK HOUR VOLUMES	75
FACULTY & STAFF - MEDICAL CENTER	76
FIGURE 15A- PROJECT ONLY PEAK HOUR VOLUMES	83
FIGURE 15B- PROJECT ONLY PEAK HOUR VOLUMES	84
FIGURE 15C- PROJECT ONLY PEAK HOUR VOLUMES	85
FIGURE 16A- FUTURE WITH PROJECT PEAK HOUR VOLUMES	90
FIGURE 16B- FUTURE WITH PROJECT PEAK HOUR VOLUMES	91
FIGURE 16C- FUTURE WITH PROJECT PEAK HOUR VOLUMES	92

LIST OF TABLES

TABLE 1 – PLANNED ROADWAY IMPROVEMENTS NEAR UCLA CAMPUS	12
TABLE 2 – CURRENT 2007-08 UCLA PARKING INVENTORY	36
TABLE 3 – CURRENT (FALL 2007) REGULAR SESSION PARKING ALLOCATION	38
TABLE 4 – HISTORICAL CAMPUS VEHICLE TRIP GENERATION (ADT)	39
TABLE 5 – EXISTING VEHICLE TRIP RATES	40
TABLE 6 – ESTIMATED CURRENT VEHICLE TRIP GENERATION	42
TABLE 7A – INTERSECTION LEVEL OF SERVICE DEFINITIONS	43
TABLE 7B – FREEWAY LEVEL OF SERVICE DEFINITIONS	44
TABLE 8 – CITY OF LOS ANGELES THRESHOLDS OF SIGNIFICANCE	44
TABLE 9A – EXISTING 2008 PEAK HOUR LEVEL OF SERVICE SUMMARY	50
TABLE 9B – EXISTING 2008 PEAK HOUR LEVEL OF SERVICE SUMMARY- (UNSIGNALIZED ANALYZED A	AS
2-PHASE SIGNALIZED INTERSECTION)	50
TABLE 10A – EXISTING AM PEAK HOUR FREEWAY VOLUMES AND LOS SUMMARY	55
TABLE 10B – EXISTING PM PEAK HOUR FREEWAY VOLUMES AND LOS SUMMARY	55
TABLE 11 – RELATED PROJECTS	62
TABLE 12A - FUTURE 2013 WITHOUT PROJECT PEAK HOUR LEVEL OF SERVICE SUMMARY	71
TABLE 12B - FUTURE 2013 WITHOUT PROJECT PEAK HOUR LEVEL OF SERVICE SUMMARY-	
(UNSIGNALIZED ANALYZED AS 2-PHASE SIGNALIZED INTERSECTION)	71
TABLE 13 - FUTURE 2013 ON-CAMPUS PARKING ALLOCATION WITH NHIP AND LRDP AMENDMENT	76
TABLE 14A - ESTIMATED TRIP GENERATION PER SPACE	77
TABLE 14B – REVISED 2013 PER PERSON TRIP GENERATION RATES	77
TABLE 15 - FUTURE 2013 ON-CAMPUS TRIP GENERATION WITH NHIP AND LRDP AMENDMENT	78
TABLE 16A - NHIP AND LRDP AMENDMENT TRIP GENERATION COMPARISON	79
TABLE 16B – PROJECT DIRECTIONAL DISTRIBUTION	79
TABLE 17 - DIRECTION OF CAMPUS TRIPS	80
TABLE 18A - FUTURE 2013 WITH PROJECT PEAK HOUR LEVEL OF SERVICE SUMMARY	86
TABLE 18B - FUTURE 2013 WITH PROJECT PEAK HOUR LEVEL OF SERVICE SUMMARY (UNSIGNALIZEI	D
ANALYZED AS 2-PHASE SIGNALIZED INTERSECTION)	87
TABLE 19A - FUTURE 2013 DAILY FREEWAY SEGMENT VOLUMES	94
TABLE 19B - FUTURE 2013 AM PEAK HOUR FREEWAY SEGMENT VOLUMES	95
TABLE 19C - FUTURE 2013 PM PEAK HOUR FREEWAY SEGMENT VOLUMES	96
TABLE 20 - CMP ARTERIAL MONITORING STATIONS	99
TABLE 22 - CMP FREEWAY MONITORING STATIONS	.100
TABLE 23A - CURRENT COMMUTERS (SAME AS FUTURE (2013) WITHOUT PROJECT)	.101
TABLE 23B - FUTURE (2013) COMMUTERS- WITH PROJECT	.101

INTRODUCTION

In response to the continuing unmet demand for on-campus undergraduate housing, University of California, Los Angeles (UCLA) is considering the development of additional undergraduate student housing in the Northwest zone of the campus. The proposed Northwest Housing Infill Project (NHIP) was not part of the original 2002 Long Range Development Plan (LRDP) that guides physical development of the campus through 2010. Because the proposed NHIP would exceed the 2002 LRDP development entitlement in the Northwest zone, UCLA proposes to amend the 2002 LRDP to accommodate the proposed NHIP.

The proposed Amendment would involve an increase of 550,000 square feet of new development allocation in the Northwest zone. The LRDP Amendment will identify the existing developed campus square footage (approximately 16.8 million square feet of occupied space and 7.6 million square feet of parking structures that provide approximately 24,000 parking spaces) and the remaining development allocation under the 2002 LRDP (1.3 million square feet) available for future campus development. In addition, because the proposed NHIP has a completion date of 2013, for purposes of this analysis, there would be an associated adjustment in the 2002 LRDP 2010 population projections out to a 2013 planning horizon. The LRDP Amendment will not involve any modifications to the previously adopted campus wide vehicle trip generation and parking limits (139,500 average daily trips and 25,169 parking spaces, respectively).

Iteris, Inc. was retained to conduct a Traffic Impact Analysis (TIA) to assess the potential impacts of the proposed NHIP and LRDP Amendment on campus parking demand, vehicle trip generation, alternative transportation modes, and traffic on the local street and regional highway network. This report details existing conditions, projects future traffic conditions (without the implementation of the proposed NHIP and LRDP Amendment), and analyzes the potential impacts of implementation of the proposed NHIP and LRDP Amendment.

This study utilizes impact assessment methodologies that are consistent with previous UCLA studies and City of Los Angeles Department of Transportation (LADOT) policies and procedures, with respect to traffic analyses to provide a conservative, but accurate assessment of the potential impacts of the proposed NHIP and LRDP Amendment.

Project Description

Northwest Housing Infill Project

UCLA proposes to construct four new residence halls and associated support facilities for undergraduate students on land immediately adjacent to existing residence halls in the Northwest zone of the campus. The NHIP in its entirety would include approximately 550,000 gross square feet (gsf) of new development and would accommodate the following uses:

- 1. Approximately 1,525 student beds (including beds for Resident Assistants);
- 2. A limited number of apartments for professional staff and faculty-in-residence;

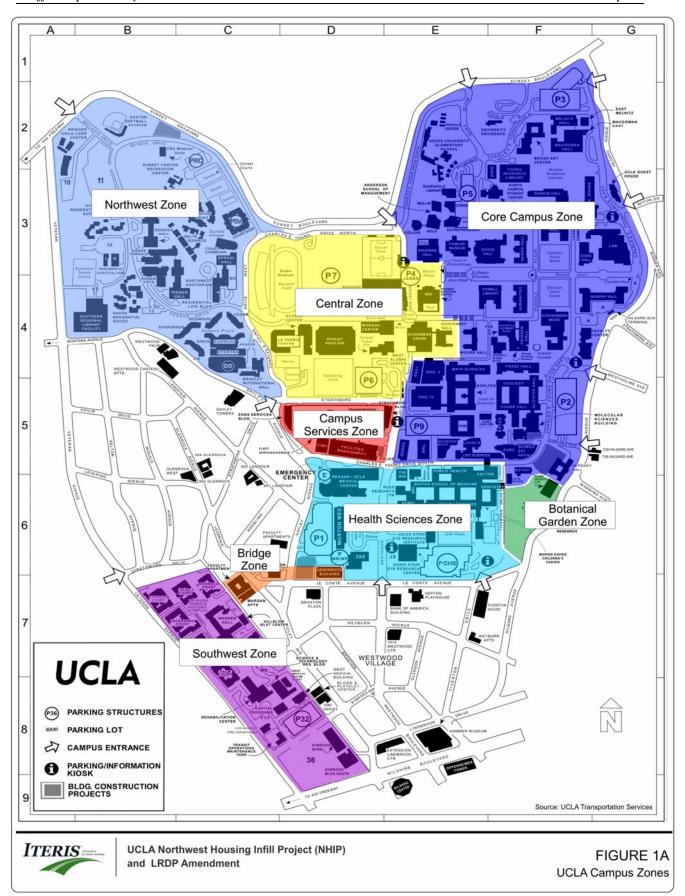
- 3. An approximate 750-seat dining commons:
- 4. Multipurpose assembly, study, and meeting rooms;
- 5. A fitness center; and
- 6. Maintenance and support space

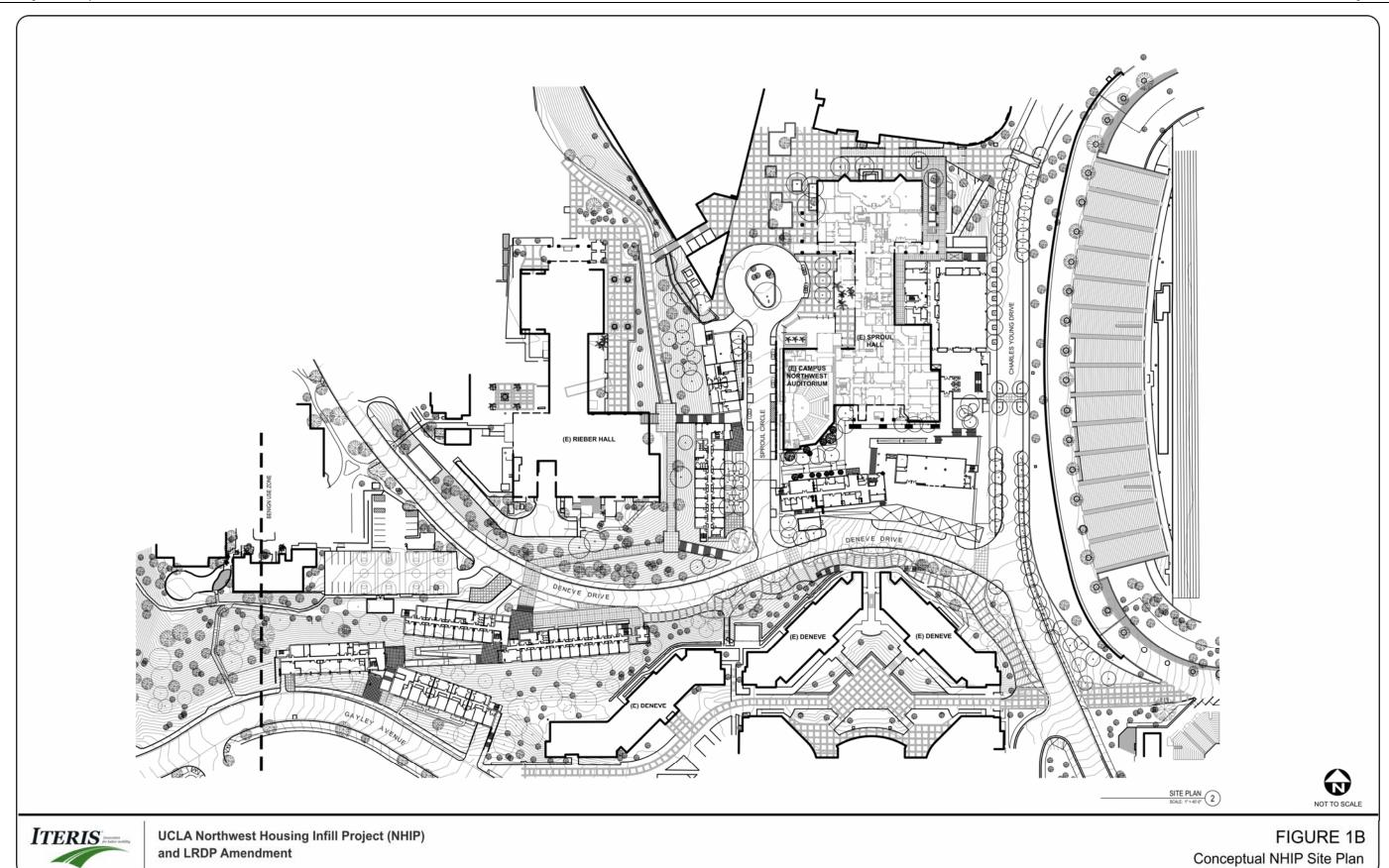
Of the 1,525 student beds provided by the proposed NHIP, approximately 70 percent (1,068 beds) would be filled by students currently commuting to/from campus from an off-campus location. The other 30 percent (approximately 457 beds) would be filled by students who currently live on-campus, and who would move from a triple occupancy room to a double occupancy room once the proposed NHIP is complete. The proposed NHIP would result in no new student trips, and actually decreases the overall number of student trips to the campus by providing additional on-campus housing (1,068 new beds) to current student commuters. The proposed NHIP would also include approximately 151 (or 131 FTE) new non-student employees. Although some employee trips would occur during the AM and PM peak hour, the reduction of student trips to the campus by the proposed NHIP would offset the addition of employee trips, resulting in an overall net decrease of daily, AM and PM peak hour trips.

As part of the proposed NHIP, the Office of Residential Life building would be demolished and occupants would be permanently relocated to Bradley Hall, while Housing Maintenance would be temporarily relocated. The existing Housing Maintenance space, including the covered parking area, would be renovated/expanded and relocated on the ground floor of the new Sproul Complex.

Vehicular circulation improvements for the proposed NHIP would include: (1) a new vehicular entry for Housing Maintenance service vehicles into the Sproul Complex from Charles E. Young Drive and (2) widening of the existing Sproul Hall loading dock off De Neve Drive from two bays to three. Existing pedestrian facilities in proximity to the proposed NHIP would be reconfigured and/or replaced, and new facilities would be constructed to ensure safe and efficient movement of residents within the Northwest zone and to other campus areas.

The proposed NHIP would include the installation of new hardscape and landscape. Additionally, campus utilities (storm drain, water, sewer, electric, natural gas, telecommunication, and cable television) would be extended and/or relocated, as necessary, to serve the new buildings.


Construction for the new infill housing is scheduled to begin in mid-2009 and would be completed in early 2013.


2002 LRDP Amendment

Because the proposed NHIP was not contemplated under the 2002 LRDP, an LRDP Amendment to provide additional square footage necessary to accommodate the NHIP is required. The proposed Amendment would involve an increase of 550,000 square feet of new development allocation in the Northwest zone. The LRDP Amendment will identify the existing developed campus square footage (approximately 16.8 million square feet of occupied space and 7.6 million square feet of parking structures that provide approximately 24,000 parking spaces) and the remaining development allocation

under the 2002 LRDP (1.3 million square feet) available for future campus development. In addition, because the proposed NHIP has a completion date of 2013, for purposes of this analysis, there would be an associated adjustment in the 2002 LRDP 2010 population projections out to a 2013 planning horizon. The LRDP Amendment will not involve any modifications to the previously adopted campus wide vehicle trip generation and parking limits (139,500 average daily trips and 25,169 parking spaces, respectively).

Figure 1A shows the UCLA campus zone boundaries and **Figure 1B** shows the proposed site plan for the NHIP project.

ENVIRONMENTAL SETTING

The study area is situated around the UCLA campus, which is located within the community of Westwood, in the City of Los Angeles. Land uses within the Westwood area include a mixture of retail, residential, restaurant, educational, cultural, and commercial office uses. Access to and from the area is provided by a well-developed surface street network, the San Diego Freeway (Interstate 405) and the Santa Monica Freeway (Interstate 10). A substantial portion of the surface street traffic within the study area is "through" traffic, with origins or destinations in the areas of Westwood, Century City, Beverly Hills, and/or Santa Monica. Surface streets and freeways within the project area are described below. **Figure 2** shows the Vicinity Map.

Freeways

San Diego Freeway (I-405) – I-405 provides regional access throughout and beyond the western portion of Los Angeles County. Near the campus, I-405 is a north/south freeway that provides five mixed-flow lanes in each direction. A southbound high-occupancy vehicle (HOV) lane is currently under construction near the UCLA campus, and a northbound HOV lane is in the planning phases. To the north, I-405 merges with the Golden State Freeway (I-5) at Mission Hills. To the south, I-405 passes through Long Beach and Orange County to the City of Irvine, where it merges with I-5; the I-5 then extends to San Diego County. I-405 also provides direct access to other freeways, including an interchange with the Santa Monica Freeway (I-10) approximately 2.5 miles south of the campus, and with the Ventura Freeway (US Highway 101) approximately seven miles northwest of the campus. Access to and from the surface street network immediately surrounding the project site is provided by northbound and southbound freeway on-and off-ramp and southbound on-ramp located near Montana Avenue.

Santa Monica Freeway (I-10) – I-10 is an east/west facility located approximately 2.5 miles south of the campus. It provides regional access throughout Los Angeles County, extending east to San Bernardino and beyond. To the west, I-10 transitions into Pacific Coast Highway (PCH) in the City of Santa Monica; PCH then extends to the northwest. I-10 typically provides four through lanes in each direction in the vicinity of the campus.

Streets and Highways

Wilshire Boulevard – Wilshire Boulevard is designated as a Major Highway Class II facility in the Project area, and begins in downtown Los Angeles and traverses westerly through the cities of Los Angeles, Beverly Hills, and Santa Monica, terminating near the Pacific Ocean. It provides four lanes in each direction west of Glendon Avenue and east of the I-405, and left-turn channelization (including eastbound double left-turn lanes at many locations). The Wilshire Boulevard right-of-way is generally 105 feet, and is among the most prominent streets in the West Los Angeles area, providing direct access to commercial establishments along the Wilshire Corridor, and serving as a major thoroughfare between the Westside and downtown Los Angeles. Wilshire Boulevard is one of the highest capacity surface street routes between I-405 and the Century City/Beverly Hills areas, with full access to both the northbound and southbound I-405 freeway facilities.

Westwood Boulevard – Westwood Boulevard is designated as a Major Highway Class II facility in the Project area that runs north-south in the vicinity of the campus. It provides two to three through lanes in each direction and left-turn channelization. Westwood Boulevard terminates at Le Conte Avenue where it becomes Westwood Plaza, an internal campus roadway that provides two to three travel lanes in each direction. Westwood Boulevard extends southeasterly, past I-10 where it becomes National Place.

Sunset Boulevard – Sunset Boulevard is an east/west roadway throughout the Westside and classified as a Major Highway Class II in the Project area. It provides a continuous facility from downtown Los Angeles, through West Hollywood and Beverly Hills, and continuing through Pacific Palisades where it terminates at PCH. Sunset Boulevard also provides the northernmost east/west thoroughfare south of the Santa Monica Mountains through the campus vicinity, and is heavily utilized by both local and commuter traffic. Sunset Boulevard is approximately 50 feet wide in the study area, and is striped for two lanes in each direction, plus left-turn channelization at major intersections. Parking is prohibited along Sunset Boulevard within the study area.

Hilgard Avenue – Hilgard Avenue is a north/south secondary highway that connects to Sunset Boulevard to the north, and merges with Lindbrook Drive to the south. Hilgard Avenue is the eastern boundary of the campus, and provides two travel lanes in each direction. On-street parking is generally permitted, but prohibited on some segments.

Le Conte Avenue – Le Conte Avenue is an east/west secondary highway through the commercial portions of Westwood Village (between Gayley Avenue and Hilgard Avenue), and a local (residential) street east of Hilgard Avenue. Le Conte Avenue provides a single travel lane in each direction, plus left-turn channelization and on-street parking on both sides of the street.

Gayley Avenue – Gayley Avenue is primarily a north/south secondary highway, extending from Veteran Avenue on the north (where it becomes Montana Avenue) to Wilshire Boulevard on the south (where it becomes Midvale Avenue). Gayley Avenue is a primary access route to the campus, and is striped to provide one to two travel lanes in each direction. On-street parking is allowed along some portions of the street, including a portion of the street that fronts the proposed NHIP site.

Strathmore Drive – Strathmore Drive is a local street that serves the residential neighborhood west of the campus. Strathmore Drive also serves through traffic from Veteran Avenue to the campus. East of Gayley Avenue, Strathmore Drive enters the campus and turns into Strathmore Place, which is an internal campus road with two-lanes in each direction.

Levering Avenue – Levering Avenue is a short, northwest-to-southeast local street to the west of the campus, beginning at Montana Avenue and terminating at Glenrock Avenue west of Gayley Avenue. Although Levering Avenue is approximately one-half mile long, its location and orientation make it an alternate route to Montana Avenue and Gayley Avenue, both into and out of Westwood Village. At its intersection with Veteran Avenue, Levering Avenue is 40 feet wide and is striped to provide a single lane in each direction. On-street parking is allowed on Levering Avenue.

Veteran Avenue – Veteran Avenue is a north/south secondary highway located to the west of the campus. Veteran Avenue varies in width from approximately 40 to 60 feet between Sunset Boulevard and Wilshire Boulevard, and is striped to provide a single travel lane in each direction and on-street parking on both sides of the street. At Wilshire Boulevard the roadway widens to approximately 70 feet in width to provide additional through lanes, as well as left and right-turn channelization in both the northbound and southbound directions. Veteran Avenue provides a primary connection between Sunset Boulevard and Wilshire Boulevard, as well as access to the UCLA campus.

Montana Avenue – Montana Avenue is an east/west collector street that starts just west of Beloit Avenue and turns into Gayley Avenue east of Veteran Avenue. Montana Avenue is one lane in each direction near the study area, and on-street parking is restricted to permitted vehicles. A northbound off-ramp from I-405 is provided via Montana Avenue.

Sepulveda Boulevard – Sepulveda Boulevard runs northwest-southeast in the vicinity of the project, and is designated as a Major Highway Class II. It extends north to the vicinity of the I-405 and I-5 interchange, and south to Manhattan Beach where it turns into PCH. Sepulveda Boulevard has two through lanes in each direction near the study area.

Church Lane – Church Lane is a frontage road located west of I-405. It extends in a southeast-to-northwest direction from Waterford Street to Sunset Boulevard, where it continues and crosses I-405 and becomes Ovada Place at Sepulveda Boulevard. Church Lane provides two through lanes in the northbound approach and one through lane in the southbound approach at Sunset Boulevard, with left-turn and right-turn channelization in both directions. Church Lane also provides access to the I-405 southbound ramps located north of Sunset Boulevard.

Sawtelle Boulevard – Sawtelle Boulevard is a northwest/southeast secondary highway that runs parallel to and west of I-405. It extends from Ohio Avenue to Overland Avenue, south of Jefferson Boulevard in Culver City. It is striped as a four lane facility with left-turn channelization at major intersections.

San Vicente Boulevard – San Vicente Boulevard is a major arterial that extends from Wilshire Boulevard, near Veteran's Hospital, to Ocean Avenue in the City of Santa Monica. San Vicente Boulevard is striped for two through lanes in the northbound and southbound directions, with triple left-turns in the southbound approach to Wilshire Boulevard, and one left-turn and one right-turn in the northbound approach.

Weyburn Avenue – Weyburn Avenue is a short local street that traverses the southern end of the UCLA Southwest campus zone, beginning at Veteran Avenue on the west and continuing east of Hilgard Avenue to Le Conte Avenue. Weyburn Avenue generally provides a single travel lane in each direction with onstreet parking on both sides. However, a portion of Weyburn Avenue that traverses University property, between the Midvale Alley and Veteran Avenue, has one lane in each direction with no on-street parking.

Kinross Avenue – Kinross Avenue is a short local street that runs between Veteran Avenue on the west and Glendon Avenue on the east. It provides one to two travel lanes and on-street parking in each

direction. As part of the Southwest Campus Housing Project, the parking gates were removed from this road on the UCLA Southwest campus zone, and Kinross Avenue has been opened to public through traffic with two lanes in each direction and three turn lanes channelizing traffic at the intersection of Kinross Avenue and Veteran Avenue; two southbound and one northbound.

Lindbrook Drive – Lindbrook Drive is an east/west local street east of Hilgard Avenue and a secondary highway west of Hilgard Avenue. West of Hilgard Avenue it is striped for two travel lanes in each direction, with limited on-street parking permitted. Lindbrook Drive extends northeasterly from Gayley Avenue and terminates at Devon Avenue (east of Beverly Glen Boulevard).

Tiverton Avenue – Tiverton Avenue is a short collector roadway that runs between Lindbrook Drive and Le Conte Avenue. South of Weyburn Avenue, Tiverton Avenue is a one-way facility in the northbound direction. On-street parking is allowed on both sides of the street. North of Le Conte Avenue, the roadway enters the UCLA campus and becomes a two-way street at Tiverton Drive.

Wyton Drive – Wyton Drive is a local street east of the UCLA campus. This roadway extends to Charles E. Young Drive East, which allows access to the east side of campus. Wyton Drive provides one lane in each direction between Hilgard Avenue and Beverly Glen Boulevard.

Westholme Avenue – Westholme Avenue is a collector street east of the UCLA campus. It is a two lane residential street that extends from Santa Monica Boulevard to Hilgard Avenue, where it becomes an internal campus roadway.

Manning Avenue – Manning Avenue is a local street that serves the residential community east of the campus. Manning Avenue turns into a secondary roadway between Wilshire Boulevard and Santa Monica Boulevard, and terminates at the Santa Monica Freeway off-ramp on National Boulevard. West of Hilgard Avenue, Manning Avenue jogs northward where it becomes an access roadway to the campus. It provides one lane in each direction at Hilgard Avenue.

Malcolm Avenue – Malcolm Avenue is a local street located east of the campus. This roadway starts at Westholme Avenue and runs parallel to Hilgard Avenue. Malcolm Avenue intersects with Wilshire Boulevard, where it provides one through lane in each direction. It terminates south of Wilshire Boulevard at Holman Avenue.

Beverly Glen Boulevard – Beverly Glen Boulevard is a north/south roadway located approximately one-half mile east of the campus. It is classified as a secondary roadway between Mulholland Drive and Wilshire Boulevard, and a Major Highway Class II between Wilshire Boulevard and Pico Boulevard. It extends in a southeast/northwest direction from Pico Boulevard to Ventura Boulevard in Sherman Oaks. Beverly Glen Boulevard provides two through lanes and left-turn channelization within the study area.

Ohio Avenue – Ohio Avenue is an east/west collector street located south of the campus. Ohio Avenue is a relatively heavily used roadway for local access, as it provides the only roadway connection across I-405 between Wilshire Boulevard and Santa Monica Boulevard. Near the campus, Ohio Avenue is

typically 40 feet in width, and is striped to provide a single travel lane in each direction, although at many intersections, localized flaring or parking restrictions allow for left and/or right-turn channelization.

Santa Monica Boulevard – Santa Monica Boulevard is an east/west Major Highway Class II that extends from the City of Santa Monica to the Silver Lake area northwest of downtown Los Angeles. In the study area, Santa Monica Boulevard extends southwest to northeast, and is striped for three to four lanes in each direction at I-405, and two to three lanes in each direction east of Sepulveda Boulevard. This facility is listed on the Congestion Management Program (CMP) roadway system as part of the CMP roadway network.

Copa De Oro Road – Copa De Oro Road is a short local street that intersects Sunset Boulevard and is located opposite Hilgard Avenue. It serves the residential neighborhood northeast of the campus and provides one travel lane in each direction.

Stone Canyon Road – Stone Canyon Road is a local roadway that primarily serves the residential neighborhood north of campus. South of Sunset Boulevard, Stone Canyon Road becomes Royce Drive, which is an internal campus roadway.

Bellagio Road/Way – North of Sunset, Bellagio Way connects via Bellagio Road and Chalon Road to Roscomare Road and Mulholland Drive. Bellagio Road is a two lane collector road which serves the residential neighborhood northwest of the campus. South of Sunset Boulevard, Bellagio Way crosses into campus and turns into an internal campus roadway.

Bel Air Road – Bel Air Road is a short local street located north of Sunset Boulevard, and is opposite Beverly Glen Boulevard. It serves the residential neighborhood northeast of the campus. This roadway provides one travel lane in each direction.

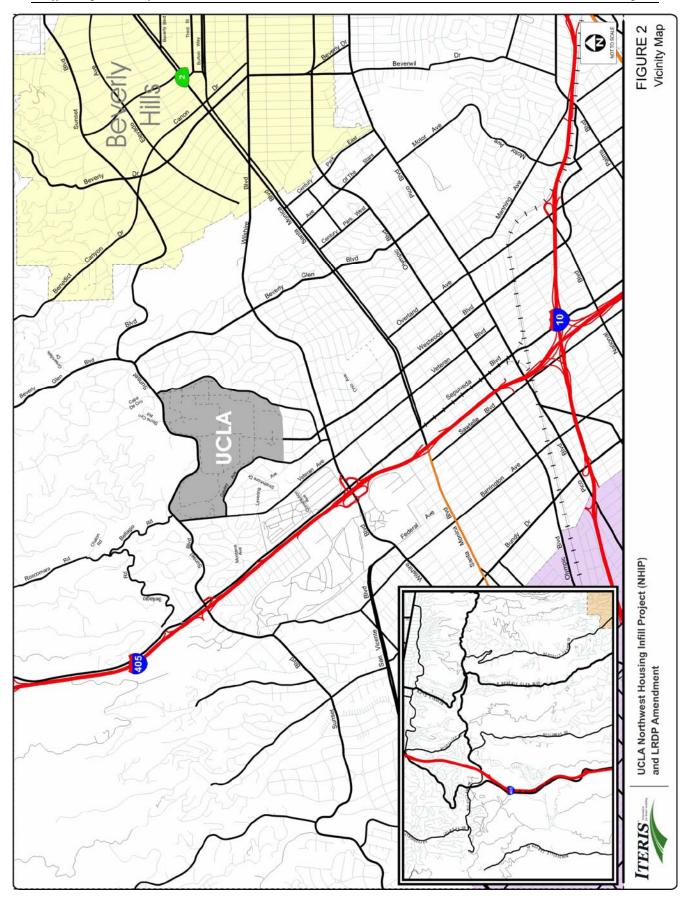
Linda Flora Drive – Linda Flora Drive is a local roadway that intersects Roscomare Road and is opposite Stradella Road. This roadway serves the residential neighborhood north of the campus and provides one travel lane in each direction.

Chalon Road – Chalon Road is a local roadway that extends from Stone Canyon Road to Bellagio Road, where it turns north and becomes Linda Flora Drive. Chalon Road is striped for two lanes.

Roscomare Road – Roscomare Road is a north/south collector road located approximately one mile north of campus. It extends north from Chalon Road and terminates at Mulholland Drive. Roscomare Road is one lane in each direction.

Stradella Road – Stradella Road is a local street located north of the campus and generally extends in a north/south direction. It extends from Roscomare Road to Sarbonne Road and provides one travel lane in each direction.

Greendale Drive – Greendale Drive is a short local street located north of Sunset Boulevard and intersects with Beverly Glen Boulevard and Faring Road. This roadway provides one travel lane in each direction.


Mulholland Drive – Mulholland Drive is an east/west major highway located approximately four miles north of the campus. It provides one travel lane in each direction north of the campus between Skirball Center Drive and Beverly Glen Boulevard, and two lanes in each direction east of Beverly Glen Boulevard.

Future Projects

Per the Draft 2008 Regional Transportation Plan (RTP) Transportation Conformity Supplemental Report, produced by the Southern California Association of Governments (SCAG), a number of freeways, highways, and streets around the UCLA campus are projected to undergo roadway improvements over the next five years (between 2008 and 2013). These improvements are stated for informational purposes only and are not reflected in the traffic impact analysis. The improvements are listed below in **Table 1**.

TABLE 1 – PLANNED ROADWAY IMPROVEMENTS NEAR UCLA CAMPUS

Project Name	From	То	Project Description	Project Completion Date
I- 405	Route 105	Route 90	Near Hawthorne and Culver City from Route 105 to Route 90 - 6 lane fwy, add 1 HOV lane in each direction and soundwalls	2008
I- 405	La Tijera Boulevard	Jefferson Boulevard	In LA: From La Tijera Blvd to Jefferson Blvd; add auxiliary lane NB. Widen Centinela and Sepulveda under-crossing, widen/realign on/off ramps at La Tijera, Sepulveda, and Jefferson.	2009
I- 405	Route 90	Route 10	In LA and Culver City from Route 90 to Route 10 - HOV lanes (SB 5+0 to 5+1; NB 5+0 to 5+1 HOV).	2010
I- 405	Waterford Avenue	Route 10	Rte 405 - Waterford Ave to Rte 10 - Construct SB auxiliary lane and SB HOV lane.	2009
I-405	Route 405/101 Connector	NA	In LA on Rte 405/101 connector gap closure.	2008
I-405	South of Ventura Boulevard	South of Burbank Boulevard	Extension of NB I-405 HOV lane - To extend the HOV lane on NB I-405 from south of Ventura Blvd to south of Burbank Blvd where it will join the existing HOV lane.	2008
Santa Monica Boulevard	Doheny Drive	Wilshire Boulevard	Santa Monica Blvd widen from Doheny Dr to Wilshire Boulevard (widen from 4 to 5 lanes).	2010
Bundy Drive	Wilshire Boulevard	Santa Monica Boulevard	Widen Bundy Dr between Wilshire and Santa Monica Blvd from 2 to 4 lanes.	2012
Barrington Avenue	Alley North of Gorham Avenue	Darlington Avenue	Barrington Ave - Alley north of Gorham Avenue to Darlington Avenue widening to provide left turn lane - widen from 2 to 4 lanes.	2009
Sepulveda Boulevard	Under Mulholland Drive	NA	Sepulveda Blvd tunnel under Mulholland Dr widening. Widen tunnel structure from 3 to 4 lanes - match roadway approach, increase vertical clearance and add bike lanes in each direction - feasibility study only.	2010
Sepulveda Boulevard	Centinela Avenue	Lincoln Boulevard	Sepulveda Blvd from Centinela Ave to Lincoln Blvd - widen Sepulveda Blvd between Lincoln and Centinela to provide bus/carpool priority lane.	2009
Sepulveda Boulevard	Mulholland Tunnel	Wilshire Boulevard	Sepulveda Blvd from Mulholland Tunnel to Wilshire Blvd. Reversible lane, bike lane, and intersection improvement.	2009
Source: Draft 2008 RTP T	ransportation Conformity Supplem	ental Report, Modeled Projects	(by County and System), SCAG.	

Study Intersections

To provide a conservative assessment of the potential traffic and parking impacts of the NHIP and LRDP Amendment, this document utilizes traffic impact assessment methodologies that are consistent with University and City of Los Angeles policies (Los Angeles Department of Transportation (LADOT), Traffic Study Policies and Procedures, March 2003). To be consistent with the prior analysis for the 2002 LRDP, this analysis incorporates a detailed evaluation of existing and future traffic conditions at the same 58 study intersections that were addressed in the traffic study for the 2002 LRDP. All 58 study intersections are within the area surrounding the UCLA campus and are the intersections expected to be most directly affected by the vehicle trips generated by the proposed 2008 NHIP buildout of the remaining development allocation under the 2002 LRDP, as amended. The 58 study intersections are listed below:

#1 Church Ln-Ovada Pl/Sepulveda Blvd #2 San Diego Fwy SB On-Off Ramp/Church Ln #3 Sunset Blvd/Church Ln #4 Sunset Blvd/SD Fwy NB On-Off Ramp #5 Sunset Blvd/Veteran Ave #6 Sunset Blvd/Bellagio Way #7 Sunset Blvd/Westwood Blvd #8 Sunset Blvd/Stone Cyn Rd #9 Sunset Blvd/Hilgard Ave and Copa De Oro Rd #10 Sunset Blvd/Beverly Glen Blvd #11 Sunset Blvd (East I-S)/Beverly Glen Blvd #12 SD Fwy NB Off Ramp/Sepulveda Blvd #13 Montana Ave/Sepulveda Blvd #14 Montana Ave/Levering Ave #15 Montana Ave/Gayley Ave and Veteran Ave #16 Strathmore Pl/Gayley Ave #17 Levering Ave/Veteran Ave #18 Wyton Dr/Hilgard Ave #19 Wyton Dr-Comstock Ave/Beverly Glen Blvd #20 Westholme Ave/Hilgard Ave #21 Manning Ave/Hilgard Ave #22 Le Conte Ave/Gayley Ave #23 Le Conte Ave/Westwood Blvd #24 Le Conte Ave/Tiverton Dr #25 Le Conte Ave/Hilgard Ave #26 Weyburn Ave/Gayley Ave #27 Weyburn Ave/Westwood Blvd #28 Weyburn Ave/Tiverton Dr

#29 Weyburn Ave/Hilgard Ave

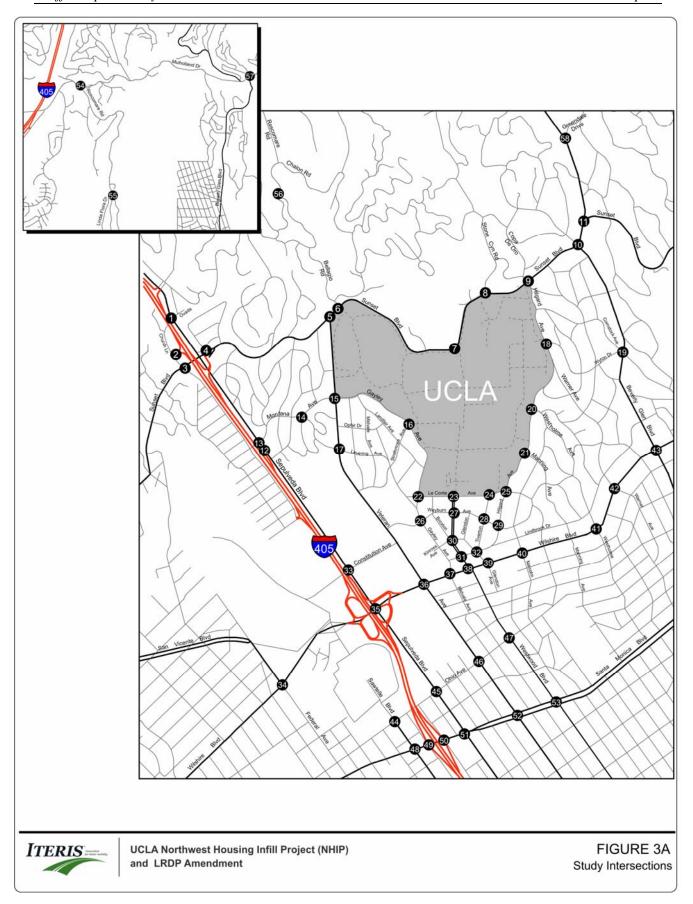
#30 Kinross Ave/Westwood Blvd #31 Lindbrook Dr/Westwood Blvd #32 Lindbrook Dr/Tiverton Ave #33 Constitution Ave/Sepulveda Blvd #34 Wilshire Blvd/San Vicente Blvd #35 Wilshire Blvd/Sepulveda Blvd #36 Wilshire Blvd/Veteran Ave #37 Wilshire Blvd/Gayley Ave #38 Wilshire Blvd/Westwood Blvd #39 Wilshire Blvd/Glendon Ave #40 Wilshire Blvd/Malcolm Ave #41 Wilshire Blvd/Westholme Ave #42 Wilshire Blvd/Warner Ave #43 Wilshire Blvd/Beverly Glen Blvd #44 Ohio Ave/Sawtelle Blvd #45 Ohio Ave/Sepulveda Blvd #46 Ohio Ave/Veteran Ave #47 Ohio Ave/Westwood Blvd #48 Santa Monica Blvd/Sawtelle Blvd #49 Santa Monica Blvd/SD Fwy SB Ramp #50 Santa Monica Blvd/SD Fwy NB Ramp #51 Santa Monica Blvd/Sepulveda Blvd #52 Santa Monica Blvd/Veteran Ave #53 Santa Monica Blvd/Westwood Blvd #54 Roscomare Rd/Mulholland Dr #55 Roscomare Rd and Stradella Rd/Linda Flora Dr #56 Chalon Rd/Bellagio Rd

14 Iteris Inc.

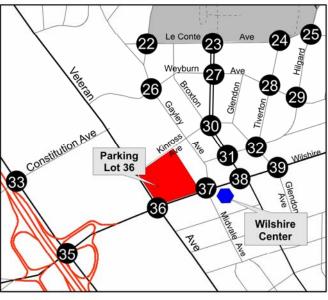
#57 Beverly Glen Blvd/Mulholland Dr

#58 Beverly Glen Blvd/Greendale Dr

Freeway Analysis

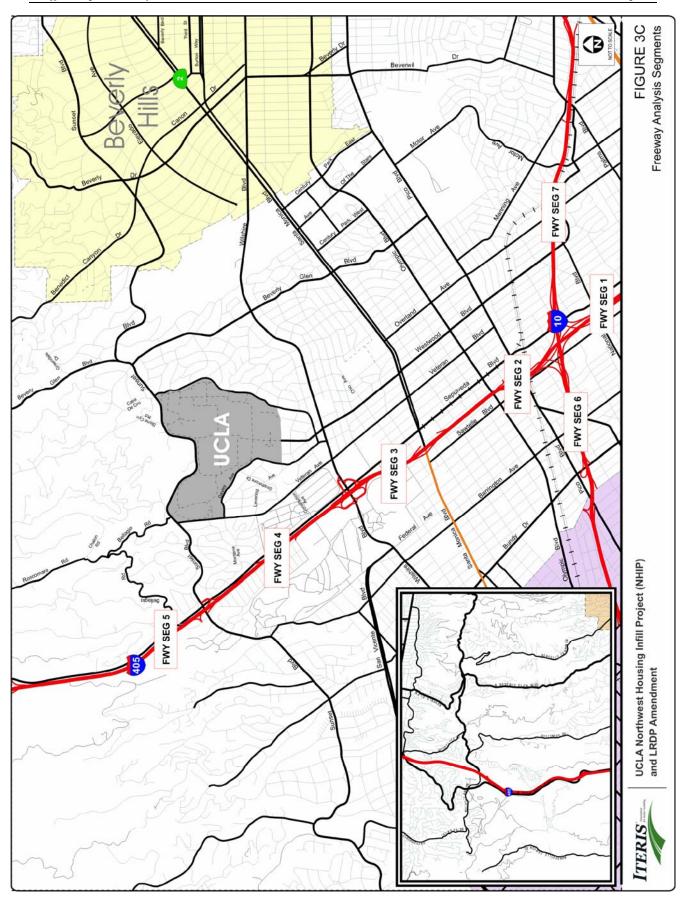

The impact analysis in this study also incorporates two freeways, the San Diego Freeway (I-405) and the Santa Monica Freeway (I-10), for which seven freeway segments within the general project vicinity were analyzed. These freeway segments include:

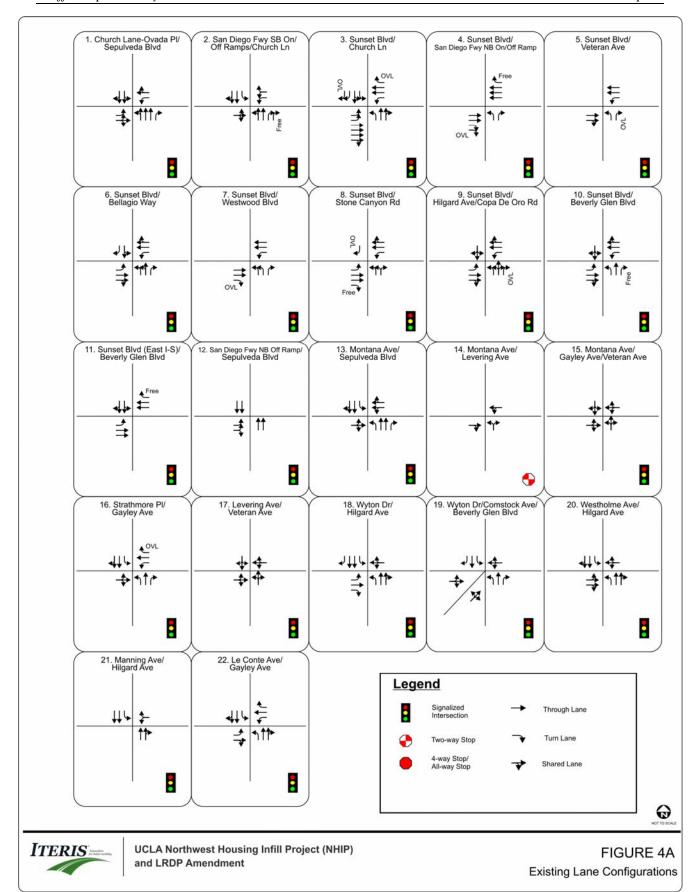
- 1. San Diego Freeway (I-405), south of Santa Monica Freeway (I-10)
- 2. San Diego Freeway (I-405), between Santa Monica Freeway (I-10) and Santa Monica Boulevard
- 3. San Diego Freeway (I-405), between Wilshire Boulevard and Santa Monica Boulevard
- 4. San Diego Freeway (I-405), between Sunset Boulevard and Wilshire Boulevard
- 5. San Diego Freeway (I-405), north of Sunset Boulevard
- 6. Santa Monica Freeway (I-10), between Bundy Drive and San Diego Freeway (I-405)
- 7. Santa Monica Freeway (I-10), between Overland Avenue and National Boulevard

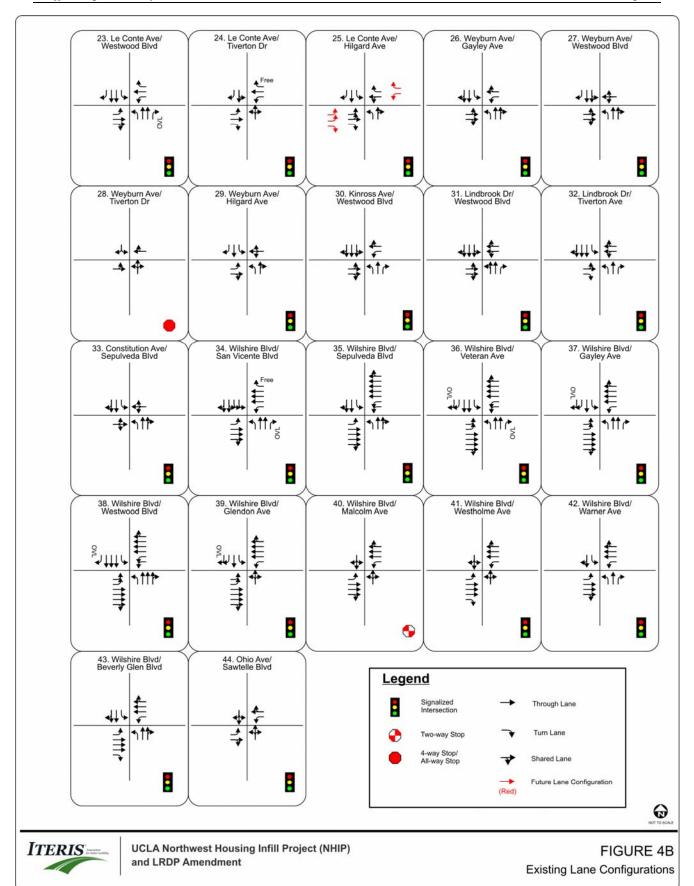

The Los Angeles County Congestion Management Program (CMP) also is used as a guide for the analysis of freeway segments. The closest CMP freeway mainline monitoring stations include:

- 1. Santa Monica Freeway (I-10) at Lincoln Boulevard
- 2. Santa Monica Freeway (I-10), east of Overland Avenue
- 3. Santa Monica Freeway (I-10), east of La Brea Avenue Under Crossing
- 4. San Diego Freeway (I-405), north of Venice Boulevard
- 5. San Diego Freeway (I-405), south of Mulholland Drive

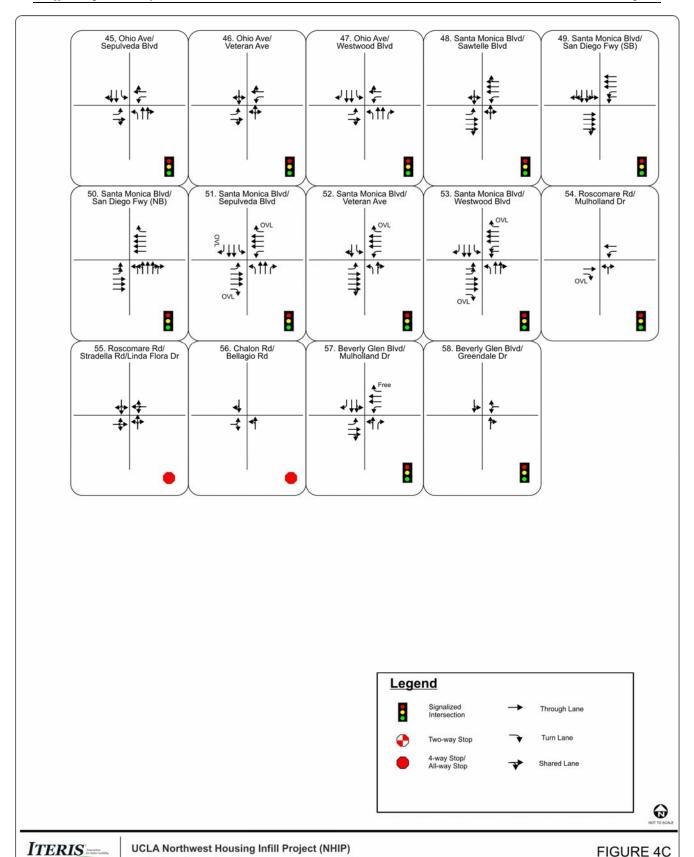
Figure 3A shows the location of the proposed project site in relation to the 58 study intersections, **Figure 3B** shows the location of Parking Lot 36 and the Wilshire Center located south of the campus, and **Figure 3C** shows the seven freeway segments chosen for analysis. **Figures 4A, 4B** and **4C** show the existing lane configurations and traffic control. A field inventory was conducted at the 58 study area intersection locations. The inventory included review of intersection geometric layout, traffic control, lane configuration, posted speed limits, transit service, land use and parking. This information is required for the subsequent traffic impact analysis.







UCLA Northwest Housing Infill Project (NHIP) and LRDP Amendment


FIGURE 3B Location of Parking Lot 36 and Wilshire Center

and LRDP Amendment

21 Iteris Inc.

Existing Lane Configurations

Alternative Transportation

The UCLA campus is generally well served by alternative modes of transportation. Viable transit opportunities include public bus service provided by six outside operators, and campus-operated shuttle bus services. These services not only offer alternative means to commute to the UCLA campus, they also aids in reducing the need for a car once on campus; via shuttles around the campus, around Westwood Village, and to other off-campus locations. UCLA has also implemented a Transportation Demand Management (TDM) Program which facilitates and promotes the use of transit, carpools, vanpools, and bicycling. The transportation alternatives made available to the campus population through the various transit services and the campus trip-reduction program are discussed below in greater detail.

Public Transit

The UCLA campus area is served by six public transit operators; Los Angeles County Metro, Los Angeles Department of Transportation (LADOT), Santa Clarita Transit, Antelope Valley Transit Authority, Santa Monica Municipal Bus Lines, and Culver City Bus. Together, these operators run a total of 24 local routes, limited stop routes, express routes, and rapid bus routes within two miles of the UCLA campus. The Hilgard Bus Terminal, located on the eastern edge of campus, is adjacent to a single-family home residential neighborhood called Holmby Hills. The Hilgard Terminal serves as the final bus stop for several Big Blue Bus routes. In order to reduce the impacts of the buses on the adjoining neighbors, UCLA arranged with the City of Santa Monica's Big Blue Bus to reroute these buses to the central-campus located Ackerman Bus Terminal after 10:00 PM on weekdays, and all day on weekends and major holidays. The Ackerman Bus Terminal serves as the primary on-campus bus stop location for Metro bus routes and is also used by Culver City Bus. Per CMP guidelines, a description of all 24 routes is provided below. Figure 5 shows the public transit routes serving the UCLA campus. Route descriptions are provided below.

Metro Line 2 (Sunset Boulevard) / 302 (Sunset Boulevard Limited) – Metro Line 2/302 runs around the southern boundary of the UCLA campus via Montana Avenue, La Conte Avenue and Hilgard Avenue. It starts at Pacific Coast Highway and Sunset Boulevard in Castellammare and ends at Venice Boulevard and Broadway in downtown Los Angeles. Days of operation are Monday through Sunday, including all major holidays. Weekday peak period headway near the project site ranges between five and 15 minutes during the AM and PM peak periods, 10 to 15 on Saturday, and 15 to 30 minutes on Sunday and on holidays.

Metro Line 16/316 (Downtown LA – Century City via 3rd Street) – Metro Line 16/316 runs southwest/northeast near the project site via Santa Monica Boulevard. It starts at Constellation Boulevard and Century Park West in Century City and ends at 6th Street and Main Street in downtown Los Angeles. Days of operation are Monday through Sunday, including all major holidays. Weekday peak period headway near the project site ranges between 10 and 25 minutes during both the AM and PM peak periods. Saturday, Sunday, and holiday mid-day peak period headway is between 20 and 25 minutes near the project site.

Metro Line 20 (Downtown LA – Santa Monica via Wilshire Boulevard) – Metro Line 20 runs east-west near the project site via Wilshire Boulevard. It starts at Main Street and Pico Boulevard in Santa Monica and ends at 7th Street and Main Street in downtown Los Angeles. Days of operation are Monday through Sunday, including all major holidays. Weekday peak period headway near the project site ranges between three and ten minutes. Saturday, Sunday, and holiday mid-day peak period headway is 10 minutes.

Metro Rapid Line 233 (Lakeview Terrace – Van Nuys Boulevard) – Metro Rapid Line 233 runs along the boundary of the UCLA campus via Sunset Boulevard, Hilgard Avenue and Wilshire Boulevard. It starts at Eldridge Avenue and Terra Bella Street in Lakeview Terrace and ends at Veteran Avenue and Wilshire Boulevard in Westwood. Days of operation are Monday through Sunday, including all major holidays. Trips operate via Line 761 between Van Nuys Boulevard/Ventura Boulevard and Wilshire Boulevard/Veteran Avenue. Early morning and late night service is also operated via Line 761.

Metro Line 305 (Cross-town Bus: UCLA/Westwood – Imperial/Wilmington Station Limited) – Metro Line 305 runs around the southern portion of the UCLA campus via Westwood Boulevard, Le Conte Avenue, and Hilgard Avenue. It starts at Imperial/Wilmington/Rosa Parks Station in Willowbrook and ends at the UCLA Ackerman Loop in Westwood. Days of operation are Monday through Sunday, including all major holidays. Weekday peak period headway near the project site ranges between 24 and 40 minutes. Saturday, Sunday, and holiday mid-day peak period headway is one hour.

Metro Rapid Line 704 (Downtown LA – Santa Monica via Santa Monica Boulevard) – Metro Rapid Line 704 runs east-west near the project site via Santa Monica Boulevard. It starts at 2nd Street and Santa Monica Boulevard in Santa Monica and ends at Vignes Street and Cesar Chavez Avenue in downtown Los Angeles. Days of operation are Monday through Sunday, including all major holidays. Weekday peak period headway near the project site ranges between five and 10 minutes during both the AM and PM peak periods. Saturday, Sunday, and holiday mid-day peak period headway ranges between 10 and 15 minutes.

Metro Rapid Line 720 (Commerce – Santa Monica via Whittier Boulevard and Wilshire Boulevard) – Metro Rapid Line 720 runs east-west near the project site via Wilshire Boulevard. It starts at 5th Street and Colorado Avenue in Santa Monica and ends at the Commerce Center in the City of Commerce. Days of operation are Monday through Sunday, including all major holidays. Weekday peak period headway near the project site is four and seven minutes during both the AM and PM peak periods. Saturday mid-day peak period headway ranges between six and seven minutes, and the Sunday and holiday mid-day peak period headway ranges between seven and eight minutes.

Metro Rapid Line 728 (Metro Rapid – Downtown LA – Century City via Olympic Boulevard) – Metro Rapid Line 728 runs north-south near the project site via Olympic Boulevard. It starts at Constellation and Century Park West in Century City and ends at Cesar Chavez Avenue and Vignes Street in downtown Los Angeles. Days of operation are Monday through Friday only, excluding Saturday, Sunday, and all major holidays. Weekday peak period headway near the project site is eight minutes during both the AM and PM peak periods.

Metro Rapid Line 761 (Metro Rapid – Van Nuys Boulevard – Westwood/UCLA) – Metro Rapid Line 761 runs along the boundary of the UCLA campus via Sunset Boulevard, Hilgard Avenue and Wilshire Boulevard. It starts at Van Nuys Boulevard and Glenoaks Boulevard in Pacoima and ends at Veteran Avenue and Wilshire Boulevard in Westwood. Days of operation are Monday through Sunday, including all major holidays. Weekday peak period headway near the project site ranges between five and 15 minutes during both the AM and PM peak periods. Saturday, Sunday and holiday mid-day peak period headway ranges between 20 and 25 minutes.

Metro Transitway Line 920 (Wilshire Rapid Express) – Metro Transitway Line 920 runs east-west near the project site via Wilshire Boulevard. It starts at the Ocean Avenue and Colorado Avenue in Santa Monica and ends at Wilshire Boulevard and Vermont Avenue in Los Angeles. Days of operation are Monday through Friday only, excluding Saturday, Sunday, and all major holidays. Weekday peak period headway near the project site ranges between eight and 15 minutes during the AM and PM peak periods.

LADOT Commuter Express 430 – CE 430 runs east of the UCLA campus via Church Lane. It starts at Sunset Boulevard and Pacific Coast Highway in Pacific Palisades and ends at Patsaouras Transit Plaza in downtown Los Angeles. Days of operation are Monday through Friday only, excluding Saturday, Sunday, and all major holidays. CE 430 operates two eastbound runs from Pacific Palisades to downtown Los Angeles at 6:33 AM and 7:03 AM, and two westbound runs in the reverse direction at 4:40 PM and 5:30 PM.

LADOT Commuter Express 431 – CE 431 runs near the UCLA campus via Sepulveda Boulevard and Wilshire Boulevard. It starts at Sepulveda Boulevard and Montana Avenue in Westwood and ends at Los Angeles Street and Temple Street in downtown Los Angeles. Days of operation are Monday through Friday only, excluding Saturday, Sunday, and all major holidays. CE 430 operates four eastbound runs from Westwood to downtown Los Angeles between 6:15 AM and 7:35 AM, and four westbound runs in the reverse direction between 4:30 and 6:00 PM.

LADOT Commuter Express 534 – CE 534 runs near the UCLA campus via Wilshire Boulevard and Beverly Glen Boulevard. It starts at Union Station in downtown Los Angeles and ends at Wilshire Boulevard and Veteran Avenue in Westwood. Days of operation are Monday through Friday only, excluding Saturday, Sunday, and all major holidays. CE 534 operates four westbound runs from downtown Los Angeles to Westwood between 6:50 AM and 8:10 AM, and four eastbound runs in the reverse direction between 3:43 PM and 5:13 PM.

LADOT Commuter Express 573 – CE 573 runs near the UCLA campus primarily via Church Lane, Montana Avenue, Gayley Avenue, and Wilshire Boulevard. It starts at Chatsworth Street and Orion Street in Mission Hills and ends at Constellation Boulevard and century Park West in Century City. Days of operation are Monday through Friday only, excluding Saturday, Sunday, and all major holidays. Starting in Mission Hills, the weekday peak period headway ranges between 15 and 45 minutes during the AM peak period, and is 40 minutes during the PM peak period. Starting in Century City, the weekday peak period headway is one hour and 25 minutes, and the PM peak period headway ranges between 15 and 25 minutes.

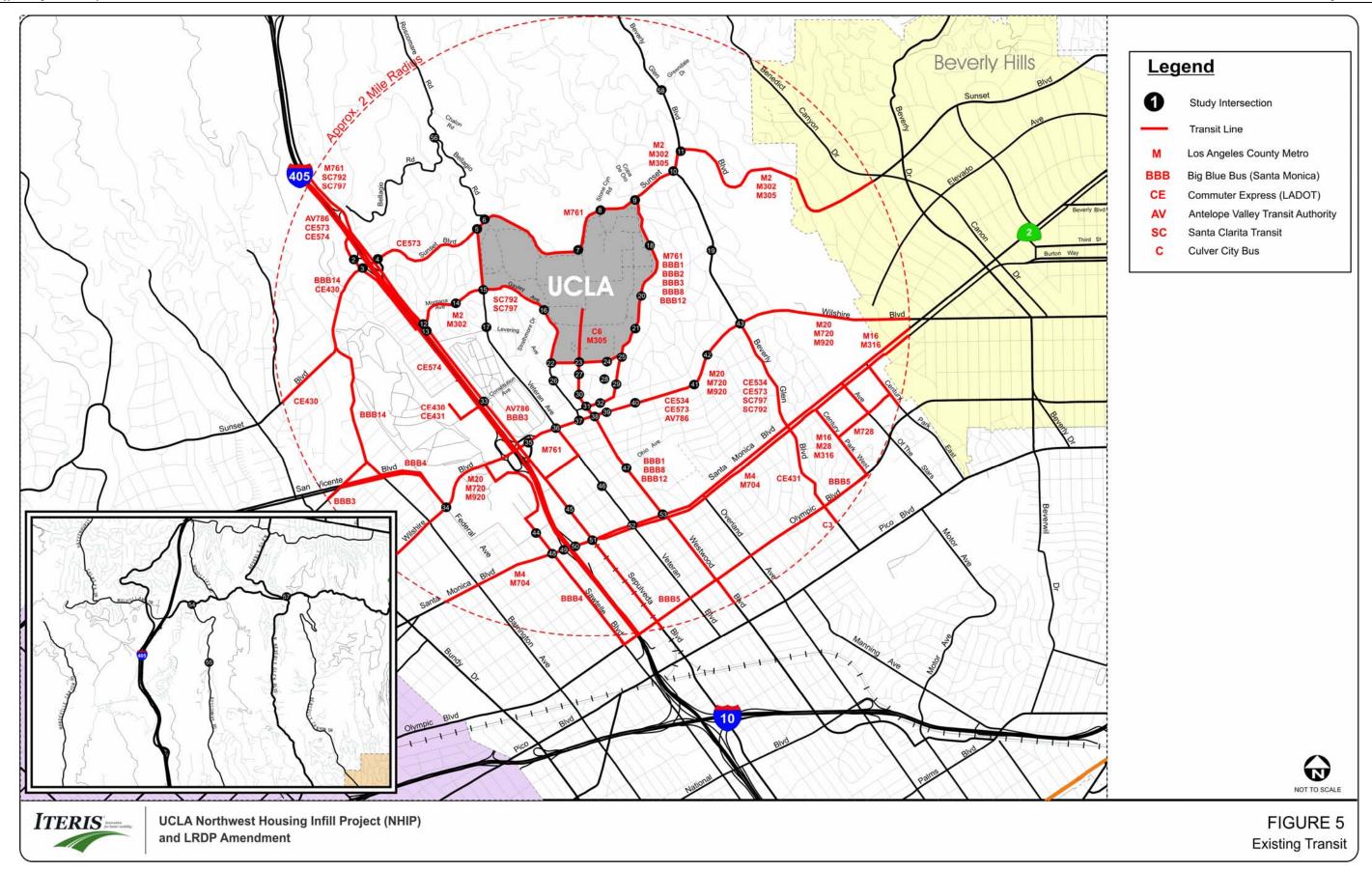
LADOT Commuter Express 574 – CE 574 runs near the UCLA campus via the I-405 freeway. It starts at the Sylmar Metrolink Station and ends at Aviation and Space Park Drive in El Segundo. CE 574 does not stop near the UCLA campus, but does come within two miles of the campus on the I-405 freeway. Days of operation are Monday through Friday only, excluding Saturday, Sunday, and all major holidays. Five runs begin in Sylmar, and run between 5:21 AM and 7:09 AM, and five runs begin in El Segundo and run between 3:35 PM and 6:00 PM.

Santa Clarita Transit Commuter Express Service 792 – SCT 792 runs near the UCLA campus primarily via Montana Avenue, Gayley Avenue, Le Conte Avenue, and Wilshire Boulevard. It starts at Century Park West and Constellation in Century City and ends at Avenue Stanford and Technology in Valencia. Days of operation are Monday through Friday only, excluding Saturday, Sunday, and all major holidays. AM peak period headway near UCLA ranges between 33 and 53 minutes. Returning from Valencia, PM peak period headway is approximately one hour and 15 minutes.

Santa Clarita Transit Commuter Express Service 797 – SCT 797 runs near the UCLA campus primarily via Montana Avenue, Gayley Avenue, Le Conte Avenue, and Wilshire Boulevard. It starts at the Santa Clarita Metrolink Station and ends at Century Park West and Constellation in Century City. Days of operation are Monday through Friday only, excluding Saturday, Sunday, and all major holidays. AM peak period headway starting in Santa Clarita is approximately 30 minutes. PM peak period headway to Santa Clarita, near the UCLA campus, is 30 minutes.

AVTA Route 786 (West Los Angeles) – AVTA Route 786 runs east-west near the project site via Wilshire Boulevard, Westwood Boulevard and Santa Monica Boulevard. It starts at Lancaster City Park (LCP) in Lancaster and ends at Westwood Boulevard and Wilshire Boulevard in Westwood. Days of operation are Monday through Friday only, excluding Saturday, Sunday, and all major holidays. AVTA Route 786 operates on a reduced holiday schedule on Martin Luther King Day, Presidents' Day, Columbus Day, Veterans Day and the day after Thanksgiving. AVTA Route 786 has two AM runs that depart at 5:00 AM and 5:40 AM that operate along opposite routes. During the PM peak, the first run departs Fairfax and Santa Monica Boulevard at 4:28 and the second at 4:58 PM.

Big Blue Bus Line 1 (Santa Monica Boulevard) – BBB Line 1 runs along the south-east boundary of the UCLA campus via Santa Monica Boulevard, Westwood Boulevard, and Hilgard Avenue. It starts in Venice at the Venice Terminal and ends at the UCLA Transit Center in Westwood. Days of operation are Monday through Sunday, including all major holidays. Weekday peak period headways near the project site range between 10 and 15 minutes during both the AM and PM peak periods. Saturday, Sunday, and holiday mid-day peak period headway ranges between 15 and 20 minutes.


Big Blue Bus Line 2 (Wilshire Boulevard) – BBB Line 2 runs along the south-east boundary of the UCLA campus via Wilshire Boulevard, Westwood Boulevard, and Hilgard Avenue. It starts in Venice at Venice Boulevard and Walgrove Avenue and ends at the UCLA Transit Center in Westwood. Days of operation are Monday through Sunday, including all major holidays. Weekday peak period headways near the project site are approximately 15 minutes during both the AM and PM peak periods. Saturday, Sunday, and holiday mid-day peak period headway is approximately 20 minutes.

Big Blue Bus Line 3 (Rapid 3 – Montana Avenue and Lincoln Boulevard) – BBB Rapid Line 3 runs along the south-east boundary of the UCLA campus via Wilshire Boulevard, Westwood Boulevard, and Hilgard Avenue. It starts at the Green Line Station in El Segundo and ends at the UCLA Transit Center in Westwood. Days of operation are Monday through Sunday, including all major holidays. Weekday peak period headway is approximately 15 minutes during both the AM and PM peak periods. Saturday, Sunday, and holiday mid-day peak period headway is also approximately 15 minutes.

Big Blue Bus Line 8 (Ocean Park Boulevard) – BBB Line 8 runs along the south-east boundary of the UCLA campus via Ocean Park Boulevard, National Boulevard, Westwood Boulevard, and Hilgard Avenue. It starts at Broadway and 4th Avenue and ends at the UCLA Transit Center in Westwood. Days of operation are Monday through Sunday, including all major holidays. Weekday peak period headway is approximately 15 minutes during both the AM and PM peak periods. Saturday, Sunday, and holiday midday peak period headway is approximately 30 minutes.

Big Blue Bus Line 12 (Super 12 – Westwood and Palms) – BBB Super Line 12 runs along the south-east boundary of the UCLA campus via Westwood Boulevard, and Hilgard Avenue. It starts at Broadway and 4th Avenue and ends at the UCLA Transit Center in Westwood. Days of operation are Monday through Sunday, including all major holidays. Weekday peak period headway is approximately 15 minutes during the AM peak period and 10 to 15 minutes during the PM peak period. Saturday, Sunday, and holiday mid-day peak period headway is approximately 30 minutes.

Culver City Bus Line 6 (Sepulveda Boulevard) – CCT Line 6 runs along the south-east boundary of the UCLA campus via Wilshire Boulevard, Westwood Boulevard, and Hilgard Avenue. It starts at the Green Line Station in El Segundo and ends at the UCLA Transit Center in Westwood. Days of operation are Monday through Sunday. Weekday peak period headway is approximately 15 minutes during both the AM and PM peak period. Culver City Bus provides reduced service on Saturday, Sunday and on major holidays.

Campus Transportation Demand Management (TDM) Program

UC Policy goals for achieving a sustainable transportation system are multi-facetted, with a focus on increasing the Average Vehicle Ridership (AVR), the number of low- or zero-emission vehicles (PZEV or ZEV), and the number of fuel efficient/alternative fuel vehicles in the campus fleet. The UCLA Transportation Demand Management (TDM) Program began in 1984 with a mission of using parking fees and other UCLA resources to achieve cost-effective reductions in campus trip generation and parking demand, while increasing mobility options for faculty, staff, and students. LRDP Mitigation Measure C-1.1, included in the Final EIR for the 1990 LRDP required that the TDM program be continued and expanded. As a result, the UCLA TDM program has grown into a comprehensive program that offers a broad range of services to encourage and assist UCLA commuters in utilizing alternatives to the singleoccupancy vehicle. As part of its on-going TDM Program, UCLA actively provides and promotes vanpools; carpool matching and parking incentive programs; financial incentives for carpool and vanpool participants; accommodation of the use of other modes of transportation, including walking, bicycles, motorcycles, and scooters; an on-campus car share program; alternative work schedules and telecommuting; annual distribution of the UCLA Commuter's Guide; parking control management; and restricting access to main campus parking facilities for on-campus housing residents. UCLA has one of the most comprehensive TDM programs in the country, with the largest vanpool program of any public or private university. During the more than 24 years of operation, UCLA's TDM program has remained at the leading edge of such programs, and has received numerous awards from regional and local agencies, including the State of California's Governor's awards, the City of Los Angeles Mayoral award, and Rideshare Program awards from the South Coast Air Quality Management District (SCAQMD) and the Metropolitan Transportation Authority (aka Metro), and has been recognized as a best work place for commuters by the USDOT and EPA.

Since 1984, UCLA's comprehensive TDM program increased the campus-wide AVR from 1.26 to 1.60; exceeding or meeting (for eight consecutive years) the 1.5 AVR goal set by the SCAQMD. The TDM program includes incentives to reduce the employee drive-alone rate, which has resulted in a decline from 69 percent in 1990 to 55 percent in 2007. The drive-alone rate has been accomplished through 1,100 carpools serving approximately 2,700 participants and 1,505 vanpools transporting approximately 1,600 full-time and 700 part-time riders from 85 communities, as of October 2007.

In addition, UCLA began the BruinGo! transit subsidy program in September 2000, which includes reduced fares on the Santa Monica Big Blue Bus and Culver City Bus. In 2005, the GoMetro program was launched introducing 50 percent transit subsidies for Los Angles County's Metro Bus and Metro Rail systems. The Los Angeles Department of Transportation (LADOT) and Santa Clarita Transit (the newest additions) both have 50 percent transit subsidy agreements with the University.

Much has been accomplished towards meeting the goals to increase the University's fuel efficient/alternative fuel fleet. In the area of clean and fuel efficient vehicles, the campus fleet currently has a combined PZEV and ZEV total of 246. By 2008/09, the campus fleet will expand to 312 PZEVs and ZEVs, an increase of 27 percent. Through development of the UCLA Fleet Optimization Plan, UCLA Transportation will systematically reduce the number of conventionally fueled fleet vehicles and increase the number of alternative fuel vehicles between 2006 and 2009.

The specific components of the TDM program may change over time as the campus strives for the most cost-effective manner by which to maintain achievement of its required goals, so long as the overall effectiveness of the program is not compromised. A description of the components of the current TDM program is provided below.

Carpool Matching

Carpool matching is provided by Carpoolworld.com via an UCLA-specific matching system. In addition, UCLA Transportation's web site and print media present a full explanation of carpooling to UCLA, including an explanation of the convenience and money-saving option of carpool permits (which are currently reduced from \$63 for a yellow parking permit to \$27 for two-person carpools and \$11 for three-person carpools). There are approximately 2,700 active carpool participants at UCLA.

Vanpool

Commuter Assistance-Ridesharing (CAR) currently operates a fleet of over 155 vans, covering more than 80 southern California communities. Approximately 1,650 monthly full-time riders participate in the program, for which fares are partially subsidized by the campus. Part-time riders can also use the van service at any time on a space available basis, and there are approximately 750 part-time participants.

Campus Transit

In addition to the public transit routes previously described, UCLA also provides shuttle bus service around the campus and from several remote housing facilities. The campus shuttle system incorporates the use of buses and vans that are clean, wheelchair accessible, and well equipped with air conditioning and comfortable seating. The SCAQMD gave UCLA an Honorable Mention award in 2000 for its fleet of clean-operating compressed natural gas (CNG) transit buses. That success continued and in 2006 UCLA Transportation received a grant from the SCAQMD that aided in the purchase of seven new CNG transit buses. The routes covered are described below.

Campus Express – The Campus Express shuttle travels in a counter-clockwise direction providing round-trip service from Weyburn Terrace and Lot 36 in the southwest corner of campus, through Westwood and the University to Macgowan Hall turnaround in the northeast region of campus. Campus Express shuttles operate Monday through Friday (excluding holidays), from 7:00 AM to 7:00 PM, on an eight to ten minute headway throughout the day. During Summer, Winter and Spring Breaks the Campus Express shuttle operates on a reduced schedule between 7:30 AM and 6:00 PM.

Wilshire Center Express – The Wilshire Center Express shuttle travels in a counter-clockwise direction providing round-trip service from the Wilshire Center, through Westwood Village, up Hilgard Avenue to Parking Structure 2 between Manning Avenue and Westholme Avenue. Wilshire Center Express shuttles operate Monday through Friday (excluding holidays), from 7:30 AM to 5:30 PM, on an eight to ten minute headway throughout the day.

Northwest Campus Shuttle – The Northwest Campus Shuttle travels in a counter-clockwise direction providing round-trip van service across the northern region of campus. It travels on Charles Young Drive between Macgowan Hall, Kreiger (Bellagio) Child Care Center, Southern Regional Library, and Hedrick Hall. Northwest Campus shuttles operate Monday through Friday (excluding holidays), from 11:30 AM to 2:00 PM. Stops are made at Macgowan Hall every 30 minutes.

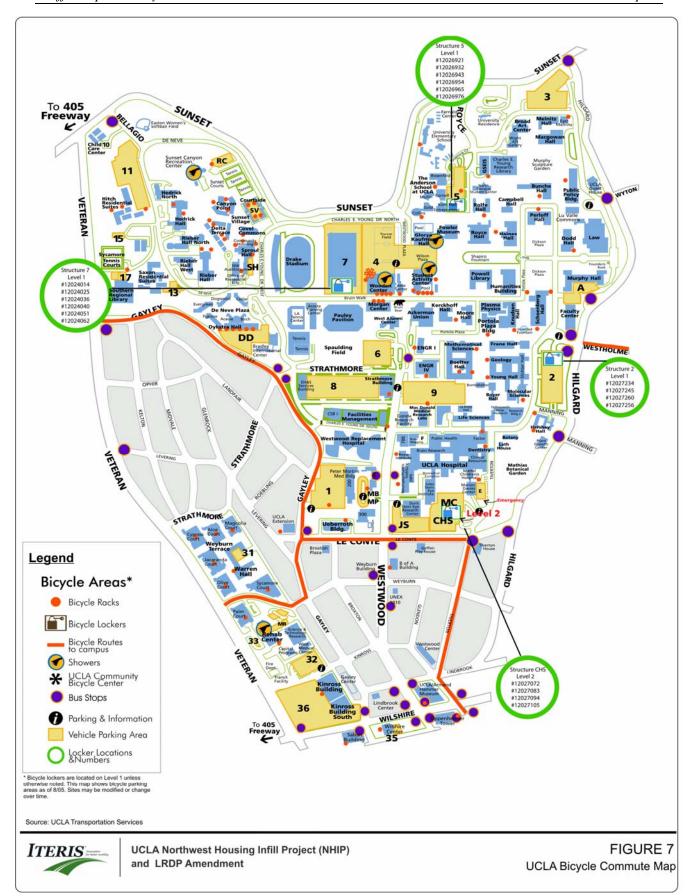
A map of the UCLA campus shuttle system is provided in **Figure 6**.

Emergency Ride Home Program

To further support the campus carpooling and vanpooling efforts, UCLA Transportation has an "Emergency Ride Home" Program that offers alternative mode program participants who must get home during the day for a family emergency or who have to work late, free or subsidized rental cars, nightrider vanpools, or special arrangements with existing van and carpools.

Bicycles


To support and encourage bicycling to campus, UCLA provides more than 2,500 bicycle spaces throughout the campus, as well as access to on-campus shower facilities, such as those located in the Men's Gym and Kaufman Hall. The campus continues to work with agencies, such as Los Angeles County Metro and SCAG, as well as UCLA student groups, to promote a comprehensive system of bicycle routes in the vicinity of the campus. Designated City of Los Angeles bicycle routes near the campus include Sepulveda Boulevard (Class II between Venice Boulevard and Mulholland Drive, except a small portion classified as Class I north of Santa Monica Boulevard), Santa Monica Boulevard (Class II east of Sepulveda Boulevard), Westwood Boulevard (between Santa Monica Boulevard and south of Wilshire Boulevard), Gayley Avenue and Le Conte Avenue (Class II along the southwest perimeter of campus), Veteran Avenue (Class I south of the campus), and Beverly Glen Boulevard (Class II between Santa Monica Boulevard and Sunset Boulevard). A map of bicycle facilities in and around the UCLA campus is provided in **Figure 7**.


iWalk Pedestrian Program

UCLA Transportation, in conjunction with the Cultural and Recreational Affairs Department, created the iWalk Program to encourage walking on and around campus. The program is jointly focused on increasing physical activity while reducing vehicle traffic, and particularly aims at reducing mid-day vehicle trips.

Motorcycles and Scooters

There are nearly 1,200 specially designated motorcycle/scooter parking spaces located throughout parking lots and structures around campus. Location information and maps are available at the Parking Services office on the main campus and on the UCLA Transportation website.

Telecommuting and Alternative Work Schedules

UCLA Transportation continues to encourage all campus groups to consider telecommuting and alternative work schedules, including a compressed workweek and flextime schedules. Information about these programs is available through Campus Human Resources and UCLA Transportation.

Car Share

UCLA Transportation has contracted with a car share provider (Zipcar Inc.) to provide car share vehicles on and adjacent to campus for employee and student use. The car share program is, beyond its typical aim of providing short-term car rental use, also intended as an alternative mode program benefit. Each alternative mode program participant is accorded eight hours of Zipcar use each month, thus obviating the need to drive to campus on days when a transit or vanpool rider, e.g., has a personal appointment that day that would otherwise require them to drive to campus in their own vehicle.

Alternative Fuel Infrastructure

UCLA provides fueling infrastructure for alternative mode vehicles. There are two forms of this on campus: first, there is a public access, compressed natural gas station located adjacent to the fleet yard and secondly, UCLA continues to participate in the SCAQMD electric vehicle (EV) infrastructure program called "Quick Charge LA". This program consists of a network of over 200 EV charging stations at transit centers, shopping malls, and other locations throughout the region. Currently, there are ten public electric vehicle-charging stations on the UCLA campus. Location information and maps are available at the Transportation Lobby on the main campus and on the UCLA Transportation website.

TDM Outreach

The UCLA Commuter Guide, which is published by UCLA Transportation Communications and Marketing Group, is a comprehensive information source describing parking and transportation options at UCLA. The Commuter Guide is distributed to all incoming students, faculty, and staff for both the regular and summer sessions. In addition, all of UCLA's departmental parking coordinators receive copies of the updated Commuter Guide for distribution each spring, when faculty and staff make decisions regarding annual parking permit renewal.

UCLA also publicizes the availability and convenience of alternative transportation modes to campus though Ridesharing brochures, the UCLA Transportation website (www.transportation.ucla.edu), information within the General Catalog and admissions packets sent to students, advertisements in the Daily Bruin, annual commuter fairs, and presentation and distribution of information at new student and employee orientation sessions. Public transit is also actively promoted through Metro, Culver City, and Santa Monica route information and schedule brochures available at the Transportation Lobby on campus, as well as on the UCLA Transportation website. The website provides extensive information regarding commuting regularly to campus using public transit, including links to local public transit providers' published schedules and maps, and inexpensive ways to travel to off-campus locations, such as the airport or Metrolink commuter rail stations.

BruinGo! Transit Program

BruinGo! was collaboratively launched by UCLA and the Santa Monica Municipal Bus Lines at the beginning of the academic year 2000-2001 to provide partially-subsidized bus travel to UCLA students, faculty, and staff on the "Big Blue Bus" upon presentation of a Bruin ID card. The program was intended as a pilot to determine whether subsidized transit fare service would reduce on-campus parking demand. Today, the success of the BruinGo! Transit Program has allowed UCLA to expand its transit pass subsidy programs to include Santa Monica Big Blue Bus, Culver City Bus, Los Angles County Metro, LADOT, and Santa Clarita Transit. All currently enrolled UCLA students and current UCLA staff and faculty with a valid BruinCard may participate in the BruinGo! Transit Program.

Non-Stop Bus Service to LAX

Los Angeles World Airports, in cooperation with UCLA Transportation, provides daily non-stop bus service (one-way and roundtrip), between Westwood and Los Angeles International Airport (LAX). The expansion of the popular FlyAway service to UCLA provides a convenient connection to airports for students, staff, faculty, and local residents. The FlyAway service stop to LAX is located next to the UCLA Parking Structure 32, two blocks north of Wilshire Boulevard, just west of Gayley Avenue. The bus departs every 30 minutes from Westwood to LAX between 5:00 AM and 1:00 AM, seven days a week. The cost is \$4.00 each way, with weekend overnight parking available from 3:00 PM Friday until 7:00 AM Monday in Structure 32 and Lot 36 for \$6.00 per day.

Go Metro "TAP" Passes

Go Metro transit passes, or a TAP pass, give Metro riders the convenience of a quarterly transit pass with unlimited Metro Bus or Metro Rail access throughout the greater Los Angeles. UCLA Transportation subsidizes 50 percent of the cost of a TAP pass for current UCLA students and faculty and staff who work on the UCLA campus and are employed 40 percent or more of the time. Current parking permit holders and full-time vanpoolers are not eligible for the subsidized Go Metro TAP pass. Transfers from a Metro bus or rail line to a BBB or CCB require a 30-cent transfer coupon.

CAMPUS PARKING AND TRIP GENERATION

A commuter's decision on whether or not to drive a personal motor vehicle is usually predicated upon the ability to find affordable parking spaces upon reaching their destination. This includes UCLA commuters traveling to campus. In order to control trips to UCLA, two direct parking measures were used. First, parking fees are set to fully recover the cost of the construction and operation of parking at UCLA and to provide necessary support of alternative transportation to mitigate impacts of single occupant vehicles (SOVs). Second, permits to commuter students are issued on a space available basis. Commuter students able to demonstrate the highest need (e.g. an off-campus job) are given the first opportunity to purchase a parking permit. On-campus residents are provided a parking permit only if they can demonstrate that they have an off-campus job or internship. Thus, at UCLA, trip generation is based not only on the population, but also on the parking supply that serves the campus. Following is a discussion of the current 2007-08 parking supply, parking allocation, and trip generation.

Parking Supply

As shown in **Table 2**, the UCLA campus currently has approximately 24,074 on-campus street and off-street parking spaces. More than 21,000, or 89 percent, of these spaces are provided in structures. UCLA records also show that 2,350 spaces are located in surface parking lots (10 percent) and 183 parking spaces are located in loading zones (less than one percent).

Figure 8 shows the location of the parking areas. As shown in this figure, the major parking structures are located in the Core, Central, and Health Science zones of the main campus. Limited structure parking is also provided in the Northwest (residential) and Southwest zones of the campus.

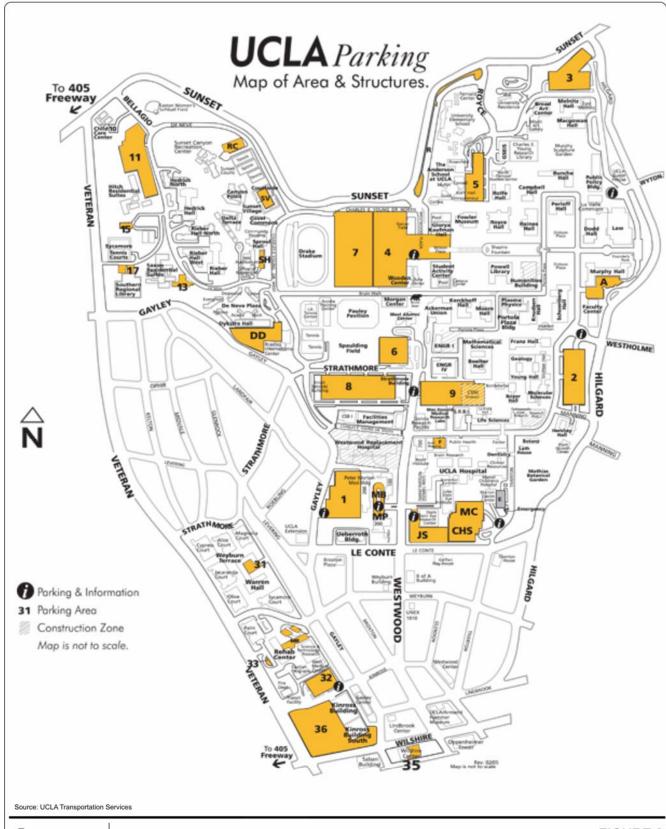

The Wilshire Center, located at 10920 Wilshire Boulevard, was acquired by UCLA in 1992 and currently accommodates various administrative units that were previously located in other leased space in Westwood Village. As the building was constructed in 1981, the traffic impacts of the building had been included in the Westwood Village traffic long before it was acquired by UCLA. Furthermore, the traffic impacts of the building were included in the cumulative baseline for the 1990 LRDP EIR traffic analysis. The Wilshire Center is not within the LRDP boundary and therefore the Wilshire Center parking is not included in the on-campus parking inventory. However, in accordance with the Trip Mitigation Monitoring Agreement between UCLA and the City of Los Angeles, the additional trips generated by the UCLA occupants of the Wilshire Center not generated in 1990 are included in the campus vehicle trip generation cordon count counted on an annual basis. For analytical purposes, the UCLA employees that occupy the Wilshire Center and off-campus leased space are conservatively included in the population estimates for the NHIP and LRDP Amendment traffic study.

TABLE 2 – CURRENT 2007-08 UCLA PARKING INVENTORY

Parking Area	Pkg Spaces	Parking Area	Pkg Spaces
East Cluster		Medical Plaza (Patient)	
Structure 2	2,243	Structure MB 100	186
Structure 3	1,198	Structure MB 200/300	558
Structure 3 Addition	844	MB/MP Circle Level B-1	52
Structure 5	744	Medical Plaza Turnaround	26
Royce Hall LZ (including dock)	9	Ronald Reagan UCLA Medical Center	305
Fowler Loading Dock	7	Medical Plaza Totals	1,127
Chemistry Loading Dock	8	Medical Plaza (Non-Patient)	,
Franz Hall Loading Dock	4	Structure 1	1,738
Public Policy	7	Structure MB 100	298
Young Dr./Geology	6	Medical Center (Non-Patient) Totals	2,036
Lot A	154	Residence Halls	2,000
Charles E. Young Dr. East	117	Lot 11	458
Charles E. Young Dr. North	70	Lot 13	45
Lot R	110	Lot 15	57
AGSM Meter Lot K4	13	Lot 17	39
Lot J	8	Dykstra Hall Street and Brad. Dock	42
Structure 9	1,942	Dykstra/Deneve Structure	289
Life Science Loading Zone	3	Lot Hedrick Hall	9
		Lot Reiber Hall	18
MBI Loading Dock Boyer Ortho Dock	5		
J	3	Sproul Hall	114
9 South Driveway	3	RC	151
Engineering I	11	SV	724
East Cluster Total	7,509	Bus Loading Zone/Softball	8
West Cluster	1.500	Residence Hall Totals	1,954
Structure 4 Wooden/Soccer/Janss	1,708	Southwest Campus	
Structure 7	1,484	Lot 31	136
Structure 6	754	Lot 36	637
Structure 8	2,822	Structure 32	920
Gonda/BRI	2	Lot 33	27
Strathmore Bldg/Police Station	16	Lot 34	9
James West Circle	9	W. Med Bldg/Capital Programs	18
West Cluster Total	6,795	Rehab Center Circle	2
Central Hub		Fire Station	0
Dickson Court	145	Lot MR	73
Central Hub Total	145	Weyburn Terrace	1,232
Medical Center		Southwest Campus Totals	3,054
Structure CHS	819	Scattered	
Structure MC	255	Lot 10	30
ER	28	PVUB	5
Lot Doris Stein	118	W. Unex	13
Tiverton	21	Weyburn Alley	21
Structure E	133	Scattered Totals	69
Lot S	11		
Medical Center Totals	1,385	UCLA Campus Total	24,074
		built and therefore included in the existing parking inventory. However, these space	

Note: 305 parking spaces at the Ronald Reagan UCLA Medical Center are built and therefore included in the existing parking inventory. However, these spaces were not being utilized when the 2007 cordon counts were taken; thus, the trips generated by the utilization of these 305 spaces are only included in the trip generation analysis for the Future 2013 With Project condition.

Source: UCLA Transportation

ITERIS

UCLA Northwest Housing Infill Project (NHIP) and LRDP Amendment

FIGURE 8 UCLA Parking Facilities Locations

Parking Allocation

Use of the parking spaces on the UCLA campus is controlled through a permit system. Employees (who work more than 49 percent time) are eligible to purchase a parking permit. A number of spaces are allocated to university guests, emeritus faculty, vendors, medical center patients, and other visitors (through both quarterly and daily permit sales). A number of student permits are allocated based on institutional priorities, to students with disabilities, certain highly recruited scholars, scholarship athletes, and teaching and research assistants. Additional spaces are allocated to residential students.

The remainder of on-campus parking spaces are allocated to commuter students, which currently results in permits being awarded to approximately 24 percent of commuter students. Student permits are issued on a need-based point system. Students with off-campus jobs or other special circumstances are given higher priority to purchase permits. Those students most able to use other modes of transportation (e.g., live close to campus) are given the lowest priority.

The availability of student permits varies from year-to-year, based on the total parking inventory, participation in carpools, vanpools, and other alternative transportation modes, and the allocation of spaces to faculty/staff and university guests and visitors. Prior to 2005, student demand typically exceeded the available supply, and a waiting list for student parking was established each year during the regular session. The 2005-06 academic year was the first year a student parking waiting list was not needed, and the trend has continued through the 2007-08 academic year.

Table 3 summarizes the current allocation of parking spaces to the various campus user groups (in the Fall when parking demand is greatest). As shown, the total number of permits issued is greater than the number of spaces because at any given time, a portion of faculty, staff, and students (with parking permits) are not on-campus (e.g. because of variable student class schedules, staff vacation, or faculty sabbaticals) or may have traveled to campus using an alternative mode.

TABLE 3 – CURRENT (FALL 2007) REGULAR SESSION PARKING ALLOCATION

		Totals	
Permit Group	Number (Population)	Parking Permits	Parking Spaces
Faculty & Staff-Medical Center	7,415	5,166	3,749
Faculty & Staff- Other University	14,853	10,307	7,020
Resident Students			
Undergraduate Students	10,032	431	431
Graduate Students	1,370	855	1,126
Commuter Students	24,210	8,945	5,821
Quarterly Guest/Emeritus Permits	5,132	5,132	1,144
University Extension Permits	3,513	3,513	NA
Daily Permit Sales	6,429	6,429	4,053
Other Parking	0	0	730
Total	72,954	40,778	24,074

Campus Vehicle Trips

In conjunction with the adoption of the 1990 LRDP, the University entered into a Transportation Mitigation Monitoring Agreement (TMMA) with the City of Los Angeles, which limits the total number of vehicle trips that can be generated over the 15-year planning horizon of the 1990 LRDP to 139,500 average daily vehicle trips (this limit is codified as 1990 LRDP Mitigation Measure C-1.5). This commitment was extended an additional five years with the adoption of the 2002 LRDP, and UCLA will extend it an additional three years through 2013. To determine the annual status of UCLA campus trip generation, UCLA conducts a weeklong count of vehicles entering and exiting the UCLA campus during the third week of October. This week was chosen as it represents a heavy generating week during the regular session. This "cordon count" is conducted via a mixture of electronic and mechanical (e.g., magnetic road loops and rubber hose counting systems). As a result, all trips entering and exiting the campus are recorded, including those associated with pass-through traffic (e.g., non-UCLA vehicles traversing the campus to travel from one location to another). The Wilshire Center's traffic is handled by an agreed upon formula with LADOT and is added to the main campus cordon count.

As shown in **Table 4** below, total average daily trip generation for the UCLA campus has varied since the 1990 LRDP, but has remained well below the LRDP trip cap of 139,500 average daily vehicle trips. During the Fall 2007 cordon counts (the most current available at the time the traffic report was prepared), the campus generated approximately 119,269 daily vehicle trips during the regular session.

Year	Average Daily Trips (ADT)	Year	Average Daily Trips (ADT)
1990	123,135	1999	114,233
1991	124,011	2000	113,436
1992	119,792	2001	121,799
1993	122,073	2002	123,897
1994	108,133	2003	125,791
1995	110,796	2004	121,003
1996	113,406	2005	120,610
1997	117,820	2006	120,008
1998	115,067	 2007	119,269
Source: Annual	UCLA Cordon Counts		

TABLE 4 – HISTORICAL CAMPUS VEHICLE TRIP GENERATION (ADT)

Campus Trip Generation Rates

To estimate future vehicle trips and provide an estimate of the relative contribution of parking groups (e.g., faculty/staff, students, resident students and commuter students) to the overall trip generation for the campus, trip generation rates were developed in the 2002 UCLA LRDP. These rates were developed based upon traffic counts from the Fall 2001 Cordon Count Study conducted for UCLA, and counts conducted during the 1999/2000 and 2000/01 academic years of trips in and out of individual UCLA parking structures.

Counts at individual parking lots and structures were conducted and linear regressions were utilized to disaggregate parking spaces among the various population (or user) groups within each parking lot or structure. The linear regressions compared the total inbound and outbound trips at each time of day to the permits that were issued for that parking structure. In that way the number of trips per permit could be determined for each student and employee user group. The number of cars parked in each area was also determined from this data. Daily permit sales and parking meter revenue data were analyzed to determine the trip generation characteristics of other population segments, such as medical center patients and campus visitors. The results of this analysis are provided in **Table 5**.

It should be noted that in an effort to maintain consistency with the 2002 UCLA LRDP, the trip generation was calculated based on the number of parking spaces in each permit group for all categories except Resident Graduate Students and University Extension Permits. When the 2002 UCLA LRDP was written, there were no graduate students living on campus; thus, no trip generation rates were developed for the Existing scenario. However, under the Future scenario, it was assumed that graduate housing would be built and trip generation rates were developed based on the population number within the Resident Graduate Student permit group. For the purposes of this study, the future trip generation rates for Resident Graduate Students were applied to the Existing scenario, and an estimated trip generation was developed based on the Resident Student Permit population. The University Extension Permit category is based on the number of permits in that permit group since University Extension students only travel to and from campus at night during off-peak hours.

TABLE 5 – EXISTING VEHICLE TRIP RATES

	Trip Generation Rates					
Permit Group	Trip Rate Variable	Daily Trip Rate	AM Peak Trip Rate	PM Peak Trip Rate		
Faculty & Staff-Medical Center	Spaces	2.538	0.320	0.329		
Faculty & Staff- Other University	Spaces	3.293	0.289	0.383		
Resident Students						
Undergraduate	Spaces	2.444	0.034	0.202		
Graduate ¹	Number (Population)	0.959	0.091	0.101		
Commuter Students ²	Spaces	3.716	0.304	0.356		
Quarterly Guest/Emeritus Permits	Spaces	3.789	0.400	0.198		
University Extension Permits ³	Permits	1.705	0.000	0.000		
Daily Permit Sales	Spaces	8.546 4	0.493	0.432		

¹Resident Graduate Student trip rates are based on the population number within the Resident Graduate Student permit group. Future 2013 rates were used since Existing graduate rates were not developed for the 2002 UCLA LRDP.

Source: UCLA LRDP Transportation Systems Analysis, 2002.

² Student Academic Employee and Other Commuter Student categories were combined into one Commuter Student category and the highest trip rate between the two was used.

³ University Extension Permit trip generation rates are based on the number of permits, not parking spaces, since University Extension students are only on campus at night. They do not generate AM or PM peak hour trips.

⁴ Because of the highest turnover associated with visitor parking, those spaces allocated to visitor parking generate approximately 8.5 vehicle trips per day.

As shown in Table 5, differences in trip generation characteristics were identified for general campus and health sciences faculty and staff. Therefore, for the purposes of this study, separate groups were established and are utilized in the analysis of current and future parking and trip rates.

Using the above trip rates and current parking allocations, an estimate of how each population group contributes to overall campus trip generation was developed and is provided in **Table 6**. This breakdown also includes estimates for certain campus uses such as parking meters, a single line entry that covers two-wheeled vehicles and through traffic and drop-off trips, campus shuttles, and the Wilshire Center. The trip generation for these categories were estimated based on the difference between the 2007 cordon count and the total number of trips generated by Faculty and Staff, Resident Students, Commuter Students, and trips generated under the "Other Permits" category.

TABLE 6 – ESTIMATED CURRENT VEHICLE TRIP GENERATION

		Variable	Trip Generation Rates			Estimated Trip Generation		
Permit Group	Number		Daily	AM Peak Hour	PM Peak Hour	Daily Trips	AM Peak Hour Trips	PM Peak Hour Trips
Faculty and Staff								
General Campus	7,020	Parking Spaces	3.293	0.289	0.383	23,117	2,029	2,689
Health Sciences	3,444 1	Parking Spaces	2.538	0.320	0.329	8,741	1,102	1,133
Resident Students								
Undergraduate	431	Parking Spaces	2.444	0.034	0.202	1,053	15	87
Graduate	1,370	Number (Population)	0.959	0.091	0.101	1,314	125	138
Commuter Students	5,821	Parking Spaces	3.716	0.304	0.356	21,631	1,770	2,072
Other Permits								
Quarterly Guest/Emeritus Permits	1,144	Parking Spaces	3.789	0.400	0.198	4,335	458	227
University Extension Permits	3,513	Permits	1.705	0.000	0.000	5,990	0	0
Daily Permit Sales	4,053	Parking Spaces	8.546	0.493	0.432	34,637	1,998	1,751
Other Parking (e.g. meters)						2,341	22	118
2-Wheel Vehicles/Thru Vehicles/Drop-offs						13,129	356	422
Campus Shuttles						1,756	61	89
Main/Southwest Campus Total						118,043	7,934	8,725
Wilshire Center						1,226	41	74
2007 Cordon Total						119,269	7,975	8,799

¹ 305 parking spaces at the Ronald Reagan UCLA Medical Center are built and therefore included in the existing parking inventory. However, these spaces were not being utilized when the 2007 cordon counts were taken; thus, the trips generated by the utilization of these 305 spaces are only included in the trip generation analysis for the Future 2013 With Project condition.

Note: Totals may not add due to rounding.

TRAFFIC OPERATIONS ANALYSIS METHODOLOGY

Traffic operating conditions for study intersections were analyzed using intersection capacity-based methodology known as the Circular 212 "Critical Movement Analysis" (CMA) method for the signalized locations, per City of Los Angeles Department of Transportation (LADOT) standards. At unsignalized and stop-controlled study intersections, the intersection was analyzed as a two-phase signalized intersection with a maximum capacity of 1,200 vehicles per hour. Volume-to-capacity (V/C) ratios and corresponding level of service (LOS) were calculated at study intersections during the weekday AM and PM peak hours, per City of Los Angeles standards.

The efficiency of traffic operations at a location is measured in terms of Level of Service (LOS). Level of service is a description of traffic performance at intersections. The level of service concept is a measure of average operating conditions at intersections during an hour. It is based on a volume-to-capacity (V/C) ratio for signalized locations and delay (in seconds) for stop-controlled intersections. Levels range from A to F with A representing excellent (free-flow) conditions and F representing extreme congestion. The CMA methodology compares the amount of traffic an intersection is able to process (the capacity) to the level of traffic during the peak hours (volume). The ICU methodology is the same as CMA in that it calculates the V/C ratio by comparing the critical traffic volumes to the maximum volume of vehicles in the critical lanes. CMA has some additional factors to account for the affect of through traffic on opposing left turn traffic movements. A volume-to-capacity (V/C) ratio is calculated to determine the LOS. The HCM method for stop-controlled intersections calculates the average delay, in seconds, per vehicle for each approach and for the intersection as a whole. The delay for the intersection corresponds to a LOS value which describes the intersection operations.

Table 7A describes the LOS concept and the operating conditions for signalized and stop-controlled intersections.

TABLE 7A – INTERSECTION LEVEL OF SERVICE DEFINITIONS

Level of Service	Description	Signalized Intersection (V/C) Ratio	Unsignalized Intersections Delay (seconds per vehicle)
A	Excellent operation. All approaches to the intersection appear quite open, turning movements are easily made, and nearly all drivers find freedom of operation.	0.000-0.600	<u>≤</u> 10
В	Very good operation. Many drivers begin to feel somewhat restricted within platoons of vehicles. This represents stable flow. An approach to an intersection may occasionally be fully utilized and traffic queues start to form.	>0.600-0.700	>10 and \leq 15
C	Good operation. Occasionally drivers may have to wait more than 60 seconds, and back- ups may develop behind turning vehicles. Most drivers feel somewhat restricted.	>0.700-0.800	>15 and ≤ 25
D	Fair operation. Cars are sometimes required to wait more than 60 seconds during short peaks. There are no long-standing traffic queues.	>0.800-0.900	>25 and ≤ 35
E	Poor operation. Some long-standing vehicular queues develop on critical approaches to intersections. Delays may be up to several minutes.	>0.900-1.000	>35 and ≤ 50
F F	Forced flow. Represents jammed conditions. Backups form locations downstream or on the cross street may restrict or prevent movement of vehicles out of the intersection approach lanes; therefore, volumes carried are not predictable. Potential for stop and go type traffic flow.	> 1.000	> 50
Source: Highway	Capacity Manual 2000, Transportation Research Board, Washington, D.C., 2000.		

Freeway Segment Mainline Analysis

Per Los Angeles County Congestion Management Plan (CMP) guidelines, freeway mainline LOS is estimated through calculation of the demand-to-capacity (D/C) ratio and associated LOS according to the **Table 7B**. Calculation of LOS based on D/C ratios is a surrogate for the speed-based LOS used by Caltrans for traffic operational analysis. LOS F(1) through F(3) designations are assigned where severely congested (less than 25 mph) conditions prevail for more than one hour, converted to an estimate of peak hour demand. Note that calculated LOS F traffic demands may therefore be greater than observed traffic volumes.

D/C Ratio	LOS	D/C Ratio	LOS
0.00-0.35	A	>1.00-1.25	F(0)
>0.35-0.54	В	>1.25-1.35	F(1)
>0.54-0.77	С	>1.35-1.45	F(2)
>0.77-0.93	D	>1.45	F(3)
>0.93-1.00	Е		
Source: 2004 CMP for Los Angeles Cour	ty	-	•

TABLE 7B – FREEWAY LEVEL OF SERVICE DEFINITIONS

Thresholds of Significance

Per the California Environmental Quality Act (CEQA), any significant project related impacts are required to be identified in the environmental document. Significant traffic impacts are determined based on thresholds of significance set by respective agencies. In the City of Los Angeles, the LADOT has established criteria to determine if a project has a significant traffic impact. For purposes of analysis, the University has used this significance criteria for intersection impacts. Using the LADOT standard, a project impact would be considered significant if the following conditions in **Table 8** are met:

Significant Transportation Impact			
Final V/C Ratio			
LOS	V/C	Project-Related Increase in V/	
С	0.700 - 0.800	Equal to or greater than 0.040	
D	0.800 - 0.900	Equal to or greater than 0.020	
E or F	0.901 - 1.000	Equal to or greater than 0.010	

TABLE 8 – CITY OF LOS ANGELES THRESHOLDS OF SIGNIFICANCE

The LADOT criterion was applied to determine potential significant traffic impacts associated with the project at the 58 study intersections.

For the purposes of the Los Angeles County CMP, a significant impact occurs when the proposed project increases traffic demand on a CMP facility by two percent of capacity (V/C \geq 0.02), causing LOS F (V/C > 1.00). If the facility is already at LOS F, a significant impact occurs when the proposed project increases traffic demand on a CMP facility by two percent of capacity (V/C \geq 0.02). For purposes of analysis, the University has used this significance criterion for freeway impacts.

Automated Traffic Surveillance and Control and Adaptive Traffic Control System

Discussions with LADOT staff indicated that 48 of the 58 analyzed intersections are currently included in the City's Automated Traffic Surveillance and Control (ATSAC) system. In accordance with standard procedures established by the LADOT, the capacity of these intersections should be increased by seven percent when conducting volume-to-capacity analyses to reflect the system's expected benefits. This adjustment was made to the following 48 study intersections under both Existing 2008 and Future 2013 (With and Without Project) traffic scenarios:

#1 Church Ln-Ovada Pl/Sepulveda Blvd	#26 Weyburn Ave/Gayley Ave
#2 San Diego Fwy SB On-Off Ramp/Church Ln	#27 Weyburn Ave/Westwood Blvd
#3 Sunset Blvd/Church Ln	#29 Weyburn Ave/Hilgard Ave
#4 Sunset Blvd/SD Fwy NB On-Off Ramp	#30 Kinross Ave/Westwood Blvd
#5 Sunset Blvd/Veteran Ave	#31 Lindbrook Dr/Westwood Blvd
#6 Sunset Blvd/Bellagio Way	#33 Constitution Ave/Sepulveda Blvd
#7 Sunset Blvd/Westwood Blvd	#34 Wilshire Blvd/San Vicente Blvd
#8 Sunset Blvd/Stone Cyn Rd	#35 Wilshire Blvd/Sepulveda Blvd
#9 Sunset Blvd/Hilgard Ave and Copa De Oro Rd	#36 Wilshire Blvd/Veteran Ave
#10 Sunset Blvd/Beverly Glen Blvd	#37 Wilshire Blvd/Gayley Ave
#11 Sunset Blvd (East I-S)/Beverly Glen Blvd	#38 Wilshire Blvd/Westwood Blvd
#12 SD Fwy NB Off Ramp/Sepulveda Blvd	#39 Wilshire Blvd/Glendon Ave
#13 Montana Ave/Sepulveda Blvd	#41 Wilshire Blvd/Westholme Ave
#15 Montana Ave/Gayley Ave and Veteran Ave	#42 Wilshire Blvd/Warner Ave
#16 Strathmore Pl/Gayley Ave	#43 Wilshire Blvd/Beverly Glen Blvd
#17 Levering Ave/Veteran Ave	#44 Ohio Ave/Sawtelle Blvd
#18 Wyton Dr/Hilgard Ave	#45 Ohio Ave/Sepulveda Blvd
#19 Wyton Dr-Comstock Ave/Beverly Glen Blvd	#46 Ohio Ave/Veteran Ave
#20 Westholme Ave/Hilgard Ave	#47 Ohio Ave/Westwood Blvd
#21 Manning Ave/Hilgard Ave	#48 Santa Monica Blvd/Sawtelle Blvd
#22 Le Conte Ave/Gayley Ave	#51 Santa Monica Blvd/Sepulveda Blvd
#23 Le Conte Ave/Westwood Blvd	#52 Santa Monica Blvd/Veteran Ave
#24 Le Conte Ave/Tiverton Dr	#53 Santa Monica Blvd/Westwood Blvd
#25 Le Conte Ave/Hilgard Ave	#54 Roscomare Rd/Mulholland Dr

In addition to ATSAC, the Adaptive Traffic Control System (ATCS) is the latest enhancement to ATSAC. ATCS uses a personal computer-based traffic signal control software program which provides fully traffic adaptive signal control based on real-time traffic conditions. ATCS will be implemented using new software and additional pavement traffic detectors at intersections currently on-line as part of the City of Los Angeles' ATSAC System. As traffic volumes and patterns change, ATCS can adapt traffic signal timing in real-time to match the current conditions. This immediately leads to an improvement in the LOS and reduced traffic congestion. Results have shown that ATCS provides a minimum of three percent of added capacity. The existing ATSAC system in Westwood and the West Los Angeles area is projected to be enhanced with ATCS by early 2011; thus, the capacity of the 48 aforementioned ATSAC intersections were increased an additional three percent to reflect the system's expected benefits under Future 2013 (With and Without Project) scenarios.

Reduced Capacity at Select Study Intersections

Due to downstream congestion problems in the Westwood area, LADOT has requested that the capacity of some intersections be reduced by 25 percent to account for the drop of traffic volumes in recent counts (traffic volumes have not reduced, but rather vehicles are not able to cross the intersection during the given green time due to congestion downstream). The 25 percent capacity reduction has been applied to the following locations during both the AM and PM peak hour:

Wilshire Boulevard between Sepulveda Boulevard and Glendon Avenue:

#35 Wilshire Blvd/Sepulveda Blvd #36 Wilshire Blvd/Veteran Ave #37 Wilshire Blvd/Gayley Ave #38 Wilshire Blvd/Westwood Blvd #39 Wilshire Blvd/Glendon Ave

Westwood Boulevard between Le Conte and Wilshire Boulevard:

#27 Weyburn Ave/Westwood Blvd #30 Kinross Ave/Westwood Blvd #31 Lindbrook Dr/Westwood Blvd

Santa Monica Boulevard between Sawtelle Boulevard and Sepulveda Boulevard:

#48 Santa Monica Blvd/Sawtelle Blvd #49 Santa Monica Blvd/SD Fwy SB Ramp #50 Santa Monica Blvd/SD Fwy NB Ramp #51 Santa Monica Blvd/Sepulveda Blvd

Scramble Crosswalk at Westwood Boulevard and Le Conte Avenue

It should be noted that a new scramble crosswalk was installed at the intersection of Westwood Boulevard and Le Conte Avenue after the existing 2008 traffic counts were conducted. The scramble crosswalk became operational on August 7, 2008, giving pedestrians their own exclusive phase to cross the intersection from all four corners, including diagonally. Implementation of a scramble crosswalk typically reduces the capacity of the intersection up to approximately 33 percent since the intersection experiences an all-red phase for pedestrians to cross. Since the scramble crosswalk was implemented after the existing 2008 traffic counts were conducted, the existing traffic operations analysis of Westwood Boulevard and Le Conte Avenue did not incorporate the estimated 33 percent capacity reduction. However, the 33 percent capacity reduction was factored into the Future 2013 Without Project and Future 2013 With Project scenarios at Westwood Boulevard and Le Conte Avenue.

EXISTING CONDITIONS

Existing Traffic Volumes

Counts of existing AM peak period (7:00 AM to 9:00 AM) and PM peak period (4:00 PM to 6:00 PM) traffic conditions were conducted by a professional data collection company during January and February 2008. The counts were conducted manually at each of the 58 study intersections, where count personnel tracked the number of vehicles making each possible turning movement. The peak hour traffic volumes for each intersection were then determined for analysis purposes by finding the four highest consecutive 15-minute volumes for all movements combined. This procedure provides the highest existing volumes, as it is based on the peak hour for each intersection independent of other intersections. The existing peak hour turning movement volumes for the 58 study intersections are shown in **Figures 9A, 9B and 9C**.

Existing Traffic Operations Analysis

The AM and PM peak hour LOS analyses were conducted at the 58 City of Los Angeles study intersections based on the existing traffic volume counts and the methodologies described previously. The V/C ratios (for signalized intersections) and delay (for unsignalized intersections) and the corresponding LOS for existing AM and PM peak hour conditions are shown in **Table 9A**. **Table 9B** shows the V/C and corresponding LOS for existing AM and PM peak hour conditions at unsignalized intersections that have been analyzed as two-phase signalized intersections with a capacity of 1,200 vehicles per hour, per LADOT guidelines. The level of service analysis was performed using TRAFFIX software, version 7.8. Level of service D is generally considered to be the lowest acceptable LOS in an urban or suburban area, including the City of Los Angeles. Level of service E is considered to have poor operation and LOS F is considered forced flow. As the values in Tables 9A and 9B indicate, 16 of the 58 study intersections currently operate at LOS E or F during the AM peak hour, PM peak hour, or both:

- 10. Sunset Boulevard and Beverly Glen Boulevard PM Peak Hour
- 11. Sunset Boulevard (East I/S) and Beverly Glen Boulevard AM and PM Peak Hours
- 14. Montana Avenue and Levering Avenue PM Peak Hour (as unsignalized), AM peak hour (as signalized)
- 35. Wilshire Boulevard and Sepulveda Boulevard AM and PM Peak Hours
- 36. Wilshire Boulevard and Veteran Avenue AM and PM Peak Hours
- 37. Wilshire Boulevard and Gayley Avenue PM Peak Hour
- 38. Wilshire Boulevard and Westwood Boulevard AM Peak Hour
- 40. Wilshire Boulevard and Malcolm Avenue AM and PM Peak Hours
- 44. Ohio Avenue and Sawtelle Boulevard AM Peak Hour
- 48. Santa Monica Boulevard and Sawtelle Boulevard AM and PM Peak Hours
- 49. Santa Monica Boulevard and San Diego Freeway (S/B) AM and PM Peak Hours
- 50. Santa Monica Boulevard and San Diego Freeway (N/B) PM Peak Hour
- 51. Santa Monica Boulevard and Sepulveda Boulevard AM and PM Peak Hours
- 53. Santa Monica Boulevard and Westwood Boulevard AM and PM Peak Hours

- 57. Beverly Glen Boulevard and Mulholland Drive AM and PM Peak Hours
- 58. Beverly Glen Boulevard and Greendale Drive PM Peak Hour

TABLE 9A – EXISTING 2008 PEAK HOUR LEVEL OF SERVICE SUMMARY

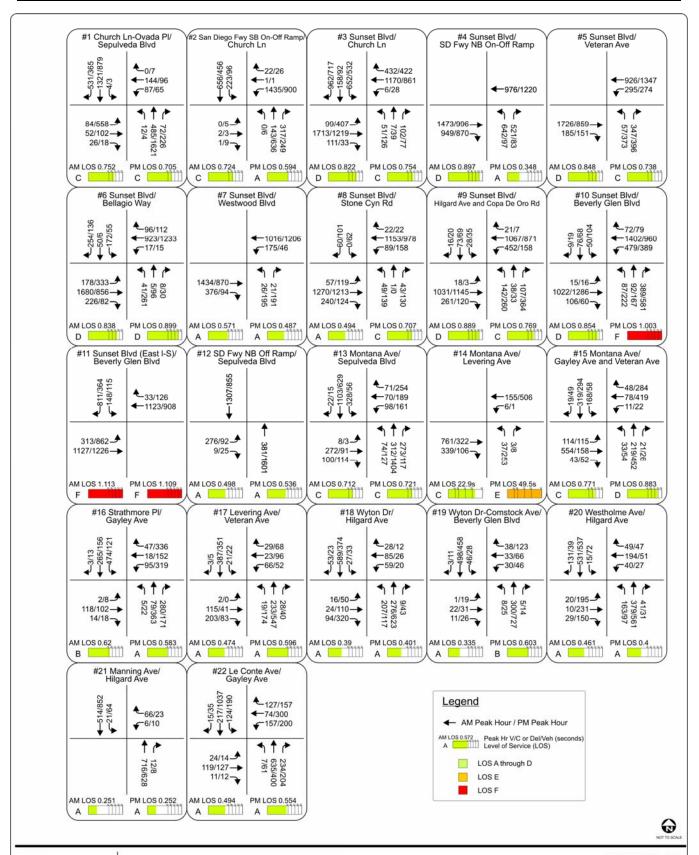
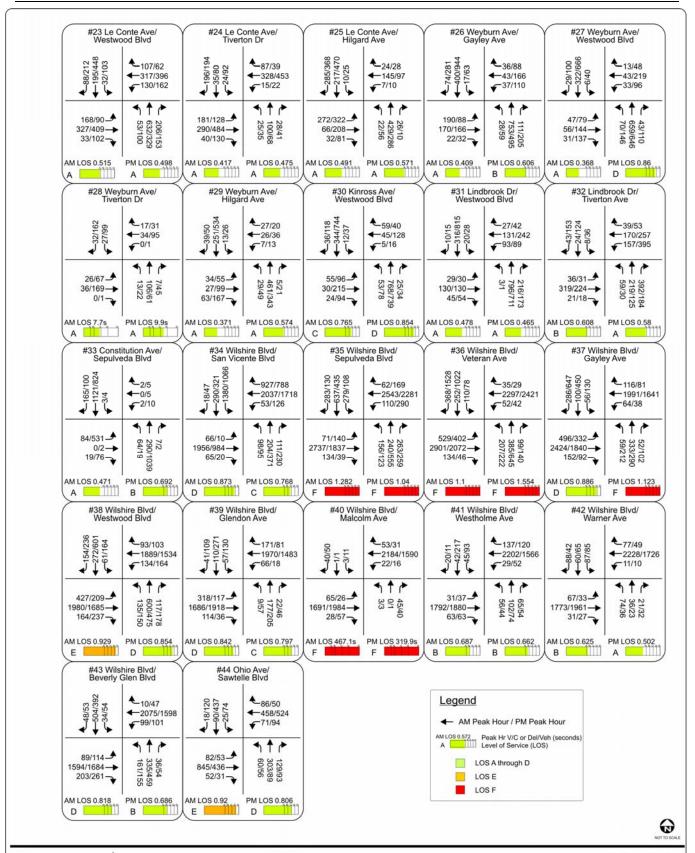
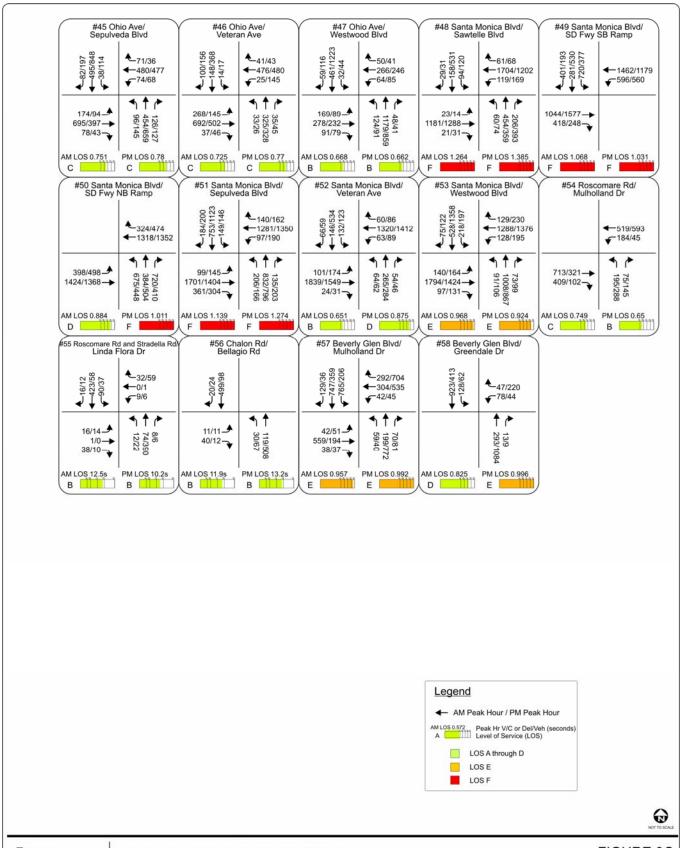

	E	xisting 2008	8 Condition	18
Study Intersection	AM Pea	k Hour		
·		V/C or		V/C or
	LOS	Del/Veh	LOS	Del/Veh
1 Church Ln/Ovada Pl/Sepulveda Blvd 1	С	0.752	С	0.705
2. San Diego Freeway Southbound On/Off Ramps and Church Lane	С	0.724	A	0.594
3. Sunset Boulevard and Church Lane	D	0.822	С	0.754
4. Sunset Boulevard and San Diego Freeway Northbound On/Off Ramps 1	D	0.897	A	0.348
5. Sunset Boulevard and Veteran Avenue	D	0.848	С	0.738
6. Sunset Boulevard and Bellagio Way	D	0.838	D	0.899
7. Sunset Boulevard and Westwood Boulevard	A	0.571	A	0.487
8. Sunset Boulevard and Stone Canyon Road 1	A	0.494	С	0.707
9. Sunset Boulevard and Hilgard Avenue/Copa De Oro Road 1	D	0.889	С	0.769
10. Sunset Boulevard and Beverly Glen Boulevard 1	D	0.854	F	1.003
11. Sunset Boulevard (East I/S) and Beverly Glen Boulevard ¹	F	1.113	F	1.109
12. San Diego Freeway Northbound Off Ramp and Sepulveda Boulevard 1	A	0.498	A	0.536
13. Montana Avenue and Sepulveda Boulevard ¹	С	0.712	С	0.721
14. Montana Avenue and Levering Avenue (unsignalized)	С	22.9	Е	49.5
15. Montana Avenue/Gayley Avenue and Veteran Avenue ¹	C	0.771	D	0.883
16. Strathmore Place and Gayley Avenue ¹	В	0.620	A	0.583
17. Levering Avenue and Veteran Avenue ¹	A	0.474	A	0.596
18. Wyton Drive and Hilgard Avenue ¹	A	0.390	A	0.401
19. Wyton Drive/Comstock Avenue and Beverly Glen Boulevard ¹	A	0.335	В	0.603
20. Westholme Avenue and Hilgard Avenue ¹	A	0.461	A	0.400
21. Manning Avenue and Hilgard Avenue ¹	A	0.251	A	0.252
22. Le Conte Avenue and Gayley Avenue ¹	A	0.494	A	0.554
23. Le Conte Avenue and Westwood Boulevard ¹	A	0.515	A	0.498
24. Le Conte Avenue and Tiverton Drive ¹	A	0.417	A	0.475
25. Le Conte Avenue and Hilgard Avenue ¹	A	0.491	A	0.571
26. Weyburn Avenue and Gayley Avenue ¹	A	0.409	В	0.606
27. Weyburn Avenue and Westwood Boulevard ¹	A	0.368	D	0.860
28. Weyburn Avenue and Tiverton Drive (unsignalized)	A	7.7	A	9.9
29. Weyburn Avenue and Hilgard Avenue ¹	A	0.371	A	0.574
30. Kinross Avenue and Westwood Boulevard ¹	С	0.765	D	0.854
31. Lindbrook Drive and Westwood Boulevard ¹	A	0.478	A	0.465
32. Lindbrook Drive and Tiverton Avenue	В	0.608	A	0.580
33. Constitution Avenue and Sepulveda Boulevard ¹	A	0.471	В	0.692
34. Wilshire Boulevard and San Vicente Boulevard ¹	D	0.873	C	0.768
35. Wilshire Boulevard and Sepulveda Boulevard ¹	F	1.282	F	1.040
36. Wilshire Boulevard and Veteran Avenue ¹	F	1.100	F	1.554
1 Seven percent ATSAC reduction applied to final V/C.				

TABLE 9A - EXISTING 2008 PEAK HOUR LEVEL OF SERVICE SUMMARY

	E	ns		
Study Intersection	AM Pea	ık Hour	PM Pea	ak Hour
·	LOS	V/C or Del/Veh	LOS	V/C or Del/Veh
37. Wilshire Boulevard and Gayley Avenue ¹	D	0.886	F	1.123
38. Wilshire Boulevard and Westwood Boulevard ¹	Е	0.929	D	0.854
39. Wilshire Boulevard and Glendon Avenue ¹	D	0.842	C	0.797
40. Wilshire Boulevard and Malcolm Avenue (unsignalized)	F	467.1	F	319.9
41. Wilshire Boulevard and Westholme Avenue ¹	В	0.687	В	0.662
42. Wilshire Boulevard and Warner Avenue ¹	В	0.625	A	0.502
43. Wilshire Boulevard and Beverly Glen Boulevard ¹	D	0.818	В	0.686
44. Ohio Avenue and Sawtelle Boulevard ¹	Е	0.920	D	0.806
45, Ohio Avenue and Sepulveda Boulevard ¹	C	0.751	C	0.780
46. Ohio Avenue and Veteran Avenue ¹	C	0.725	C	0.770
47. Ohio Avenue and Westwood Boulevard ¹	В	0.668	В	0.662
48. Santa Monica Boulevard and Sawtelle Boulevard ¹	F	1.264	F	1.385
49. Santa Monica Boulevard and San Diego Freeway (S/B)	F	1.068	F	1.031
50. Santa Monica Boulevard and San Diego Freeway (N/B)	D	0.884	F	1.011
51. Santa Monica Boulevard and Sepulveda Boulevard ¹	F	1.139	F	1.274
52. Santa Monica Boulevard and Veteran Avenue ¹	В	0.651	D	0.875
53. Santa Monica Boulevard and Westwood Boulevard ¹	Е	0.968	Е	0.924
54. Roscomare Road and Mulholland Drive ¹	С	0.749	В	0.650
55. Roscomare Road and Stradella Road/Linda Flora Drive (unsignalized)	В	12.5	В	10.2
56. Chalon Road and Bellagio Road (unsignalized)	В	11.9	В	13.2
57. Beverly Glen Boulevard and Mulholland Drive	Е	0.957	Е	0.992
58. Beverly Glen Boulevard and Greendale Drive	D	0.825	Е	0.996
¹ Seven percent ATSAC reduction applied to final V/C.				


TABLE 9B – EXISTING 2008 PEAK HOUR LEVEL OF SERVICE SUMMARY- (UNSIGNALIZED ANALYZED AS 2-PHASE SIGNALIZED INTERSECTION)

		Existing 2008 Conditions								
Study Intersection		AM Pe	ak Hour	PM Pe	ak Hour					
		LOS	V/C	LOS	V/C					
14. Montana Ave/Levering Ave		Е	0.955	В	0.640					
28. Weyburn Ave/Tiverton Dr		A	0.192	A	0.434					
40. Wilshire Blvd/Malcolm Ave		С	0.718	В	0.626					
55. Roscomare Rd and Stradella Rd/Linda Flora Dr		A	0.504	A	0.446					
56. Chalon Rd/Bellagio Rd		A	0.500	A	0.498					
Note: Unsignalized intersections were analyzed with CMA as 2-phased signalized intersections with a capacity of 1,200.										


UCLA Northwest Housing Infill Project (NHIP) and LRDP Amendment FIGURE 9A Existing Peak Hour Turning Movement Volumes

ITERIS

UCLA Northwest Housing Infill Project (NHIP) and LRDP Amendment

FIGURE 9B Existing Peak Hour Turning Movement Volumes

ITERIS

UCLA Northwest Housing Infill Project (NHIP) and LRDP Amendment

FIGURE 9C Existing Peak Hour Turning Movement Volumes

Analysis of Existing Freeway Conditions

An examination was also made of freeway conditions on the two regional facilities within the project study area. Seven freeway segments were selected for this analysis. These segments include:

- 1. San Diego Freeway (I-405), south of Santa Monica Freeway (I-10)
- 2. San Diego Freeway (I-405), between Santa Monica Freeway (I-10) and Santa Monica Boulevard
- 3. San Diego Freeway (I-405), between Wilshire Boulevard and Santa Monica Boulevard
- 4. San Diego Freeway (I-405), between Sunset Boulevard and Wilshire Boulevard
- 5. San Diego Freeway (I-405), north of Sunset Boulevard
- 6. Santa Monica Freeway (I-10), between Bundy Drive and San Diego Freeway (I-405)
- 7. Santa Monica Freeway (I-10), between Overland Avenue and National Boulevard

Current traffic volumes on these freeway segments were obtained from several sources. Daily, AM and PM peak hour traffic volumes on the segments were obtained from the most current Caltrans data (2007 freeway volumes) on the Caltrans website (http://www.dot.ca.gov/hq/traffops/saferesr/trafdata/). In addition, AM and PM peak hour directional splits were taken from the Los Angeles County 2004 Congestion Management Program (CMP). All of the 2007 freeway traffic volumes were increased by a growth factor of one percent (one percent per year) to reflect 2008 traffic conditions, per CMP traffic forecasting procedures. Existing freeway geometrics (e.g., number of mainline travel lanes) for each of the segments analyzed were determined from CMP data, aerial photographs, and field surveys. Segment peak hour traffic capacities were computed for each direction using established Highway Capacity manual (HCM) methodology. As detailed in procedures discussed in the HCM Chapter 3, each mainline travel lane is assumed to have a capacity of 2,000 vehicles per hour (VPH). The total directional capacities were then computed, and used in conjunction with the previously determined peak hour directional freeway segment volumes to calculate the existing 2008 freeway levels of service in the project vicinity. The resulting values are shown in Table 10A and 10B.

TABLE 10A – EXISTING AM PEAK HOUR FREEWAY VOLUMES AND LOS SUMMARY

					AN	1 Peak Hou	r				
Freeway Segment	Direction	No. of Lanes	Freeway Capacity	2007 Daily Segment Volume	2008 Daily Segment Volume	2007 Peak Segment Volume	2008 Peak Segment Volume	Distribution Split	Peak Hour Volume	LOS	D/C
1. I-405 South of I-10	N/B	5	10,000	280,000	282,800	17,800	17,978	60%	10,787	F(0)	1.079
1. 1-403 South of 1-10	S/B	5	10,000	280,000	282,800	17,800	17,978	40%	7,191	C	0.719
2. I-405 Between I-10 and Santa Monica Blvd	N/B	5	10,000	296,500	299,465	20,550	20,756	60%	12,453	F(0)	1.245
2. 1-403 Between 1-10 and Santa Monica Bivd	S/B	5	10,000	290,300	299,403	20,550	20,756	40%	8,302	D	0.830
3. I-405 Between Wilshire Blvd and Santa Monica Blvd	N/B	6	12,000	201 000	293,910	20,300	20,503	60%	12,302	F(0)	1.025
3. 1-403 Between wilstiffe Bivd and Santa Monica Bivd	S/B	6	12,000	291,000	293,910	20,300	20,503	40%	8,201	C	0.683
4. I-405 Between Sunset Blvd and Wilshire Blvd	N/B	5	10,000	271,500	274,215	18,950	19,140	60%	11,484	F(0)	1.148
4. 1-403 Detween Sunset Blvd and whathe Blvd	S/B	5	10,000	2/1,300	274,213	18,950	19,140	40%	7,656	С	0.766
5. I-405 North of Sunset Blvd	N/B	5	10,000	275,000	277,750	17,000	17,170	42%	7,211	С	0.721
3. 1-403 North of Sunset Blvd	S/B	4	8,000	273,000	277,730	17,000	17,170	58%	9,959	F(0)	1.245
6 I 10 Detrugen Dundy Dr and I 405	E/B	5	10,000	245,000	247,450	17,800	17,978	58%	10,427	F(0)	1.043
6. I-10 Between Bundy Dr and I-405	W/B	5	10,000	243,000	247,430	17,800	17,978	42%	7,551	C	0.755
7. I-10 Between Overland Ave and National Blvd	E/B	5	10,000	261,000	262 610	17,400	17,574	60%	10,544	F(0)	1.054
7. 1-10 Detween Overland Ave and National Blvd	W/B	4	8,000	261,000	263,610	17,400	17,574	40%	7,030	D	0.879
N/B: northbound; S/B: southbound; E/B: eastbound; W/B	: westbound;	D/C: den	nand to capa	city							

TABLE 10B – EXISTING PM PEAK HOUR FREEWAY VOLUMES AND LOS SUMMARY

					PM	Peak Hou	ľ				
Freeway Segment	Direction	No. of Lanes	Freeway Capacity	2007 Daily Segment Volume	2008 Daily Segment Volume	2007 Peak Segment Volume	2008 Peak Segment Volume	Distribution Split	Peak Hour Volume	LOS	D/C
1. I-405 South of I-10	N/B	5	10,000	280,000	282,800	17,800	17,978	52%	9,349	E	0.935
1. 1-403 South of 1-10	S/B	5	10,000	280,000	262,600	17,800	17,978	48%	8,629	D	0.863
2. I-405 Between I-10 and Santa Monica Blvd	N/B	5	10,000	296,500	299,465	20,550	20,756	52%	10,793	F(0)	1.079
2. 1-403 Between 1-10 and Santa Monica BIVG	S/B	5	10,000	290,300	299,403	20,550	20,756	48%	9,963	E	0.996
3. I-405 Between Wilshire Blvd and Santa Monica Blvd	N/B	6	12,000	291,000	293,910	20,300	20,503	52%	10,662	D	0.888
5. 1-403 Between witshire Blvd and Santa Monica Blvd	S/B	6	12,000	291,000	293,910	20,300	20,503	48%	9,841	D	0.820
4. I-405 Between Sunset Blvd and Wilshire Blvd	N/B	5	10,000	271,500	274,215	18,950	19,140	52%	9,953	Е	0.995
4. 1-403 Between Sunset Bivd and Wilsinie Bivd	S/B	5	10,000	2/1,500	274,213	18,950	19,140	48%	9,187	D	0.919
5. I-405 North of Sunset Blvd	N/B	5	10,000	275,000	277,750	17,000	17,170	64%	10,989	F(0)	1.099
5. 1-405 North of Sunset Blvd	S/B	4	8,000	273,000	277,730	17,000	17,170	36%	6,181	D	0.773
6. I-10 Between Bundy Dr and I-405	E/B	5	10,000	245,000	247,450	17,800	17,978	48%	8,629	D	0.863
0. 1-10 Between Buildy DI and 1-403	W/B	5	10,000	243,000	247,430	17,800	17,978	52%	9,349	Е	0.935
7. I-10 Between Overland Ave and National Blvd	E/B	5	10,000	261,000	262 610	17,400	17,574	62%	10,896	F(0)	1.090
7. 1-10 Detween Overland Ave and National Divu	W/B	4	8,000	261,000 263	263,610	17,400	17,574	38%	6,678	D	0.835
N/B: northbound; S/B: southbound; E/B: eastbound; W/B	: westbound;	D/C: den	nand to capa	city							

As shown in Table 10A and 10B, all study segments on the San Diego Freeway (I-405) and the Santa Monica Freeway (I-10) currently operate at or above design capacity in at least one direction during one or both of the peak hours, resulting in severe congestion and travel speeds of less than 25 miles per hour. The freeway segments that currently operate at LOS E or F during the AM or PM peak hour are listed below.

- 1. San Diego Freeway (I-405), south of Santa Monica Freeway
 - o AM Peak
 - Northbound- LOS F(0)
 - o PM Peak
 - Northbound- LOS E
- 2. San Diego Freeway (I-405), between Santa Monica Freeway (I-10) and Santa Monica Boulevard
 - o AM Peak
 - Northbound- LOS F(0)
 - PM Peak
 - Northbound- LOS F(0)
 - Southbound- LOS E
- 3. San Diego Freeway (I-405), between Wilshire Boulevard and Santa Monica Boulevard
 - o AM Peak
 - Northbound- LOS F(0)
- 4. San Diego Freeway (I-405), between Sunset Boulevard and Wilshire Boulevard
 - o AM Peak
 - Northbound- LOS F(0)
 - o PM Peak
 - Northbound- LOS E
- 5. San Diego Freeway (I-405), north of Sunset Boulevard
 - o AM Peak
 - Southbound- LOS F(0)
 - o PM Peak
 - Northbound- LOS F(0)
- 6. Santa Monica Freeway (I-10), between Bundy Drive and San Diego Freeway (I-405)
 - o AM Peak
 - Eastbound- LOS F(0)
 - o PM Peak
 - Westbound- LOS E

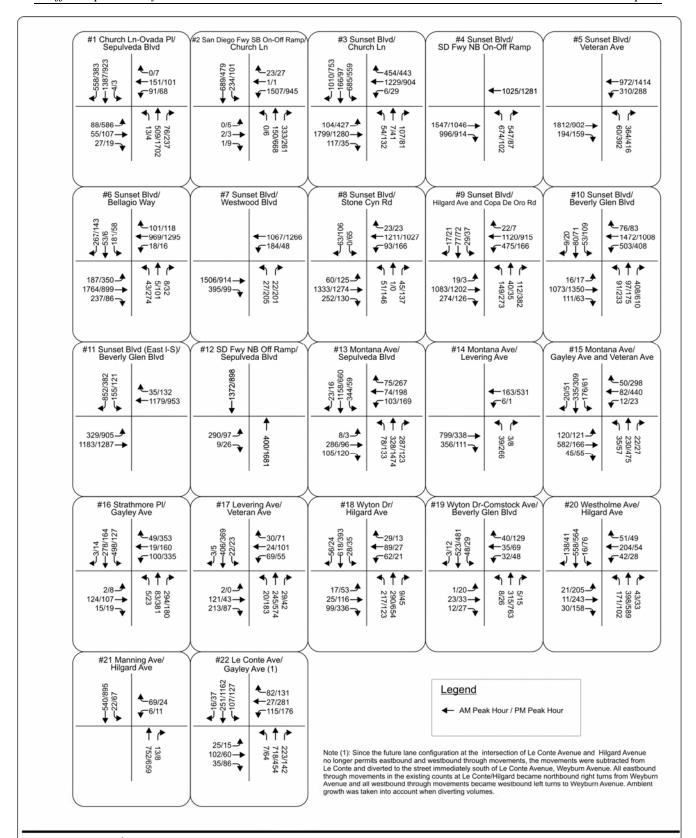
- 7. Santa Monica Freeway (I-10), between Overland Avenue and National Boulevard
 - o AM Peak
 - Eastbound- LOS F(0)
 - o PM Peak
 - Eastbound- LOS F(0)

FUTURE 2013 WITHOUT PROJECT CONDITIONS

Ambient Growth and Related Projects

To determine the Future Without Project 2013 traffic volumes, two primary variables were considered:

- 1) Ambient traffic growth rate, and;
- 2) Traffic due to other known or related future development projects

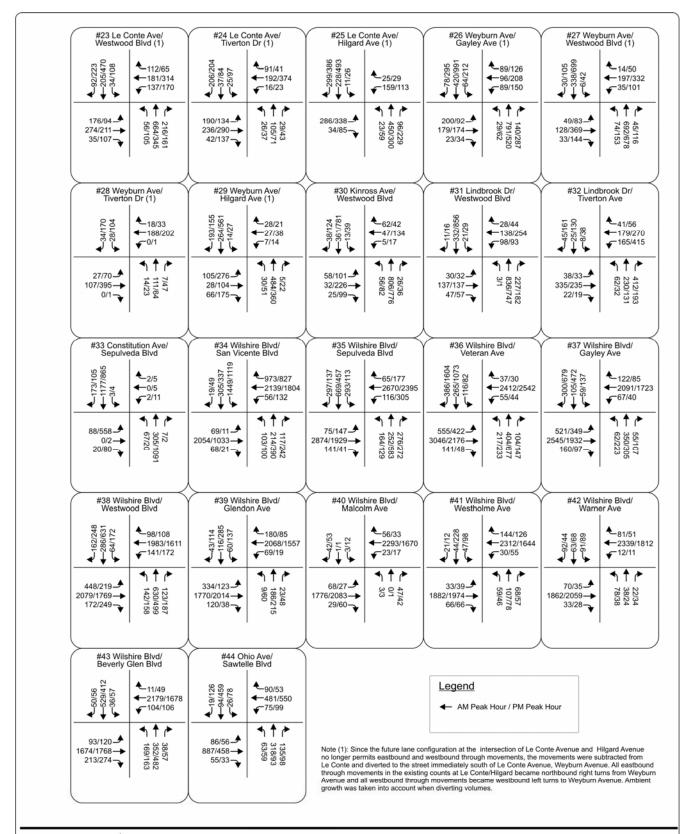

The background (Future Without Project) traffic forecasts include a determination of the annual ambient traffic growth rate combined with specific related development projects in the area. The ambient growth rate accounts for projects that will occur in the future, but are not yet known, plus smaller projects that are not on the local jurisdiction's list of related projects. An ambient background traffic growth rate of one percent per year was applied in this study, consistent with the background growth rates used in other studies in the surrounding area and as approved by LADOT. For purposes of this analysis the NHIP and LRDP Amendment planning horizon year is projected to be 2013, thus a five percent growth rate was applied to the 2008 existing counts. Future 2013 traffic volumes with ambient growth only are provided in **Figures 10A, 10B, and 10C**.

In addition to ambient growth, the other component of future background traffic is the known list of cumulative development projects. The cumulative projects included in this study were compiled for Iteris by LADOT staff. Those include projects for which there is an application on file at the city (or other adjacent jurisdictions), as well as projects that are reasonably foreseeable, are completed but not fully occupied, are currently under construction or beginning construction, or are presently only proposed but could become operational by 2013. A list of related project for this study is provided in **Table 11**. **Figure 11** depicts the locations of the related projects. This list represents all projects within a 2-½ mile radius of the campus center. This includes all related projected anticipated to have a potential significant impact at study intersections. A total of 73 projects in the City of Los Angeles and 36 projects in the City of Beverly Hills were identified for analysis, for a total of 109 related projects. **Figures 12A, 12B, and 12C** illustrate the related project trip assignment during the AM and PM peak hour at the study intersections

As shown in Table 11, under the Future Without Project scenario, without the implementation of the NHIP and LRDP Amendment, the related projects would generate approximately 60,909 average daily trips, 5,179 trips during the AM peak hour, and 6,017 trips during the PM peak hour.

Future Without Project Level of Service

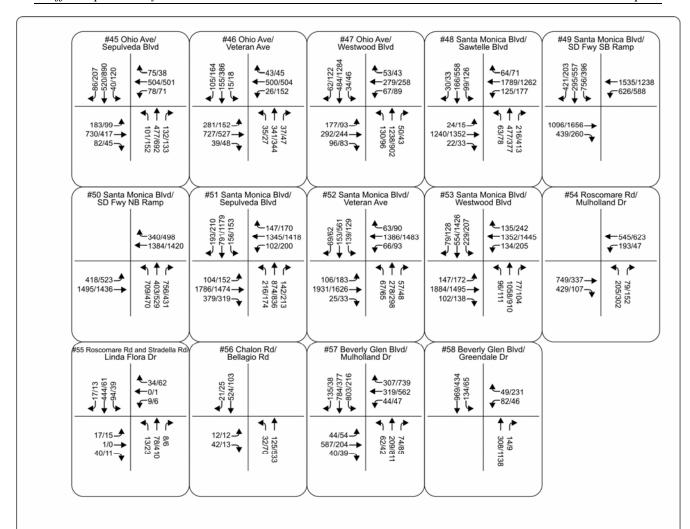
To estimate future traffic volumes for the Future Without Project (without implementation of the UCLA NHIP and LRDP Amendment), traffic volumes were developed using both ambient growth and approved and pending projects near the proposed project site. The V/C ratios (for signalized intersections) and delay (for unsignalized intersections) and the corresponding LOS are shown in **Table 12A**. **Table 12B** shows the V/C and corresponding LOS at unsignalized intersections that have been analyzed as two-phase signalized intersections with a capacity of 1,200 vehicles per hour, per LADOT guidelines. **Figures 13A**, **13B**, **and 13C** illustrate the Future 2013 Without Project (with both ambient growth and related projects) turning movement volumes at study intersections.



UCLA Northwest Housing Infill Project (NHIP) and LRDP Amendment

FIGURE 10A

Future 2013 Without Project Peak Hour Turning Movement Volumes (Ambient Growth Only)



ITERIS

UCLA Northwest Housing Infill Project (NHIP) and LRDP Amendment

FIGURE 10B

Future 2013 Without Project Peak Hour Turning Movement Volumes
(Ambient Growth Only)

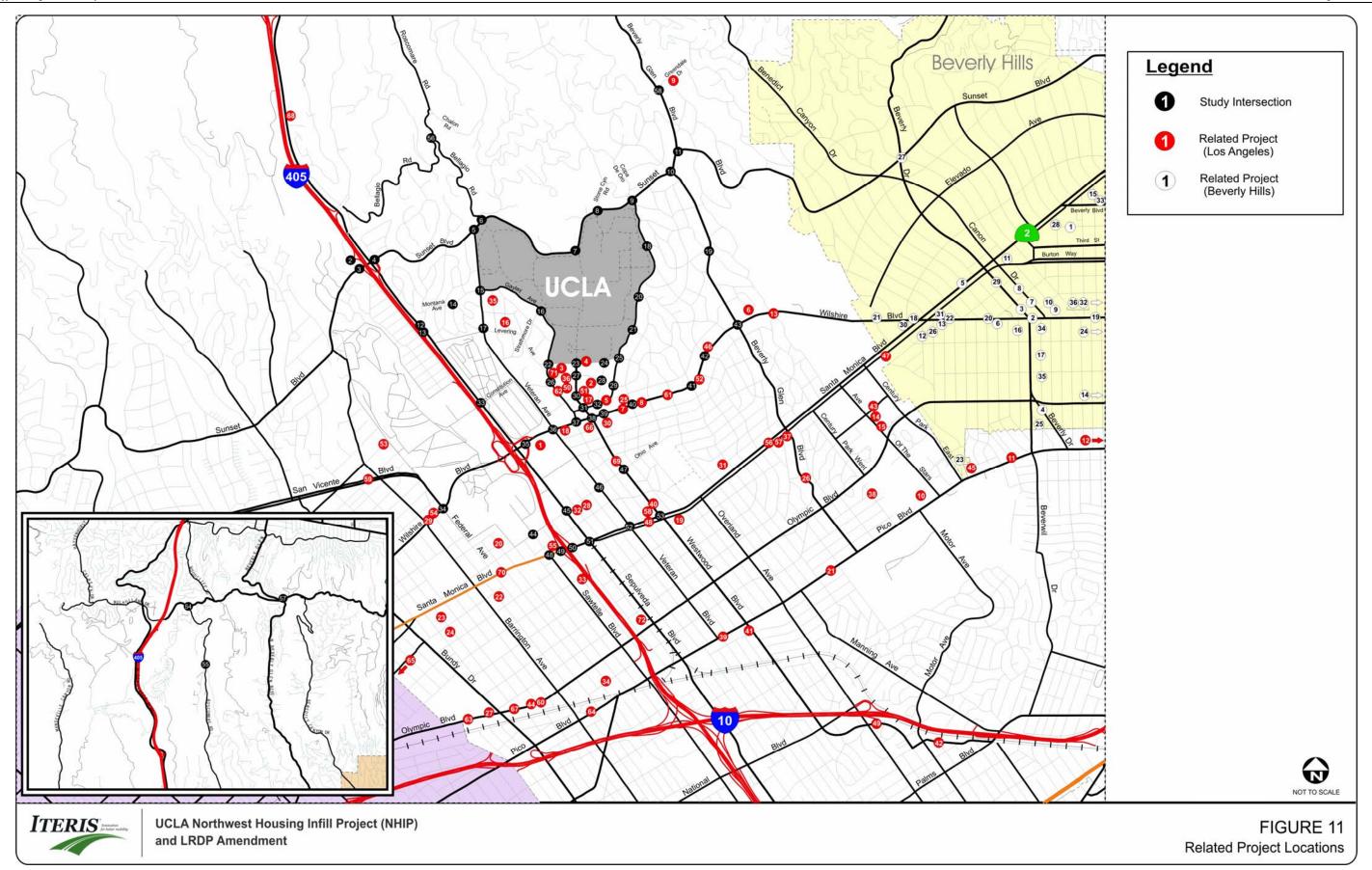
Legend

← AM Peak Hour / PM Peak Hour

Note (1): Since the future lane configuration at the intersection of Le Conte Avenue and Hilgard Avenue no longer permits eastbound and westbound through movements, the movements were subtracted from Le Conte and diverted to the street immediately south of Le Conte Avenue, Weyburn Avenue. All eastbound through movements in the existing counts at Le Conte/Hilgard became northbound right turns from Weyburn Avenue and all westbound through movements became westbound left turns to Weyburn Avenue. Ambient growth was taken into account when diverting volumes.

UCLA Northwest Housing Infill Project (NHIP) and LRDP Amendment

FIGURE 10C


Future 2013 Without Project Peak Hour Turning Movement Volumes
(Ambient Growth Only)

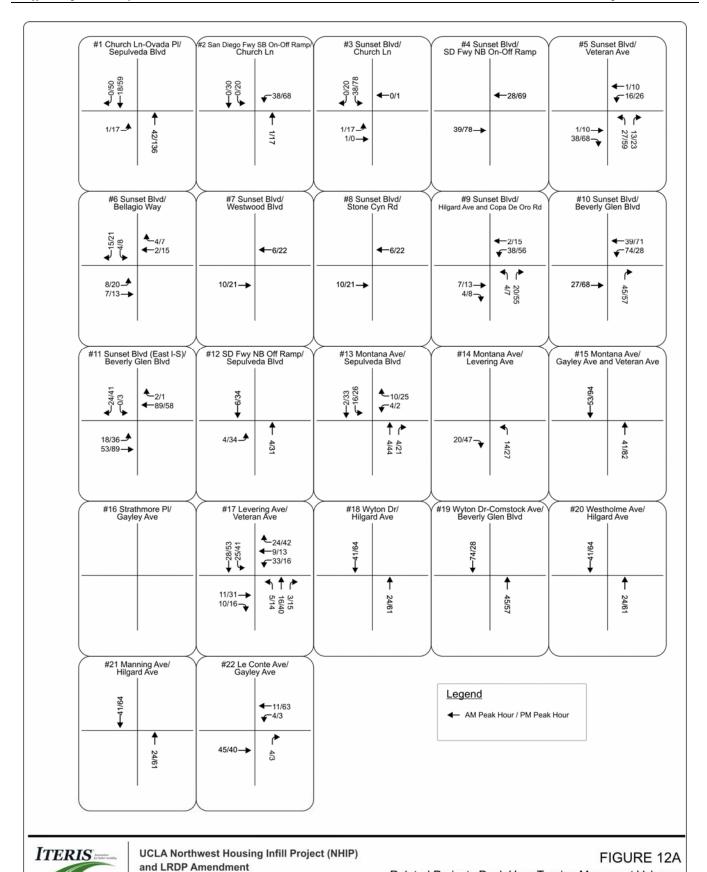
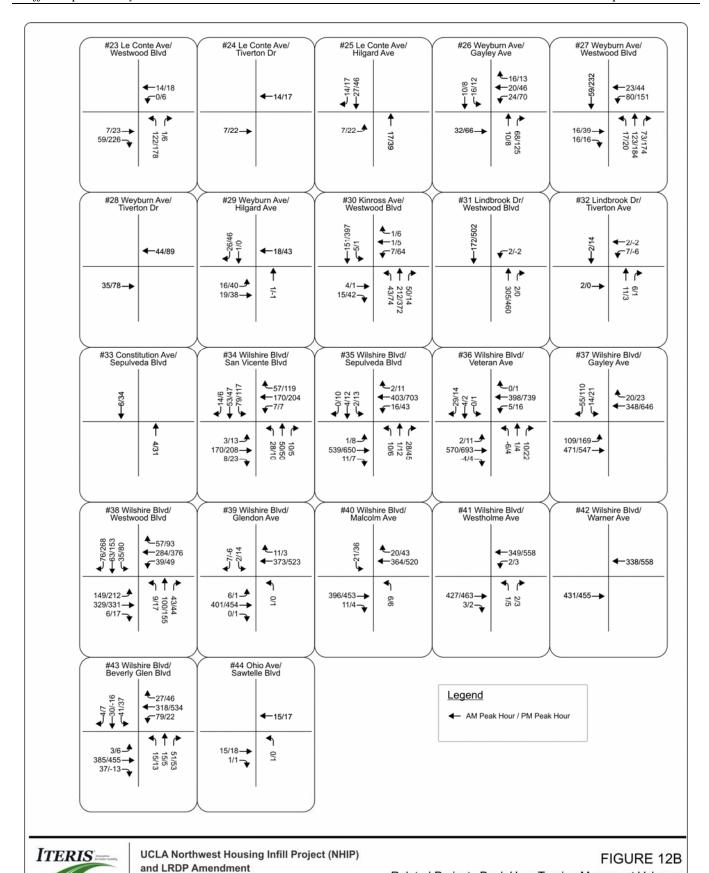
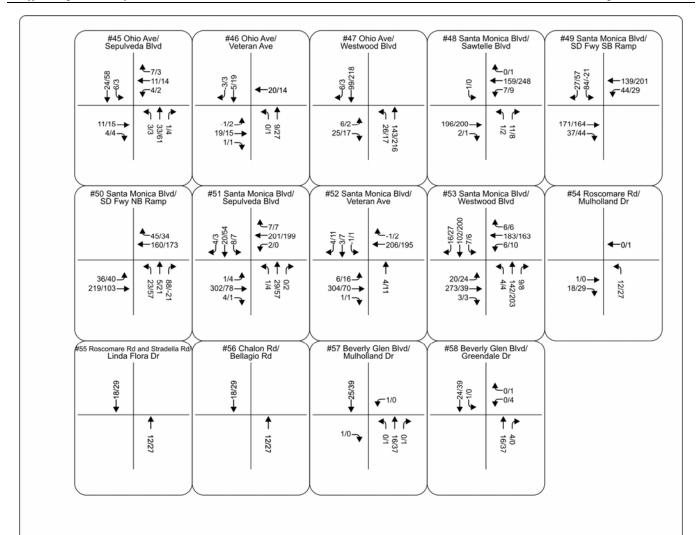

							WEEKDAY [48]									
Project	Description / Location	Land Use	Notes	Notes Size		Daily Trips	A	M Peak Hour Tri	ps	PM	Peak Hour Trips					
							In	Out	Total	In	Out	Total				
City of Los Angel	es															
1	FBI Office- 11000 Wilshire Boulevard	Phase I- Existing Tower Renovation (Non-FBI)	[2] [49]	1,085	Employees	0	0	0	0	0	0	0				
1	1 Di Office- 11000 Wilshife Boulevald	Phase II- New Office (FBI Use)	[2] [49]	1,000	Employees	Ü	0	U	U	U	U	U				
		Shopping Center		61,000	SF											
		Supermarket		54,000	SF]										
2.	Palazzo Westwood- 1001 Tiverton Avenue	Apartment	[3]	350	DU	5,811	5.811	5 911	5,811	5,811	114	119	233	266	237	503
-	Tuluzzo Westwood 1001 Hvelton Avende	Existing Theater	[2]	(652)	Seats		114	117	233	200	237	303				
		Existing Retail		(24,000)	SF											
		Existing Apartment		(42)	DU											
		Retail		15,000	SF	_										
3	Mixed-Use- S/E Corner of Broxton Ave/Le Conte Ave	High-Turnover Restaurant	[1]	2,993	SF	4,598	149	45	194	195	271	466				
3	Mixed one of Econor of Broken Profile Content	Medical Office	[,]	74,000	SF	1,570	117	15	171	175	2/1	100				
		Theater		1,135	Seats											
4	Theater Expansion-10886 Le Conte Avenue	Theater Expansion	[4]	106	Seats	187	1	0	1	8	8	16				
		Apartment	[5]	19	DU	128	2	8	10	6	3	9				
5	Mixed-Use- 10852 Lindbrook Avenue	Specialty Retail	[6]	6,100	SF	270	4	3	7	13	18	31				
	Name of 1995 Emilion of 1995	Existing Specialty Retail	[6]	(16,100)	SF	(714)	(11)	(8)	(19)	(35)	(46)	(81)				
			T		Net Total	(316)	(5)	3	(2)	(16)	(25)	(41)				
6	Apartments- 860 S. Devon Avenue	Apartment	[5]	19	DU	128	2	8	10	6	3	9				
7	Condominiums- 10804 Wilshire Boulevard	Condominium	[7]	93	DU	545	7	34	41	34	17	51				
8	Condominiums- 10776 Wilshire Boulevard	Condominium	[8]	119	DU	154	(14)	29	15	18	(3)	15				
		Existing Hotel		(66)	Rooms	10.			10	10	(3)	10				
9	Private School Expansion- 700 N. Faring Road	Private School Expansion	[1]	122,200	SF	0	9	0	9	0	9	9				
10	Fox Studio Expansion- 10201 W. Pico Boulevard	Fox Studio Expansion	[1]	360,000	SF	4,086	420	30	450	54	226	280				
11	High School Expansion- 9760 W. Pico Boulevard	High School Expansion	[9]	14,800	SF	660	92	40	132	37	55	92				
12	Private School- 9051 Pico Boulevard	Private School	[1]	360	Students	760	94	55	149	65	166	231				
13	Wilshire/Comstock Condominium Project- 10250 W. Wilshire Boulevard	Condominium	[9]	35	DU	205	3	12	15	13	6	19				
		Office		763,900	SF											
		High-Turnover Restaurant		16,012	SF											
		Quality Restaurant		16,011	SF											
		Retail		19,214	SF											
		Cultural Center		10,675	SF											
14	ABC Entertainment Center- 2000 Avenue of the Stars	Existing Office	[10]	(332,856)	SF	(11,357)	101	(181)	(80)	(683)	(216)	(899)				
		Existing Cinema		(1,751)	Seats			, ,		, ,						
		Existing Shubert Theater		(2,250)	Seats											
		Existing High-Turnover Restaurant		(117,212)	SF											
		Existing Quality Restaurant		(39,071)	SF											
		Existing Retail		(61,970)	SF											
		Existing Health Club		(44,277)	SF											
		Condominium		147	DU											
15	St. Regis Redevelopment Project- 2055 Avenue of the Stars	Quality Restaurant	[1]	7,000	SF	0	0	0	0	0	0	0				
		Private Club	4	43,000	SF											
		Existing Hotel		(297)	Rooms	255										
16	Condominiums- 527 S. Midvale Street	Condominium	[7]	166	DU	973	12	61	73	61	30	91				
17	Residential Hotel- 10844 W. Wilshire Boulevard	Residential Hotel	[11]	42	Rooms	343	15	9	24	17	15	32				
18	Health/Fitness Center- 10960 W. Wilshire Boulevard	Health/Fitness Center	[12]	36,052	SF	342	(20)	(28)	(48)	19	18	37				
		Existing Office			(36,052)	SF		. ,								
19	Condominiums- 1826 S. Glendon Avenue	Condominium	[7]	16	DU	94	1	6	7	6	3	9				
20	Condominiums- 1417 S. Butler Avenue	Condominium	[7]	16	DU	94	1	6	7	6	3	9				

		TABLE 11 - N	RELATED PROJE						WEEKDA	V [48]		
Project	Description / Location	Land Use	Notes		Size	Daily Trips	A	M Peak Hour Tri			1 Peak Hour	Trips
							In	Out	Total	In	Out	Total
City of Los Angel				1		T			T	T -		
21	New Car Sales- 10534 W. Pico Boulevard	New Car Sales	[13]	2,750	SF	92	4	2	6	3	4	7
22	Condominiums- 1625 S. Barry Avenue	Condominium	[7]	18	DU	105	1	7	8	7	3	10
23	Condominiums- 1525 S. Armacost Avenue	Condominium	[7]	18	DU	105	1	7	8	7	3	10
24	Condominiums- 1633 S. Armacost Avenue	Condominium	[7]	16	DU	94	1	6	7	6	3	9
25	Condominiums- 10763 W. Wilshire Boulevard	Condominium	[7]	60	DU	352	4	22	26	22	11	33
26	Condominiums- 2037 S. Beverly Glen Boulevard	Condominium	[7]	16	DU	94	1	6	7	6	3	9
		Office		330,000	GSF							
27	Office- 12233 Olympic Boulevard	Existing Office	[2]	(41,000)	SF	887	10	56	66	140	36	176
		Existing Specialty Retail		(6,000)	SF	_						
20	0 1 1 1 15110 0 1 1	Existing Gas Station	[7]	(16)	Pumps	0.4	-					
28	Condominiums- 1511 S. Camden Avenue	Condominium	[7]	16	DU	94	1	6	7	6	3	9
		Condominium	[7]	49	DU	287	4	18	22	17	8	25
29	Mixed-Use- 11663 Wilshire Boulevard	Office	[14]	41,000	SF	451	56	8	64	10	51	61
		Specialty Retail	[15]	8,000	SF	355	0	0	0	10	12	22
				1	Net Total	1,093	60	26	86	37	71	108
30	Mausoleum Building- 1218 S. Glendon Avenue	Mausoleum Building	[16]	3	Acres	14	1	0	1 -	1	2	3
31	Condominiums- 10617 W. Eastborne Avenue	Condominium	[7]	16	DU	94	1	6	7	6	3	9
32	Condominiums- Bentley Avenue	Condominium	[7]	22	DU	129	2	8	10	8	4	12
33	Apartments- 1817 S. Beloit Avenue	Apartment	[5]	15	DU	101	2	6	8	5	2	7
34	Live/Work- 11500 W. Tennessee Avenue	Live/Work	[5]	84	DU	564	9	34	43	27	14	41
35	Condominiums- 430 S. Kelton Avenue	Condominium	[7]	40	DU	234	3	15	18	15	7	22
36	Restaurant- 10935 W. Weyburn Avenue	Restaurant	[17]	129	Seats	369	2	2	4	23	11	34
37	Condominiums- 1807 S. Beverly Glen Boulevard	Condominium	[7]	16	DU	94	1	6	7	6	3	9
38	Condominiums- 2263 S. Fox Hills Drive	Condominium	[7]	15	DU	88	1	6	7	5	3	8
39	Cooking School- 10955 W. Pico Boulevard	Cooking School	[18]	1,858	SF	51	4	2	6	3	2	5
		Bank	[19]	4,422	SF	692	9	9	18	74	73	147
40	Bank- 1762 Westwood Boulevard	Existing Office	[14]	(4,422)	SF	(49)	(6)	(1)	(7)	(1)	(6)	(7)
				1	Net Total	643	3	8	11	73	67	140
41	Westside Pavilion Renovation- 10850 Pico Boulevard	Theater	[20] [49]	2,340	Seats	0	0	0	0	0	0	0
		Retail		723,466	SF							
42	Le Lycee Français High School- 10309 W. National Boulevard	Private High School	[21]	340	Students	946	171	109	280	46	62	108
		Condominium		483	DU	_						
43	Condominiums- 10131 Constellation Boulevard	Existing Bank	[1]	(9,150)	SF	(1,636)	(37)	85	48	(49)	(105)	(154)
		Existing Office	,	(6,700)	SF	(-,)	(-,)			(12)	()	()
		Existing Restaurant		(19,754)	SF							
44	Discounted Store- 11840 Olympic Boulevard	Discounted Store	[23]	86,600	SF	4,295	20	10	30	152	152	304
		Existing Warehouse/Office/Retail		(37,000)	SF	ŕ						
45	Condominiums- 1333 S. Beverly Green Drive	Condominium	[7]	5	DU	29	0	2	2	2	 1	3
46	Belmont Village- Wilshire Boulevard/Warner Street	Independent Living	[24]	62 118	DU DU	539	17	8	25	22	19	41
		Assisted Living		350	DU	2,352	36	143	179	141	76	217
47	Apartments- 10000 W. Santa Monica Boulevard	Apartment Existing Office	[2]	(129,851)	GSF	(1,631)	(203)	(28)	(231)	(39)	(191)	(230)
.,		Exiting Office	l	(127,001)	Net Total	721	(167)	115	(52)	102	(115)	(13)
		Apartment	[5]	36	DU	242	4	14	18	14	8	22
48	Mixed-Use- 10901 S anta Monica Boulevard	Retail	[6]	8,485	SF	364	5	4	9	15	17	32
					Net Total		9	18	27	29	25	54
		Condominium	[7]	29	DU	170	2	11	13	11	5	16
		Office	[14]	2,072	SF	23	3	0	3	1	5	6
49	Mixed-Use- 10604-10612 National Boulevard	Retail	[6]	1,248	SF	54	1	0	1	6	7	13
		Existing Apartment	[5]	(10)	DU	(67)	(1)	(4)	(5)	(3)	(2)	(5)
					Net Total	180	5	7	12	15	15	30

									WEEKDA	Y [48]		
Project	Description / Location	Land Use	Notes		Size	Daily Trips	A	M Peak Hour Tri	ps	PM	Peak Hour	Ггірѕ
·							In	Out	Total	In	Out	Total
City of Los Angel	es	·		•					•	•		
50	Regent Westwood Mixed-Use- 1015 Broxton Avenue (336 Net New Seats)	Theater	[2]	1,668	Seats	5,500	140	47	187	238	134	372
51	Office- 1100 Westwood Boulevard	Office	[14]	34,641	GSF	588	70	10	80	20	90	110
52	Del Capri Hotel- Wilshire Boulevard and Westholme Avenue	Apartment	[2]	88	DU	591	9	36	45	35	19	54
53	Condominium- 11611 Montana Avenue	Condominium	[2]	20	DU	117	2	7	9	7	3	10
54	Office- 11677 Wilshire Boulevard	Office	[2]	146,708	GSF	1,792	205	28	233	29	144	173
55	Retail- 11305 Santa Monica Boulevard	Retail	[2]	1,140	GLSF	432	7	4	11	16	17	33
56	Auto Service- 10461 Santa Monica Boulevard	Auto Service	[2]	2,074	GLSF	124	4	2	6	4	3	7
57	Office- Southwest Corner of Santa Monica Boulevard/Beverly Glen Avenue	Office	[2]	25,000	GSF	458	55	7	62	18	89	107
58	Fast-food Restaurant- 10867 Santa Monica Boulevard	Fast Food Restaurant and Snack Shop	[2]	2,070	SF	1,166	75	50	125	42	41	83
59	Brentwood Retail Center Project- 1171 Gorham Avenue	Retail	[25]	21,340	GLSF	916	2	1	3	46	52	98
60	Olympic- Stoner Retail Center- 11785 Olympic Boulevard	Retail (Less Existing)	[22]	28,000	GLSF	1,161	2	0	2	47	59	106
61	Condominium- 10710 Wilshire Boulevard	Condominium	[7]	64	DU	375	5	23	28	23	12	35
62	Whole Foods Market- 1050 S. Gayley Avenue	Retail	[36] [49]	26,015	SF	0	0	0	0	0	0	0
63	Westside Media Center (Health Club)- 12232 Olympic Boulevard	Fitness Club	[37]	34,000	SF	156	24	32	56	16	15	31
64	New West Middle School- 11625 Pico Boulevard	School	[38]	250	Students	799	126	104	230	51	47	98
65	City of Santa Monica Apartment Project- 2834 E. Colorado Avenue	Apartment	[39]	145	DU	771	11	46	57	45	25	70
66	Union Bank of California-Office to Walk-in Bank- 10900 Wilshire Boulevard	Walk-In Bank	[40]	3,652	SF	576	3	2	5	32	32	64
67	Bed, Bath & Beyond- 11854 Olympic Boulevard	Retail	[41] [49]	90,000	SF	0	0	0	0	0	0	0
		Synagogue	[42]	168	Students	417	0	0	0	62	83	145
68	Leo Baeck Temple Expansion- 1300 N. Sepulveda Boulevard	Synagogue	[43]	70,000	SF	745	10	0	10	103	116	219
					Net Total		10	0	10	165	199	364
69	Convenience Store- 1465 Westwood Boulevard	Retail	[44]	3,750	SF	2,767	126	125	251	50	48	98
70	Mixed-Use- 11567 Santa Monica Boulevard	Condominium	[45]	72	DU	657	10	46	56	43	21	64
71	Westwood Village Mart Convenience Store- 900 S. Gayley Avenue	Retail	[46]	2,750	SF	1,142	52	51	103	42	40	82
72	Office Building- 2142 S. Pontius Avenue	Office	[47]	17,619	SF	350	41	6	47	9	41	50
		Hotel		134	Rooms	1,095	46	29	75	42	38	79
73	Hekmat Mixed Use Project- Corner of Wilshire Boulevard and Gayley Avenue	Condominium	[50]	10	DU	59	1	4	5	4	2	6
		Retail		7,520	GSF	323	5	3	8	14	15	29
					Net Total	1,477	52	36	88	60	55	114
City of Beverly H	ills			1	1				1	•	•	
В1	Young Israel- 9261 Alden Drive	Sanctuary	[1]	14,811	SF	127	16	9	25	4	4	8
	Toung Man /201 Man Bill	Multi-Purpose Room	[26]	1,254	SF	127					·	
		Hotel	[1]	214	Rooms	_						
В2	Beverly Hills Gardens and Montage Hotel- 202-240 N. Beverly Drive	Condominium	[1]	35	DU	2,953	86	57	143	141	97	238
		Restaurant	[1]	13,500	SF							
		Commercial	[1]	13,500	SF							
B3	Mixed-Use- 265 N. Beverly Drive	General Office/Restaurant	[1]	45,000	SF	1,123	103	30	133	44	119	163
B4	Church Expansion- 432-436 S. Beverly Drive	Church Expansion	[1]	932	SF	8	1	0	1	1	0	1
B5	Retail Expansion- 456 N. Camden Drive	Retail Expansion	[1]	1,750	SF	78	1	1	2	2	3	5
В6	Condominiums- 125 S. Camden Drive	Condominium	[1]	40	DU	134	3	15	18	14	7	21
		Medical Office		23,139	SF	836	45	12	57	23	63	86
В7	Medical Plaza- 245-257 N. Canon Drive	Surgery Center	[1]	13,609	SF	492	27	7	34	14	37	51
		Retail		8,148	SF	350	5	3	8	15	16	31
					Net Total		77	22	99	52	116	168
B8	Commercial/Retail- 338 N. Canon Drive	Commercial/Retail	[1]	11,900	SF	527	8	6	14	14	18	32
_		Residential	[1]	88	DU	591	9	36	45	36	19	55
В9	Mixed-Use- 131-191 N. Crescent Drive	Office/Retail	[1]	40,000	SF	440	55	7	62	10	50	60
					Net Total		64	43	107	46	69	115
B10	Assisted Care Facility- 201 N. Crescent Drive	Assisted Care Facility	[1]	80	DU	278	6	7	13	8	7	15


									WEEKDAY	Y ^[48]		
Project	Description / Location	Land Use	Notes		Size	Daily Trips	Al	AM Peak Hour Tr		PM	I Peak Hour T	Trips
							In	Out	Total	In	Out	To
of Beverly 1	Hills											
B11	Cultural Central Center- 469 N. Crescent Drive	Cultural Central Center	[1]	34,000	SF	778	34	21	55	16	40	5
B12	Hotel- 150 Lasky Drive	Hotel	[1]	42	Rooms	346	15	9	24	13	12	2
B13	Senior Congregate Care- 129 S. Linden Drive	Senior Congregate Care	[1]	76	DU	152	3	2	5	7	6	1
		Synagogue	[1]	9,000	SF	96	1	0	1	7	8	1
B14	Synagogue/Private School- 9090 Olympic Boulevard	Private School	[1]	10,000	SF	111	22	13	35	0	0	
					Net Total	207	23	13	36	7	8	1
B15	Condominiums- 437-443 N. Palm Drive	Condominium	[1]	13	DU	87	1	6	7	5	3	
B16	Screening Room- 150 EL Camino	Screening Room	[1]	66	Seats	116	1	0	1	4	1	
		Condominium	[1]	23	DU	135	2	8	10	8	4	
B17	Condominiums- 261-283 S. Reeves Drive	Existing Condominium	[+]	(24)	DU	(141)	(2)	(9)	(11)	(8)	(4)	(
					Net Total	(6)	0	(1)	(1)	0	0	
B18	Beverly Hills Gateway- 9844 Wilshire Boulevard	General Office	[1]	95,000	SF	1,090	131	(4)	127	21	140	1
B10	Bevery Time duterray 7011 Wilsinie Boulevard	Existing Retail	[+]	(9,633)	SF	1,000	131	(.)	127	21	110	
		Retail		8,400	SF	_						
B19	Mixed-Use- 9200 Wilshire Boulevard	Restaurant	[27]	5,600	SF	950	10	23	33	51	31	
		Condominium		54	DU							
		Retail	[1]	12,000	SF	515	7	5	12	22	23	
B20	Mixed-Use- 9590 Wilshire Boulevard	Condominium	[-]	60	DU	352	4	22	26	21	10	
					Net Total	867	11	27	38	43	33	
	Dahinana'a Mara 0000 Wilahina Danlara I	Condominium		252 DU	<u> </u>							
B21	Robinson's May- 9900 Wilshire Boulevard	Retail	[28]	15,656	SF	(48)	34	116	150	20 (19)	(19)	
DZI	Roomson's May 7700 Wishine Boulevard	Quality Restaurant	[20]	4,800	SF	(40)	34	110	130		(17)	
		Existing Department Store		(220,000)	SF							
B22	Hotel- 9730 Wilshire Boulevard	Hotel	[1]	204	Rooms	1,667	70	44	114	64	56	
B23	Condominiums-552-558 N. Hillgreen Drive	Condominium	[1]	9	DU	53	1	3	4	3	2	
B24	Condominiums- 140-144 S. Oakhurst Drive	Condominium	[1]	11	DU	65	1	4	5	4	2	
B25	Apartments- 428-430 Smithwood Drive	Apartment	[1]	1	DU	7	0	1	1	1	0	
B26	Condominiums- 133 Spalding Drive	Condominium	[1]	4	DU	23	0	2	2	1	1	
B27	Health Spa- 9641 Sunset Boulevard	Health Spa	[1]	2,000	SF	66	1	1	2	4	4	
B28	Service Facility- 400 Foothill Road	Service Facility	[29]	53,000	SF	1,767	101	55	156	90	89	
		Shopping Center	[31]	15,000	SF	644	9	6	15	27	29	
B29	Mixed-Use- 421-427 N. Beverly Drive	Office	[34]	15,000	SF	165	20	3	23	4	18	
			<u> </u>		Net Total	809	29	9	38	31	47	
		Condominium	[32]	96	DU	563	7	35	42	34	16	
B30	The Beverly Hilton- Southwest Corner of Wilshire Bl/Santa Monica Bl	Condominium/Hotel	[32]	104	DU	609	8	38	46	36	18	
		Hotel	[35]	96	DU	784	33	21	54	30	27	
			,		Net Total	1,956	48	94	142	100	61	
		Office	[34]	24,566	SF	270	33	5	38	6	31	
B31	Office/Medical Office- 9754 Wilshire Boulevard	Medical Office	[30]	7,977	SF	288	16	4	20	8	22	
-		Existing Office	[34]	(26,000)	SF	(286)	(35)	(5)	(40)	(7)	(32)	(
				1	Net Total	272	14	4	18	7	21	
B32	Condominiums- 156-168 N. La Peer Drive	Condominium	[32]	16	DU	94	1	6	7	5	3	
B33	Condominiums- 432 N. Oakhurst Drive	Condominium	[32]	34	DU	199	3	12	15	12	6	
B34	Condominiums- 144 Reeves Drive	Condominium	[32]	3	DU	18	0	1	1	1	1	
B35	Condominiums- 313-317 Reeves Drive	Condominium	[32]	10	DU	59	1	3	4	3	2	+-
B36	Condominiums- 115 N. Swall Drive	Condominium	[32]	3	DU	18	0	1	1	1	1	4
		TOTAL RELATED P	DAIFCT TDI	D CENE	MATION	60,909	3,041	2,138	5,179	2,709	3,309	6,


Iteris Inc.

Related Projects Peak Hour Turning Movement Volumes

Iteris Inc.

Related Projects Peak Hour Turning Movement Volumes

Legend

← AM Peak Hour / PM Peak Hour

ITERIS

UCLA Northwest Housing Infill Project (NHIP) and LRDP Amendment

FIGURE 12C

Related Projects Peak Hour Turning Movement Volumes

TABLE 12A - FUTURE 2013 WITHOUT PROJECT PEAK HOUR LEVEL OF SERVICE SUMMARY

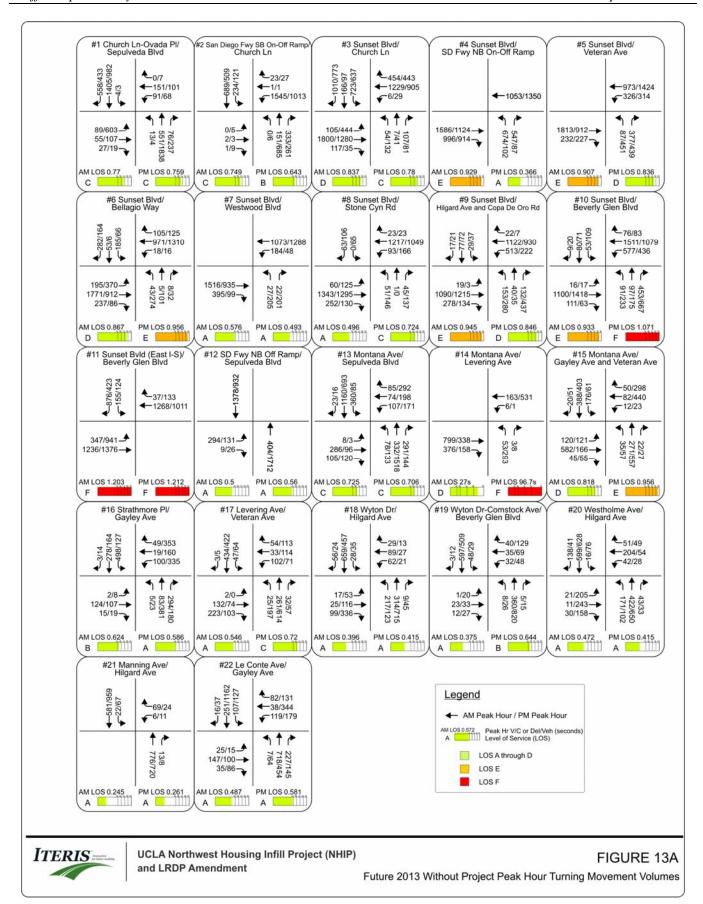
TABLE 12A - FUTURE 2013 WITHOUT PROJECT PEAK H		iture 2013 W		
Study Intersection	AM Pe	ak Hour	PM Pe	ak Hour
	LOS	V/C or Del/Veh	LOS	V/C or Del/Veh
1 Church Ln-Ovada Pl/Sepulveda Blvd ¹	С	0.770	С	0.759
2. San Diego Freeway Southbound On/Off Ramps and Church Lane ¹	С	0.749	В	0.643
3. Sunset Boulevard and Church Lane ¹	D	0.837	С	0.780
4. Sunset Boulevard and San Diego Freeway Northbound On/Off Ramps ¹	Е	0.929	A	0.366
5. Sunset Boulevard and Veteran Avenue ¹	Е	0.907	D	0.836
6. Sunset Boulevard and Bellagio Way ¹	D	0.867	Е	0.956
7. Sunset Boulevard and Westwood Boulevard ¹	A	0.576	A	0.493
8. Sunset Boulevard and Stone Canyon Road ¹	A	0.496	C	0.724
9. Sunset Boulevard and Hilgard Avenue/Copa De Oro Road ¹	Е	0.945	D	0.846
10. Sunset Boulevard and Beverly Glen Boulevard ¹	Е	0.933	F	1.071
11. Sunset Boulevard (East I/S) and Beverly Glen Boulevard ¹	F	1.203	F	1.212
12. San Diego Freeway Northbound Off Ramp and Sepulveda Boulevard ¹	A	0.500	A	0.560
13. Montana Avenue and Sepulveda Boulevard ¹	С	0.725	C	0.706
14. Montana Avenue and Levering Avenue (unsignalized)	D	27.0	F	96.7
15. Montana Avenue/Gayley Avenue and Veteran Avenue ¹	D	0.818	Е	0.956
16. Strathmore Place and Gayley Avenue ¹	В	0.624	A	0.586
17. Levering Avenue and Veteran Avenue ¹	A	0.546	C	0.720
18. Wyton Drive and Hilgard Avenue ¹	A	0.396	A	0.415
19. Wyton Drive/Comstock Avenue and Beverly Glen Boulevard ¹	A	0.375	В	0.644
20. Westholme Avenue and Hilgard Avenue ¹	A	0.472	A	0.415
21. Manning Avenue and Hilgard Avenue ¹	A	0.245	A	0.261
22. Le Conte Avenue and Gayley Avenue ¹	A	0.487	A	0.581
23. Le Conte Avenue and Westwood Boulevard ^{1 2}	В	0.672	Е	0.976
24. Le Conte Avenue and Tiverton Drive ¹	A	0.319	A	0.415
25. Le Conte Avenue and Hilgard Avenue ¹	A	0.528	A	0.535
26. Weyburn Avenue and Gayley Avenue ¹	A	0.570	В	0.697
27. Weyburn Avenue and Westwood Boulevard ¹	В	0.674	F	1.247
28. Weyburn Avenue and Tiverton Drive (unsignalized)	A	9.2	C	24.2
29. Weyburn Avenue and Hilgard Avenue ¹	A	0.395	В	0.633
30. Kinross Avenue and Westwood Boulevard ¹	Е	0.971	F	1.236
31. Lindbrook Drive and Westwood Boulevard ¹	В	0.612	В	0.666
32. Lindbrook Drive and Tiverton Avenue	В	0.648	В	0.606
33. Constitution Avenue and Sepulveda Boulevard ¹	A	0.470	С	0.711
34. Wilshire Boulevard and San Vicente Boulevard ¹	Е	0.968	D	0.861
35. Wilshire Boulevard and Sepulveda Boulevard ¹	F	1.473	F	1.287
36. Wilshire Boulevard and Veteran Avenue ¹ Seven percent ATSAC and three percent ATCS reduction applied to final V/C.	F	1.223	F	1.730

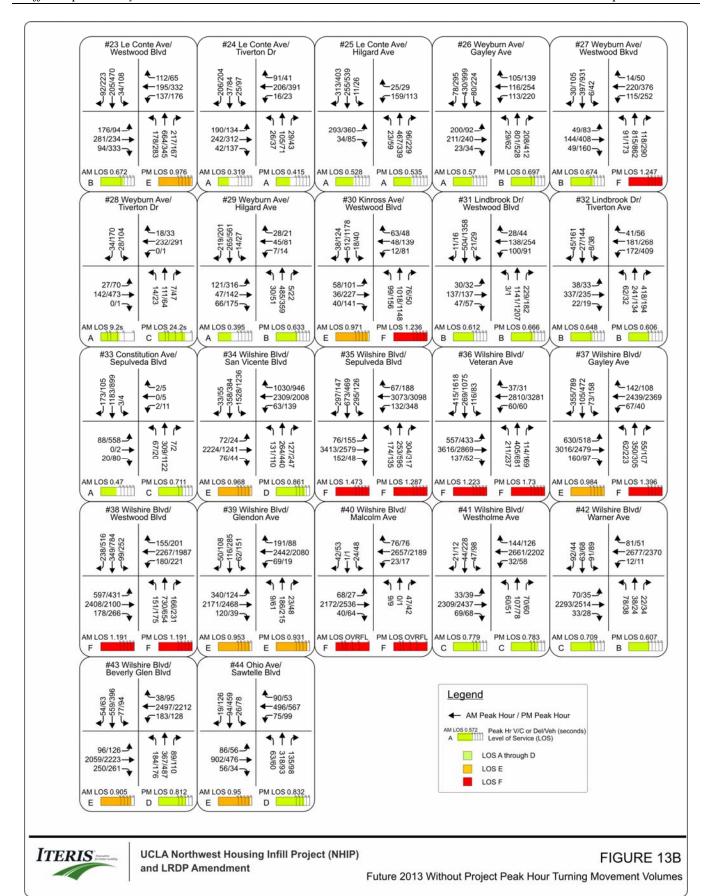
Seven percent ATSAC and three percent ATCS reduction applied to final V/C.

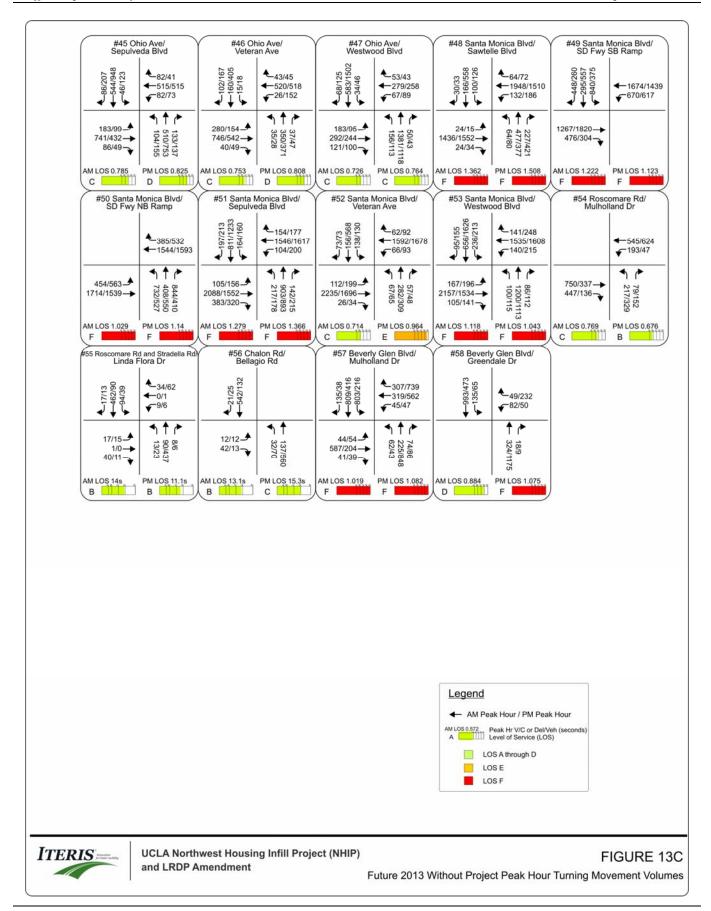
² V/C calculation includes a 33 percent capacity reduction to the intersection to account for delay caused by the pedestrian scramble crosswalk.

TABLE 12A - FUTURE 2013 WITHOUT PROJECT PEAK HOUR LEVEL OF SERVICE SUMMARY

	Fu	ture 2013 W	2013 Without Project				
Study Intersection	AM Pe	ak Hour	PM Pe	ak Hour			
	LOS	V/C or Del/Veh	LOS	V/C or Del/Veh			
37. Wilshire Boulevard and Gayley Avenue ¹	Е	0.984	F	1.396			
38. Wilshire Boulevard and Westwood Boulevard ¹	F	1.191	F	1.191			
39. Wilshire Boulevard and Glendon Avenue ¹	Е	0.953	Е	0.931			
40. Wilshire Boulevard and Malcolm Avenue (unsignalized)	F	OVRFL	F	OVRFL			
41. Wilshire Boulevard and Westholme Avenue ¹	С	0.779	C	0.783			
42. Wilshire Boulevard and Warner Avenue ¹	С	0.709	В	0.607			
43. Wilshire Boulevard and Beverly Glen Boulevard ¹	Е	0.905	D	0.812			
44. Ohio Avenue and Sawtelle Boulevard ¹	Е	0.950	D	0.832			
45, Ohio Avenue and Sepulveda Boulevard ¹	C	0.785	D	0.825			
46. Ohio Avenue and Veteran Avenue ¹	С	0.753	D	0.808			
47. Ohio Avenue and Westwood Boulevard ¹	С	0.726	C	0.764			
48. Santa Monica Boulevard and Sawtelle Boulevard ¹	F	1.362	F	1.508			
49. Santa Monica Boulevard and San Diego Freeway (S/B)	F	1.222	F	1.123			
50. Santa Monica Boulevard and San Diego Freeway (N/B)	F	1.029	F	1.14			
51. Santa Monica Boulevard and Sepulveda Boulevard ¹	F	1.279	F	1.366			
52. Santa Monica Boulevard and Veteran Avenue ¹	С	0.714	Е	0.964			
53. Santa Monica Boulevard and Westwood Boulevard ¹	F	1.118	F	1.043			
54. Roscomare Road and Mulholland Drive ¹	C	0.769	В	0.676			
55. Roscomare Road and Stradella Road/Linda Flora Drive (unsignalized)	В	14.0	В	11.1			
56. Chalon Road and Bellagio Road (unsignalized)	В	13.1	C	15.3			
57. Beverly Glen Boulevard and Mulholland Drive	F	1.019	F	1.082			
58. Beverly Glen Boulevard and Greendale Drive 1 Seven percent ATSAC and three percent ATCS reduction applied to final V/C.	D	0.884	F	1.075			


TABLE 12B - FUTURE 2013 WITHOUT PROJECT PEAK HOUR LEVEL OF SERVICE SUMMARY-(UNSIGNALIZED ANALYZED AS 2-PHASE SIGNALIZED INTERSECTION)


	Future 2013 Without Project						
Study Intersection	AM Pe	ak Hour	PM Peak Hour				
	LOS	V/C	LOS	V/C			
14. Montana Ave/Levering Ave	F	1.031	В	0.694			
28. Weyburn Ave/Tiverton Dr	A	0.365	С	0.703			
40. Wilshire Blvd/Malcolm Ave	D	0.883	D	0.828			
55. Roscomare Rd and Stradella Rd/Linda Flora Dr	A	0.544	A	0.491			
56. Chalon Rd/Bellagio Rd	A	0.540	A	0.546			
Note: Unsignalized intersections were analyzed with CMA as 2-phased signalized inte	ersections wit	th a capacity o	of 1,200.				


¹ Seven percent ATSAC and three percent ATCS reduction applied to final V/C. OVRFL (Overflow) indicates over saturated congestion, typically on one approach of the intersection, where calculation of vehicle delay is not feasible due to the inability of the methodology to calculate extreme or infinite delays.

The results indicate that 28 of the 58 study intersections are projected to operate at LOS E or F under the Future 2013 Without Project scenario during the AM peak hour, PM peak hour, or both:

- 4. Sunset Boulevard and San Diego Freeway Northbound On/Off Ramps AM Peak Hour
- 5. Sunset Boulevard and Veteran Avenue AM Peak Hour
- 6. Sunset Boulevard and Bellagio Way PM Peak Hour
- 9. Sunset Boulevard and Hilgard Avenue/Copa De Oro Road AM Peak Hour
- 10. Sunset Boulevard and Beverly Glen Boulevard AM and PM Peak Hours
- 11. Sunset Boulevard (East I/S) and Beverly Glen Boulevard AM and PM Peak Hours
- 14. Montana Avenue and Levering Avenue PM Peak Hour (as unsignalized), AM Peak Hour (as signalized)
- 15. Montana Avenue/Gayley Avenue and Veteran Avenue PM Peak Hour
- 23. Le Conte Avenue and Westwood Boulevard PM Peak Hour
- 27. Weyburn Avenue and Westwood Boulevard PM Peak Hour
- 30. Kinross Avenue and Westwood Boulevard AM and PM Peak Hours
- 34. Wilshire Boulevard and San Vicente Boulevard AM Peak Hour
- 35. Wilshire Boulevard and Sepulveda Boulevard AM and PM Peak Hours
- 36. Wilshire Boulevard and Veteran Avenue AM and PM Peak Hours
- 37. Wilshire Boulevard and Gayley Avenue AM and PM Peak Hours
- 38. Wilshire Boulevard and Westwood Boulevard AM and PM Peak Hours
- 39. Wilshire Boulevard and Glendon Avenue AM and PM Peak Hours
- 40. Wilshire Boulevard and Malcolm Avenue AM and PM Peak Hours
- 43. Wilshire Boulevard and Beverly Glen Boulevard AM Peak Hour
- 44. Ohio Avenue and Sawtelle Boulevard AM Peak Hour
- 48. Santa Monica Boulevard and Sawtelle Boulevard AM and PM Peak Hours
- 49. Santa Monica Boulevard and San Diego Freeway (S/B) AM and PM Peak Hours
- 50. Santa Monica Boulevard and San Diego Freeway (N/B) AM and PM Peak Hours
- 51. Santa Monica Boulevard and Sepulveda Boulevard AM and PM Peak Hours
- 52. Santa Monica Boulevard and Veteran Avenue PM Peak Hour
- 53. Santa Monica Boulevard and Westwood Boulevard AM and PM Peak Hours
- 57. Beverly Glen Boulevard and Mulholland Drive AM and PM Peak Hours
- 58. Beverly Glen Boulevard and Greendale Drive PM Peak Hour

FUTURE 2013 WITH PROJECT CONDITIONS

Future Campus Parking Demand

Because implementation of the NHIP and LRDP Amendment would result in an increase in the total campus population (including faculty, staff, and campus visitors), the demand for parking would also increase. An analysis of potential demand was conducted to determine whether projected future demand could be accommodated within the parking cap of 25,169 spaces, established in the 1990 LRDP. This analysis included an assessment of the permit demand associated with projected increases in faculty/staff and other individuals (e.g., emeritus faculty, visitors, and medical patients). Then it was assumed that the campus could increase the on-campus parking inventory (during the 2013 planning horizon of the NHIP and LRDP Amendment) to 25,169 spaces. Given the parking demand for faculty, staff, on-campus residents, and other permits (e.g., guest, emeritus faculty and visitors), the future number of on-campus parking spaces that would be available for commuter students was estimated and is shown below in **Table 13**.

TABLE 13 - FUTURE 2013 ON-CAMPUS PARKING ALLOCATION WITH NHIP AND LRDP AMENDMENT

	Existing (Same as	Future Witho	Future With Project				
Permit Group		2007	2013				
	Number	Permits	Spaces	Number	Permits	Spaces	
Faculty & Staff - Medical Center	7,415	5,166	3,749 1	7,777	5,435	4,130	
Faculty & Staff - Other University	14,853	10,307	7,020	15,578	10,886	8,273	
Resident Students							
Undergraduate	10,032	431	431	11,082	665	665	
Graduate	1,370	855	1,126	1,882	1,223	1,223	
Commuter Students	24,210	8,945	5,821	23,473	6,333	4,714	
Quarterly Guest/Emeriti Permits (vendors, donors, contractors,							
emeriti)	5,132	5,132	1,144	3,867	3,867	817	
University Extension Permits	3,513	3,513	N/A	3,513	3,513	N/A	
Daily Permit Sales							
(includes kiosk and pay stations)	6,429	6,429	4,053	7,123	7,123	4,617	
Other Spaces (meters and loading)	0	0	730	0	0	730	
TOTALS	72,954	40,778	24,074	74,295	39,045	25,169	
CHANGE				1,341	-1,733	1,095	

¹ 305 spaces at the Ronald Reagan UCLA Medical Center are built and therefore included in the existing parking inventory. However, these spaces were not being utilized when the 2007 cordon counts were taken; thus, the trips generated by utilization of these 305 parking spaces are only included in the trip generation analysis for the Future 2013 With Project condition.

Future 2013 Trip Generation Rates

Future With Project trip generation was calculated based on the population within each permit group in the 2002 LRDP; thus, new per person trip generation rates had to be developed based on the 2013 estimated population for the Future 2013 With Project scenario. Since per space vehicle trip rates are assumed to be constant (Table 5), these rates were used to calculate the Future 2013 With Project trip generation *per space* in **Table 14A**. The estimated trip generation per space was then divided by the projected 2013 population, and new trip generation rates *per person* were developed in **Table 14B**. Revised trip generation rates per person were not developed for Graduate Resident Students or University Extension Permits because per space trip rates were not available in the 2002 UCLA LRDP. These categories were calculated based on the future per person trip rates provided in the 2002 UCLA LRDP.

TABLE 14A - ESTIMATED TRIP GENERATION PER SPACE

		Trip	Rate per S	Space	Estimated	Trip Generat	ion per Space
Permit Group	Spaces	Daily	AM Peak	PM Peak	Daily	AM Peak	PM Peak
Faculty & Staff-Medical Center	4,130	2.538	0.320	0.329	10,482	1,322	1,359
Faculty & Staff- Other University	8,273	3.293	0.289	0.383	27,243	2,391	3,169
Resident Students							
Undergraduate	665	2.444	0.034	0.202	1,625	23	134
Graduate ¹	NA	NA	NA	NA	NA	NA	NA
Commuter Students ²	4,714	3.716	0.304	0.356	17,517	1,433	1,678
Quarterly Guest/Emeritus Permits	817	3.789	0.400	0.198	3,096	327	162
University Extension Permits ¹	NA	NA	NA	NA	NA	NA	NA
Daily Permit Sales	4,617	8.546	0.493	0.432	39,457	2,276	1,995

¹ The 2002 UCLA LRDP did not have current (2001/2002) trip rates per space for Resident Graduate Students and University Extension Permits.

TABLE 14B – REVISED 2013 PER PERSON TRIP GENERATION RATES

		Estimated	Trip Generatio	Rev. Trips per Person Ratio			
Permit Group	Population	Daily	AM Peak	PM Peak	Daily	AM Peak	PM Peak
Faculty & Staff-Medical Center	7,777	10,482	1,322	1,359	1.348	0.170	0.175
Faculty & Staff- Other University	15,578	27,243	2,391	3,169	1.749	0.153	0.203
Resident Students							
Undergraduate	11,082	1,625	23	134	0.147	0.002	0.012
Graduate ¹	NA	NA	NA	NA	NA	NA	NA
Commuter Students	23,473	17,517	1,433	1,678	0.746	0.061	0.071
Quarterly Guest/Emeritus Permits	3,867	3,096	327	162	0.801	0.085	0.042
University Extension Permits ¹	NA	NA	NA	NA	NA	NA	NA
Daily Permit Sales	7,123	39,457	2,276	1,995	5.539	0.320	0.280
¹ The 2002 UCLA LRDP did not have current (2001/2002) trip rates per space for Resident Graduate Students and University Extension Permits.							

77

² Student Academic Employee and Other Commuter Student categories were combined into one Commuter Student category and the highest trip rate between the two was used.

Future Campus Trip Generation

Using the revised trip generation rates in Table 14B and the proposed future allocation of parking shown in Table 13, an estimate of how each population group would contribute to overall campus trip generation under the Future 2013 With Project scenario was developed, and is provided in **Table 15**. This breakdown also includes estimates for certain campus uses such as parking meters, a single line entry that covers two-wheeled vehicles and through traffic and drop-off trips, campus shuttles, and the Wilshire Center. The trip generation for these categories were estimated based on the difference between the 2007 cordon count and the total number of trips generated by Faculty and Staff, Resident Students, Commuter Students, and trips generated under the "Other Permits" category in the Existing scenario. The trip generation is expected to remain constant; thus, the same trip generation was applied under the Future 2013 With Project scenario.

TABLE 15 - FUTURE 2013 ON-CAMPUS TRIP GENERATION WITH NHIP AND LRDP AMENDMENT

	Number		Revised 2013 Trip Rate per Person			Estimated 2013 Trip Generation		
Permit Group	of People	Variable	Daily	AM Peak	PM Peak	Daily	AM Peak	PM Peak
Faculty & Staff-Medical Center	7,777	People	1.348	0.170	0.175	10,482	1,322	1,359
Faculty & Staff- Other University	15,578	People	1.749	0.153	0.203	27,243	2,391	3,169
Resident Students								
Undergraduate	11,082	People	0.147	0.002	0.012	1,625	23	134
Graduate ¹	1,882	People	0.959	0.091	0.101	1,805	171	190
Commuter Students	23,473	People	0.746	0.061	0.071	17,517	1,433	1,678
Quarterly Guest/Emeritus Permits	3,867	People	0.801	0.085	0.042	3,096	327	162
University Extension Permits ¹	3,513	People	1.705	0.000	0.000	5,990	0	0
Daily Permit Sales	7,123	People	5.539	0.320	0.280	39,457	2,276	1,995
Other Parking ²						2,341	22	118
2-Wheel Vehicles/Thru Vehicles/Drop-offs ²						13,129	356	422
Campus Shuttles ²						1,756	61	88
Main/Southwest Campus Total						124,440	8,381	9,314
Wilshire Center ²						1,226	41	74
Total 2013 Trip Generation	1 16 6	1			. D1	125,666	8,422	9,388

¹Revised per person trip generation rates were not developed for Graduate Resident Students or University Extension Permits because per space trip rates were not available in the 2002 UCLA LRDP. These categories were calculated based on the per person trip rates provided in the 2002 UCLA LRDP Final EIR.

²Same trip generation calculated under the Existing 2007 scenario since trip generation rates for these categories is expected to remain constant.

As previously mentioned, 305 parking spaces at the Ronald Reagan UCLA Medical Center (RRUCLAMC) were included in the existing parking inventory (under Faculty and Staff – Medical Center) since they were constructed in 2008. However, the 305 spaces were excluded from the Existing 2008 trip generation estimates because the 305 spaces were not being utilized when the 2007 cordon counts took place. The trips attributable

to the 305 spaces were not included in the Existing 2008 trip generation to provide the most conservative analysis possible. The trips attributable to the 305 RRUCLAMC spaces could have been included under the Future 2013 Without Project scenario since they would be fully operational under 2013 conditions; however, this would have reduced the delta between the Future 2013 Without Project and Future 2013 With Project trip generation estimates, ultimately reducing the project-related impact under the Future 2013 With Project scenario. By excluding the 305 RRUCLAMC spaces in the Existing 2008 trip generation estimate (which was also used as the Future 2013 Without Project trip generation estimate), the most conservative Future 2013 With Project trip generation estimates were calculated.

Table 16A compares the change in traffic volumes associated with the implementation of the NHIP and LRDP Amendment (project-only) with the Existing 2007/2008 condition. Implementation of the NHIP and LRDP Amendment would generate an additional 6,397 daily trips, 447 AM peak hour trips, and 589 PM peak hour trips. The directional distribution (percentage in/out) of Project-related trips is provided in **Table 16B**. The Future 2013 With Project campus trip generation would remain below the cap of 139,500 average daily trips established by the 1990 LRDP.

TABLE 16A - NHIP AND LRDP AMENDMENT TRIP GENERATION COMPARISON

Estimated Campus Trip Generation	Daily	AM Peak Hour	PM Peak Hour
Existing (same as Future Without Project) ¹	119,269	7,975	8,799
Future 2013 With Project	125,666	8,422	9,388
Estimated Project Trip Generation	6,397	447	589

¹ Existing trip generation based on 3,444 Faculty and Staff – Medical Center spaces. 305 spaces at the Ronald Reagan UCLA Medical Center are built and therefore included in the existing parking inventory. However, these spaces were not being utilized when the 2007 cordon counts were taken; thus, the trips generated by utilization of these 305 parking spaces are only included in the trip generation analysis for the Future 2013 With Project condition.

TABLE 16B – PROJECT DIRECTIONAL DISTRIBUTION

Di	rectional Pe	rcentages	,	Trip Genera	tion
IN	OUT TOTAL		IN	OUT	TOTAL
50%	50%	100%	3,199	3,199	6,397
80%	20%	100%	358	89	447
30%	70%	100%	177	413	590
	IN 50% 80%	IN OUT 50% 50% 80% 20%	50% 50% 100% 80% 20% 100%	IN OUT TOTAL IN 50% 50% 100% 3,199 80% 20% 100% 358	IN OUT TOTAL IN OUT 50% 50% 100% 3,199 3,199 80% 20% 100% 358 89

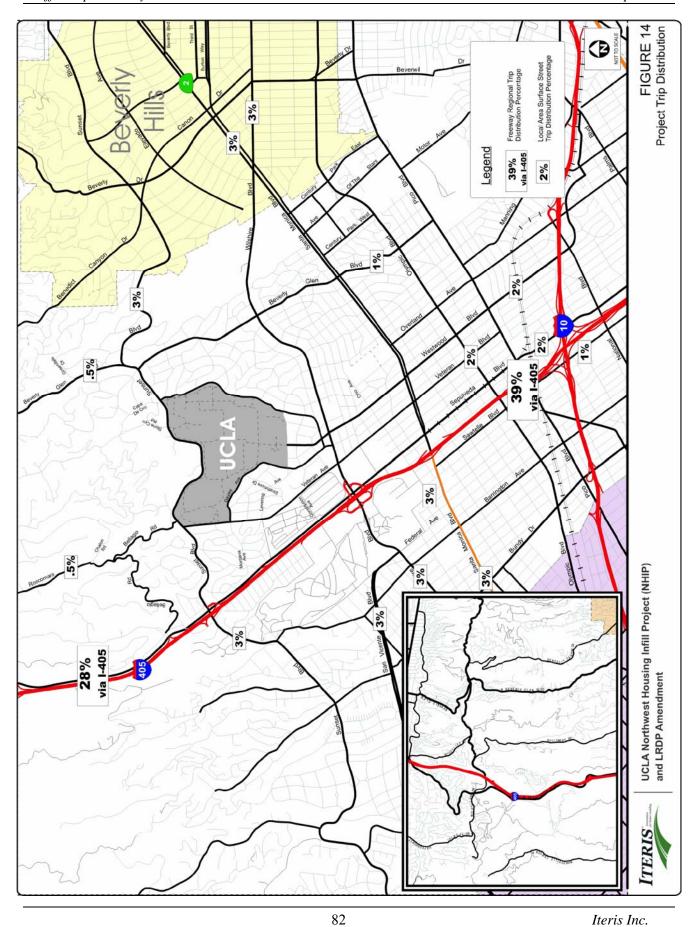
Note: Direction distribution (in/out) based on Institute of Transportation Engineers (ITE) Trip Generation (7th Edition), Land Use Code 550, University/College (students).

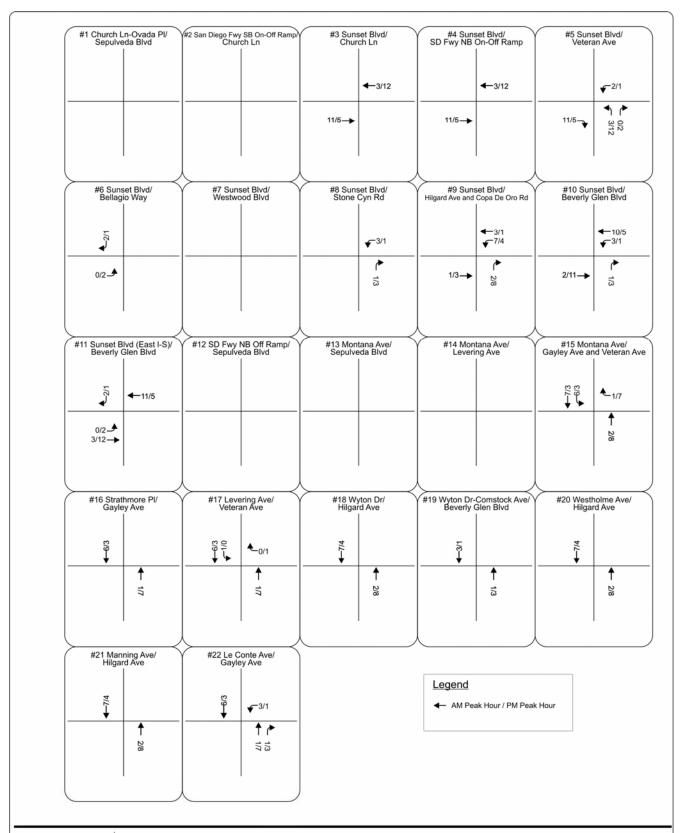
Trip Distribution and Assignment

The distribution and assignment of Project-related trips was calculated based on origin and destination (O-D) data provided by UCLA Transportation from UCLA faculty, graduate students, professionals, staff, and undergraduate students. For the purposes of the this analysis, the origin data from each user group was summed and categorized into traffic analysis zones (TAZ), according to the Los Angeles County Metro TAZ map. The total number of trips made to the UCLA campus from each TAZ was then mapped using a geographic information systems (GIS) program and used to calculate trip distribution percentages and trip

assignment. **Table 17** lists the trip distribution near the campus, **Figure 14** illustrates the trip distribution onto the roadway network, and **Figures 15A, 15B, and 15C** show the project-only turning movement traffic volumes.

Since almost all of the potential new campus parking associated with the NHIP and LRDP Amendment (i.e. assumed build-out to the 25,169 parking cap) would likely be located in the Southwest Zone of campus, all project-related trips were distributed to/from Lot 36 located on Kinross Avenue, between Veteran Avenue and Gayley Avenue. It should be noted that a total of 305 new parking spaces are located in the Ronald Reagan UCLA Medical Center (RRUCLAMC) parking garage, between Gayley Avenue and Westwood Boulevard, south of Charles E Young Drive South. These parking spaces are entirely valet-operated for visitors, with the exception of two spaces reserved for high-ranking permit holders. These parking spaces were built, but were not operational at the time the 2007 cordon counts were conducted. Although these parking spaces were not operational, trips traveling to/from the Medical Center and Medical Plaza still occurred and were captured by the 2007 cordon count at another parking location (e.g. CHS South Parking Structure and Lot 1 Parking Structure). Even though a small number of trips destined for the RRUCLAMC would travel past Lot 36, these trips would not generate a significant impact at any of the study intersections between Lot 36 and the UCLA campus. Those intersections primarily include Gayley Avenue and Weyburn Avenue and Gayley Avenue and Le Conte Avenue, which both have a very small project-related V/C impact of 0.001 or less without the added RRUCLAMC trips. While a majority of the RRUCLAMC trips to/from the 305 spaces would be expected to use Gayley Avenue, a small number may use Westwood Boulevard. The intersections that would be utilized by those RRUCLAMC trips include several study intersections between Lindbrook Avenue and Le Conte Avenue, along Westwood Boulevard. Similarly, none of those study intersections are expected to experience a project-related impact, with or without the RRUCLAMC trips.

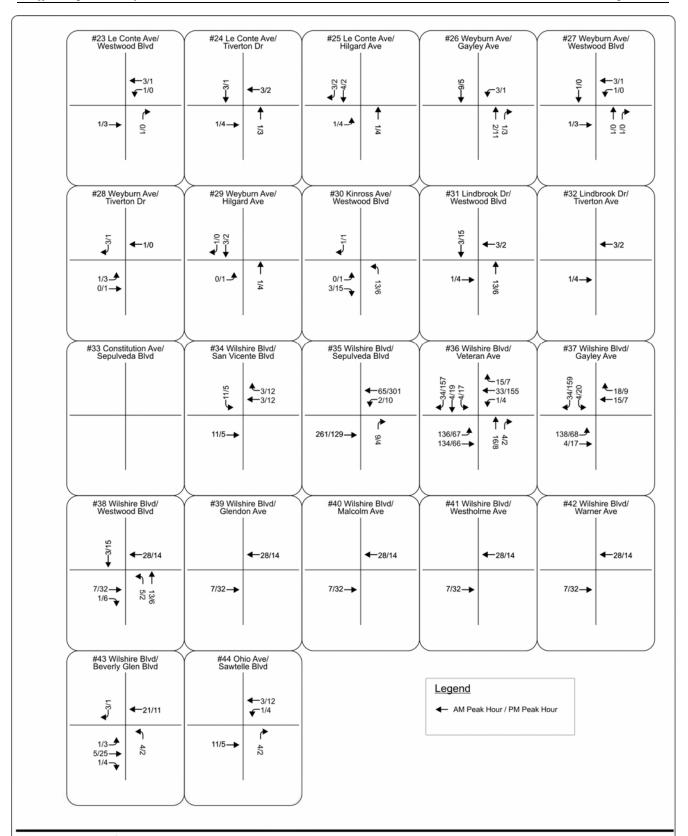

TABLE 17 - DIRECTION OF CAMPUS TRIPS


Direction	Percent of Total
Regional Area North (I-405 from the North)	28%
Regional Area South (I-405 from the South)	39%
Local Area North (surface streets)	1%
Local Area South (surface streets)	8%
Local Area East (surface streets)	9%
Local Area West (surface streets)	15%
Total	100%

Future 2013 With Project (NHIP and LRDP Amendment) Level of Service

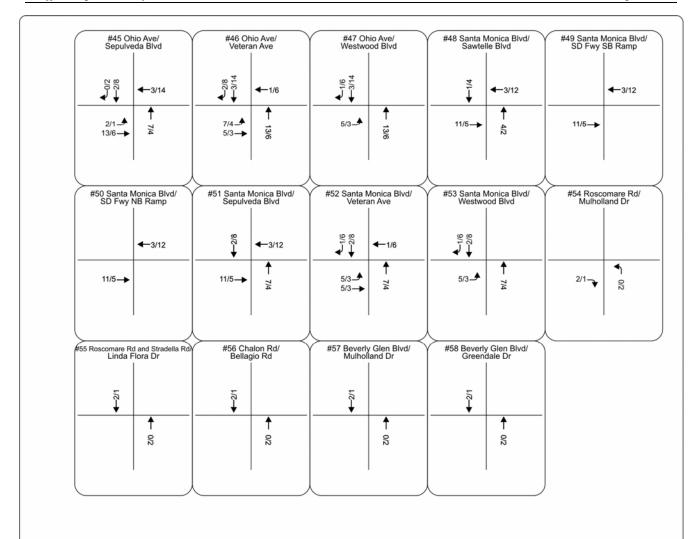
By adding the project-only turning movement volumes (shown in Figures 15A, 15B, and 15C) to the Future Without Project turning movement volumes (Figures 13A, 13B, and 13C), Future With Project turning movement volumes (that would occur with full implementation of the NHIP and LRDP Amendment) were estimated. **Figures 16A, 16B, and 16C** illustrate the Future With Project AM and PM peak hour traffic volumes at the study intersections.

A Critical Movement Analysis was conducted to identify Future With Project LOS at the 58 study intersections, and identify impacts associated with the implementation of the NHIP and LRDP Amendment. The V/C ratios (for signalized intersections) and delay (for unsignalized intersections) and the corresponding LOS are shown in **Table 18A**. **Table 18B** shows the V/C and corresponding LOS at unsignalized intersections that have been analyzed as two-phase signalized intersections with a capacity of 1,200 vehicles per hour, per LADOT guidelines.



ITERIS ----

UCLA Northwest Housing Infill Project (NHIP) and LRDP Amendment


FIGURE 15A
Project-Only Peak Hour Turning Movement Volumes

UCLA Northwest Housing Infill Project (NHIP) and LRDP Amendment

FIGURE 15B
Project-Only Peak Hour Turning Movement Volumes

Legend

← AM Peak Hour / PM Peak Hour

UCLA Northwest Housing Infill Project (NHIP) and LRDP Amendment

FIGURE 15C
Project-Only Peak Hour Turning Movement Volumes

TABLE 18A - FUTURE 2013 WITH PROJECT PEAK HOUR LEVEL OF SERVICE SUMMARY

		Future Wit	hout Proje	ect		Future W	ith Projec	t	4.34 D	1 17	PM Peak Hour	
Study Intersection	AM P	eak Hour	1	eak Hour	AM Po	eak Hour		eak Hour	AM Pea	k Hour	PM Pea	k Hour
Study Intersection		V/C or		V/C or		V/C or		V/C or	Δ in V/C or	Sig Impact	Δ in V/C or	Sig Impact
	LOS	Del/Veh	LOS	Del/Veh	LOS	Del/Veh	LOS	Del/Veh	Del/Veh	Yes/No	Del/Veh	Yes/No
1 Church Ln-Ovada Pl/Sepulveda Blvd ¹	С	0.770	C	0.759	С	0.770	C	0.759	0.000	NO	0.000	NO
2. San Diego Freeway Southbound On/Off Ramps and Church Lane ¹	С	0.749	В	0.643	C	0.749	В	0.643	0.000	NO	0.000	NO
3. Sunset Boulevard and Church Lane ¹	D	0.837	C	0.780	D	0.838	C	0.784	0.001	NO	0.004	NO
4. Sunset Boulevard and San Diego Freeway Northbound On/Off Ramps ¹	Е	0.929	A	0.366	Е	0.933	A	0.368	0.004	NO	0.002	NO
5. Sunset Boulevard and Veteran Avenue ¹	Е	0.907	D	0.836	Е	0.914	D	0.847	0.007	NO	0.011	NO
6. Sunset Boulevard and Bellagio Way ¹	D	0.867	Е	0.956	D	0.868	Е	0.958	0.001	NO	0.002	NO
7. Sunset Boulevard and Westwood Boulevard ¹	A	0.576	A	0.493	A	0.576	A	0.493	0.000	NO	0.000	NO
8. Sunset Boulevard and Stone Canyon Road ¹	A	0.496	С	0.724	A	0.499	С	0.726	0.003	NO	0.002	NO
9. Sunset Boulevard and Hilgard Avenue/Copa De Oro Road ¹	Е	0.945	D	0.846	Е	0.951	D	0.852	0.006	NO	0.006	NO
10. Sunset Boulevard and Beverly Glen Boulevard ¹	Е	0.933	F	1.071	Е	0.936	F	1.076	0.003	NO	0.005	NO
11. Sunset Boulevard (East I/S) and Beverly Glen Boulevard ¹	F	1.203	F	1.212	F	1.209	F	1.216	0.006	NO	0.004	NO
12. San Diego Freeway Northbound Off Ramp and Sepulveda Boulevard ¹	A	0.500	A	0.560	A	0.500	A	0.560	0.000	NO	0.000	NO
13. Montana Avenue and Sepulveda Boulevard ¹	С	0.725	С	0.706	С	0.725	С	0.706	0.000	NO	0.000	NO
14. Montana Avenue and Levering Avenue (unsignalized)	D	27.0	F	96.7	D	27.0	F	96.7	0.0	NA	0.0	NA
15. Montana Avenue/Gayley Avenue and Veteran Avenue	D	0.818	Е	0.956	D	0.827	Е	0.968	0.009	NO	0.012	YES
16. Strathmore Place and Gayley Avenue ¹	В	0.624	A	0.586	В	0.624	A	0.591	0.000	NO	0.005	NO
17. Levering Avenue and Veteran Avenue ¹	Α	0.546	С	0.720	A	0.551	С	0.725	0.005	NO	0.005	NO
18. Wyton Drive and Hilgard Avenue ¹	Α	0.396	A	0.415	A	0.399	A	0.418	0.003	NO	0.003	NO
19. Wyton Drive/Comstock Avenue and Beverly Glen Boulevard ¹	Α	0.375	В	0.644	A	0.377	В	0.646	0.002	NO	0.002	NO
20. Westholme Avenue and Hilgard Avenue ¹	Α	0.472	A	0.415	A	0.474	A	0.416	0.002	NO	0.001	NO
21. Manning Avenue and Hilgard Avenue ¹	A	0.245	A	0.261	A	0.246	A	0.262	0.001	NO	0.001	NO
22. Le Conte Avenue and Gayley Avenue ¹	Α	0.487	A	0.581	A	0.488	A	0.582	0.001	NO	0.001	NO
23. Le Conte Avenue and Westwood Boulevard 12	В	0.672	Е	0.976	В	0.675	Е	0.977	0.003	NO	0.001	NO
24. Le Conte Avenue and Tiverton Drive ¹	A	0.319	A	0.415	A	0.321	A	0.419	0.002	NO	0.004	NO
25. Le Conte Avenue and Hilgard Avenue ¹	A	0.528	A	0.535	A	0.529	A	0.540	0.001	NO	0.005	NO
26. Weyburn Avenue and Gayley Avenue ¹	A	0.570	В	0.697	A	0.571	В	0.692	0.001	NO	-0.005	NO
27. Weyburn Avenue and Westwood Boulevard ¹	В	0.674	F	1.247	В	0.677	F	1.249	0.003	NO	0.002	NO
28. Weyburn Avenue and Tiverton Drive (unsignalized)	A	9.2	С	24.2	A	9.2	С	24.8	0.0	NA	0.6	NA
29. Weyburn Avenue and Hilgard Avenue ¹	Α	0.395	В	0.633	A	0.396	В	0.635	0.001	NO	0.002	NO
30. Kinross Avenue and Westwood Boulevard ¹	Е	0.971	F	1.236	Е	0.971	F	1.243	0.000	NO	0.007	NO
31. Lindbrook Drive and Westwood Boulevard ¹	В	0.612	В	0.666	В	0.619	В	0.67	0.007	NO	0.004	NO
32. Lindbrook Drive and Tiverton Avenue	В	0.648	В	0.606	В	0.648	В	0.608	0.000	NO	0.002	NO
33. Constitution Avenue and Sepulveda Boulevard ¹	A	0.470	С	0.711	A	0.470	С	0.711	0.000	NO	0.000	NO
34. Wilshire Boulevard and San Vicente Boulevard ¹	Е	0.968	D	0.861	Е	0.973	D	0.865	0.005	NO	0.004	NO
35. Wilshire Boulevard and Sepulveda Boulevard ¹	F	1.473	F	1.287	F	1.537	F	1.326	0.064	YES	0.039	YES
36. Wilshire Boulevard and Veteran Avenue	F	1.223	F	1.730	F	1.259	F	1.848	0.036	YES	0.118	YES
37. Wilshire Boulevard and Gayley Avenue ¹	E	0.984	F	1.396	F	1.062	F	1.435	0.078	YES	0.039	YES
38. Wilshire Boulevard and Westwood Boulevard ¹	F	1.191	F	1.191	F	1.202	F	1.196	0.011	YES	0.005	NO
Seven percent ATSAC and three percent ATCS reduction applied to final V/C.	<u> </u>			- · · · · · · · · · · · · · · ·			<u>, -</u>			_~		

86

Seven percent ATSAC and three percent ATCS reduction applied to final V/C.

² V/C calculation includes a 33 percent capacity reduction to the intersection to account for delay caused by the pedestrian scramble crosswalk.

TABLE 18A - FUTURE 2013 WITH PROJECT PEAK HOUR LEVEL OF SERVICE SUMMARY

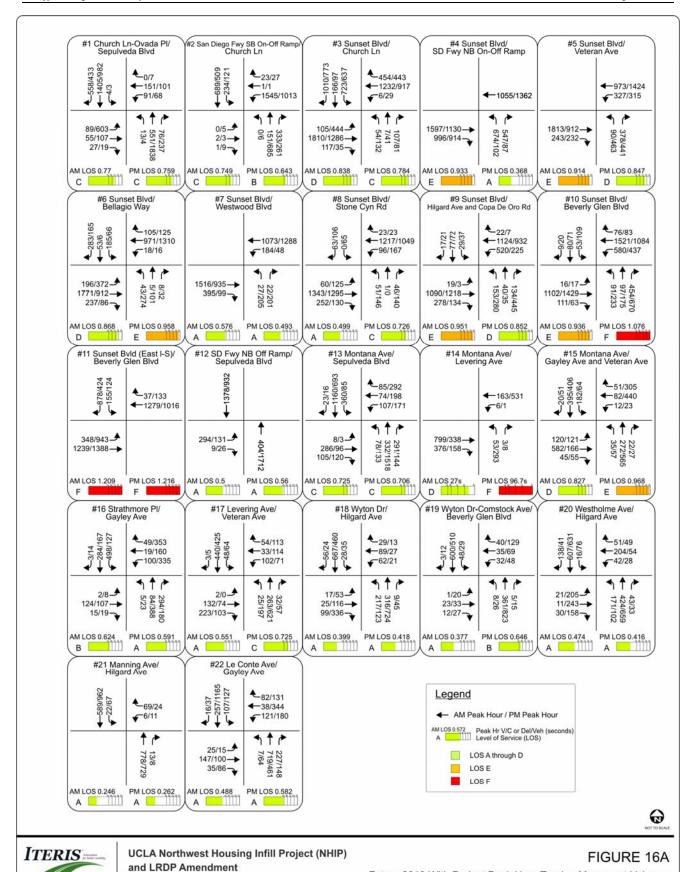
TABLE 10A - FOTOKE 2013 V		Future Wit					ith Project		134 B 1 H		PM Peak Hour	
Study Intersection	AM P	eak Hour		eak Hour	AM P	eak Hour		eak Hour	AM Pea	k Hour	PM Pea	k Hour
Study Intersection	LOS	V/C or Del/Veh	LOS	V/C or Del/Veh	LOS	V/C or Del/Veh	LOS	V/C or Del/Veh	Δ in V/C or Del/Veh	Sig Impact Yes/No	Δ in V/C or Del/Veh	Sig Impact Yes/No
39. Wilshire Boulevard and Glendon Avenue ¹	Е	0.953	Е	0.931	Е	0.959	Е	0.938	0.006	NO	0.007	NO
40. Wilshire Boulevard and Malcolm Avenue (unsignalized)	F	OVRFL	F	OVRFL	F	OVRFL	F	OVRFL	OVRFL	NA	OVRFL	NA
41. Wilshire Boulevard and Westholme Avenue ¹	C	0.779	С	0.783	C	0.785	С	0.790	0.006	NO	0.007	NO
42. Wilshire Boulevard and Warner Avenue ¹	C	0.709	В	0.607	C	0.715	В	0.615	0.006	NO	0.008	
43. Wilshire Boulevard and Beverly Glen Boulevard ¹	Е	0.905	D	0.812	Е	0.915	D	0.818	0.010	YES	0.006	NO
44. Ohio Avenue and Sawtelle Boulevard ¹	Е	0.95	D	0.832	Е	0.961	D	0.840	0.011	YES	0.008	NO
45, Ohio Avenue and Sepulveda Boulevard ¹	С	0.785	D	0.825	С	0.794	D	0.838	0.009	NO	0.013	NO
46. Ohio Avenue and Veteran Avenue ¹	С	0.753	D	0.808	С	0.767	D	0.825	0.014	NO	0.017	NO
47. Ohio Avenue and Westwood Boulevard ¹	С	0.726	С	0.764	С	0.735	С	0.769	0.009	NO	0.005	NO
48. Santa Monica Boulevard and Sawtelle Boulevard ¹	F	1.362	F	1.508	F	1.366	F	1.511	0.004	NO	0.003	NO
49. Santa Monica Boulevard and San Diego Freeway (S/B)	F	1.222	F	1.123	F	1.222	F	1.124	0.000	NO	0.001	NO
50. Santa Monica Boulevard and San Diego Freeway (N/B)	F	1.029	F	1.140	F	1.030	F	1.140	0.001	NO	0.000	NO
51. Santa Monica Boulevard and Sepulveda Boulevard ¹	F	1.279	F	1.366	F	1.284	F	1.371	0.005	NO	0.005	NO
52. Santa Monica Boulevard and Veteran Avenue ¹	С	0.714	Е	0.964	С	0.724	Е	0.979	0.010	NO	0.015	YES
53. Santa Monica Boulevard and Westwood Boulevard ¹	F	1.118	F	1.043	F	1.121	F	1.048	0.003	NO	0.005	NO
54. Roscomare Road and Mulholland Drive ¹	С	0.769	В	0.676	С	0.769	В	0.677	0.000	NO	0.001	NO
55. Roscomare Road and Stradella Road/Linda Flora Drive (unsignalized)	В	14.0	В	11.1	В	14.1	В	11.2	0.1	NA	0.1	NA
56. Chalon Road and Bellagio Road (unsignalized)	В	13.1	С	15.3	В	13.1	С	15.4	0.0	NA	0.1	NA
57. Beverly Glen Boulevard and Mulholland Drive	F	1.019	F	1.082	F	1.020	F	1.083	0.001	NO	0.001	NO
58. Beverly Glen Boulevard and Greendale Drive	D	0.884	F	1.075	D	0.885	F	1.076	0.001	NO	0.001	NO
¹ Seven percent ATSAC and three percent ATCS reduction applied to final V/C.	•		•				•		-			•

OVRFL (Overflow) indicates over saturated congestion, typically on one approach of the intersection, where calculation of vehicle delay is not feasible due to the inability of the methodology to calculate extreme or infinite delays.

TABLE 18B - FUTURE 2013 WITH PROJECT PEAK HOUR LEVEL OF SERVICE SUMMARY (UNSIGNALIZED ANALYZED AS 2-PHASE SIGNALIZED INTERSECTION)

	Future Without Project					Future W	ith Project		AM Peak Hour		PM Peak Hour	
Study Intersection		AM Peak Hour		PM Peak Hour		AM Peak Hour		eak Hour	ANTICA	K 110u1		
Study Intersection	LOS	V/C or Del/Veh	LOS	V/C or Del/Veh	LOS	V/C or Del/Veh	LOS	V/C or Del/Veh	Δ in V/C or Del/Veh	Sig Impact Yes/No	Δ in V/C or Del/Veh	Sig Impact Yes/No
14. Montana Ave/Levering Ave	F	1.031	В	0.694	F	1.031	В	0.694	0.000	NO	0.000	NO
28. Weyburn Ave/Tiverton Dr	A	0.365	С	0.703	A	0.366	С	0.707	0.001	NO	0.004	NO
40. Wilshire Blvd/Malcolm Ave	D	0.883	D	0.828	D	0.891	D	0.837	0.008	NO	0.009	NO
55. Roscomare Rd and Stradella Rd/Linda Flora Dr	A	0.544	A	0.491	Α	0.546	A	0.492	0.002	NO	0.001	NO
56. Chalon Rd/Bellagio Rd	A	0.540	A	0.546	A	0.542	A	0.547	0.002	NO	0.001	NO
Note: Unsignalized intersections were analyzed with CMA as 2-phased signalized intersections with a capacity of 1,200.		·										

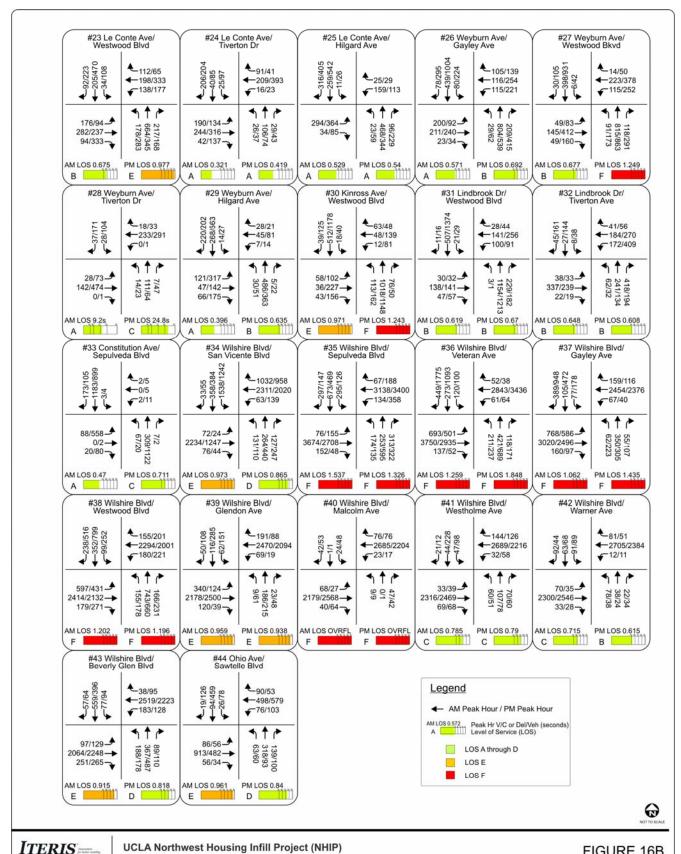
87


Intersection Impacts

The results indicate that 28 of the 58 study intersections are projected to operate at LOS E or F under the Future 2013 With Project scenario during the AM peak hour, PM peak hour, or both. It should be noted that the same intersections that operate at LOS E or F under the Future 2013 Without Project scenario operate at LOS E or F under the Future 2013 With Project scenario as well.

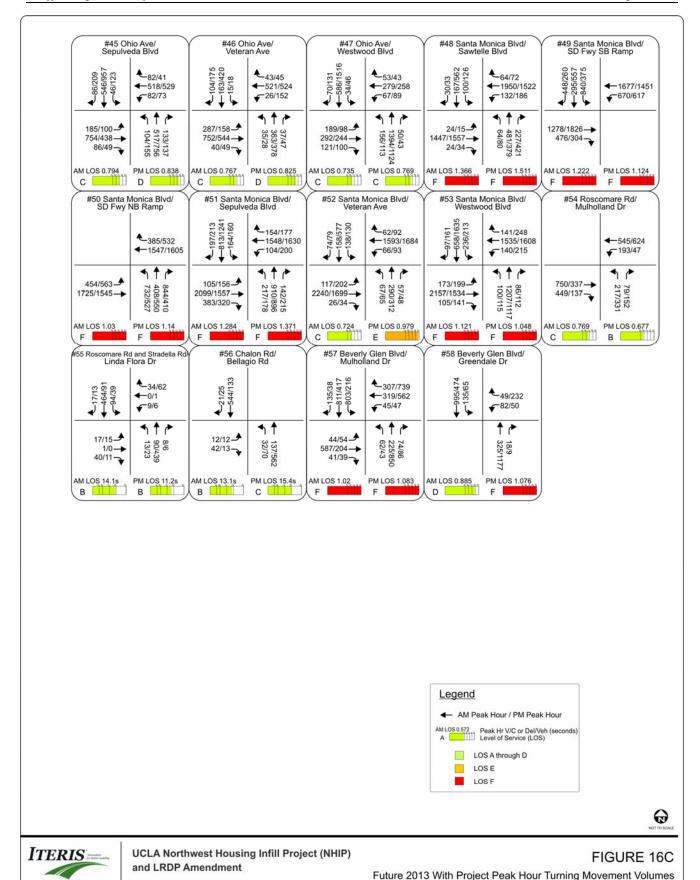
- 4. Sunset Boulevard and San Diego Freeway Northbound On/Off Ramps AM Peak Hour
- 5. Sunset Boulevard and Veteran Avenue AM Peak Hour
- 6. Sunset Boulevard and Bellagio Way PM Peak Hour
- 9. Sunset Boulevard and Hilgard Avenue/Copa De Oro Road AM Peak Hour
- 10. Sunset Boulevard and Beverly Glen Boulevard AM and PM Peak Hours
- 11. Sunset Boulevard (East I/S) and Beverly Glen Boulevard AM and PM Peak Hours
- 14. Montana Avenue and Levering Avenue PM Peak Hour (as unsignalized), AM Peak Hour (as signalized)
- 15. Montana Avenue/Gayley Avenue and Veteran Avenue PM Peak Hour
- 23. Le Conte Avenue and Westwood Boulevard PM Peak Hour
- 27. Weyburn Avenue and Westwood Boulevard PM Peak Hour
- 30. Kinross Avenue and Westwood Boulevard AM and PM Peak Hours
- 34. Wilshire Boulevard and San Vicente Boulevard AM Peak Hour
- 35. Wilshire Boulevard and Sepulveda Boulevard AM and PM Peak Hours
- 36. Wilshire Boulevard and Veteran Avenue AM and PM Peak Hours
- 37. Wilshire Boulevard and Gayley Avenue AM and PM Peak Hours
- 38. Wilshire Boulevard and Westwood Boulevard AM and PM Peak Hours
- 39. Wilshire Boulevard and Glendon Avenue AM and PM Peak Hours
- 40. Wilshire Boulevard and Malcolm Avenue AM and PM Peak Hours
- 43. Wilshire Boulevard and Beverly Glen Boulevard AM Peak Hour
- 44. Ohio Avenue and Sawtelle Boulevard AM Peak Hour
- 48. Santa Monica Boulevard and Sawtelle Boulevard AM and PM Peak Hours
- 49. Santa Monica Boulevard and San Diego Freeway (S/B) AM and PM Peak Hours
- 50. Santa Monica Boulevard and San Diego Freeway (N/B) AM and PM Peak Hours
- 51. Santa Monica Boulevard and Sepulveda Boulevard AM and PM Peak Hours
- 52. Santa Monica Boulevard and Veteran Avenue PM Peak Hour
- 53. Santa Monica Boulevard and Westwood Boulevard AM and PM Peak Hours
- 57. Beverly Glen Boulevard and Mulholland Drive AM and PM Peak Hours
- 58. Beverly Glen Boulevard and Greendale Drive PM Peak Hour

Using the City Los Angeles Department of Transportation (LADOT) significant impact threshold criteria (located in Table 8 in the Traffic Operations Analysis Methodology section of the report), the NHIP and LRDP Amendment will result in eight significant impacts at the following study intersections:


- 15. Montana Avenue/Gayley Avenue and Veteran Avenue PM Peak Hour
- 35. Wilshire Boulevard and Sepulveda Boulevard AM and PM Peak Hours
- 36. Wilshire Boulevard and Veteran Avenue AM and PM Peak Hours
- 37. Wilshire Boulevard and Gayley Avenue AM and PM Peak Hours
- 38. Wilshire Boulevard and Westwood Boulevard AM Peak Hour
- 43. Wilshire Boulevard and Beverly Glen Boulevard AM Peak Hour
- 44. Ohio Avenue and Sawtelle Boulevard AM Peak Hour
- 52. Santa Monica Boulevard and Veteran Avenue PM Peak Hour

90

Iteris Inc.


Future 2013 With Project Peak Hour Turning Movement Volumes

UCLA Northwest Housing Infill Project (NHIP) and LRDP Amendment

FIGURE 16B

Future 2013 With Project Peak Hour Turning Movement Volumes

Analysis of Future 2013 Freeway Conditions

An examination was also made of freeway conditions under Future 2013 Without and With the NHIP and LRDP Amendment on the two regional facilities within the project study area, I-405 and I-10. Seven freeway segments were analyzed, as follows:

- 1. San Diego Freeway (I-405), south of Santa Monica Freeway (I-10)
- 2. San Diego Freeway (I-405), between Santa Monica Freeway (I-10) and Santa Monica Boulevard
- 3. San Diego Freeway (I-405), between Wilshire Boulevard and Santa Monica Boulevard
- 4. San Diego Freeway (I-405), between Sunset Boulevard and Wilshire Boulevard
- 5. San Diego Freeway (I-405), north of Sunset Boulevard
- 6. Santa Monica Freeway (I-10), between Bundy Drive and San Diego Freeway (I-405)
- 7. Santa Monica Freeway (I-10), between Overland Avenue and National Boulevard

Current traffic volumes on these freeway segments were obtained from several sources. Daily, AM and PM peak hour traffic volumes on the segments were obtained from the most current Caltrans data (2007 freeway volumes) on the Caltrans website (http://www.dot.ca.gov/hq/traffops/saferesr/trafdata/). In addition, AM and PM peak hour directional splits were taken from the Los Angeles County 2004 Congestion Management Program (CMP). All of the 2007 freeway traffic volumes were increased by a growth factor of six percent (one percent per year) to reflect 2013 traffic conditions, per CMP traffic forecasting procedures. Existing freeway geometrics (e.g., number of mainline travel lanes) for each of the segments analyzed were determined from CMP data, aerial photographs, and field surveys. Segment peak hour traffic capacities were computed for each direction using established Highway Capacity manual (HCM) methodology. As detailed in procedures discussed in the HCM Chapter 3, each mainline travel lane is assumed to have a capacity of 2,000 vehicles per hour (VPH). The total directional capacities were then computed, and used in conjunction with the previously determined peak hour directional freeway segment volumes to calculate the Future 2013 Without Project (NHIP and LRDP Amendment) freeway levels of service in the project vicinity.

To calculate the Future 2013 With Project (NHIP and LRDP Amendment) freeway levels of service, project trips were added to the Future 2013 Without Project freeway volumes and the levels of service were calculated. The future daily 2013 freeway segment volumes, with and without the NHIP and LRDP Amendment, are provided below in **Table 19A**, and the future 2013 peak hour volumes are provided in **Tables 19B** and **19C**.

TABLE 19A - FUTURE 2013 DAILY FREEWAY SEGMENT VOLUMES

				Future With	out Project	Futu	ıre With Pro	ject
Freeway Segment	Direction	No. of Lanes	Freeway Capacity (veh/hr)	2007 Daily Segment Volume	2013 Daily Segment Volume	2013 Daily Segment Volume	Project Added Daily Trips	2013 Daily Segment Volume With Project
1. I-405 South of I-10	N/B	5	10,000	280,000	296,800	296,800	1,408	298,208
1. 1-403 South of 1-10	S/B	5	10,000	280,000	290,800	290,800	1,400	290,200
2. I-405 Between I-10	N/B	5	10,000					
and Santa Monica Blvd	S/B	5	10,000	296,500	314,290	314,290	2,496	316,786
3. I-405 Between	N/B	6	12,000					
Wilshire Blvd and Santa Monica Blvd	S/B	6	12,000	291,000	308,460	308,460	2,496	310,956
4. I-405 Between	N/B	5	10,000					
Sunset Blvd and Wilshire Blvd	S/B	5	10,000	271,500	287,790	287,790	1,792	289,582
5. I-405 North of	N/B	5	10,000	275,000	291,500	291,500	1,792	293,292
Sunset Blvd	S/B	4	8,000	273,000	291,300	291,300	1,/92	293,292
6. I-10 Between	E/B	5	10,000	245,000	250.700	250.700	120	250.929
Bundy Dr and I-405	W/B	5	10,000	245,000	259,700	259,700	128	259,828
7. I-10 Between	E/B	5	10,000					
Overland Ave and National Blvd	W/B	4	8,000	261,000	276,660	276,660	960	277,620

Note: To provide the most conservative analysis, northbound I-405 between I-10 and US-101 does not include a HOV lane.

N/B: northbound; S/B: southbound; E/B: eastbound; W/B: westbound

TABLE 19B - FUTURE 2013 AM PEAK HOUR FREEWAY SEGMENT VOLUMES

					F	uture Withou	ıt Project				Futu	re With I	Project		
Freeway Segment	Direction	No. of Lanes	Freeway Capacity	2007 Peak Segment Volume	2013 Peak Segment Volume	Distribution Split	2013 Peak Hour Volume	LOS	D/C	2013 Peak Hour Volume	Pk Hr Project Added Trips	2013 Pk Hr Vol With Project	LOS	D/C	Δ in D/C
1. I-405 South of I-10	N/B	5	10,000	17,800	18,868	60%	11,321	F(0)	1.132	11,321	79	11,400	F(0)	1.140	0.008
1. 1-403 South of 1-10	S/B	5	10,000	17,800	18,868	40%	7,547	С	0.755	7,547	20	7,567	C	0.757	0.002
2. I-405 Between I-10	N/B	5	10,000	20,550	21,783	60%	13,070	F(1)	1.307	13,070	140	13,210	F(1)	1.321	0.014
and Santa Monica Blvd	S/B	5	10,000	20,550	21,783	40%	8,713	D	0.871	8,713	35	8,748	D	0.875	0.003
3. I-405 Between	N/B	6	12,000	20,300	21,518	60%	12,911	F(0)	1.076	12,911	140	13,051	F(0)	1.088	0.012
Wilshire Blvd and Santa Monica Blvd	S/B	6	12,000	20,300	21,518	40%	8,607	С	0.717	8,607	35	8,642	С	0.720	0.003
4. I-405 Between	N/B	5	10,000	18,950	20,087	60%	12,052	F(0)	1.205	12,052	25	12,077	F(0)	1.208	0.002
Sunset Blvd and Wilshire Blvd	S/B	5	10,000	18,950	20,087	40%	8,035	D	0.803	8,035	100	8,135	D	0.813	0.010
5. I-405 North of	N/B	5	10,000	17,000	18,020	42%	7,568	С	0.757	7,568	25	7,593	С	0.759	0.003
Sunset Blvd	S/B	4	8,000	17,000	18,020	58%	10,452	F(1)	1.306	10,452	100	10,552	F(1)	1.319	0.013
6. I-10 Between Bundy	E/B	5	10,000	17,800	18,868	58%	10,943	F(0)	1.094	10,943	2	10,945	F(0)	1.095	0.000
Dr and I-405	W/B	5	10,000	17,800	18,868	42%	7,925	D	0.792	7,925	7	7,932	D	0.793	0.001
7. I-10 Between	E/B	5	10,000	17,400	18,444	60%	11,066	F(0)	1.107	11,066	54	11,120	F(0)	1.112	0.005
Overland Ave and National Blvd	W/B	4	8,000	17,400	18,444	40%	7,378	D	0.922	7,378	13	7,391	D	0.924	0.002

Note: To provide the most conservative analysis, northbound I-405 between I-10 and US-101 does not include a HOV lane.

N/B: northbound; S/B: southbound; E/B: eastbound; W/B: westbound; D/C: demand to capacity

TABLE 19C - FUTURE 2013 PM PEAK HOUR FREEWAY SEGMENT VOLUMES

					F	uture Withou	ıt Project				Futu	re With I	Project		
Freeway Segment	Direction	No. of Lanes	Freeway Capacity	2007 Peak Segment Volume	2013 Peak Segment Volume	Distribution Split	2013 Peak Hour Volume	LOS	D/C	2013 Peak Hour Volume	Pk Hr Project Added Trips	2013 Pk Hr Vol With Project	LOS	D/C	Δ in D/C
1. I-405 South of I-10	N/B	5	10,000	17,800	18,868	52%	9,811	Е	0.981	9,811	39	9,850	Е	0.985	0.004
1. 1-403 South of 1-10	S/B	5	10,000	17,800	18,868	48%	9,057	D	0.906	9,057	91	9,148	D	0.915	0.009
2. I-405 Between I-10	N/B	5	10,000	20,550	21,783	52%	11,327	F(0)	1.133	11,327	69	11,396	F(0)	1.140	0.007
and Santa Monica Blvd	S/B	5	10,000	20,550	21,783	48%	10,456	F(0)	1.046	10,456	161	10,617	F(0)	1.062	0.016
3. I-405 Between	N/B	6	12,000	20,300	21,518	52%	11,189	Е	0.932	11,189	69	11,258	Е	0.938	0.006
Wilshire Blvd and Santa Monica Blvd	S/B	6	12,000	20,300	21,518	48%	10,329	D	0.861	10,329	161	10,490	D	0.874	0.013
4. I-405 Between	N/B	5	10,000	18,950	20,087	52%	10,445	F(0)	1.045	10,445	116	10,561	F(0)	1.056	0.012
Sunset Blvd and Wilshire Blvd	S/B	5	10,000	18,950	20,087	48%	9,642	E	0.964	9,642	50	9,692	E	0.969	0.005
5. I-405 North of	N/B	5	10,000	17,000	18,020	64%	11,533	F(0)	1.153	11,533	116	11,649	F(0)	1.165	0.012
Sunset Blvd	S/B	4	8,000	17,000	18,020	36%	6,487	D	0.811	6,487	50	6,537	D	0.817	0.006
6. I-10 Between Bundy	E/B	5	10,000	17,800	18,868	48%	9,057	D	0.906	9,057	8	9,065	D	0.906	0.001
Dr and I-405	W/B	5	10,000	17,800	18,868	52%	9,811	Е	0.981	9,811	4	9,815	Е	0.982	0.000
7. I-10 Between	E/B	5	10,000	17,400	18,444	62%	11,435	F(0)	1.144	11,435	27	11,462	F(0)	1.146	0.003
Overland Ave and National Blvd	W/B	4	8,000	17,400	18,444	38%	7,009	D	0.876	7,009	62	7,071	D	0.884	0.008

Note: To provide the most conservative analysis, northbound I-405 between I-10 and US-101 does not include a HOV lane.

N/B: northbound; S/B: southbound; E/B: eastbound; W/B: westbound; D/C: demand to capacity

As shown in Table 19B and 19C below, all study segments on the San Diego Freeway (I-405) and the Santa Monica Freeway (I-10) are projected operate at or above design capacity during at least one of the peak hours under Future 2013 conditions, with and without the Project, resulting in severe congestion and travel speeds of less than 25 miles per hour. The freeway segments that are projected to operate at LOS E or F during the AM or PM peak hour, or both are listed below:

- 1. San Diego Freeway (I-405), south of Santa Monica Freeway (I-10)
 - o AM Peak Hour
 - Northbound LOS F(0)
 - o PM Peak Hour
 - Northbound LOS E
- 2. San Diego Freeway (I-405), between Santa Monica Freeway (I-10) and Santa Monica Boulevard
 - o AM Peak Hour
 - Northbound LOS F(1)
 - o PM Peak Hour
 - Northbound LOS F(0)
 - Southbound LOS F(0)
- 3. San Diego Freeway (I-405), between Wilshire Boulevard and Santa Monica Boulevard
 - o AM Peak Hour
 - Northbound LOS F(0)
 - o PM Peak Hour
 - Northbound LOS E
- 4. San Diego Freeway (I-405), between Sunset Boulevard and Wilshire Boulevard
 - o AM Peak Hour
 - Northbound LOS F(0)
 - o PM Peak Hour
 - Northbound LOS F(0)
 - Southbound LOS E
- 5. San Diego Freeway (I-405), north of Sunset Boulevard
 - o AM Peak Hour
 - Southbound LOS F(1)
 - o PM Peak Hour
 - Northbound LOS F(0)
- 6. Santa Monica Freeway (I-10), between Bundy Drive and San Diego Freeway (I-405)
 - o AM Peak Hour
 - Eastbound LOS F(0)
 - PM Peak Hour
 - Westbound LOS E
- 7. Santa Monica Freeway (I-10), between Overland Avenue and National Boulevard
 - o AM Peak Hour
 - Eastbound LOS F(0)
 - o PM Peak Hour
 - Eastbound LOS F(0)

The CMP defines regional project impacts as significant if the D/C ratio increases by 0.020 or more and the final (with Project) LOS is F. According to Tables 19B and 19C, all of the analyzed freeway segments would be operating at LOS E or F in one or both of the peak hours. However, the San Diego Freeway (I-405) and the Santa Monica Freeway (I-10) would not experience a project-related increase in traffic demand by two percent; thus, no significant impacts occur as a result of the NHIP and LRDP Amendment.

CONGESTION MANGEMENT PROGRAM ANALYSIS

The Congestion Management Program (CMP) was created statewide as a result of Proposition 111 and has been implemented locally by the Los Angeles County Metropolitan Transportation Authority (Metro). The CMP for Los Angeles County requires that the traffic impact of individual development projects of potential regional significance be analyzed. A specific system of arterial roadways plus all freeways comprise the CMP system. A total of 164 intersections are identified for monitoring on the system in Los Angeles County. This section describes the analysis of project-related impacts on the CMP system. The analysis has been conducted according to the guidelines set forth in the 2004 Congestion Management Program for Los Angeles County.

According to the CMP Traffic Impact Analysis (TIA) Guidelines developed by the MTA, a traffic impact analysis is required given the following conditions:

- CMP arterial monitoring intersections, including freeway on- or off-ramps, where the proposed project would add 50 or more trips during either the AM or PM weekday peak hours.
- CMP freeway monitoring locations where the proposed project would add 150 or more trips, in either direction, during either the AM or PM weekday peak hours.

CMP Intersection Analysis

Three of the proposed 58 study area intersections are part of the 164 CMP arterial monitoring locations. The three CMP intersections are listed below in **Table 20**.

CMP Int. No	Responsible Agency	CMP Route	Cross Street
62	Los Angeles City	Santa Monica Boulevard	Westwood Boulevard
86	Los Angeles City	Wilshire Boulevard	Beverly Glen Boulevard
88	Los Angeles City	Wilshire Boulevard	Sepulveda Boulevard

TABLE 20 - CMP ARTERIAL MONITORING STATIONS

After calculating the number of project-related trips assigned to the street network using the TRAFFIX model, it has been determined that the proposed project will add 50 or more trips to one CMP arterial monitoring station: the intersection of Wilshire Boulevard and Sepulveda Boulevard. Specifically, the CMP arterial monitoring station located at this intersection would experience an increase of 337 AM project related trips and 444 PM project related trips during the weekday. This intersection is shown to experience a significant impact during the AM and PM peak hour and has been analyzed as part of the traffic impact study. It should be noted that the proposed project will not add 50 or more trips to the intersection of Wilshire Boulevard and Beverly Glen Boulevard. However, it was analyzed as part of the traffic study and is projected to be significantly impacted by the proposed project during the AM peak hour. A summary of that analysis is listed in **Table 21** below.

					We	ekday						
AM Peak Ho				our	P				M Peak Hour			
Intersection		ture W/O Future With Fu Project Project A in V/C			e W/O ject		Future With Project					
	LOS	V/C	LOS	V/C		LOS	V/C	LOS	V/C			
Wilshire Blvd / Sepulveda Blvd	F	1.503	F	1.317	0.064	F	1.567	F	1.356	0.039		

TABLE 21 - CMP ARTERIAL MONITORING STATION ANALYSIS

The other two CMP arterial monitoring stations located at Santa Monica Boulevard and Westwood Boulevard and Wilshire Boulevard and Beverly Glen Boulevard are not anticipated to accumulate more than 50 project-related trips during the weekday AM or PM peak period. The intersection of Santa Monica Boulevard and Westwood Boulevard is projected to accumulate 15 AM peak hour project-related trips and 21 PM peak hour project-related trips, and the intersection of Wilshire Boulevard and Beverly Glen Boulevard is projected to accumulate 35 AM peak hour project-related trips and 46 PM project-related trips.

CMP Mainline Freeway Segment Analysis

The focus of this analysis is to determine whether project-related trips would significantly impact the freeway system according to CMP guidelines and threshold of significance. For purposes of analyzing the mainline freeway impact of the project, the nearest CMP freeway monitoring stations along I-405 and I-10 are listed below in **Table 22**.

CMP Station	Fwy Rte	Post Mile	Location
1010	I-10	R2.17	Lincoln Boulevard
1011	I-10	R6.75	e/o Overland Avenue
1012	I-10	R10.71	e/o La Brea Avenue Under Crossing
1070	I-405	28.3	n/o Venice Boulevard
1071	I-405	35.81	s/o Mulholland Drive

TABLE 22 - CMP FREEWAY MONITORING STATIONS

As noted, according to the guidelines for CMP Transportation Impact Analysis, if the proposed project fails to add 150 or more trips, in either direction, during the AM or PM weekday peak period, no further traffic analysis is required. To calculate the number of project related trips added to I-405 and I-10, the total number of trips generated during the AM and PM peak periods were calculated and distributed across the network in accordance with the trip distribution rates.

As shown in Table 19C, the project is expected to add 161 southbound trips during the PM peak hour on I-405 between Wilshire Boulevard and I-10. The closest CMP monitoring station to the north is I-405, south of Mulholland Drive. At this location, project-related trips are expected to be less than 150 (25 northbound and 100 southbound during the AM peak hour, and 116 northbound and 50 southbound during the PM peak hour) since most inbound and outbound project traffic will utilize the I-405 ramps at Wilshire Boulevard to get to and from Parking Lot 36 at UCLA. The closest CMP monitoring station to the south is I-405 north of Venice Boulevard. Since the 161 southbound project-related trips between Wilshire Boulevard and I-10 will be distributed east and west on I-10, in addition to I-405, the CMP monitoring station at I-405 north of Venice Boulevard is also expected to have less than 150 project-related trips (79 northbound and 20 southbound during the AM peak hour, and 39 northbound and 91 southbound during the PM peak hour). All other CMP freeway monitoring stations near the Project are expected to experience less than 150 project-related trips in either direction during the AM and PM peak hours; thus, no further CMP mainline freeway segment analysis is required.

CMP Transit Impact Review

As previously discussed, UCLA currently operates a range of Transportation Demand Management programs, including vanpools, carpools, shuttle buses and support for other modes. Services are provided to all commuters, especially those without parking permits, by the Commuter Assistance-Rideshare ("CAR") office. The CAR office has achieved a ridesharing rate that meets the existing trip caps, parking cap, and the 1.5 AVR goal set by the SCAQMD . This study assumes that these goals will continue to be met under the NHIP and Revised LRDP. In addition, the UCLA campus is served by 24 bus lines operated by six public transit operators.

As shown in **Table 23A**, there are currently about 46,478 commuters who are employed or are non-resident students at UCLA. There are 24,418 parking permits issued to these commuters, or approximately half of the total commuters. The remainder (approximately 22,060 persons) must utilize an alternative mode to travel to and from campus, including vanpools, buses, walking, bicycling, or other alternative means.

With implementation of the NHIP and LRDP Amendment, as shown in **Table 23B**, the future number of commuters without parking is estimated to increase by approximately 2,114 commuters compared to the Existing (same as Future Without Project) condition.

TABLE 23A - CURRENT COMMUTERS (SAME AS FUTURE (2013) WITHOUT PROJECT)

Group	Number	Parking Permits	Other Commuters
Faculty & Staff	22,268	15,473	6,795
Commuter Students	24,210	8,945	15,265
Total	46,478	24,418	22,060

TABLE 23B - FUTURE (2013) COMMUTERS- WITH PROJECT

Group	Number	Parking Permits	Other Commuters
Faculty & Staff	23,355	16,321	7,034
Commuter Students	23,473	6,333	17,140
Total	46,828	22,654	24,174

As stated in the Campus TDM Program section of the report, the UCLA TDM Program began in 1984 with a mission of using parking fees and other UCLA resources to achieve cost-effective reductions in campus trip generation and parking demand, while increasing mobility options for faculty, staff, and students. LRDP Mitigation Measure C-1.1, included in the Final EIR for the 1990 LRDP and carried forward in the 2002 LRDP required that the TDM program be continued and expanded. As a result, the UCLA TDM program has grown into a comprehensive program that offers a broad range of services to encourage and assist UCLA commuters in utilizing alternatives to the single-occupancy vehicle. As part of its on-going TDM Program, UCLA actively provides and promotes vanpools; carpool matching and parking incentive programs; financial incentives for carpool and vanpool participants; accommodation of the use of other modes of transit, including bicycles, motorcycles, and scooters; alternative work schedules and telecommuting; annual distribution of the UCLA Commuter's Guide; parking control management; and restricting access to main campus parking facilities for on-campus housing residents. UCLA has one of the most comprehensive TDM programs in the country, with the largest vanpool

program of any public or private university. During the more than 24 years of operation, UCLA's TDM program has remained at the leading edge of such programs, and has received numerous awards from regional and local agencies, including the State of California's Governor's awards, the City of Los Angeles Mayoral award, and Rideshare Program awards from the South Coast Air Quality Management District (SCAQMD) and Southern California Association of Governments (SCAG).

CMP Measures to Encourage Public Transit Patronage

The Los Angeles County CMP states the "information on facilities and/or programs that will be incorporated in the development plan that will encourage public transit use" should be included into the EIR transit impact analysis (2004 Congestion Management Program for Los Angeles County, Appendix B, p. B-6). UCLA actively provides and promotes: vanpools; carpool matching and parking incentive programs; financial incentives for carpool and vanpool participants; accommodation of the use of other modes of transit, including bicycles, motorcycles, and scooters; alternative work schedules and telecommuting; a car share program; annual distribution of the UCLA Commuter's Guide; parking control management; and access restriction to main campus parking facilities for on campus housing residents. As a result, UCLA has one of the most comprehensive TDM programs in the country with the largest vanpool program of any public or private university. The UCLA campus is also served by 24 bus routes operated by six public transit operators. Services are provided to all commuters, especially those without parking permits, by the CAR office. Since 1990, when the SCAQMD first required a survey of all employees to determine AVR, the TDM program increased the campus-wide AVR from 1.26 to 1.60 by fall 2007, exceeding the goal of 1.5 set by the SCAOMD. Continued implementation of the TDM program is necessary to ensure that reductions in parking demand that have been achieved to date are maintained throughout the LRDP Amendment's planning horizon.

In continued compliance with 2002 LRDP Final EIR PP 4.13-1(d), UCLA is pursuing the following additional facilities and/or programs to help encourage public transit patronage for project-related trips. Note that the implementation responsibilities for some of these facilities and programs would fall on agencies other than UCLA, the lead agency for this project. Thus, coordination between UCLA and local and regional transit providers would be required for several of these items.

- Transit Priority System UCLA is participating in an LADOT and Metro project to implement a system that uses advanced technology to give Rapid Buses (both Metro and Culver City Bus) traffic signal priority for transit routes on campus.
- Transit Pass Subsidy Agreement Expansion UCLA continues to expand its transit pass subsidy program, having added Santa Clarita Transit and LADOT subsidies in 2007. Further expansion plans include Antelope Valley, which runs commuter buses to West Los Angeles daily, and AMTRAK buses, offering connections to AMTRAK train service.
- Advanced Traveler Information System UCLA is partnering with transit agencies to provide route and arrival and departure time information to transit patrons on campus.

• **Program Marketing and Promotion** – UCLA employs continual marketing campaigns intended to shift single-occupant vehicle trips to alternative modes, including public transit. Targeting marketing based on spatial distribution of customers and transit service options; promotional campaigns offering free transit passes; and provision of commute options including transit to new employees and incoming students are examples of the behavioral adaptation approaches used to shift trips to public transit.

MITIGATION MEASURES

As shown in Tables 18A and 18B, implementation of the UCLA NHIP and LRDP Amendment would result in significant impacts at eight of the 58 study intersections. To determine the feasibility of mitigating impacts at these intersections, the following potential mitigation measures have been considered.

Intersection No. 15 - Montana Avenue/Gayley Avenue and Veteran Avenue- Physical modification of the intersection could be used to mitigate potential impacts. As identified in conjunction with the environmental review of previous UCLA projects, one potential option for a physical improvement is to widen Gayley Avenue, east of Veteran Avenue, to create a dedicated right turn lane for westbound vehicles turning north onto Veteran Avenue. However, this measure has been rejected previously as infeasible due to the presence of a major utility vault that accommodates multiple utility lines serving both campus and off-campus facilities, which would have to be relocated. Assuming another location for the vault could be found, construction to move the vault and utility lines would be cost prohibitive and disruptive. Therefore, the University considers this measure infeasible. No other feasible mitigation measures have been identified to mitigate the potentially significant impact at this location.

Intersection No. 35 - Wilshire Boulevard and Sepulveda Boulevard- Physical modification of the intersection to improve capacity could be used to mitigate potential impacts. However, this intersection is fully improved within the existing right-of-way and therefore, re-striping is not possible. Widening is not possible because the roadways under the San Diego Freeway underpasses (including the on- and off-ramps) are at or near capacity. No other feasible mitigation options have been identified for this intersection.

Intersection No. 36 - Wilshire Boulevard and Veteran Avenue- In conjunction with their approval of the Southwest Campus Housing and Parking project, The Regents adopted a mitigation measure (SWH C-6.2), to fund ATCS installation at Wilshire Boulevard and Veteran Avenue. Mitigation measure SWH C-6.2 also included widening the east side of Veteran Avenue (on University property), and re-striping Veteran Avenue to create dual right-turn only lanes in the southbound direction for cars turning onto westbound Wilshire Boulevard. These physical improvements to this intersection were completed in 2005. Because of the proximity of adjacent land uses to the roadway [including the Los Angeles National Cemetery (which is surrounded by a concrete and metal fence), the West Los Angeles Federal Building (which is surrounded by concrete bollards), and a private office building and the presence of street trees along Wilshire Boulevard and Veteran Avenue, additional widening of Wilshire Boulevard (east and west of the intersection) or Veteran Avenue (south of Wilshire Boulevard, or on the west side of the roadway, north of Wilshire Boulevard) is not considered feasible. Additional widening of Veteran Avenue on the east side, north of Wilshire Boulevard (on University property) may be possible. However, this would result in an additional offset of the north and south legs of the intersection, requiring vehicles to veer when crossing the intersection, which could pose a traffic hazard. No other feasible mitigation measures have been identified for this intersection.

Intersection No. 37 - Wilshire Boulevard and Gayley Avenue- Physical modification of the intersection to improve capacity could be used to mitigate potential impacts. However, this intersection is

fully improved within the existing right-of-way and therefore re-striping is not possible. Widening would require acquisition of land by the City of Los Angeles, and due to proximity of office or retail uses adjacent to the roadways, is not feasible. No other feasible mitigation options have been identified for this intersection.

Intersection No. 38 - Wilshire Boulevard and Westwood Boulevard- Physical modification of the intersection to improve capacity could be used to mitigate potential impacts. However, this intersection is fully improved within the existing right-of-way and therefore re-striping is not possible. Widening would require acquisition of land by the City of Los Angeles, and due to proximity of office or retail uses adjacent to the roadways, is not feasible. No other feasible mitigation options have been identified for this intersection.

Intersection No. 43 - Wilshire Boulevard and Beverly Glen Boulevard- Physical modification of the intersection to improve capacity could be used to mitigate potential impacts. However, this intersection is fully improved within the existing right-of-way and therefore re-striping is not possible. Widening would require acquisition of land by the City of Los Angeles, and due to long-standing opposition by the local community, and is not feasible. No other feasible mitigation options have been identified for this intersection.

Intersection No. 44 - Ohio Avenue and Sawtelle Boulevard- Physical modification of the intersection to improve capacity could be used to mitigate potential impacts. However, this intersection is fully improved within the existing right-of-way and therefore re-striping is not possible. Widening would require acquisition of land by the City of Los Angeles, and due to the proximity of adjacent land uses to the roadway (including the Veterans Administration), is not feasible. No other feasible mitigation options have been identified for this intersection.

Intersection No. 52 - Santa Monica Boulevard (North) and Veteran Avenue- Physical modification of the intersection to improve capacity could be used to mitigate potential impacts. However, this intersection has been fully improved within the existing right-of-way after the completion of the Santa Monica Boulevard Transitway project. No other feasible mitigation options have been identified for this intersection.

Residual Significant Impacts

Implementation of the UCLA NHIP and LRDP Amendment would result in significant and unavoidable impacts at the following intersections:

- 15. Montana Avenue/Gayley Avenue and Veteran Avenue PM Peak Hour
- 35. Wilshire Boulevard and Sepulveda Boulevard- AM and PM Peak Hours
- 36. Wilshire Boulevard and Veteran Avenue- AM and PM Peak Hours
- 37. Wilshire Boulevard and Gayley Avenue- AM and PM Peak Hours
- 38. Wilshire Boulevard and Westwood Boulevard AM Peak Hour
- 43. Wilshire Boulevard and Beverly Glen Boulevard AM Peak Hour
- 44. Ohio Avenue and Sawtelle Boulevard AM Peak Hour
- 52. Santa Monica Boulevard and Veteran Avenue PM Peak Hour

CONCLUSIONS

Iteris, Inc. has evaluated 58 intersections, located in the City of Los Angeles, for potential significant impacts resulting from the proposed UCLA NHIP and LRDP Amendment. After a detailed analysis of projected operating conditions was completed for the Existing, Future 2013 Without Project, and Future 2013 With Project scenarios, the following conclusions can be made:

- New traffic counts were conducted by a professional data collection company at study area intersections during the AM (7:00 AM to 9:00 AM) and PM (4:00 PM to 6:00 PM) peak period. Traffic counts were conducted during January and February 2008. The counts were conducted manually at each of the 58 study intersections, where count personnel tracked the number of vehicles making each possible turning movement. The peak hour traffic volumes for each intersection were then determined for analysis purposes by finding the four highest consecutive 15-minute volumes for all movements combined.
- Transportation Research Board Critical Movement Analysis (CMA), Circular 212 Planning Method, was used to analyze traffic operating conditions at signalized study intersections, per LADOT Traffic Study Policies and Procedures. The Highway Capacity Manual (HCM) 2000 Methodology was used to analyze traffic operating conditions at unsignalized and four-way stop controlled intersections. Since significance thresholds for unsignalized and four-way stop controlled intersections are not available, unsignalized and four-way stop controlled study intersections were also analyzed as two-phase signals with a maximum capacity of 1,200 vehicles per hour.
- Under Existing 2008 conditions, the results indicate that 16 of the 58 study intersections currently operate at LOS E or F during the AM or PM peak hour, or both:

AM Peak Hour:

- 14. Montana Avenue and Levering Avenue (as signalized)
- 38. Wilshire Boulevard and Westwood Boulevard
- 44. Ohio Avenue and Sawtelle Boulevard

PM Peak Hour:

- 10. Sunset Boulevard and Beverly Glen Boulevard
- 14. Montana Avenue and Levering Avenue (as unsignalized)
- 37. Wilshire Boulevard and Gayley Avenue
- 50. Santa Monica Boulevard and San Diego Freeway (N/B)
- 58. Beverly Glen Boulevard and Greendale Drive

AM and PM Peak Hour:

- 11. Sunset Boulevard (East I/S) and Beverly Glen Boulevard
- 14. Montana Avenue and Levering Avenue- PM Peak Hour (as unsignalized), AM peak hour (as signalized)
- 35. Wilshire Boulevard and Sepulveda Boulevard
- 36. Wilshire Boulevard and Veteran Avenue
- 40. Wilshire Boulevard and Malcolm Avenue
- 48. Santa Monica Boulevard and Sawtelle Boulevard
- 49. Santa Monica Boulevard and San Diego Freeway (S/B)
- 51. Santa Monica Boulevard and Sepulveda Boulevard
- 53. Santa Monica Boulevard and Westwood Boulevard
- 57. Beverly Glen Boulevard and Mulholland Drive
- All study segments on the San Diego Freeway (I-405) and the Santa Monica Freeway (I-10) currently operate at or above design capacity during at least one of the peak hours, resulting in severe congestion and travel speeds of less than 25 miles per hour. The freeway segments that currently operate at LOS E or F during the AM or PM peak hour, or both are listed below.
 - 1. San Diego Freeway (I-405), south of Santa Monica Freeway
 - o AM Peak
 - Northbound- LOS F(0)
 - o PM Peak
 - Northbound- LOS E
 - 2. San Diego Freeway (I-405), between Santa Monica Freeway (I-10) and Santa Monica Boulevard
 - o AM Peak
 - Northbound- LOS F(0)
 - o PM Peak
 - Northbound- LOS F(0)
 - Southbound- LOS E
 - 3. San Diego Freeway (I-405), between Wilshire Boulevard and Santa Monica Boulevard
 - AM Peak
 - Northbound- LOS F(0)
 - 4. San Diego Freeway (I-405), between Sunset Boulevard and Wilshire Boulevard
 - o AM Peak
 - Northbound- LOS F(0)
 - o PM Peak
 - Northbound- LOS E

- 5. San Diego Freeway (I-405), north of Sunset Boulevard
 - o AM Peak
 - Southbound- LOS F(0)
 - o PM Peak
 - Northbound- LOS F(0)
- 6. Santa Monica Freeway (I-10), between Bundy Drive and San Diego Freeway (I-405)
 - o AM Peak
 - Eastbound- LOS F(0)
 - o PM Peak
 - Westbound- LOS E
- 7. Santa Monica Freeway (I-10), between Overland Avenue and National Boulevard
 - o AM Peak
 - Eastbound- LOS F(0)
 - o PM Peak
 - Eastbound- LOS F(0)
- Related projects included in the analysis represent all projects within a 2 ½ mile radius of the UCLA campus center. A total of 73 projects in the City of Los Angeles and 36 projects in the City of Beverly Hills were identified for analysis, for a total of 109 related projects. Under the Future 2013 Without Project scenario, without the implementation of the NHIP and LRDP Amendment, the related projects would generate approximately 60,909 average daily trips, 5,179 trips during the AM peak hour (3,041 in and 2,138 out), and 6,017 trips during the PM peak hour (2,709 in and 3,309 out).
- An ambient background traffic growth rate of one percent per year was applied in this study, consistent with the background growth rates used in other studies in the surrounding area and approved by the LADOT. The opening day of the proposed project is projected to be 2013, thus a five percent growth rate was applied to the 2008 existing counts.
- Current traffic volumes on freeway segments were obtained from several sources. Daily, AM and PM peak hour traffic volumes on the segments were obtained from the most current Caltrans data (2007 freeway volumes) on the Caltrans website (http://www.dot.ca.gov/hq/traffops/saferesr/trafdata/). In addition, AM and PM peak hour directional splits were taken from the Los Angeles County 2004 Congestion Management Program (CMP). All of the 2007 freeway traffic volumes were increased by a growth factor of one percent to reflect 2008 traffic conditions and six percent to reflect 2013 traffic conditions (one percent per year), per CMP traffic forecasting procedures.
- Under the Future Without Project scenario, the results indicate that 28 of the 58 study intersections are projected to operate at LOS E or F during the AM or PM peak hour, or both:

AM Peak Hour:

- 4. Sunset Boulevard and San Diego Freeway Northbound On/Off Ramps
- 5. Sunset Boulevard and Veteran Avenue
- 9. Sunset Boulevard and Hilgard Avenue/Copa De Oro Road
- 14. Montana Avenue and Levering Avenue (as signalized)
- 34. Wilshire Boulevard and San Vicente Boulevard
- 43. Wilshire Boulevard and Beverly Glen Boulevard
- 44. Ohio Avenue and Sawtelle Boulevard

PM Peak Hour:

- 6. Sunset Boulevard and Bellagio Way- PM Peak Hour
- 14. Montana Avenue and Levering Avenue (as unsignalized)
- 15. Montana Avenue/Gayley Avenue and Veteran Avenue
- 23. Le Conte Avenue and Westwood Boulevard
- 27. Weyburn Avenue and Westwood Boulevard
- 52. Santa Monica Boulevard and Veteran Avenue
- 58. Beverly Glen Boulevard and Greendale Drive

Both AM and PM Peak Hour:

- 10. Sunset Boulevard and Beverly Glen Boulevard
- 11. Sunset Boulevard (East I/S) and Beverly Glen Boulevard
- 14. Montana Avenue and Levering Avenue- PM Peak Hour (as unsignalized), AM Peak Hour (as signalized)
- 30. Kinross Avenue and Westwood Boulevard
- 35. Wilshire Boulevard and Sepulveda Boulevard
- 36. Wilshire Boulevard and Veteran Avenue
- 37. Wilshire Boulevard and Gayley Avenue
- 38. Wilshire Boulevard and Westwood Boulevard
- 39. Wilshire Boulevard and Glendon Avenue
- 40. Wilshire Boulevard and Malcolm Avenue
- 48. Santa Monica Boulevard and Sawtelle Boulevard
- 49. Santa Monica Boulevard and San Diego Freeway (S/B)
- 50. Santa Monica Boulevard and San Diego Freeway (N/B)
- 51. Santa Monica Boulevard and Sepulveda Boulevard

- 53. Santa Monica Boulevard and Westwood Boulevard
- 57. Beverly Glen Boulevard and Mulholland Drive
- The proposed NHIP and LRDP Amendment would involve an increase of 550,000 gross square feet (gsf) of development entitlement in the Northwest zone, above the 1.32 million gsf remaining under the 2002 LRDP for other future campus development. In addition, because the proposed NHIP has a completion date of 2013, for purposes of this analysis, an associated adjustment has been made to the 2010 2002 LRDP population projections to estimate population growth to a 2013 planning horizon. The LRDP Amendment will not involve any modifications to the previously adopted campus wide vehicle trip generation and parking limits (139,500 average daily trips and 25,169 parking spaces, respectively).
- The net increase in traffic volumes associated with the implementation of the NHIP and LRDP Amendment (project-only) would generate 6,397 daily trips, 447 AM peak hour trips (358 in and 89 out), and 589 PM peak hour trips (177 in and 413 out).
- Under the Future With Project scenario, the results indicate that 28 of the 58 study intersections are projected to operate at LOS E or F during the AM or PM peak hour, or both:

AM Peak Hour:

- 4. Sunset Boulevard and San Diego Freeway Northbound On/Off Ramps
- 5. Sunset Boulevard and Veteran Avenue
- 9. Sunset Boulevard and Hilgard Avenue/Copa De Oro Road
- 14. Montana Avenue and Levering Avenue (as signalized)
- 34. Wilshire Boulevard and San Vicente Boulevard
- 43. Wilshire Boulevard and Beverly Glen Boulevard
- 44. Ohio Avenue and Sawtelle Boulevard

PM Peak Hour:

- 6. Sunset Boulevard and Bellagio Way
- 14. Montana Avenue and Levering Avenue (as unsignalized)
- 15. Montana Avenue/Gayley Avenue and Veteran Avenue
- 23. Le Conte Avenue and Westwood Boulevard
- 27. Weyburn Avenue and Westwood Boulevard
- 52. Santa Monica Boulevard and Veteran Avenue
- 58. Beverly Glen Boulevard and Greendale Drive

AM and PM Peak Hour:

- 10. Sunset Boulevard and Beverly Glen Boulevard
- 11. Sunset Boulevard (East I/S) and Beverly Glen Boulevard
- 14. Montana Avenue and Levering Avenue- PM Peak Hour (as unsignalized), AM Peak Hour (as signalized)
- 30. Kinross Avenue and Westwood Boulevard
- 35. Wilshire Boulevard and Sepulveda Boulevard
- 36. Wilshire Boulevard and Veteran Avenue
- 37. Wilshire Boulevard and Gayley Avenue
- 38. Wilshire Boulevard and Westwood Boulevard
- 39. Wilshire Boulevard and Glendon Avenue
- 40. Wilshire Boulevard and Malcolm Avenue
- 48. Santa Monica Boulevard and Sawtelle Boulevard
- 49. Santa Monica Boulevard and San Diego Freeway (S/B)
- 50. Santa Monica Boulevard and San Diego Freeway (N/B)
- 51. Santa Monica Boulevard and Sepulveda Boulevard
- 53. Santa Monica Boulevard and Westwood Boulevard
- 57. Beverly Glen Boulevard and Mulholland Drive
- Using the City Los Angeles Department of Transportation (LADOT) significant impact threshold criteria, the NHIP and LRDP Amendment will result in eight significant impacts. As no feasible mitigation measures are available to mitigate the significant impacts, the UCLA NHIP and LRDP Amendment would result in significant and unavoidable impacts at the following intersections:

AM Peak Hour:

- 38. Wilshire Boulevard and Westwood Boulevard
- 43. Wilshire Boulevard and Beverly Glen Boulevard
- 44. Ohio Avenue and Sawtelle Boulevard

PM Peak Hour:

- 15. Montana Avenue/Gayley Avenue and Veteran Avenue
- 52. Santa Monica Boulevard and Veteran Avenue

AM and PM Peak Hour:

35. Wilshire Boulevard and Sepulveda Boulevard

- 36. Wilshire Boulevard and Veteran Avenue
- 37. Wilshire Boulevard and Gayley Avenue
- All study segments on the San Diego Freeway (I-405) and the Santa Monica Freeway (I-10) are projected operate at or above design capacity during at least one of the peak hours under Future 2013 conditions, with and without the Project, resulting in severe congestion and travel speeds of less than 25 miles per hour. The freeway segments that are projected operate at LOS E or F during the AM or PM peak hour, or both are listed below:
 - 1. San Diego Freeway (I-405), south of Santa Monica Freeway (I-10)
 - o AM Peak Hour
 - Northbound LOS F(0)
 - o PM Peak Hour
 - Northbound LOS E
 - 2. San Diego Freeway (I-405), between Santa Monica Freeway (I-10) and Santa Monica Boulevard
 - o AM Peak Hour
 - Northbound LOS F(1)
 - o PM Peak Hour
 - Northbound LOS F(0)
 - Southbound LOS F(0)
 - 3. San Diego Freeway (I-405), between Wilshire Boulevard and Santa Monica Boulevard
 - o AM Peak Hour
 - Northbound LOS F(0)
 - o PM Peak Hour
 - Northbound LOS E
 - 4. San Diego Freeway (I-405), between Sunset Boulevard and Wilshire Boulevard
 - o AM Peak Hour
 - Northbound LOS F(0)
 - o PM Peak Hour
 - Northbound LOS F(0)
 - Southbound LOS E
 - 5. San Diego Freeway (I-405), north of Sunset Boulevard
 - o AM Peak Hour
 - Southbound LOS F(1)
 - o PM Peak Hour
 - Northbound LOS F(0)
 - 6. Santa Monica Freeway (I-10), between Bundy Drive and San Diego Freeway (I-405)
 - o AM Peak Hour
 - Eastbound LOS F(0)
 - o PM Peak Hour
 - Westbound LOS E

- 7. Santa Monica Freeway (I-10), between Overland Avenue and National Boulevard
 - AM Peak Hour
 - Eastbound LOS F(0)
 - PM Peak Hour
 - Eastbound LOS F(0)
- The CMP defines regional project impacts as significant if the D/C ratio increases by 0.020 or more and the final (with Project) LOS is F. All of the analyzed freeway segments would be operating at LOS E or F in at least one direction during one or both of the peak hours. However, the San Diego Freeway (I-405) and the Santa Monica Freeway (I-10) would experience a project-related increase in traffic demand by less than two percent, which falls below the CMP threshold; thus, no CMP mainline freeway significant impacts occur as a result of the NHIP and LRDP Amendment.
- The proposed Project will add 50 or more trips to one CMP arterial monitoring station, the intersection of Wilshire Boulevard and Sepulveda Boulevard. The other two CMP arterial monitoring stations located at Santa Monica Boulevard and Westwood Boulevard and Wilshire Boulevard and Beverly Glen Boulevard will not receive 50 or more project related trips. Specifically, the CMP arterial monitoring station located at Wilshire Boulevard and Sepulveda Boulevard will experience an increase of 337 AM project related trips and 444 PM project related trips during the weekday. This intersection is shown to experience a significant impact during the AM and PM peak hour and has been analyzed as part of the traffic impact study.
- The project is expected to add 161 southbound trips on I-405 between Wilshire Boulevard and I-10. The closest CMP monitoring station to the north is I-405, south of Mulholland Drive. At this location, project-related trips are expected to be less than 150 (25 northbound and 100 southbound during the AM peak hour, and 116 northbound and 50 southbound during the PM peak hour) since most inbound and outbound project traffic will utilize the I-405 ramps at Wilshire Boulevard to get to and from Parking Lot 36 at UCLA. The closest CMP monitoring station to the south is I-405 north of Venice Boulevard. Since the 161 southbound project-related trips between Wilshire Boulevard and I-10 will be distributed east and west on I-10, in addition to I-405, the CMP monitoring station at I-405 north of Venice Boulevard is also expected to have less than 150 project-related trips (79 northbound and 20 southbound during the AM peak hour, and 39 northbound and 91 southbound during the PM peak hour). All other CMP freeway monitoring stations near the Project are expected to experience less than 150 project-related trips in either direction during the AM and PM peak hours.
- With implementation of the NHIP and LRDP Amendment, the number of commuters without parking under the Future 2013 With Project scenario will increase by approximately 2,114 commuters compared to the Existing (same as Future Without Project) condition. CMP measures to encourage public transit patronage are provided.

FINAL APPENDIX

University of California, Los Angeles Northwest Housing Infill Project and Long Range Development Plan Amendment Traffic Impact Study

Prepared for:

BonTerra Consulting 151 Kalmus Drive, Suite E-200 Costa Mesa, CA 92626

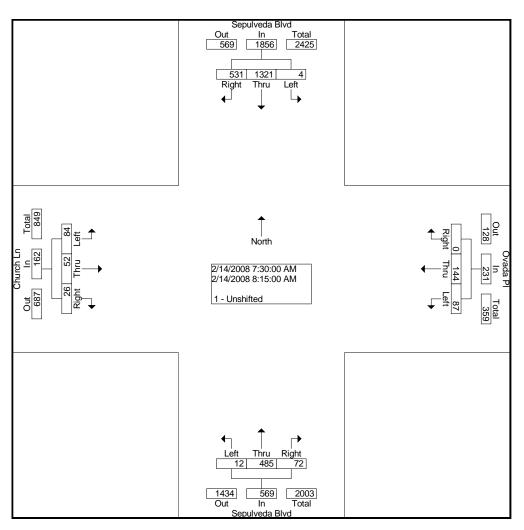
Prepared by:

400 Oceangate, Suite 480 Long Beach, CA 90802-4307

October 2008

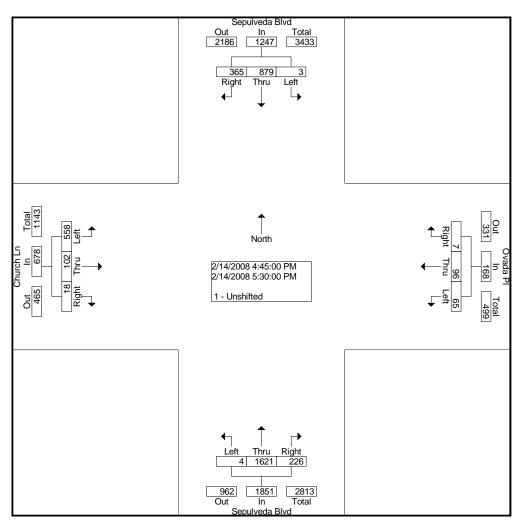
J08-2108

Appendix A: Traffic Counts


File Name : SepChOv Site Code : 00000000 Start Date : 2/14/2008 Page No : 1

Groups I	Printed- '	1 -	Unshifted
----------	------------	-----	-----------

	Sep	ulveda Bl	vd	C	vada Pl	Timed 1	Sep	ulveda Bl	vd	С	hurch Ln		
	Sc	outhbound		W	estbound		Ň	orthbound		E	astbound		
Start Time	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Int. Total
Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
07:00 AM	0	314	195	5	17	0	1	61	8	12	6	7	626
07:15 AM	1	342	170	13	26	1	2	94	13	13	6	2	683
07:30 AM	0	334	156	17	24	0	1	105	17	14	7	7	682
07:45 AM	2	345	129	23	44	0	3	114	21	13	12	2	708
Total	3	1335	650	58	111	1	7	374	59	52	31	18	2699
08:00 AM	1	311	108	25	44	0	0	131	11	36	23	10	700
08:15 AM	1	331	138	22	32	0	8	135	23	21	10	7	728
08:30 AM	0	305	110	21	32	0	9	115	24	24	14	5	659
08:45 AM	0	217	98	21	30	1	5	114	19	27	9	9	550
Total	2	1164	454	89	138	1	22	495	77	108	56	31	2637
			1			- 1			1			- 1	
04:00 PM	4	170	70	11	21	3	2	397	64	111	22	3	878
04:15 PM	1	217	82	18	22	3	0	454	85	111	17	3	1013
04:30 PM	1	204	86	30	29	1	0	378	60	120	25	7	941
04:45 PM	2	202	82	17	25	4	0	404	57	156	24	3	976
Total	8	793	320	76	97	11	2	1633	266	498	88	16	3808
			1			. 1			1			- 1	
05:00 PM	0	254	88	14	28	1	1	425	51	123	22	3	1010
05:15 PM	0	212	97	14	23	1	2	387	68	152	25	8	989
05:30 PM	1	211	98	20	20	1	1	405	50	127	31	4	969
05:45 PM	0	203	100	17	20	0	3	411	59	114	26	4	957
Total	1	880	383	65	91	3	7	1628	228	516	104	19	3925
0 17.1		44=0	400=		40-	40		4400					40000
Grand Total	14	4172	1807	288	437	16	38	4130	630	1174	279	84	13069
Apprch %	0.2	69.6	30.2	38.9	59.0	2.2	0.8	86.1	13.1	76.4	18.2	5.5	
Total %	0.1	31.9	13.8	2.2	3.3	0.1	0.3	31.6	4.8	9.0	2.1	0.6	


File Name: SepChOv Site Code: 00000000 Start Date: 2/14/2008

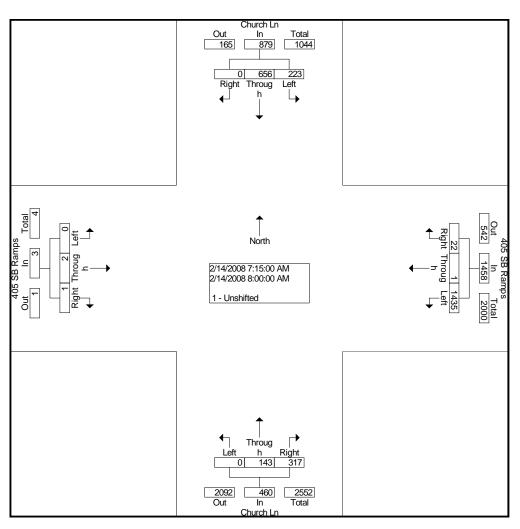
			eda Blv	d			ida Pl tbound			•	eda Blv	d			rch Ln		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru		App. Total	Int. Total
Peak Hour Fro	m 07:0	0 AM to	11:45	AM - Pea	k 1 of 1											'	
Intersection	07:30	AM															
Volume	4	1321	531	1856	87	144	0	231	12	485	72	569	84	52	26	162	2818
Percent	0.2	71.2	28.6		37.7	62.3	0.0		2.1	85.2	12.7		51.9	32.1	16.0		
08:15 Volume	1	331	138	470	22	32	0	54	8	135	23	166	21	10	7	38	728
Peak Factor																	0.968
High Int.	07:30	AM			08:00	AM			08:15	AM			08:00	AM			
Volume	0	334	156	490	25	44	0	69	8	135	23	166	36	23	10	69	
Peak Factor				0.947				0.837				0.857				0.587	

File Name: SepChOv Site Code: 00000000 Start Date: 2/14/2008

			eda Blv	d			ida Pl tbound				eda Blv	d			rch Ln		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Fro	m 12:0	0 PM to	05:45 l	PM - Pea	k 1 of 1											,	
Intersection	04:45	PM															
Volume	3	879	365	1247	65	96	7	168	4	1621	226	1851	558	102	18	678	3944
Percent	0.2	70.5	29.3		38.7	57.1	4.2		0.2	87.6	12.2		82.3	15.0	2.7		
05:00 Volume	0	254	88	342	14	28	1	43	1	425	51	477	123	22	3	148	1010
Peak Factor																	0.976
High Int.	05:00	PM			04:45	PM			05:00	PM			05:15	PM			
Volume	0	254	88	342	17	25	4	46	1	425	51	477	152	25	8	185	
Peak Factor				0.912				0.913				0.970				0.916	

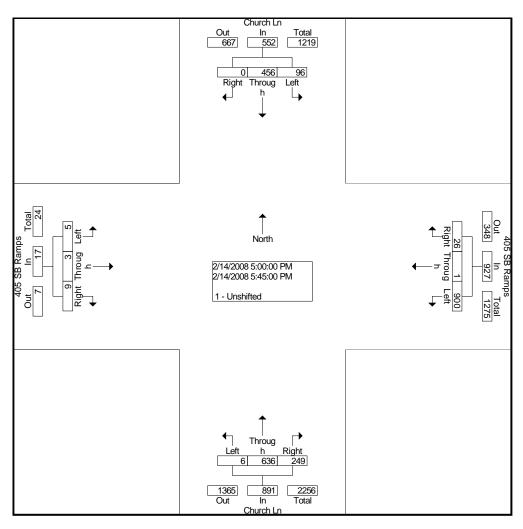
File Name: Church405SB Site Code: 00000000

Start Date : 2/14/2008


Page No : 1

 							 Unshifte 						
	(Church Ln			5 SB Ramp			Church Ln			5 SB Ramp)S	
	S	outhbound		V	Vestbound		<u> </u>	lorthbound			Eastbound		
Start Time	Left	Throug h	Right	Left	Throug h	Right	Left	Throug h	Right	Left	Throug h	Right	Int. Total
Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
07:00 AM	40	157	2	336	0	7	1	44	48	0	0	0	635
07:15 AM	63	193	0	410	0	4	0	25	78	0	1	1	775
07:30 AM	57	152	0	373	1	10	0	35	52	0	0	0	680
07:45 AM	47	163	0	318	0	4	0	45	90	0	0	0	667
Total	207	665	2	1437	1	25	1	149	268	0	1	1	2757
08:00 AM	56	148	0	334	0	4	0	38	97	0	1	0	678
08:15 AM	48	165	0	299	0	9	0	33	80	0	0	1	635
08:30 AM	46	181	0	260	0	8	0	47	91	0	0	1	634
 08:45 AM	42	195	0	242	0	6	1	41	120	0	2	2	651
Total	192	689	0	1135	0	27	1	159	388	0	3	4	2598
04:00 PM	30	89	0	214	2	15	0	82	88	0	0	0	520
04:15 PM	20	104	0	201	0	8	0	101	85	0	1	1	521
04:30 PM	37	127	1	191	0	5	1	114	79	1	2	5	563
04:45 PM	19	102	0	193	0	3	2	140	42	1	3	0	505
Total	106	422	1	799	2	31	3	437	294	2	6	6	2109
05:00 PM	22	118	0	230	0	5	3	162	66	2	1	1	610
05:15 PM	21	127	0	185	1	4	3	153	68	2	1	2	567
05:30 PM	34	106	0	205	0	12	0	159	49	1	0	5	571
05:45 PM	19	105	0	280	0	5	0	162	66	0	1	1	639
Total	96	456	0	900	1	26	6	636	249	5	3	9	2387
Grand Total	601	2232	3	4271	4	109	11	1381	1199	7	13	20	9851
Apprch %	21.2	78.7	0.1	97.4	0.1	2.5	0.4	53.3	46.3	17.5	32.5	50.0	
Total %	6.1	22.7	0.0	43.4	0.0	1.1	0.1	14.0	12.2	0.1	0.1	0.2	

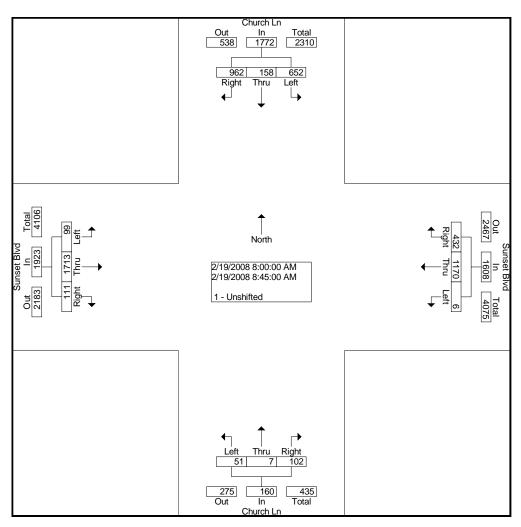
File Name: Church405SB Site Code: 00000000


Start Date : 2/14/2008

		Chu	rch Ln			405 SE	3 Ramps	3		Chu	rch Ln			405 SE	3 Ramps	3	
		Soutl	nbound			Wes	tbound			North	nbound			East	bound		
Start Time	Left	Thro ug h	Right	App. Total	Left	Thro ug h	Right	App. Total	Left	Thro ug h	Right	App. Total	Left	Thro ug h	Right	App. Total	Int. Total
Peak Hour Fro	m 07:00) AM to	11:45 A	M - Peak	1 of 1												
Intersection	07:15	AM															
Volume	223	656	0	879	1435	1	22	1458	0	143	317	460	0	2	1	3	2800
Percent	25.4	74.6	0.0		98.4	0.1	1.5		0.0	31.1	68.9		0.0	66.7	33.3		
07:15 Volume	63	193	0	256	410	0	4	414	0	25	78	103	0	1	1	2	775
Peak Factor																	0.903
High Int.	07:15	AM			07:15	AM			07:45	AΜ			07:15	AM			
Volume	63	193	0	256	410	0	4	414	0	45	90	135	0	1	1	2	
Peak Factor				0.858				0.880				0.852				0.375	

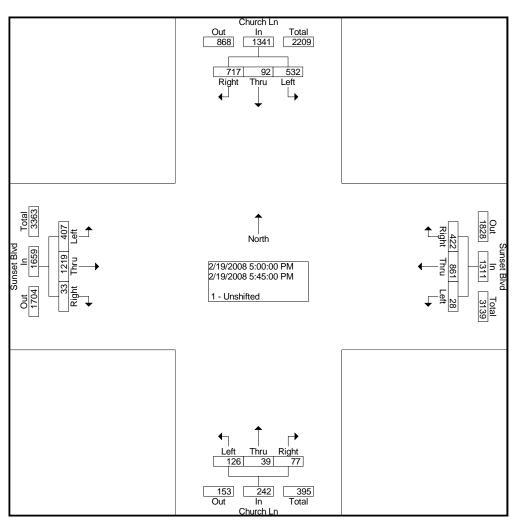
File Name: Church405SB Site Code: 00000000 Start Date: 2/14/2008

		Chu	rch Ln			405 SE	3 Ramp	3		Chu	rch Ln			405 SE	3 Ramps	6	
		Soutl	nbound			Wes	tbound			North	nbound			East	bound		
Start Time	Left	Thro ug h	Right	App. Total	Left	Thro ug h	Right	App. Total	Left	Thro ug h	Right	App. Total	Left	Thro ug h	Right	App. Total	Int. Total
Peak Hour Fro	m 12:00	PM to	05:45 P	M - Peak	1 of 1												
Intersection	05:00	PM															
Volume	96	456	0	552	900	1	26	927	6	636	249	891	5	3	9	17	2387
Percent	17.4	82.6	0.0		97.1	0.1	2.8		0.7	71.4	27.9		29.4	17.6	52.9		
05:45 Volume	19	105	0	124	280	0	5	285	0	162	66	228	0	1	1	2	639
Peak Factor																	0.934
High Int.	05:15	PM			05:45	PM			05:00 I	PM			05:30	PM			
Volume	21	127	0	148	280	0	5	285	3	162	66	231	1	0	5	6	
Peak Factor				0.932				0.813				0.964				0.708	


File Name: ChurSun Site Code : 00000000 Start Date : 2/19/2008 Page No : 1

_	5		
Groups	Printed-	1 -	Unshifted

							- Onsilite						
	C	hurch Ln			nset Blvd		С	hurch Ln		Su	ınset Blvd		
		uthbound		W	estbound		No	orthbound			astbound		
Start Time	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Int. Total
Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
07:00 AM	116	31	339	4	269	79	11	2	12	10	241	14	1128
07:15 AM	141	34	260	6	274	89	15	3	19	14	331	12	1198
07:30 AM	139	32	318	6	281	68	15	3	23	11	384	12	1292
 07:45 AM	155	40	270	2	287	111	17	1_	28	16	440	15	1382
Total	551	137	1187	18	1111	347	58	9	82	51	1396	53	5000
08:00 AM	176	43	255	0	277	115	13	1	17	21	405	15	1338
08:15 AM	160	42	244	2	291	80	11	3	28	26	402	39	1328
08:30 AM	164	32	225	1	288	105	13	2	33	27	476	31	1397
08:45 AM	152	41	238	3	314	132	14	1_	24	25	430	26	1400
Total	652	158	962	6	1170	432	51	7	102	99	1713	111	5463
04:00 PM	120	22	155	5	190	80	24	5	19	81	281	7	989
04:15 PM	117	21	158	8	190	99	26	3	20	79	294	6	1021
04:30 PM	109	24	189	3	189	97	32	8	20	82	275	8	1036
04:45 PM	149	17	132	9	183	89	32	4	23	83	257	11	989
Total	495	84	634	25	752	365	114	20	82	325	1107	32	4035
05:00 PM	119	25	202	4	202	104	25	16	23	101	303	4	1128
05:15 PM	124	22	163	8	220	98	22	12	18	107	293	10	1097
05:30 PM	126	19	164	7	224	96	32	8	22	99	290	7	1094
05:45 PM	163	26	188	9	215	124	47	3	14	100	333	12	1234
Total	532	92	717	28	861	422	126	39	77	407	1219	33	4553
Grand Total	2230	471	3500	77	3894	1566	349	75	343	882	5435	229	19051
Apprch %	36.0	7.6	56.4	1.4	70.3	28.3	45.5	9.8	44.7	13.5	83.0	3.5	
Total %	11.7	2.5	18.4	0.4	20.4	8.2	1.8	0.4	1.8	4.6	28.5	1.2	
									'			'	

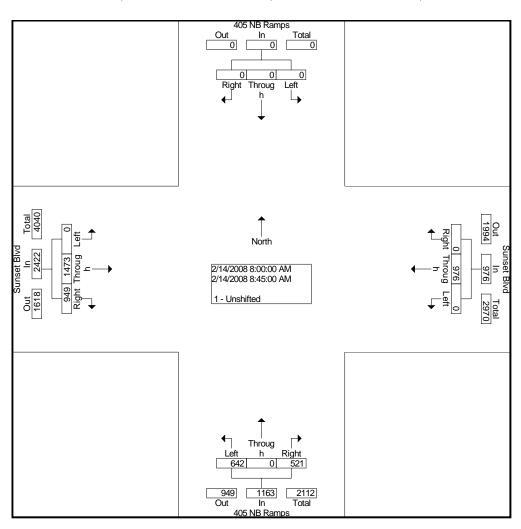

File Name : ChurSun Site Code : 00000000 Start Date : 2/19/2008

		Chu	rch Ln			Suns	et Blvd			Chu	rch Ln			Suns	et Blvd		
		Soutl	hbound			Wes	tbound			North	nbound			East	tbound		
Start Time	Left	Thru	Right	App.	Left	Thru	Right	App.	Left	Thru	Right	App.	Left	Thru	Right	Арр.	Int.
				Total			J 1	Total			3	Total				Total	Total
Peak Hour Fro	m 07:0	0 AM to	11:30	AM - Pea	ak 1 of 1												
Intersection	08:00	AM															
Volume	652	158	962	1772	6	1170	432	1608	51	7	102	160	99	1713	111	1923	5463
Percent	36.8	8.9	54.3		0.4	72.8	26.9		31.9	4.4	63.8		5.1	89.1	5.8		
08:45	152	41	238	431	3	314	132	449	14	1	24	39	25	430	26	481	1400
Volume	132	41	230	451	3	314	132	443	1-7		24	33	23	430	20	401	1400
Peak Factor																	0.976
High Int.	08:00	AM			08:45	AM			08:30	AM			08:30	AM			
Volume	176	43	255	474	3	314	132	449	13	2	33	48	27	476	31	534	
Peak Factor				0.935				0.895				0.833				0.900	

File Name: ChurSun Site Code: 00000000 Start Date: 2/19/2008

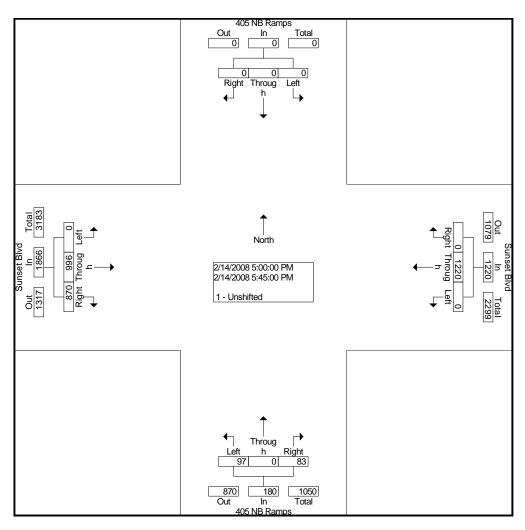
			rch Ln nbound				et Blvd tbound				rch Ln nbound				et Blvd tbound		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Fro	m 11:4	5 AM to	05:45 I	PM - Pea	k 1 of 1												
Intersection	05:00	PM															
Volume	532	92	717	1341	28	861	422	1311	126	39	77	242	407	1219	33	1659	4553
Percent	39.7	6.9	53.5		2.1	65.7	32.2		52.1	16.1	31.8		24.5	73.5	2.0		
05:45 Volume	163	26	188	377	9	215	124	348	47	3	14	64	100	333	12	445	1234
Peak Factor																	0.922
High Int.	05:45	PM			05:45	PM			05:00	PM			05:45	PM			
Volume	163	26	188	377	9	215	124	348	25	16	23	64	100	333	12	445	
Peak Factor				0.889				0.942				0.945				0.932	

File Name: Sunset405NB Site Code: 00000000 Start Date: 2/14/2008


Page No : 1

	40	5 NB Ramp	os	S	unset Blvc		40	5 NB Ram	ps	5	Sunset Blvd	l	
	S	Southbound		V	Vestbound		N	lorthbound	i l	!	Eastbound		
Start Time	Left	Throug h	Right	Left	Throug h	Right	Left	Throug h	Right	Left	Throug h	Right	Int. Total
Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
07:00 AM	0	0	0	0	200	0	161	0	105	0	215	148	829
07:15 AM	0	0	0	0	215	0	157	0	134	0	285	176	967
07:30 AM	0	0	0	0	227	0	132	0	120	0	375	157	1011
 07:45 AM	0	0	0	0	233	0	166	0	152	0	386	224	1161
Total	0	0	0	0	875	0	616	0	511	0	1261	705	3968
			• 1										4000
08:00 AM	0	0	0	0	230	0	165	0	119	0	375	204	1093
08:15 AM	0	0	0	0	238	0	140	0	122	0	351	236	1087
08:30 AM	0	0	0	0	242	0	156	0	106	0	378	280	1162
 08:45 AM	0	0	0	0	266	0	181	0	174	0	369	229	1219
Total	0	0	0	0	976	0	642	0	521	0	1473	949	4561
04:00 PM	0	0	0	0	247	0	29	0	25	0	207	211	719
04:00 PM		0	0		266		31	0	23	0	240	195	719 754
04.15 PM 04:30 PM	0	0	0	0	258	0	36	0	22	0	240 251	162	734 728
04:30 PM 04:45 PM	0	0	0	0	256 255	0	30	0	21	0	237	184	726 728
 Total	0	0	0	0	1026	0	126	0	90	0	935	752	2929
Total	U	U	0	U	1020	0	120	U	30	U	333	132	2929
05:00 PM	0	0	0	0	295	0	16	0	20	0	252	204	787
05:15 PM	0	0	0	0	304	0	26	0	25	0	236	217	808
05:30 PM	0	0	0	0	301	0	24	0	24	0	244	202	795
05:45 PM	0	0	0	0	320	0	31	0	14	0	264	247	876
 Total	0	0	0	0	1220	0	97	0	83	0	996	870	3266
			'			'			'			'	
Grand Total	0	0	0	0	4097	0	1481	0	1205	0	4665	3276	14724
Apprch %	0.0	0.0	0.0	0.0	100.0	0.0	55.1	0.0	44.9	0.0	58.7	41.3	
Total %	0.0	0.0	0.0	0.0	27.8	0.0	10.1	0.0	8.2	0.0	31.7	22.2	

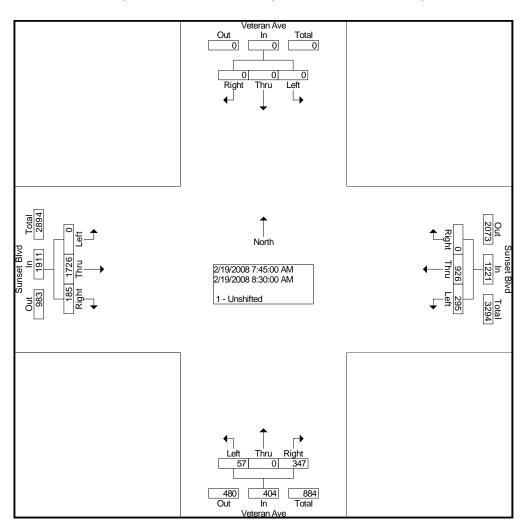
File Name: Sunset405NB Site Code: 00000000


Start Date : 2/14/2008

		405 NE	3 Ramps	6		Suns	et Blvd			405 NI	3 Ramps	S		Suns	et Blvd		
		South	nbound			Wes	tbound			North	nbound			East	bound		
Start Time	Left	Thro	Right	App.	Left	Thro	Right	App.	Left	Thro	Right	App.	Left	Thro	Right	App.	Int.
		ug h	_	Total		ug h		Total		ug h		Total		ug h	J	Total	Total
Peak Hour From	m 07:00	AM to	11:45 A	M - Peak	(1 of 1												
Intersection	08:00	AM															
Volume	0	0	0	0	0	976	0	976	642	0	521	1163	0	1473	949	2422	4561
Percent	0.0	0.0	0.0		0.0	100. 0	0.0		55.2	0.0	44.8		0.0	60.8	39.2		
08:45 Volume	0	0	0	0	0	266	0	266	181	0	174	355	0	369	229	598	1219
Peak Factor High Int.	6:45:00	D AM			08:45	AM			08:45	ΑM			08:30	AM			0.935
Volume Peak Factor	0	0	0	0	0	266	0	266 0.917	181	0	174	355 0.819	0	378	280	658 0.920	

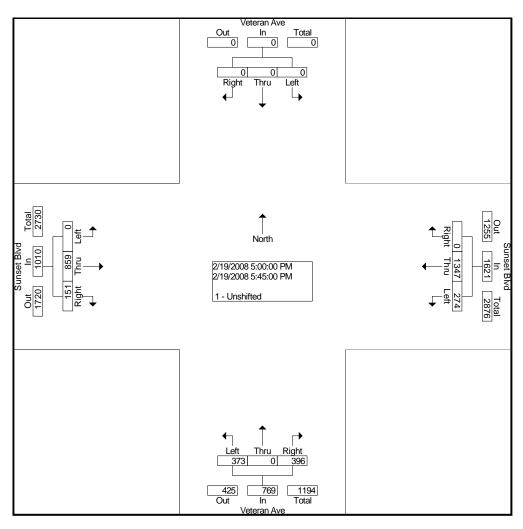
File Name: Sunset405NB Site Code: 00000000 Start Date: 2/14/2008

		405 NE	3 Ramp	S		Suns	et Blvd			405 NE	3 Ramp	S		Suns	et Blvd		
		South	nbound			Wes	tbound			North	nbound			East	bound		
Start Time	Left	Thro	Right	App.	Left	Thro	Right	App.	Left	Thro	Right	App.	Left	Thro	Right	App.	Int.
		ug h	_	Total	- 1	ug h	3 1	Total		ug h	J 1	Total		ug h	3	Total	Total
Peak Hour Fro	m 12:00	PM to	05:45 F	M - Peak	< 1 of 1												
Intersection	05:00	PM															
Volume	0	0	0	0	0	1220	0	1220	97	0	83	180	0	996	870	1866	3266
Percent	0.0	0.0	0.0		0.0	100. 0	0.0		53.9	0.0	46.1		0.0	53.4	46.6		
05:45 Volume	0	0	0	0	0	320	0	320	31	0	14	45	0	264	247	511	876
Peak Factor High Int.					05:45	PM			05:15	PM			05:45 l	PM			0.932
Volume Peak Factor	0	0	0	0	0	320	0	320	26	0	25	51	0	264	247	511	
reak Factor								0.953				0.882				0.913	


File Name: VetSun Site Code: 00000000 Start Date: 2/19/2008

Page No : 1

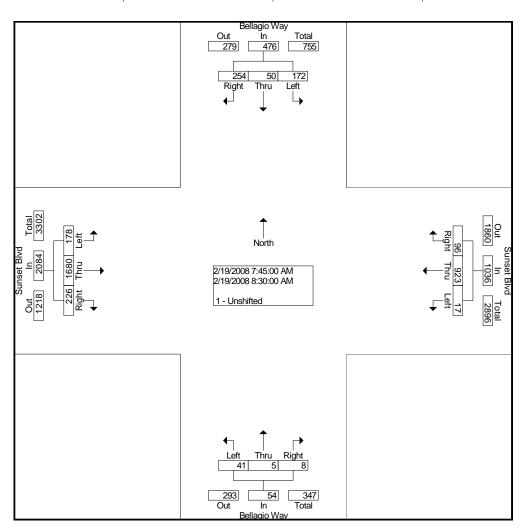
	Ve	teran Ave		Sı	unset Blvd	1	Ve	eteran Ave	,	Sı	unset Blvd		
	So	uthbound		W	estbound		N	orthbound		E	astbound		
Start Time	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Int. Total
Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
07:00 AM	0	0	0	45	197	0	11	0	41	0	276	34	604
07:15 AM	0	0	0	62	225	0	11	0	50	0	359	33	740
07:30 AM	0	0	0	69	206	0	11	0	63	0	419	39	807
07:45 AM	0	0	0	88	221	0	16	0	93	0	452	46	916
Total	0	0	0	264	849	0	49	0	247	0	1506	152	3067
08:00 AM	0	0	0	74	231	0	14	0	80	0	442	51	892
08:15 AM	0	0	0	67	238	0	13	0	81	0	413	48	860
08:30 AM	0	0	0	66	236	0	14	0	93	0	419	40	868
08:45 AM	0	0	0	84	226	0	16	0	96	0	430	57	909
Total	0	0	0	291	931	0	57	0	350	0	1704	196	3529
		_	- 1			- 1				_		1	
04:00 PM	0	0	0	66	347	0	69	0	81	0	230	31	824
04:15 PM	0	0	0	73	390	0	89	0	88	0	195	20	855
04:30 PM	0	0	0	45	297	0	69	0	103	0	194	33	741
04:45 PM	0	0	0	70	331	0	96	0	99	0	199	33	828
Total	0	0	0	254	1365	0	323	0	371	0	818	117	3248
07 00 D14													
05:00 PM	0	0	0	77	364	0	101	0	117	0	206	44	909
05:15 PM	0	0	0	68	340	0	98	0	107	0	179	33	825
05:30 PM	0	0	0	71	333	0	79	0	80	0	231	30	824
05:45 PM	0	0	0	58	310	0	95	0	92	0	243	44	842
Total	0	0	0	274	1347	0	373	0	396	0	859	151	3400
0 17 / 1		•	0	4000	4.400	0	000	•	4004	•	4007	040	40044
Grand Total	0	0	0	1083	4492	0	802	0	1364	0	4887	616	13244
Apprch %	0.0	0.0	0.0	19.4	80.6	0.0	37.0	0.0	63.0	0.0	88.8	11.2	
Total %	0.0	0.0	0.0	8.2	33.9	0.0	6.1	0.0	10.3	0.0	36.9	4.7	


File Name: VetSun Site Code: 00000000 Start Date: 2/19/2008

		Veter	an Ave			Suns	et Blvd			Veter	an Ave			Suns	et Blvd		
		Soutl	nbound			Wes	tbound			North	nbound			East	bound		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour From	m 07:00) AM to	11:45 A	M - Peak	1 of 1												
Intersection	07:45	AM															
Volume	0	0	0	0	295	926	0	1221	57	0	347	404	0	1726	185	1911	3536
Percent	0.0	0.0	0.0		24.2	75.8	0.0		14.1	0.0	85.9		0.0	90.3	9.7		
07:45 Volume	0	0	0	0	88	221	0	309	16	0	93	109	0	452	46	498	916
Peak Factor																	0.965
High Int.	6:45:0	0 AM			07:45	AM			07:45	AM			07:45	AM			
Volume	0	0	0	0	88	221	0	309	16	0	93	109	0	452	46	498	
Peak Factor								0.988				0.927				0.959	

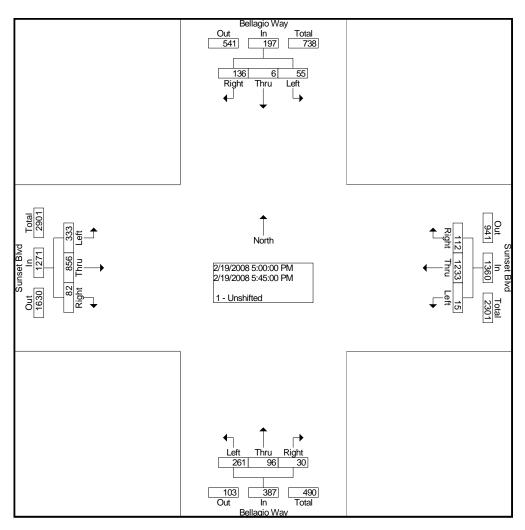
File Name: VetSun Site Code: 00000000 Start Date: 2/19/2008

			an Ave				et Blvd				ran Ave				et Blvd		
		Sout	hbound			vves	tbound			Nortr	nbound			East	bound		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour From	m 12:00	PM to	05:45 F	M - Peak	1 of 1												
Intersection	05:00	PM															
Volume	0	0	0	0	274	1347	0	1621	373	0	396	769	0	859	151	1010	3400
Percent	0.0	0.0	0.0		16.9	83.1	0.0		48.5	0.0	51.5		0.0	85.0	15.0		
05:00 Volume	0	0	0	0	77	364	0	441	101	0	117	218	0	206	44	250	909
Peak Factor																	0.935
High Int.					05:00	PM			05:00	PM			05:45	PM			
Volume	0	0	0	0	77	364	0	441	101	0	117	218	0	243	44	287	
Peak Factor								0.919				0.882				0.880	


File Name : SunBell Site Code : 00000000 Start Date : 2/19/2008

Page No : 1

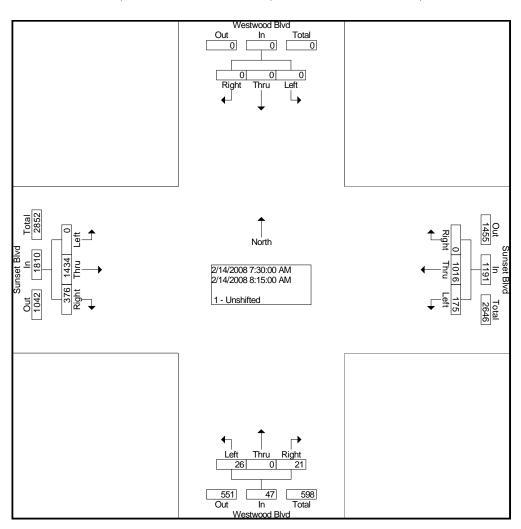
	Bel	llagio Way		Su	nset Blvd		Be	llagio Way	/	Sı	ınset Blvd		
		uthbound		W	estbound			orthbound		Е	astbound		
Start Time	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Int. Total
Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
07:00 AM	13	10	47	4	191	8	17	1	2	34	244	47	618
07:15 AM	34	9	67	4	213	12	5	0	3	31	311	65	754
07:30 AM	38	7	66	4	204	16	11	1	3	37	380	67	834
07:45 AM	32	12	73	4	227	32	6	0	0	42	436	73	937
Total	117	38	253	16	835	68	39	2	8	144	1371	252	3143
08:00 AM	48	9	63	5	233	28	13	0	3	46	431	49	928
08:15 AM	43	12	67	5	225	18	11	4	3	41	410	45	884
08:30 AM	49	17	51	3	238	18	11	1	2	49	403	59	901
08:45 AM	42	11	87	2	205	15	17	1	2	38	415	70	905
Total	182	49	268	15	901	79	52	6	10	174	1659	223	3618
									1				
04:00 PM	19	2	45	5	311	32	60	10	5	60	227	17	793
04:15 PM	12	1	53	6	337	45	69	23	5	57	205	14	827
04:30 PM	12	1	33	5	277	23	48	13	5	69	204	26	716
04:45 PM	10	0	50	4	290	33	69	21	6	70	200	21	774
Total	53	4	181	20	1215	133	246	67	21	256	836	78	3110
									1				
05:00 PM	13	2	41	3	331	28	72	23	7	71	221	29	841
05:15 PM	19	2	32	5	293	30	77	29	11	91	185	17	791
05:30 PM	16	1	42	5	310	27	55	26	9	90	209	18	808
05:45 PM	7	1	21	2	299	27	57	18	3	81	241	18	775
Total	55	6	136	15	1233	112	261	96	30	333	856	82	3215
			1			1			1				
Grand Total	407	97	838	66	4184	392	598	171	69	907	4722	635	13086
Apprch %	30.3	7.2	62.4	1.4	90.1	8.4	71.4	20.4	8.2	14.5	75.4	10.1	
Total %	3.1	0.7	6.4	0.5	32.0	3.0	4.6	1.3	0.5	6.9	36.1	4.9	


File Name : SunBell Site Code : 00000000 Start Date : 2/19/2008

		Bella	gio Way			Suns	et Blvd			Bellag	gio Way			Suns	et Blvd		
		Sout	hbound			Wes	tbound			North	nbound			East	tbound		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour From	m 07:00	AM to	11:45 A	M - Peak	1 of 1						l						,
Intersection	07:45	AM															
Volume	172	50	254	476	17	923	96	1036	41	5	8	54	178	1680	226	2084	3650
Percent	36.1	10.5	53.4		1.6	89.1	9.3		75.9	9.3	14.8		8.5	80.6	10.8		
07:45 Volume	32	12	73	117	4	227	32	263	6	0	0	6	42	436	73	551	937
Peak Factor																	0.974
High Int.	08:15	AM			08:00	AM			08:15	AM			07:45	AM			
Volume	43	12	67	122	5	233	28	266	11	4	3	18	42	436	73	551	
Peak Factor				0.975				0.974				0.750				0.946	

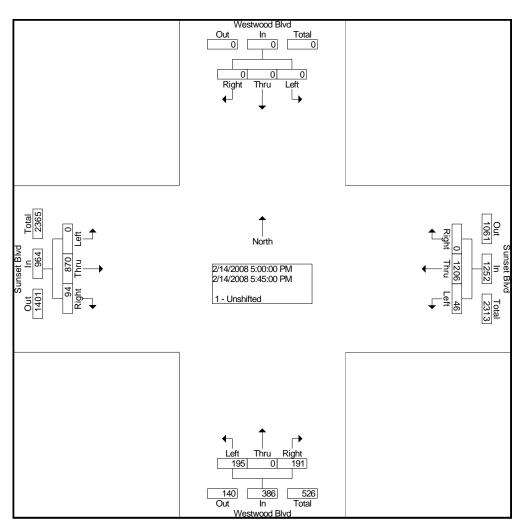
File Name : SunBell Site Code : 00000000 Start Date : 2/19/2008

		Bellag	gio Way			Suns	et Blvd			Bellag	gio Way			Suns	et Blvd		
		Sout	hbound			Wes	tbound			North	nbound			East	tbound		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Fro	m 12:00	PM to	05:45 F	M - Peak	1 of 1											,	
Intersection	05:00	PM															
Volume	55	6	136	197	15	1233	112	1360	261	96	30	387	333	856	82	1271	3215
Percent	27.9	3.0	69.0		1.1	90.7	8.2		67.4	24.8	7.8		26.2	67.3	6.5		
05:00 Volume	13	2	41	56	3	331	28	362	72	23	7	102	71	221	29	321	841
Peak Factor																	0.956
High Int.	05:30	PM			05:00	PM			05:15	PM			05:45	PM			
Volume	16	1	42	59	3	331	28	362	77	29	11	117	81	241	18	340	
Peak Factor				0.835				0.939				0.827				0.935	


File Name : SunWest Site Code : 00000000 Start Date : 2/14/2008

Page No : 1

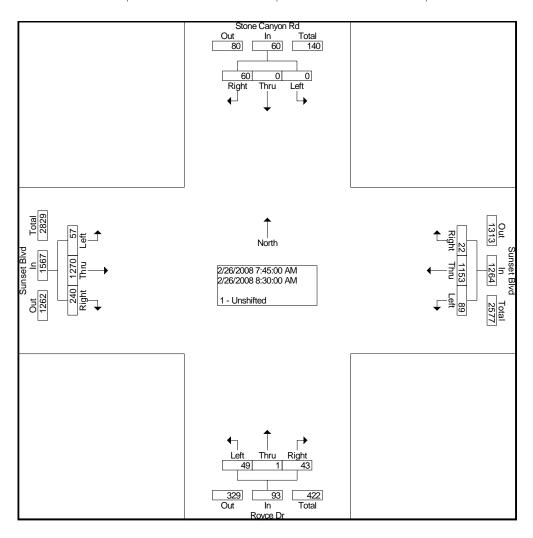
	Wes	twood Blv	d	Su	inset Blvd		Wes	stwood Blv	vd	Sı	ınset Blvd		
	So	uthbound		W	estbound		No	orthbound		Е	astbound		
Start Time	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Int. Total
Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
07:00 AM	0	0	0	20	168	0	7	0	3	0	197	26	421
07:15 AM	0	0	0	38	195	0	5	0	5	0	267	50	560
07:30 AM	0	0	0	53	250	0	3	0	5	0	374	86	771
07:45 AM	0	0	0	46	262	0	8	0	5	0	316	94	731
Total	0	0	0	157	875	0	23	0	18	0	1154	256	2483
						·			·				
08:00 AM	0	0	0	39	271	0	5	0	8	0	380	104	807
08:15 AM	0	0	0	37	233	0	10	0	3	0	364	92	739
08:30 AM	0	0	0	46	251	0	13	0	3	0	344	79	736
08:45 AM	0	0	0	30	180	0	7	0	8	0	383	85	693
Total	0	0	0	152	935	0	35	0	22	0	1471	360	2975
04:00 PM	0	0	0	11	276	0	51	0	48	0	225	25	636
04:15 PM	0	0	0	10	312	0	44	0	37	0	192	22	617
04:30 PM	0	0	0	17	285	0	47	0	42	0	221	27	639
04:45 PM	0	0	0	17	277	0	41	0	44	0	195	17	591
Total	0	0	0	55	1150	0	183	0	171	0	833	91	2483
05:00 PM	0	0	0	12	284	0	68	0	53	0	217	31	665
05:15 PM	0	0	0	9	288	0	48	0	52	0	201	19	617
05:30 PM	0	0	0	13	319	0	44	0	46	0	215	18	655
 05:45 PM	0	0	0	12	315	0	35	0	40	0	237	26	665
Total	0	0	0	46	1206	0	195	0	191	0	870	94	2602
Grand Total	0	0	0	410	4166	0	436	0	402	0	4328	801	10543
Apprch %	0.0	0.0	0.0	9.0	91.0	0.0	52.0	0.0	48.0	0.0	84.4	15.6	
Total %	0.0	0.0	0.0	3.9	39.5	0.0	4.1	0.0	3.8	0.0	41.1	7.6	


File Name : SunWest Site Code : 00000000 Start Date : 2/14/2008

			ood Blv	d			et Blvd tbound				ood Blvo	d			et Blvd		
Start Time	Left	Thru	Right	App.	Left	Thru	Right	App.	Left	Thru	Right	App.	Left	Thru	Right	App.	_Int.
Peak Hour Fro				Total			9	Total			9	Total			9	Total	Total
Intersection			11.437	tivi i car													
Volume	0	0	0	0	175	1016	0	1191	26	0	21	47	0	1434	376	1810	3048
Percent	0.0	0.0	0.0		14.7	85.3	0.0		55.3	0.0	44.7		0.0	79.2	20.8		
08:00 Volume	0	0	0	0	39	271	0	310	5	0	8	13	0	380	104	484	807
Peak Factor																	0.944
High Int.	6:45:0	0 AM			08:00	AM			07:45	AM			08:00	AM			
Volume	0	0	0	0	39	271	0	310	8	0	5	13	0	380	104	484	
Peak Factor								0.960				0.904				0.935	

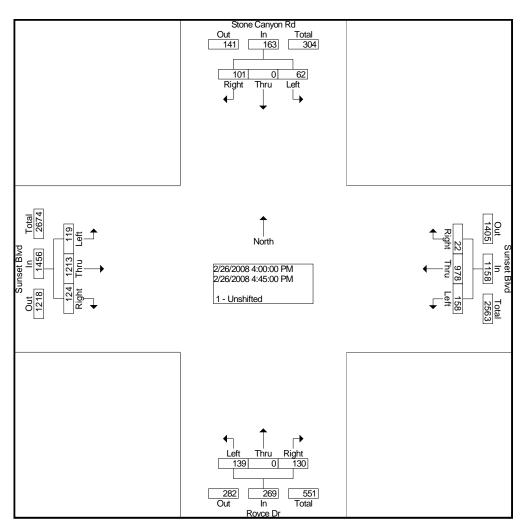
File Name: SunWest Site Code: 00000000 Start Date: 2/14/2008

			ood Blvo	d			et Blvd tbound				ood Blv	d			et Blvd bound		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour From	m 12:00	PM to	05:45 P	M - Peak	1 of 1											,	
Intersection	05:00	PM															
Volume	0	0	0	0	46	1206	0	1252	195	0	191	386	0	870	94	964	2602
Percent	0.0	0.0	0.0		3.7	96.3	0.0		50.5	0.0	49.5		0.0	90.2	9.8		
05:45 Volume	0	0	0	0	12	315	0	327	35	0	40	75	0	237	26	263	665
Peak Factor																	0.978
High Int.					05:30	PM			05:00	PM			05:45	PM			
Volume	0	0	0	0	13	319	0	332	68	0	53	121	0	237	26	263	
Peak Factor								0.943				0.798				0.916	


File Name: SunStoneC Site Code: 00000000 Start Date: 2/26/2008

Page No : 1

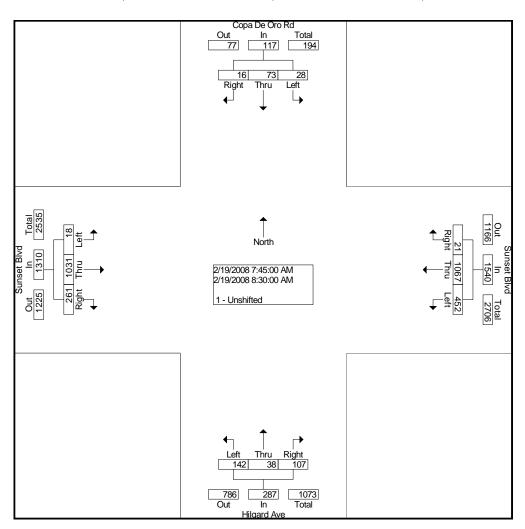
	Stone	Canyon I	Rd	Su	nset Blvd		F	Royce Dr		Sı	ınset Blvd		
		uthbound			estbound			orthbound			astbound		
Start Time	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Int. Total
Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
07:00 AM	0	0	8	4	210	2	1	0	2	17	167	10	421
07:15 AM	0	0	12	10	233	2	0	0	1	19	231	27	535
07:30 AM	0	0	17	9	291	4	2	0	1	17	267	27	635
07:45 AM	0	0	20	14	320	7	6	0	2	14	306	51	740
Total	0	0	57	37	1054	15	9	0	6	67	971	115	2331
08:00 AM	0	0	17	18	308	2	8	0	7	15	315	52	742
08:15 AM	0	0	9	29	257	2	15	1	15	9	326	87	750
08:30 AM	0	0	14	28	268	11	20	0	19	19	323	50	752
08:45 AM	0	0	21	9	201	9	12	0	5	12	321	51	641
Total	0	0	61	84	1034	24	55	1	46	55	1285	240	2885
									1				
04:00 PM	8	0	18	34	244	12	22	0	26	19	327	18	728
04:15 PM	9	0	20	49	268	6	23	0	23	34	301	26	759
04:30 PM	24	0	31	38	231	2	52	0	42	32	293	32	777
04:45 PM	21	0	32	37	235	2	42	0	39	34	292	48	782
Total	62	0	101	158	978	22	139	0	130	119	1213	124	3046
05:00 PM	11	0	19	34	248	1	29	0	23	20	231	22	638
05:15 PM	19	0	25	31	230	2	31	1	25	32	213	22	631
05:30 PM	26	0	33	38	284	7	26	0	26	32	210	31	713
05:45 PM	29	0	33	59	263	2	35	0	37	34	233	27	752
Total	85	0	110	162	1025	12	121	1	111	118	887	102	2734
			1						1				
Grand Total	147	0	329	441	4091	73	324	2	293	359	4356	581	10996
Apprch %	30.9	0.0	69.1	9.6	88.8	1.6	52.3	0.3	47.3	6.8	82.3	11.0	
Total %	1.3	0.0	3.0	4.0	37.2	0.7	2.9	0.0	2.7	3.3	39.6	5.3	


File Name: SunStoneC Site Code: 00000000 Start Date: 2/26/2008

	5	Stone C	anyon F	₹d		Suns	et Blvd			Roy	ce Dr			Suns	et Blvd		
		South	hbound			Wes	tbound			North	nbound			East	bound		
Start Time	Left	Thru	Right	Арр.	Left	Thru	Right	Арр.	Left	Thru	Right	Арр.	Left	Thru	Right	App.	Int.
Start Time	Leit	IIIIu	Ixigiit	Total	Leit	IIIIu	IXIGIIL	Total	Leit	IIIIu	IXIGIII	Total	Leit	IIIIu	IXIGIII	Total	Total
Peak Hour From	m 07:00	AM to	11:45 A	M - Peak	1 of 1												_
Intersection	07:45	AM															
Volume	0	0	60	60	89	1153	22	1264	49	1	43	93	57	1270	240	1567	2984
Percent	0.0	0.0	100. 0		7.0	91.2	1.7		52.7	1.1	46.2		3.6	81.0	15.3		
08:30 Volume	0	0	14	14	28	268	11	307	20	0	19	39	19	323	50	392	752
Peak Factor																	0.992
High Int.	07:45	AM			07:45	AM			08:30	AM			08:15	AM			
Volume	0	0	20	20	14	320	7	341	20	0	19	39	9	326	87	422	
Peak Factor				0.750				0.927				0.596				0.928	

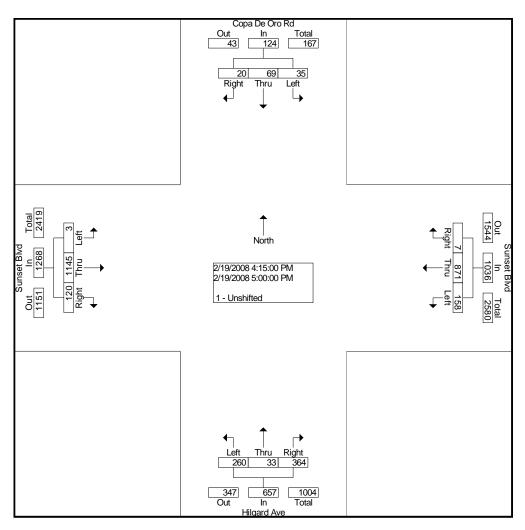
File Name: SunStoneC Site Code: 00000000 Start Date: 2/26/2008

			anyon I	₹d			et Blvd			•	ce Dr				et Blvd		
		Sout	hbound			Wes	tbound			North	nbound			East	bound		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Fro	m 12:00	PM to	05:45 F	PM - Peak	(1 of 1												
Intersection	04:00	PM															
Volume	62	0	101	163	158	978	22	1158	139	0	130	269	119	1213	124	1456	3046
Percent	38.0	0.0	62.0		13.6	84.5	1.9		51.7	0.0	48.3		8.2	83.3	8.5		
04:45 Volume	21	0	32	53	37	235	2	274	42	0	39	81	34	292	48	374	782
Peak Factor																	0.974
High Int.	04:30	PM			04:15	PM			04:30	PM			04:45	PM			
Volume	24	0	31	55	49	268	6	323	52	0	42	94	34	292	48	374	
Peak Factor				0.741				0.896				0.715				0.973	


File Name: SunHilg Site Code: 00000000 Start Date: 2/19/2008

Page No : 1

		Cons	a De Oro F	54	Çı	inset Blvd		Н	ilgard Ave		Çı	ınset Blvd		
			outhbound			estbound			orthbound			astbound		
	Start Time	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Int. Total
	Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	III. Total
	07:00 AM	0	3	1.0	93	205	6	1.0	8	1.0	4	136	26	512
	07:00 AM	3	7	3	106	234	8	21	8	22	3	165	35	615
	07:13 AM	1	7	3	121	274	7	20	6	21	8	244	42	754
	07:45 AM	6	20	8	121	286	5	40	11	25	4	219	74	822
_	Total	10	37	15	444	999	26	96	33	83	19	764	177	2703
	I Olai	10	31	13	444	999	20	90	33	03	19	704	177	2703
	08:00 AM	7	16	2	101	274	5	37	7	29	4	260	72	814
	08:15 AM	7	21	4	118	257	7	25	9	28	5	267	59	807
	08:30 AM	8	16	2	109	250	4	40	11	25	5	285	56	811
	08:45 AM	11	15	3	99	175	3	48	4	34	7	252	62	713
	Total	33	68	11	427	956	19	150	31	116	21	1064	249	3145
	04:00 PM	12	25	8	55	189	9	81	7	48	1	233	25	693
	04:15 PM	13	20	5	33	241	2	67	6	76	3	289	21	776
	04:30 PM	11	26	8	27	209	0	61	1	86	0	302	27	758
	04:45 PM	6	11	5	46	219	3	56	6	94	0	324	34	804
	Total	42	82	26	161	858	14	265	20	304	4	1148	107	3031
	05:00 DM	-	40	0	50	000	0.1	70	00	400	0	000	00	7.47
	05:00 PM	5	12	2	52	202	2	76	20	108	0	230	38	747
	05:15 PM	9	7	2 2	44	206	3	51 63	13	109	1	223	29	697
	05:30 PM	4	9		59	259	6		14	107	0	214	53	790
_	05:45 PM	6 24	8 36	7	47	282	13	45	10 57	95	0 1	235	57	788
	Total	24	30	7	202	949	13	235	5/	419	1	902	177	3022
	Grand Total	109	223	59	1234	3762	72	746	141	922	45	3878	710	11901
	Apprch %	27.9	57.0	15.1	24.3	74.2	1.4	41.2	7.8	51.0	1.0	83.7	15.3	
	Total %	0.9	1.9	0.5	10.4	31.6	0.6	6.3	1.2	7.7	0.4	32.6	6.0	

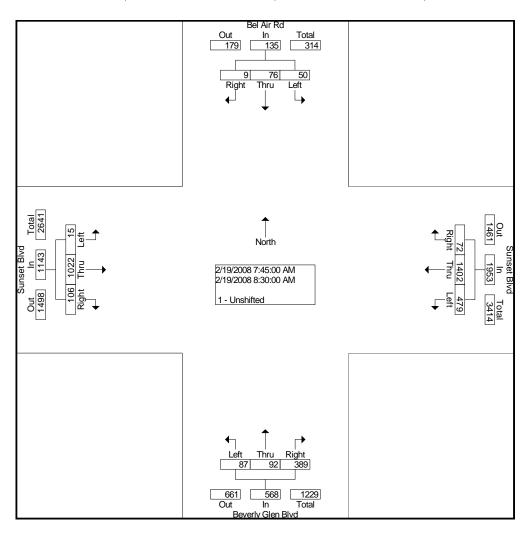

File Name : SunHilg Site Code : 00000000 Start Date : 2/19/2008

			e Oro R	Rd			et Blvd tbound			U	rd Ave				et Blvd bound		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour From	m 07:00	AM to	11:45 A	M - Peak	1 of 1												
Intersection	07:45	AM															
Volume	28	73	16	117	452	1067	21	1540	142	38	107	287	18	1031	261	1310	3254
Percent	23.9	62.4	13.7		29.4	69.3	1.4		49.5	13.2	37.3		1.4	78.7	19.9		
07:45 Volume	6	20	8	34	124	286	5	415	40	11	25	76	4	219	74	297	822
Peak Factor																	0.990
High Int.	07:45	AM			07:45	AM			07:45	AM			08:30	AM			
Volume	6	20	8	34	124	286	5	415	40	11	25	76	5	285	56	346	
Peak Factor				0.860				0.928				0.944				0.947	

File Name: SunHilg Site Code: 00000000 Start Date: 2/19/2008

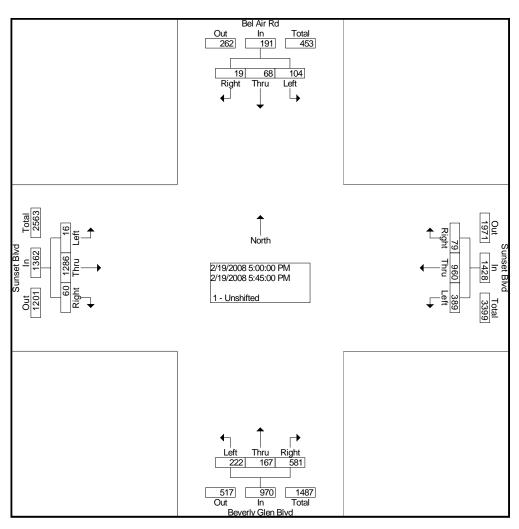
		Copa D	e Oro R	ld		Suns	et Blvd			Hilga	ard Ave			Suns	et Blvd		
		Sout	hbound			Wes	tbound			North	nbound			East	tbound		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Fro	m 12:00	PM to	05:45 F	M - Peak	1 of 1											,	
Intersection	04:15	PM															
Volume	35	69	20	124	158	871	7	1036	260	33	364	657	3	1145	120	1268	3085
Percent	28.2	55.6	16.1		15.3	84.1	0.7		39.6	5.0	55.4		0.2	90.3	9.5		
04:45 Volume	6	11	5	22	46	219	3	268	56	6	94	156	0	324	34	358	804
Peak Factor																	0.959
High Int.	04:30	PM			04:15	PM			05:00	PM			04:45	PM			
Volume	11	26	8	45	33	241	2	276	76	20	108	204	0	324	34	358	
Peak Factor				0.689				0.938				0.805				0.885	

File Name: SunBGbelA Site Code: 00000000


Start Date : 2/19/2008

Page No : 1

T			т т		Cioapoi		Onloninted	<u>, </u>					
		el Air Rd			ınset Blvd			rly Glen B			ınset Blvd		
		uthbound			estbound			orthbound			astbound		
Start Time	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Int. Total
Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
07:00 AM	4	10	1	92	288	20	8	53	28	20	109	5	638
07:15 AM	14	8	1	80	346	17	15	13	59	6	156	10	725
07:30 AM	16	12	2	98	359	29	32	19	54	3	246	17	887
07:45 AM	12	16	5	93	370	37	29	26	103	7	228	19	945
Total	46	46	9	363	1363	103	84	111	244	36	739	51	3195
08:00 AM	13	13	0	125	349	21	16	28	92	2	247	24	930
08:15 AM	12	16	1	139	356	4	19	16	86	2	261	30	942
08:30 AM	13	31	3	122	327	10	23	22	108	4	286	33	982
08:45 AM	18	31	2	164	257	8	23	11	94	5	250	23	886
 Total	56	91	6	550	1289	43	81	77	380	13	1044	110	3740
												· ·	
04:00 PM	26	28	5	77	212	18	28	17	71	7	281	8	778
04:15 PM	41	22	5	70	212	15	65	28	106	2	351	16	933
04:30 PM	21	32	11	87	190	22	41	56	125	12	362	16	975
04:45 PM	26	22	4	94	219	21	41	13	129	2	417	12	1000
 Total	114	104	25	328	833	76	175	114	431	23	1411	52	3686
		-	- 1			- 1	-		-			- 1	
05:00 PM	31	21	3	101	215	19	58	44	158	5	328	14	997
05:15 PM	20	16	5	91	202	34	59	40	140	3	335	17	962
05:30 PM	27	18	7	94	291	19	42	43	120	4	299	17	981
05:45 PM	26	13	4	103	252	7	63	40	163	4	324	12	1011
 Total	104	68	19	389	960	79	222	167	581	16	1286	60	3951
Grand Total	320	309	59	1630	4445	301	562	469	1636	88	4480	273	14572
Apprch %	46.5	44.9	8.6	25.6	69.7	4.7	21.1	17.6	61.3	1.8	92.5	5.6	
Total %	2.2	2.1	0.4	11.2	30.5	2.1	3.9	3.2	11.2	0.6	30.7	1.9	
1 0101 70			0.7		00.0		0.0	٥.۲	2	0.0	00.1	1.5	


File Name : SunBGbelA Site Code : 00000000 Start Date : 2/19/2008

			Air Rd				et Blvd		E	,	Glen Bl	vd			et Blvd		
		South	nbound			Wes	tbound			North	nbound			East	bound		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Fro	m 07:00	AM to	11:45 A	M - Peak	1 of 1												_
Intersection	07:45	AM															
Volume	50	76	9	135	479	1402	72	1953	87	92	389	568	15	1022	106	1143	3799
Percent	37.0	56.3	6.7		24.5	71.8	3.7		15.3	16.2	68.5		1.3	89.4	9.3		
08:30 Volume	13	31	3	47	122	327	10	459	23	22	108	153	4	286	33	323	982
Peak Factor																	0.967
High Int.	08:30	AM			07:45	AM			07:45	AM			08:30	AM			
Volume	13	31	3	47	93	370	37	500	29	26	103	158	4	286	33	323	
Peak Factor				0.718				0.977				0.899				0.885	

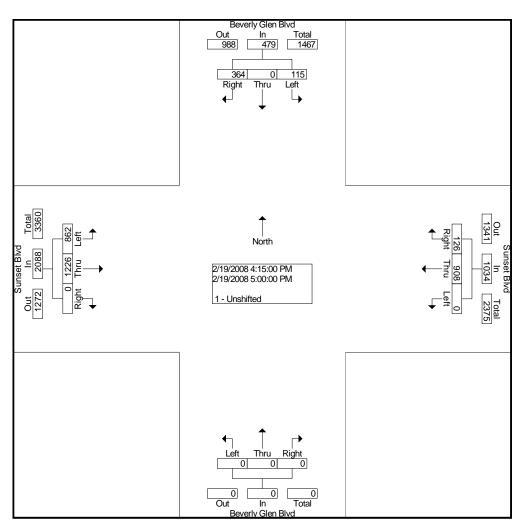
File Name : SunBGbelA Site Code : 00000000 Start Date : 2/19/2008

			Air Rd				et Blvd		E	,	Glen Bl	vd			et Blvd		
		Sout	hbound			Wes	tbound			North	nbound			East	bound		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Fro	m 12:00	PM to	05:45 F	M - Peak	1 of 1												
Intersection	05:00	PM															
Volume	104	68	19	191	389	960	79	1428	222	167	581	970	16	1286	60	1362	3951
Percent	54.5	35.6	9.9		27.2	67.2	5.5		22.9	17.2	59.9		1.2	94.4	4.4		
05:45 Volume	26	13	4	43	103	252	7	362	63	40	163	266	4	324	12	340	1011
Peak Factor																	0.977
High Int.	05:00	PM			05:30	PM			05:45	PM			05:15	PM			
Volume	31	21	3	55	94	291	19	404	63	40	163	266	3	335	17	355	
Peak Factor				0.868				0.884				0.912				0.959	

File Name : SunBevG Site Code : 00000000 Start Date : 2/19/2008

Page No : 1

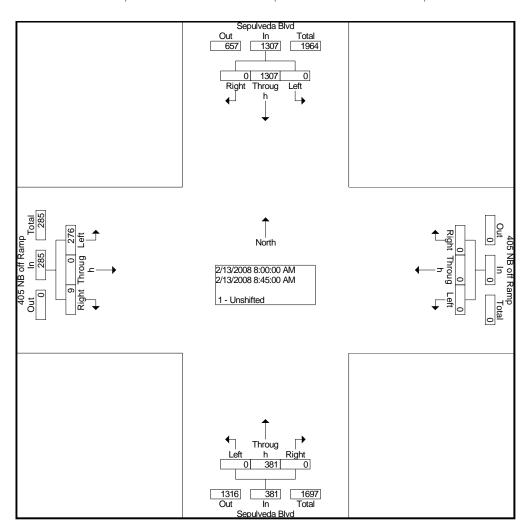
	Povo	rly Glen Bl	lvd	C.	inset Blvd	IIIICO I	Povo	rly Glen B	lvd.	C.	ınset Blvd		
		outhbound	ivu					orthbound			astbound		
Otant Time			Dialet		estbound	Dial.						D:-I-(Lat. Tatal
Start Time	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Int. Total
Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
07:00 AM	32	0	148	0	262	7	0	0	0	32	121	0	602
07:15 AM	38	0	144	0	295	6	0	0	0	43	189	0	715
07:30 AM	35	0	182	0	310	6	0	0	0	74	232	0	839
07:45 AM	29	0	183	0	321	5	0	0	0	91	259	0	888
Total	134	0	657	0	1188	24	0	0	0	240	801	0	3044
08:00 AM	38	0	191	0	299	9	0	0	0	69	273	0	879
08:15 AM	38	0	223	0	270	13	0	0	0	76	277	0	897
08:30 AM	43	0	214	0	233	6	0	0	0	77	318	0	891
08:45 AM	40	0	220	0	222	5	0	0	0	76	301	0	864
Total	159	0	848	0	1024	33	0	0	0	298	1169	0	3531
			,			,			Ų			'	
04:00 PM	46	0	93	0	226	22	0	0	0	130	238	0	755
04:15 PM	43	0	94	0	216	39	0	0	0	222	294	0	908
04:30 PM	26	0	71	0	234	32	0	0	0	188	301	0	852
04:45 PM	24	0	89	Ö	241	22	Ö	Ö	0	225	325	0	926
Total	139	0	347	0	917	115	0	0	0	765	1158	0	3441
. • • • • • • • • • • • • • • • • • • •	.00	ŭ	٠ ا	· ·	0		· ·	ŭ		. 00		١	• • • • • • • • • • • • • • • • • • • •
05:00 PM	22	0	110	0	217	33	0	0	0	227	306	0	915
05:15 PM	28	0	103	0	229	23	0	0	0	183	294	0	860
05:30 PM	29	0	99	0	301	34	0	0	0	195	240	ő	898
05:45 PM	25	0	76	0	276	26	0	0	0	214	305	ő	922
Total	104	0	388	0	1023	116	0	0	0	819	1145	0	3595
Total	104	U	300	U	1020	110	U	U	O	010	1140	0	3333
Grand Total	536	0	2240	0	4152	288	0	0	0	2122	4273	0	13611
Apprch %	19.3	0.0	80.7	0.0	93.5	6.5	0.0	0.0	0.0	33.2	66.8	0.0	.5011
Total %	3.9	0.0	16.5	0.0	30.5	2.1	0.0	0.0	0.0	15.6	31.4	0.0	
1 Utal 70	5.9	0.0	10.5	0.0	30.3	۷.۱	0.0	0.0	0.0	15.0	31.4	0.0	


File Name : SunBevG Site Code : 00000000 Start Date : 2/19/2008

	E	Beverly	Glen Bl	vd		Suns	et Blvd		E	Beverly	Glen Bl	vd		Suns	et Blvd		
		Sout	hbound			Wes	tbound			North	nbound			Eas	tbound		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Fro	m 07:00	AM to	11:45 A	M - Peak	(1 of 1												
Intersection	07:45	AM															
Volume	148	0	811	959	0	1123	33	1156	0	0	0	0	313	1127	0	1440	3555
Percent	15.4	0.0	84.6		0.0	97.1	2.9		0.0	0.0	0.0		21.7	78.3	0.0		
08:15 Volume	38	0	223	261	0	270	13	283	0	0	0	0	76	277	0	353	897
Peak Factor																	0.991
High Int.	08:15	AM			07:45	AM			6:45:0	0 AM			08:30	AM			
Volume	38	0	223	261	0	321	5	326	0	0	0	0	77	318	0	395	
Peak Factor				0.919				0.887								0.911	

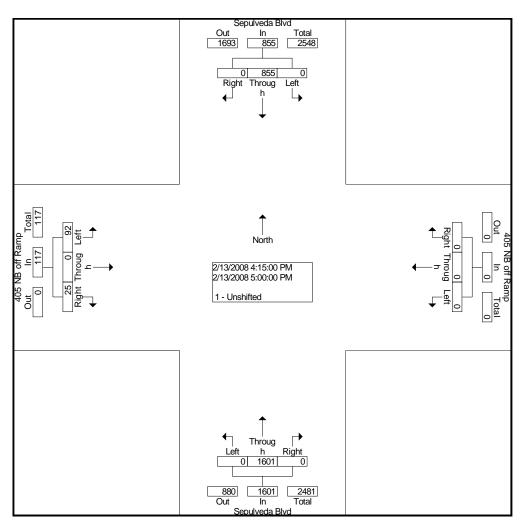
File Name : SunBevG Site Code : 00000000 Start Date : 2/19/2008

	E	•	Glen Bl	vd			et Blvd tbound		E	,	Glen Bl	vd			et Blvd		
		Sout	IIDOUIIU			VV 65	lbouria			NOIL	ibouria	_		Easi	bouria		
Start Time	Left	Thru	Right	App.	Left	Thru	Right	App.	Left	Thru	Right	App.	Left	Thru	Right	App.	Int.
Otan Time	Lon	IIIIu	rtigitt	Total	Lon	IIIIu	rtigitt	Total	LOIL	IIIIu	rtigitt	Total	LCIT	IIIIu	rtigitt	Total	Total
Peak Hour Fro	m 12:00	PM to	05:45 F	PM - Peak	1 of 1			•									
Intersection	04:15	PM															
Volume	115	0	364	479	0	908	126	1034	0	0	0	0	862	1226	0	2088	3601
		-		475	-		_	1054	-	-	-	U			-	2000	3001
Percent	24.0	0.0	76.0		0.0	87.8	12.2		0.0	0.0	0.0		41.3	58.7	0.0		
04:45	24	0	00	112	0	244	22	263	0	0	0	0	225	325	0	EEO	926
Volume	24	0	89	113	U	241	22	203	U	0	0	U	225	323	0	550	926
Peak Factor																	0.972
High Int.	04:15	PM			04:30	PM							04:45	PM			
Volume	43	0	94	137	0	234	32	266	0	0	0	0	225	325	0	550	
Peak Factor		Ū	٠.	0.874	Ŭ	_0.	0_	0.972	·	Ū	·	Ū		320	Ū	0.949	
Peak Factor				0.674				0.972								0.949	


File Name : Sep405NB Site Code : 00000000 Start Date : 2/13/2008

Page No : 1

		pulveda Blv			NB off Ra		Se	pulveda Bl			NB off Ra	mp	
	S	outhbound		V	Vestbound			lorthbound	ı		Eastbound		
Start Time	Left	Throug h	Right	Left	Throug h	Right	Left	Throug h	Right	Left	Throug h	Right	Int. Total
Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
07:00 AM	0	240	0	0	0	0	0	51	0	78	0	8	377
07:15 AM	0	275	0	0	0	0	0	61	0	72	0	2	410
07:30 AM	0	292	0	0	0	0	0	79	0	93	0	1	465
07:45 AM	0	297	0	0	0	0	0	75	0	83	0	6	461
Total	0	1104	0	0	0	0	0	266	0	326	0	17	1713
08:00 AM	0	325	0	0	0	0	0	94	0	59	0	2	480
08:15 AM	0	327	0	0	0	0	0	93	0	59	0	1	480
08:30 AM	0	325	0	0	0	0	0	95 95	0	65	0	3	488
08:45 AM	0	330	0	0	0	0	0	99	0	93	0	3	525
Total	0	1307	0	0	0	0	0	381	0	276	0	9	1973
			. 1						. 1			1	
04:00 PM	0	152	0	0	0	0	0	405	0	28	0	7	592
04:15 PM	0	180	0	0	0	0	0	401	0	34	0	3	618
04:30 PM	0	231	0	0	0	0	0	377	0	18	0	8	634
04:45 PM	0	233	0	0	0	0	0	431	0	24	0	5	693
Total	0	796	0	0	0	0	0	1614	0	104	0	23	2537
05:00 PM	0	211	0	0	0	0	0	392	0	16	0	9	628
05:15 PM	0	220	0	0	0	0	0	351	0	26	0	4	601
05:30 PM	0	228	0	0	0	0	0	243	0	22	0	5	498
05:45 PM	0	240	0	0	0	0	0	291	0	15	0	6	552
Total	0	899	0	0	0	0	0	1277	0	79	0	24	2279
Grand Total	0	4106	0	0	0	0	0	3538	0	785	0	73	8502
Apprch %	0.0	100.0 48.3	0.0	0.0	0.0 0.0	0.0	0.0	100.0 41.6	0.0	91.5 9.2	0.0 0.0	8.5 0.9	
Total %	0.0	40.3	0.0	0.0	0.0	0.0	0.0	41.0	0.0	9.2	0.0	0.9	


File Name : Sep405NB Site Code : 00000000 Start Date : 2/13/2008

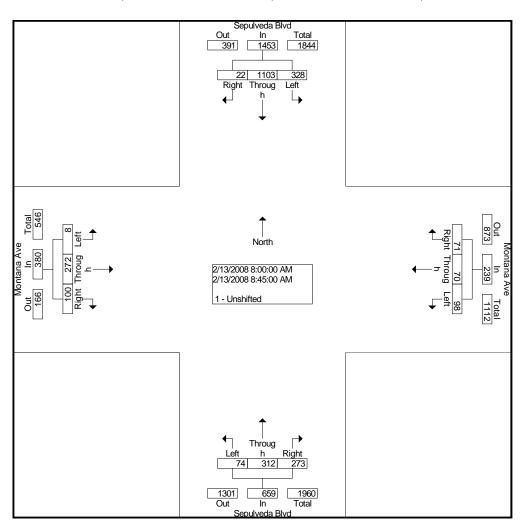
	Sepulveda Blvd				405 NB off Ramp				Sepulveda Blvd				405 NB off Ramp				
	Southbound				Westbound				Northbound				Eastbound				
Start Time	Left	Thro	Right	App.	Left	Thro	Right	Арр.	Left	Thro	Right	App.	Left	Thro	Right	App.	Int.
Start Time	Leit	ug h	Kigiit	Total	Leit	ug h	Kigiit	Total	Leit	ug h	Kigiit	Total	Leit	ug h	Kigiit	Total	Total
Peak Hour From 07:00 AM to 11:45 AM - Peak 1 of 1																	
Intersection	08:00	AM															
Volume	0	1307	0	1307	0	0	0	0	0	381	0	381	276	0	9	285	1973
Percent	0.0	100. 0	0.0		0.0	0.0	0.0		0.0	100. 0	0.0		96.8	0.0	3.2		
08:45 Volume	0	330	0	330	0	0	0	0	0	99	0	99	93	0	3	96	525
Peak Factor																	0.940
High Int.	08:45 AM				6:45:00 AM			08:45 AM				08:45 AM					
Volume	0	330	0	330	0	0	0	0	0	99	0	99	93	0	3	96	
Peak Factor				0.990								0.962				0.742	

File Name : Sep405NB Site Code : 00000000 Start Date : 2/13/2008

	Sepulveda Blvd				405 NB off Ramp				Sepulveda Blvd				405 NB off Ramp				
	Southbound				Westbound				Northbound				Eastbound				
Start Time	Left	Thro	Right	Арр.	Left	Thro	Right	Арр.	Left	Thro	Right	Арр.	Left	Thro	Right	App.	Int.
Otar Timo		ug h	Lugin	Total		ug h	. vig.iv	Total		ug h	rugin	Total		ug h	rtigiti	Total Total	Total
Peak Hour From 12:00 PM to 05:45 PM - Peak 1 of 1																	
Intersection	04:15	PM															
Volume	0	855	0	855	0	0	0	0	0	1601	0	1601	92	0	25	117	2573
Percent	0.0	100. 0	0.0		0.0	0.0	0.0		0.0	100. 0	0.0		78.6	0.0	21.4		
04:45 Volume	0	233	0	233	0	0	0	0	0	431	0	431	24	0	5	29	693
Peak Factor																	0.928
High Int.	04:45 PM							04:45 PM				04:15 l					
Volume	0	233	0	233	0	0	0	0	0	431	0	431	34	0	3	37	
Peak Factor				0.917								0.929				0.791	

City Traffic Counters (626) 256-4171

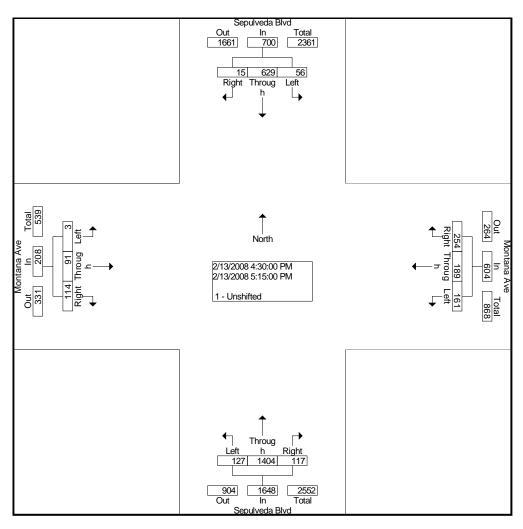
File Name : SepMontana Site Code : 00000000 Start Date : 2/13/2008


Page No : 1

	Sepulveda Blvd				ontana Av		Se	pulveda Bl	vd	M	Iontana Ave)	
	Southbound			V	Vestbound		N	Northbound	t		Eastbound		
Start Time	Left	Throug h	Right	Left	Throug h	Right	Left	Throug h	Right	Left	Throug h	Right	Int. Total
Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
07:00 AM	86	215	5	16	13	20	23	45	64	2	40	10	539
07:15 AM	101	243	3	17	17	20	18	48	68	0	42	15	592
07:30 AM	97	260	1	25	22	23	20	65	76	2	52	10	653
 07:45 AM	86	255	1	27	19	32	16	54	77	1	64	18	650
Total	370	973	10	85	71	95	77	212	285	5	198	53	2434
08:00 AM	79	277	5	23	19	15	21	64	69	3	82	21	678
08:15 AM	97	279	6	23	16	20	13	71	69	3	60	28	685
08:30 AM	83	269	2	25	13	16	20	76	64	1	60	29	658
 08:45 AM	69	278	9	27	22	20	20	101	71	1	70	22	710
Total	328	1103	22	98	70	71	74	312	273	8	272	100	2731
0.4.00 D 1.4		400							0.0		-	o= 1	=0.4
04:00 PM	9	106	3	21	41	66	36	361	29	3	22	27	724
04:15 PM	15	121	3	34	42	71	31	372	27	7	21	26	770
04:30 PM	20	174	4	31	35	55	19	359	22	0	16	29	764
 04:45 PM	12	171	5	36	40	62	27	349	39	3	30	25	799
Total	56	572	15	122	158	254	113	1441	117	13	89	107	3057
05:00 PM	14	145	2	37	38	73	36	391	30	0	21	33	820
05:15 PM	10	139	4	57	76	64	45	305	26	0	24	27	777
05:30 PM	16	164	6	42	68	45	18	213	26	2	34	22	656
 05:45 PM	12	165	0	44	72	69	27	254	24	0	57	37	761
Total	52	613	12	180	254	251	126	1163	106	2	136	119	3014
Grand Total	806	3261	59	485	553	671	390	3128	781	28	695	379	11236
Apprch %	19.5	79.0	1.4	28.4	32.4	39.3	9.1	72.8	18.2	2.5	63.1	34.4	
Total %	7.2	29.0	0.5	4.3	4.9	6.0	3.5	27.8	7.0	0.2	6.2	3.4	

City Traffic Counters (626) 256-4171

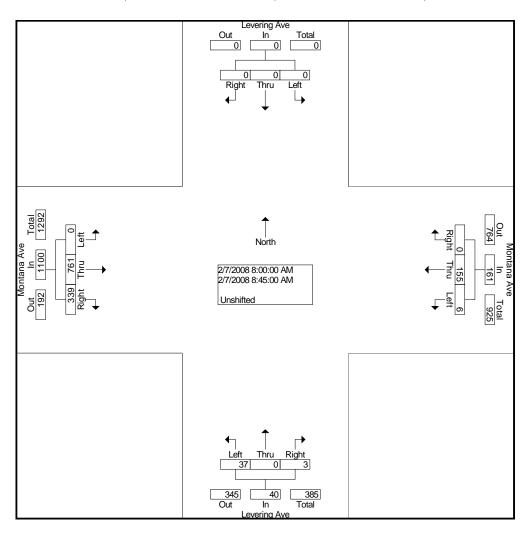
File Name : SepMontana Site Code : 00000000 Start Date : 2/13/2008


		Sepulv	eda Blvo	t		Monta	ana Ave			Sepulv	eda Blv	d		Monta	ana Ave		
		South	nbound			West	tbound			North	nbound			East	bound		
Start Time	Left	Thro ug h	Right	App. Total	Left	Thro ug h	Right	App. Total	Left	Thro ug h	Right	App. Total	Left	Thro ug h	Right	App. Total	Int. Total
Peak Hour Fro	m 07:00) AM to	11:45 A	M - Peak	1 of 1												
Intersection	08:00	AM															
Volume	328	1103	22	1453	98	70	71	239	74	312	273	659	8	272	100	380	2731
Percent	22.6	75.9	1.5		41.0	29.3	29.7		11.2	47.3	41.4		2.1	71.6	26.3		
08:45 Volume	69	278	9	356	27	22	20	69	20	101	71	192	1	70	22	93	710
Peak Factor																	0.962
High Int.	08:15	AM			08:45	AΜ			08:45	ΑM			08:00	AM			
Volume	97	279	6	382	27	22	20	69	20	101	71	192	3	82	21	106	
Peak Factor				0.951				0.866				0.858				0.896	

City Traffic Counters (626) 256-4171

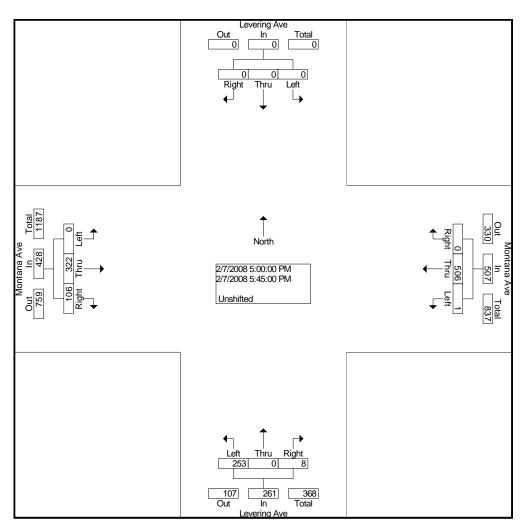
File Name : SepMontana Site Code : 00000000 Start Date : 2/13/2008

		Sepulv	eda Blv	t		Monta	ana Ave			Sepulv	eda Blv	d		Monta	na Ave		
		Soutl	nbound			Wes	tbound			North	nbound			East	bound		
Start Time	Left	Thro ug h	Right	App. Total	Left	Thro ug h	Right	App. Total	Left	Thro ug h	Right	App. Total	Left	Thro ug h	Right	App. Total	Int. Total
Peak Hour Fro	m 12:00	PM to	05:45 P	M - Peak	1 of 1												
Intersection	04:30	PM															
Volume	56	629	15	700	161	189	254	604	127	1404	117	1648	3	91	114	208	3160
Percent	8.0	89.9	2.1		26.7	31.3	42.1		7.7	85.2	7.1		1.4	43.8	54.8		
05:00 Volume	14	145	2	161	37	38	73	148	36	391	30	457	0	21	33	54	820
Peak Factor																	0.963
High Int.	04:30	PM			05:15	PM			05:00	PM			04:45	PM			
Volume	20	174	4	198	57	76	64	197	36	391	30	457	3	30	25	58	
Peak Factor				0.884				0.766				0.902				0.897	


File Name: LevMont Site Code: 00000000 Start Date: 2/7/2008

Page No : 1

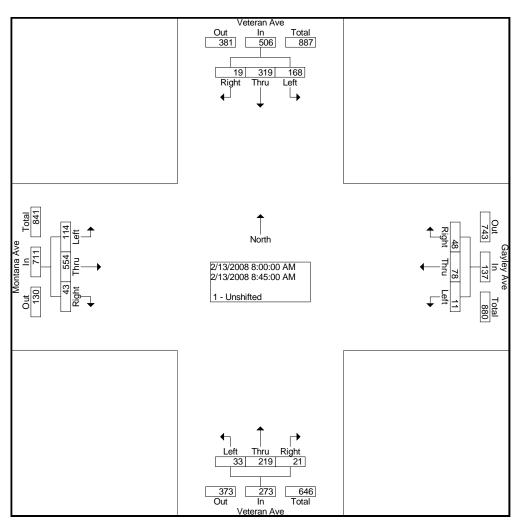
			ering Ave			ntana Ave		Le	vering Ave			ntana Ave)	
			uthbound			estbound		N	orthbound			astbound		
	Start Time	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Int. Total
	Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
	07:00 AM	0	0	0	1	32	0	9	0	2	0	164	71	279
	07:15 AM	0	0	0	1	39	0	10	0	6	0	171	68	295
	07:30 AM	0	0	0	2	37	0	8	0	2	0	194	77	320
	07:45 AM	0	0	0	0	42	0	14	0	0	0	157	74	287
	Total	0	0	0	4	150	0	41	0	10	0	686	290	1181
	08:00 AM	0	0	0	1	45	0	11	0	1	0	185	102	345
	08:15 AM	0	0	0	1	36	0	7	0	0	0	213	84	341
	08:30 AM	0	0	0	1	44	0	12	0	1	0	190	69	317
	08:45 AM	0	0	0	3	30	0	7	0	1	0	173	84	298
	Total	0	0	0	6	155	0	37	0	3	0	761	339	1301
	04:00 PM	0	0	0	0	133	0	51	0	2	0	64	21	271
	04:15 PM	0	0	0	0	122	0	39	0	2 2	0	52	13	228
	04:30 PM	0	0	0	1	118	0	52	0	1	0	66	20	258
	04:45 PM	0	0	0	2	129	0	36	0	0	0	65	22	254
_	Total	0	0	0	3	502	0	178	0	5	0	247	76	1011
							,							
	05:00 PM	0	0	0	0	137	0	68	0	1	0	74	24	304
	05:15 PM	0	0	0	0	122	0	68	0	2	0	86	27	305
	05:30 PM	0	0	0	0	137	0	61	0	0	0	86	33	317
	05:45 PM	0	0	0	1	110	0	56	0	5	0	76	22	270
	Total	0	0	0	1	506	0	253	0	8	0	322	106	1196
				'			,			,				
	Grand Total	0	0	0	14	1313	0	509	0	26	0	2016	811	4689
	Apprch %	0.0	0.0	0.0	1.1	98.9	0.0	95.1	0.0	4.9	0.0	71.3	28.7	
	Total %	0.0	0.0	0.0	0.3	28.0	0.0	10.9	0.0	0.6	0.0	43.0	17.3	


File Name : LevMont Site Code : 00000000 Start Date : 2/7/2008

			ing Ave				ana Ave tbound				ing Ave				ana Ave		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru		App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Fro	m 07:00	AM to	11:45 A		1 of 1			rotai				i otai				rotar	rotar
Intersection	08:00	AM															
Volume	0	0	0	0	6	155	0	161	37	0	3	40	0	761	339	1100	1301
Percent	0.0	0.0	0.0		3.7	96.3	0.0		92.5	0.0	7.5		0.0	69.2	30.8		
08:00 Volume	0	0	0	0	1	45	0	46	11	0	1	12	0	185	102	287	345
Peak Factor																	0.943
High Int.	6:45:0	0 AM			08:00	AM			08:30	AM			08:15	AM			
Volume	0	0	0	0	1	45	0	46	12	0	1	13	0	213	84	297	
Peak Factor								0.875				0.769				0.926	

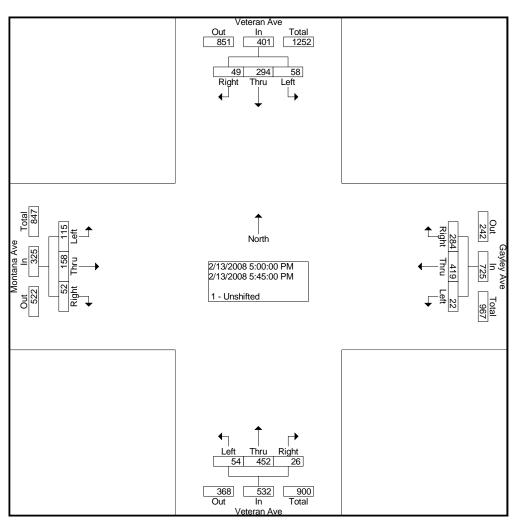
File Name: LevMont Site Code: 00000000 Start Date: 2/7/2008

			ing Ave				ana Ave tbound				ring Ave				ana Ave		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour From	m 12:00	PM to	05:45 F	M - Peak	(1 of 1												
Intersection	05:00	PM															
Volume	0	0	0	0	1	506	0	507	253	0	8	261	0	322	106	428	1196
Percent	0.0	0.0	0.0		0.2	99.8	0.0		96.9	0.0	3.1		0.0	75.2	24.8		
05:30 Volume	0	0	0	0	0	137	0	137	61	0	0	61	0	86	33	119	317
Peak Factor																	0.943
High Int.					05:00	PM			05:15	PM			05:30	PM			
Volume	0	0	0	0	0	137	0	137	68	0	2	70	0	86	33	119	
Peak Factor								0.925				0.932				0.899	


File Name: VetMonGay Site Code: 00000000 Start Date: 2/13/2008

Page No : 1

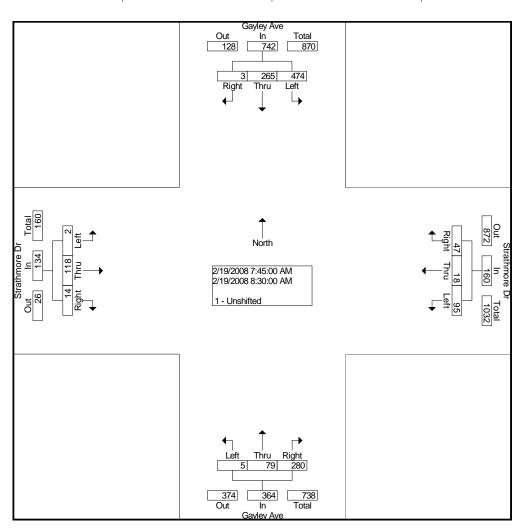
					-		- Onsilite						
		teran Ave			ayley Ave			eteran Ave			ntana Ave	9	
	Sc	outhbound		W	estbound		No	orthbound		E:	astbound		
Start Time	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Int. Total
Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
07:00 AM	19	30	9	1	11	2	4	19	3	10	207	9	324
07:15 AM	24	39	7	4	20	3	3	22	6	14	113	5	260
07:30 AM	41	69	5	2	17	3	8	38	1	25	150	10	369
07:45 AM	37	77	6	11	28	11	10	51	3	24	141	5	394
Total	121	215	27	8	76	19	25	130	13	73	611	29	1347
												1	
08:00 AM	46	77	7	3	20	14	11	50	2	16	159	9	414
08:15 AM	40	67	3	0	18	10	10	46	7	29	133	13	376
08:30 AM	40	79	4	3	19	9	6	64	8	35	125	10	402
08:45 AM	42	96	5	5	21	15	6	59	4	34	137	11	435
Total	168	319	19	11	78	48	33	219	21	114	554	43	1627
				_					- 1			1	
04:00 PM	12	89	4	8	102	41	21	105	9	20	34	13	458
04:15 PM	24	93	9	6	123	53	11	116	1	25	31	14	506
04:30 PM	16	65	7	3	70	49	16	114	6	16	29	11	402
04:45 PM	14	79	10	4	85	57	20	100	4	28	41	4	446
Total	66	326	30	21	380	200	68	435	20	89	135	42	1812
			- 1			1			. 1			1	
05:00 PM	14	65	9	9	96	60	10	106	4	30	38	13	454
05:15 PM	17	93	19	5	114	81	13	127	6	33	36	8	552
05:30 PM	13	78	13	5	110	86	12	115	5	27	39	13	516
05:45 PM	14	58	8	3	99	57	19	104	11	25	45	18	461
Total	58	294	49	22	419	284	54	452	26	115	158	52	1983
			1						1			1	
Grand Total	413	1154	125	62	953	551	180	1236	80	391	1458	166	6769
Apprch %	24.4	68.2	7.4	4.0	60.9	35.2	12.0	82.6	5.3	19.4	72.4	8.2	
Total %	6.1	17.0	1.8	0.9	14.1	8.1	2.7	18.3	1.2	5.8	21.5	2.5	


File Name: VetMonGay Site Code: 00000000 Start Date: 2/13/2008

		Veter	an Ave			Gayl	ey Ave			Veter	an Ave			Monta	ana Ave		
		South	nbound			Wes	tbound			North	nbound			East	bound		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Fro	m 07:0	0 AM to	11:45	AM - Pea	k 1 of 1												
Intersection	08:00	AM															
Volume	168	319	19	506	11	78	48	137	33	219	21	273	114	554	43	711	1627
Percent	33.2	63.0	3.8		8.0	56.9	35.0		12.1	80.2	7.7		16.0	77.9	6.0		
08:45 Volume	42	96	5	143	5	21	15	41	6	59	4	69	34	137	11	182	435
Peak Factor																	0.935
High Int.	08:45	AM			08:45	AM			08:30	AM			08:00	AM			
Volume	42	96	5	143	5	21	15	41	6	64	8	78	16	159	9	184	
Peak Factor				0.885				0.835				0.875				0.966	

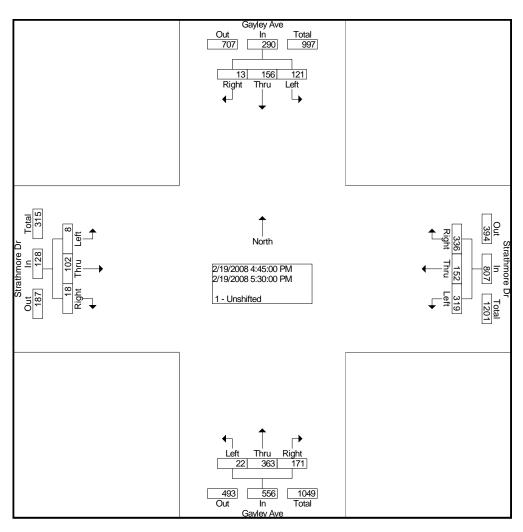
File Name: VetMonGay Site Code: 00000000 Start Date: 2/13/2008

			an Ave				ey Ave tbound				ran Ave				ana Ave		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Fro	m 12:0	0 PM to	05:45	PM - Pea	k 1 of 1												
Intersection	05:00	PM															
Volume	58	294	49	401	22	419	284	725	54	452	26	532	115	158	52	325	1983
Percent	14.5	73.3	12.2		3.0	57.8	39.2		10.2	85.0	4.9		35.4	48.6	16.0		
05:15 Volume	17	93	19	129	5	114	81	200	13	127	6	146	33	36	8	77	552
Peak Factor																	0.898
High Int.	05:15	PM			05:30	PM			05:15	PM			05:45	PM			
Volume	17	93	19	129	5	110	86	201	13	127	6	146	25	45	18	88	
Peak Factor				0.777				0.902				0.911				0.923	


File Name: GayStrath Site Code: 00000000 Start Date: 2/19/2008

Page No : 1

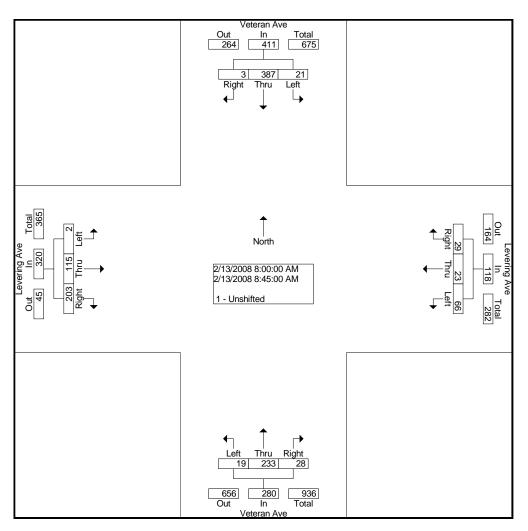
	1 6	ayley Ave		Stra	athmore D		G	ayley Ave		Str	athmore D	r	
		outhbound			estbound			orthbound			astbound	'	
Start Time		Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Int. Total
Factor		1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	III. Total
07:00 AM		71	2	24	2	9	3	1.0	52	1.0	1.0	2	287
07:00 AM 07:15 AM		58	2	22	5	15	1	14	53	2	19	1	296
07:30 AM		49	2	17	4	10	0	18	70	0	27	o l	327
07:30 AM 07:45 AM		76	0	30	3	19	1	23	71	1	41	2	388
Total		254	6	93	14	53	5	68	246	4	99	5	1298
Total	451	234	0	93	14	55	3	00	240	4	99	3	1290
08:00 AM	119	60	0	23	5	9	1	16	80	0	30	3	346
08:15 AM	117	63	0	14	5	6	1	20	59	1	15	4	305
08:30 AM	117	66	3	28	5	13	2	20	70	0	32	5	361
08:45 AM	128	55	0	25	10	15	2	17	54	4	27	1	338
Total	481	244	3	90	25	43	6	73	263	5	104	13	1350
04:00 PM	24	34	9	65	27	83	6	93	32	4	8	5	390
04:15 PM	24	29	3	55	22	83	6	71	38	4	11	2	348
04:30 PM	19	24	3	51	28	81	5	83	38	1	16	4	353
04:45 PM	34	34	4	68	33	68	6	99	44	0	33	5	428
Total	101	121	19	239	110	315	23	346	152	9	68	16	1519
05:00 PM		46	1	97	51	96	6	98	41	4	25	3	492
05:15 PM		27	6	89	32	89	4	78	46	2	22	4	429
05:30 PM		49	2	65	36	83	6	88	40	2	22	6	432
05:45 PM		44	2	66	18	75	8	85	34	6	18	4	400
Total	127	166	11	317	137	343	24	349	161	14	87	17	1753
Grand Total	1160	785	39	720	286	754	58	836	822	32	358	E4	5920
				739					-			51	5920
Apprch %		39.6	2.0	41.5	16.1	42.4	3.4	48.7	47.9	7.3	81.2	11.6	
Total %	19.6	13.3	0.7	12.5	4.8	12.7	1.0	14.1	13.9	0.5	6.0	0.9	


File Name : GayStrath Site Code : 00000000 Start Date : 2/19/2008

		Gayl	ey Ave			Strath	more Dr			Gayl	ey Ave			Strath	more Dr		
		Sout	hbound			Wes	tbound			North	nbound			East	tbound		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour From	m 07:00	AM to	11:45 A	M - Peak	1 of 1												
Intersection	07:45	AM															
Volume	474	265	3	742	95	18	47	160	5	79	280	364	2	118	14	134	1400
Percent	63.9	35.7	0.4		59.4	11.3	29.4		1.4	21.7	76.9		1.5	88.1	10.4		
07:45 Volume	121	76	0	197	30	3	19	52	1	23	71	95	1	41	2	44	388
Peak Factor																	0.902
High Int.	07:45	AM			07:45	AM			08:00	AM			07:45	AM			
Volume	121	76	0	197	30	3	19	52	1	16	80	97	1	41	2	44	
Peak Factor				0.942				0.769				0.938				0.761	

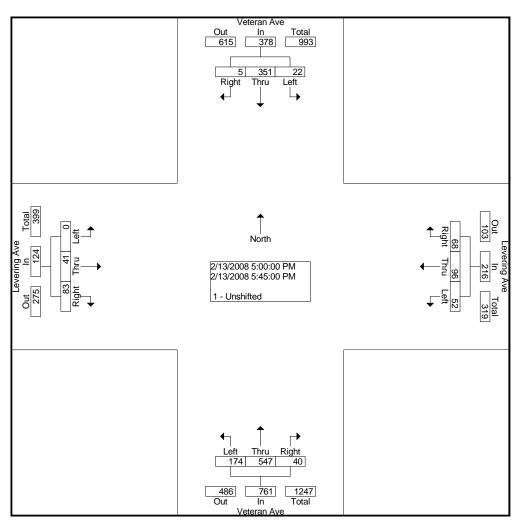
File Name: GayStrath Site Code: 00000000 Start Date: 2/19/2008

		•	ey Ave hbound				more Dr tbound				ey Ave				more Dr		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour From	m 12:00	PM to	05:45 P	M - Peak	1 of 1												
Intersection	04:45	PM															
Volume	121	156	13	290	319	152	336	807	22	363	171	556	8	102	18	128	1781
Percent	41.7	53.8	4.5		39.5	18.8	41.6		4.0	65.3	30.8		6.3	79.7	14.1		
05:00 Volume	24	46	1	71	97	51	96	244	6	98	41	145	4	25	3	32	492
Peak Factor																	0.905
High Int.	05:30	PM			05:00	PM			04:45	PM			04:45	PM			
Volume	33	49	2	84	97	51	96	244	6	99	44	149	0	33	5	38	
Peak Factor				0.863				0.827				0.933				0.842	


File Name: VetLev Site Code: 00000000 Start Date: 2/13/2008

Page No : 1

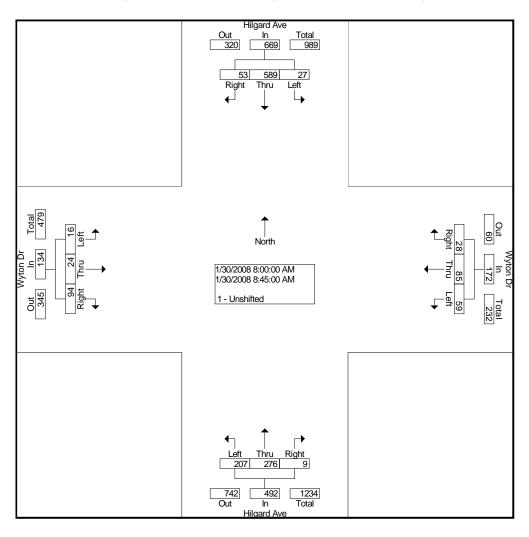
	\/c	teran Ave		ام ا	ering Ave		\/e	eteran Ave	_	I AV	vering Ave	_	
		outhbound			estbound			orthbound			astbound	_	
Start Time	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Int. Total
Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
07:00 AM	2	52	0	7	1	3	2	25	2	1	8	25	128
07:15 AM	2	83	1	10	4	5	4	30	2	0	23	31	195
07:30 AM	5	85	2	16	6	2	8	41	2	0	28	50	245
07:45 AM	4	93	1	7	11	3	2	40	7	2	23	57	250
Total	13	313	4	40	22	13	16	136	13	3	82	163	818
			·			,			,				
08:00 AM	7	77	1	17	4	2	3	54	5	0	39	50	259
08:15 AM	6	101	2	18	6	12	4	55	3	0	23	54	284
08:30 AM	3	94	0	14	7	8	5	72	10	1	29	65	308
08:45 AM	5	115	0	17	6	7	7	52	10	1	24	34	278
Total	21	387	3	66	23	29	19	233	28	2	115	203	1129
												1	
04:00 PM	7	103	1	9	19	14	25	110	13	0	9	11	321
04:15 PM	1	102	0	7	15	6	27	127	6	1	10	18	320
04:30 PM	11	81	0	13	20	11	34	125	7	0	11	20	333
04:45 PM	2	83	1	11	13	6	39	119	10	0	11	16	311
Total	21	369	2	40	67	37	125	481	36	1	41	65	1285
			- 1			1			1			1	
05:00 PM	5	83	2	8	20	14	38	146	11	0	9	21	357
05:15 PM	4	110		15	23	17	48	143	8	0	8	20	397
05:30 PM	8	74	2	15	25	16	38	125	16	0	11	27	357
05:45 PM	5	84	0	14	28	21	50	133	5	0	13	15	368
Total	22	351	5	52	96	68	174	547	40	0	41	83	1479
0 17.1		4.400	4.4	400			00.4	400=				-44	
Grand Total	77	1420	14	198	208	147	334	1397	117	6	279	514	4711
Apprch %	5.1	94.0	0.9	35.8	37.6	26.6	18.1	75.6	6.3	0.8	34.9	64.3	
Total %	1.6	30.1	0.3	4.2	4.4	3.1	7.1	29.7	2.5	0.1	5.9	10.9	


File Name: VetLev Site Code: 00000000 Start Date: 2/13/2008

			an Ave				ing Ave				an Ave				ing Ave		
		South	nbound			Wes	tbound			North	nbound			East	bound		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Fro	m 07:0	0 AM to	11:45	AM - Pea	k 1 of 1												
Intersection	08:00	AM															
Volume	21	387	3	411	66	23	29	118	19	233	28	280	2	115	203	320	1129
Percent	5.1	94.2	0.7		55.9	19.5	24.6		6.8	83.2	10.0		0.6	35.9	63.4		
08:30	3	94	0	97	14	7	8	29	5	72	10	87	1	29	65	95	308
Volume	3	34	U	91	14	,	0	29	5	12	10	01	'	29	05	93	300
Peak Factor																	0.916
High Int.	08:45	AM			08:15	AM			08:30	AM			08:30	AM			
Volume	5	115	0	120	18	6	12	36	5	72	10	87	1	29	65	95	
Peak Factor				0.856				0.819				0.805				0.842	

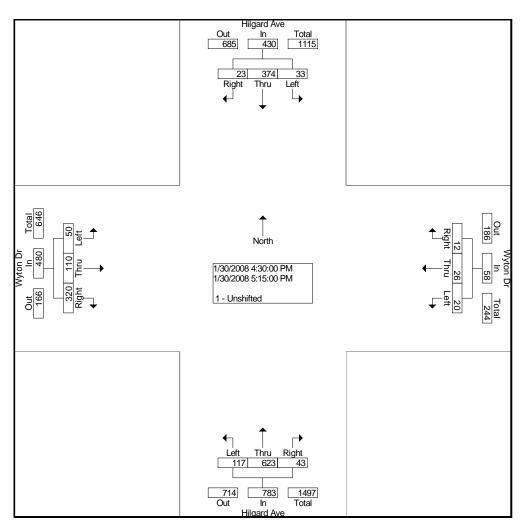
File Name: VetLev Site Code: 00000000 Start Date: 2/13/2008

			an Ave				ing Ave				an Ave				ing Ave		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Fro	m 12:0	0 PM to	05:45 F	PM - Pea	k 1 of 1												
Intersection	05:00	PM															
Volume	22	351	5	378	52	96	68	216	174	547	40	761	0	41	83	124	1479
Percent	5.8	92.9	1.3		24.1	44.4	31.5		22.9	71.9	5.3		0.0	33.1	66.9		
05:15 Volume	4	110	1	115	15	23	17	55	48	143	8	199	0	8	20	28	397
Peak Factor																	0.931
High Int.	05:15	PM			05:45	PM			05:15	PM			05:30	PM			
Volume	4	110	1	115	14	28	21	63	48	143	8	199	0	11	27	38	
Peak Factor				0.822				0.857				0.956				0.816	


File Name : HilgWyton Site Code : 00000000 Start Date : 1/30/2008

Page No : 1

			Igard Ave			/yton Dr			ilgard Ave			Vyton Dr		
		Sc	outhbound		W	estbound		N ₁	orthbound		E	astbound		
St	art Time	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Int. Total
	Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
07	7:00 AM	3	140	6	3	2	0	18	28	0	1	1	4	206
07	7:15 AM	2	102	9	3	9	5	18	48	2	1	0	11	210
07	7:30 AM	4	125	7	13	7	8	25	49	3	2	0	9	252
07	7:45 AM	6	155	5	4	17	7	40	70	0	4	1	12	321
	Total	15	522	27	23	35	20	101	195	5	8	2	36	989
30	3:00 AM	10	169	10	17	17	4	56	66	2	2	5	21	379
30	3:15 AM	6	149	5	14	44	9	50	73	2	6	7	29	394
30	3:30 AM	5	128	16	13	10	9	43	73	3	3	4	27	334
	3:45 AM	6	143	22	15	14	6	58	64	2	5	8	17	360
	Total	27	589	53	59	85	28	207	276	9	16	24	94	1467
-	4:00 PM	3	88	9	10	5	5	20	148	3	15	15	45	366
04	4:15 PM	6	86	5	6	3	9	23	122	9	8	14	61	352
-	4:30 PM	4	89	5	2	5	3	20	136	8	12	20	68	372
04	4:45 PM	10	99	4	6	3	2	27	146	8	17	26	76	424
_	Total	23	362	23	24	16	19	90	552	28	52	75	250	1514
05	5:00 PM	11	98	10	7	7	5	35	162	11	14	29	104	493
05	5:15 PM	8	88	4	5	11	2	35	179	16	7	35	72	462
05	5:30 PM	3	87	9	6	10	2	23	129	13	9	20	53	364
05	5:45 PM	5	75	17	6	6	6	34	139	11	11	16	64	390
	Total	27	348	40	24	34	15	127	609	51	41	100	293	1709
										·				
Gra	nd Total	92	1821	143	130	170	82	525	1632	93	117	201	673	5679
Α	pprch %	4.5	88.6	7.0	34.0	44.5	21.5	23.3	72.5	4.1	11.8	20.3	67.9	
	Total %	1.6	32.1	2.5	2.3	3.0	1.4	9.2	28.7	1.6	2.1	3.5	11.9	

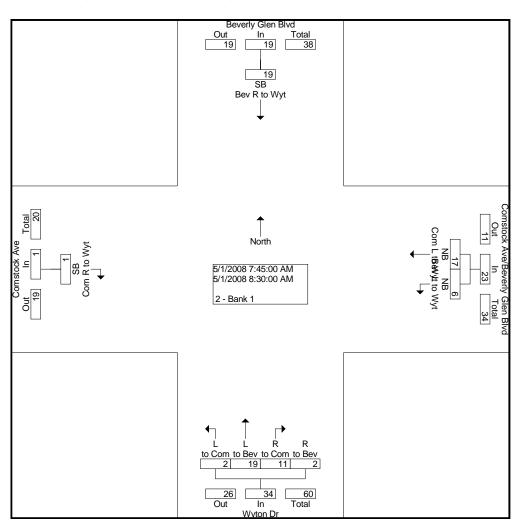

File Name: HilgWyton Site Code: 00000000 Start Date: 1/30/2008

		_	ard Ave hbound			,	ton Dr tbound			_	ard Ave hbound			,	ton Dr tbound		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Fro	m 07:00	AM to	11:45 A	M - Peak	1 of 1												
Intersection	08:00	AM															
Volume	27	589	53	669	59	85	28	172	207	276	9	492	16	24	94	134	1467
Percent	4.0	88.0	7.9		34.3	49.4	16.3		42.1	56.1	1.8		11.9	17.9	70.1		
08:15 Volume	6	149	5	160	14	44	9	67	50	73	2	125	6	7	29	42	394
Peak Factor																	0.931
High Int.	08:00	AM			08:15	AM			08:15	AM			08:15	AM			
Volume	10	169	10	189	14	44	9	67	50	73	2	125	6	7	29	42	
Peak Factor				0.885				0.642				0.984				0.798	

File Name: HilgWyton Site Code: 00000000 Start Date: 1/30/2008

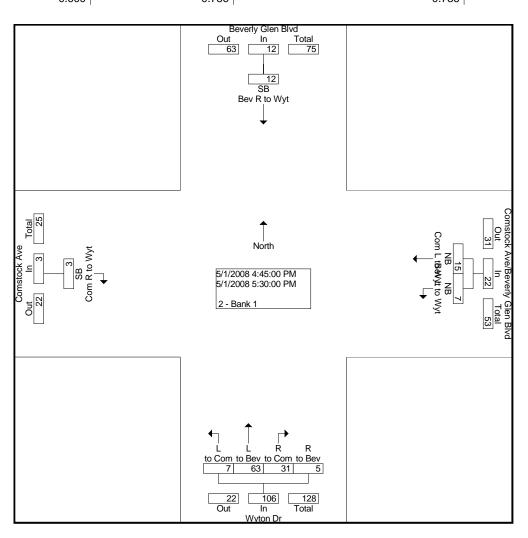
		U	ard Ave hbound			,	on Dr tbound				ard Ave nbound			,	ton Dr tbound		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Fro	m 12:00	PM to	05:45 P	M - Peak	1 of 1											•	
Intersection	04:30	PM															
Volume	33	374	23	430	20	26	12	58	117	623	43	783	50	110	320	480	1751
Percent	7.7	87.0	5.3		34.5	44.8	20.7		14.9	79.6	5.5		10.4	22.9	66.7		
05:00 Volume	11	98	10	119	7	7	5	19	35	162	11	208	14	29	104	147	493
Peak Factor																	0.888
High Int.	05:00	PM			05:00	PM			05:15	PM			05:00	PM			
Volume	11	98	10	119	7	7	5	19	35	179	16	230	14	29	104	147	
Peak Factor				0.903				0.763				0.851				0.816	

File Name: Wyton_2 Site Code: 00000000 Start Date: 5/1/2008


Page No : 1

Groups Printed- 2 - Bank 1

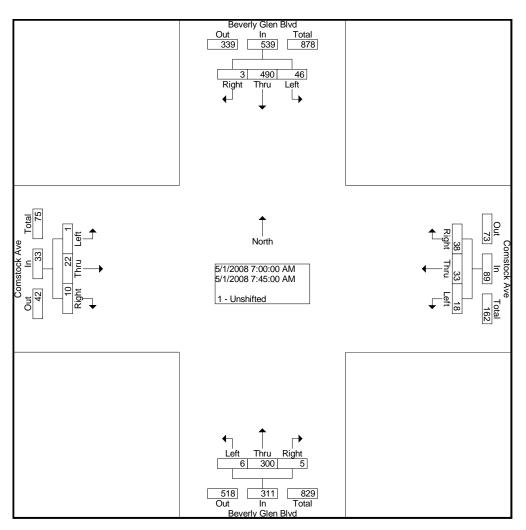
			0.00	ps i filited 2	Dank 1				
	Beverly Glen Blvd Southboun d	Comstock A Glen West			Wyto Northb	on Dr bound		Comstock Ave Eastbound	
Start Time	SB Bev R to Wyt	NB Bev L to Wyt	NB Com L to Wyt	L to Com	L to Bev	R to Com	R to Bev	SB Com R to Wyt	Int. Total
Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
07:00 AM	1	0	1	2	0	0	1	0	5
07:15 AM	2	0	1	0	3	2	0	0	8
07:30 AM	1	2	5	0	2	1	1	1	13
07:45 AM	4	0	5	0	3	2	0	0	14
Total	8	2	12	2	8	5	2	1	40
08:00 AM	9	1	5	0	6	2	0	0	23
08:15 AM	5	2	4	1	6	2 5 2	1	1	25
08:30 AM	1	3	3	1	4	2	1	0	15
08:45 AM	0	0	3	0	2	2	1	0	<u>8</u> 71
Total	15	6	15	2	18	11	3	1	71
			- 1						
04:00 PM	8	5	3	1	8	4	8	1	38
04:15 PM	6	0	9	0	12	5	2	1	35
04:30 PM	1	0	8	1	15	3	0	0	28
04:45 PM	4	1	5	1	13	3	1	1	29
Total	19	6	25	3	48	15	11	3	130
05:00 PM	0	4	2	4	18	9	2	0	39
05:15 PM	5	1	2 2	2	10	7	0	1	28
05:30 PM	3	1	6	0	22	12	2	1	47
05:45 PM	1	0	3	2	5	4	2	0	17
Total	9	6	13	8	55	32	6	2	131
			- 1					'	
Grand Total	51	20	65	15	129	63	22	7	372
Apprch %	100.0	23.5	76.5	6.6	56.3	27.5	9.6	100.0	
Total %	13.7	5.4	17.5	4.0	34.7	16.9	5.9	1.9	


File Name: Wyton_2 Site Code: 00000000 Start Date: 5/1/2008

	Beverly G South			tock Ave/E Glen Blvd Westbound	,		ı	Wyton D Northbou			Comstoo Eastbo		
Start Time	SB Bev R to Wyt	App. Total	NB Bev L to Wyt	NB Com L to Wyt	App. Total	L to Com	L to Bev	R to Com	R to Bev	App. Total	SB Com R to Wyt	App. Total	Int. Total
Peak Hour From 0	7:00 AM to	o 11:45 AN	И - Peak	1 of 1		•	•	•					
Intersection	07:45 AM	l											
Volume	19	19	6	17	23	2	19	11	2	34	1	1	77
Percent	100.0		26.1	73.9		5.9	55.9	32.4	5.9		100.0		
08:15 Volume	5	5	2	4	6	1	6	5	1	13	1	1	25
Peak Factor													0.770
High Int.	08:00 AM	l	08:00 Al	M		08:15 AN	Л				08:15 AM		
Volume	9	9	1	5	6	1	6	5	1	13	1	1	
Peak Factor		0.528			0.958					0.654		0.250	

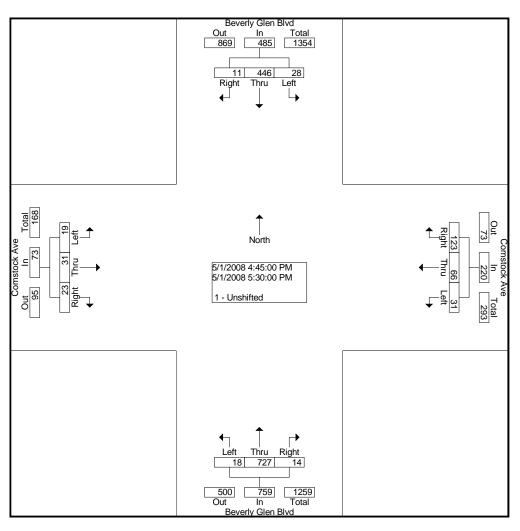
File Name: Wyton_2 Site Code: 00000000 Start Date: 5/1/2008

	Beverly G Southb			tock Ave/E Glen Blvd Vestbound			ı	Wyton D Northbou			Comstoo		
Start Time	SB Bev R to Wyt	App. Total	NB Bev L to Wyt	NB Com L to Wyt	App. Total	L to Com	L to Bev	R to Com	R to Bev	App. Total	SB Com R to Wyt	App. Total	Int. Total
Peak Hour From 1	2:00 PM to	05:45 PN	M - Peak 1	l of 1									
Intersection	04:45 PM												
Volume	12	12	7	15	22	7	63	31	5	106	3	3	143
Percent	100.0		31.8	68.2		6.6	59.4	29.2	4.7		100.0		
05:30 Volume	3	3	1	6	7	0	22	12	2	36	1	1	47
Peak Factor													0.761
High Int.	05:15 PM		05:30 PN	Л		05:30 PN	Λ				04:45 PM		
Volume	5	5	1	6	7	0	22	12	2	36	1	1	
Peak Factor		0.600			0.786					0.736		0.750	


File Name: BevCom_2 Site Code : 00000000 Start Date : 5/1/2008 Page No : 1

_			
Crounce	Printod-	1 ₋ I	Unshifted

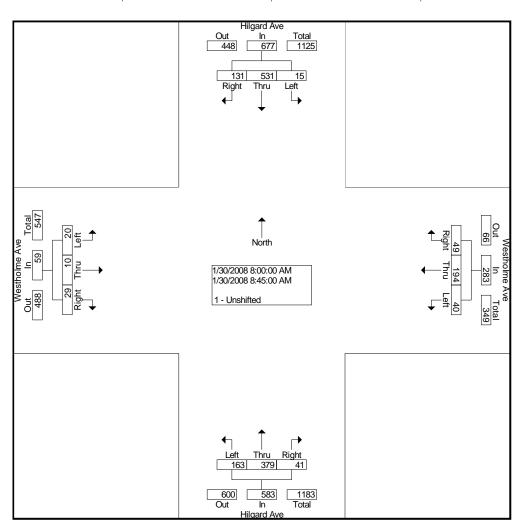
_								- Unamile						
		Beve	rly Glen B	lvd	Con	nstock Av	'e	Beve	rly Glen E	Blvd	Con	nstock Av	е	
			outhbound		W	estbound		N	orthbound		Ea	astbound		
	Start Time	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Int. Total
	Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
	07:00 AM	16	127	2	2	9	9	0	63	2	0	3	0	233
	07:15 AM	9	147	0	3	9	18	2	66	2	0	4	0	260
	07:30 AM	9	111	1	5	5	4	1	57	1	0	4	2	200
	07:45 AM	12	105	0	8	10	7	3	114	0	1	11	8	279
	Total	46	490	3	18	33	38	6	300	5	1	22	10	972
										1				
	08:00 AM	6	84	5	4	11	9	3	52	0	0	7	0	181
	08:15 AM	5	81	4	11	14	17	0	64	2	2	10	2	212
	08:30 AM	7	98	3	2	15	3	3	58	0	0	8	2	199
_	08:45 AM	14	107	2	7	5	3	3	67	1	1_	5	2	217
	Total	32	370	14	24	45	32	9	241	3	3	30	6	809
	04.00 514	4.0	4.40				00		4=0		_		40	070
	04:00 PM	12	113	2 2	11	8	32	4	172	3	5	0	10	372
	04:15 PM	12	119	2	2	9	27	3	173	3	4	6	6	366
	04:30 PM	3	101	1	5	12	23	10	161	0	2	7	4	329
_	04:45 PM	5	99	3	6	15	24	6	175	2	1	9	4	349
	Total	32	432	8	24	44	106	23	681	8	12	22	24	1416
	05:00 DM	•	444	0	•	40	00	_	404	0	0	0	0	004
	05:00 PM	9	111	2 2	9	13	29	5	191	2 7	3	8	9	391
	05:15 PM	4	113	4	8	11 27	37	6	188		5	6	7	394
	05:30 PM	10	123	- 1	8		33	1	173	3	10	8	3	403
_	05:45 PM	0	57	14	5	16	23	6	110	4	10	2	3	241
	Total	23	404	22	30	67	122	18	662	16	19	24	22	1429
	Grand Total	133	1696	47	06	189	298	EG	1001	32	25	00	62	4606
					96 46.5			56	1884		35	98	- 1	4626
	Apprch %	7.1	90.4	2.5	16.5	32.4	51.1	2.8	95.5	1.6	17.9	50.3	31.8	
	Total %	2.9	36.7	1.0	2.1	4.1	6.4	1.2	40.7	0.7	8.0	2.1	1.3	


File Name : BevCom_2 Site Code : 00000000 Start Date : 5/1/2008

	Е	•	Glen Bl	vd			ock Ave)	Е	•	Glen Bl	vd			tock Ave	e	
		Souti	nbound			vves	tbound			Norti	nbound			East	bound		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Fro	m 07:0	0 AM to	11:45	AM - Pea	k 1 of 1												
Intersection	07:00	AM															
Volume	46	490	3	539	18	33	38	89	6	300	5	311	1	22	10	33	972
Percent	8.5	90.9	0.6		20.2	37.1	42.7		1.9	96.5	1.6		3.0	66.7	30.3		
07:45 Volume	12	105	0	117	8	10	7	25	3	114	0	117	1	11	8	20	279
Peak Factor																	0.871
High Int.	07:15	AM			07:15	AM			07:45	AM			07:45	AM			
Volume	9	147	0	156	3	9	18	30	3	114	0	117	1	11	8	20	
Peak Factor				0.864				0.742				0.665				0.413	

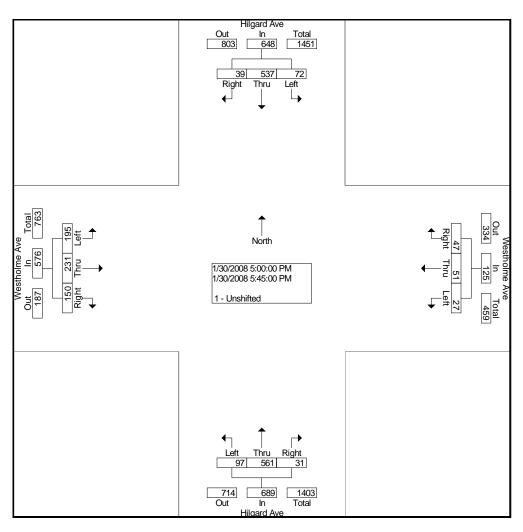
File Name : BevCom_2 Site Code : 00000000 Start Date : 5/1/2008

	Е	Beverly	Glen Blv	/d		Comst	ock Ave)	Е	Beverly	Glen Bl	vd		Comst	tock Ave)	
		Soutl	nbound			West	tbound			North	nbound			East	tbound		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Fro	m 12:0	0 PM to	05:45 F	PM - Pea	k 1 of 1												
Intersection	04:45	PM															
Volume	28	446	11	485	31	66	123	220	18	727	14	759	19	31	23	73	1537
Percent	5.8	92.0	2.3		14.1	30.0	55.9		2.4	95.8	1.8		26.0	42.5	31.5		
05:30 Volume	10	123	4	137	8	27	33	68	1	173	3	177	10	8	3	21	403
Peak Factor																	0.953
High Int.	05:30	PM			05:30	PM			05:15	PM			05:30	PM			
Volume	10	123	4	137	8	27	33	68	6	188	7	201	10	8	3	21	
Peak Factor				0.885				0.809				0.944				0.869	


File Name: HilgWest Site Code: 00000000 Start Date: 1/30/2008

Page No : 1

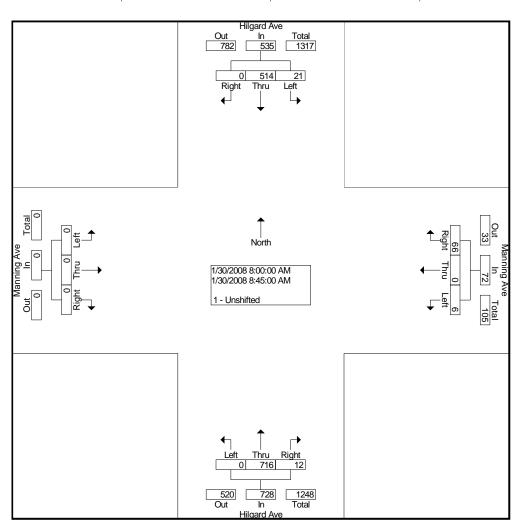
					Oroupo i		Onlonnito	u					
		Igard Ave		Wes	stholme Av	ve		ilgard Ave		Wes	tholme Av	/e	
	Sc	outhbound		W	estbound		N	orthbound		E	astbound		
Start Time	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Int. Total
Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
 07:00 AM	1	107	19	0	12	9	11	39	2	3	1	3	207
07:15 AM	3	96	21	5	12	5	14	61	4	6	0	2	229
07:30 AM	0	104	22	6	13	13	15	53	3	1	2	5	237
07:45 AM	4	121	47	3	36	15	32	79	3	1	2	8	351
Total	8	428	109	14	73	42	72	232	12	11	5	18	1024
08:00 AM	3	121	40	8	53	8	42	96	7	6	4	8	396
08:15 AM	4	133	24	16	45	13	53	92	22	5	2	3	412
08:30 AM	6	138	42	8	51	15	34	90	4	5	2	8	403
08:45 AM	2	139	25	8	45	13	34	101	8	4	2	10	391
Total	15	531	131	40	194	49	163	379	41	20	10	29	1602
04:00 PM	13	116	11	4	4	11	24	128	7	40	19	22	399
04:15 PM	10	110	9	5	4	19	22	112	5	27	25	31	379
04:30 PM	9	134	10	10	8	4	34	98	1	46	26	29	409
 04:45 PM	26	123	4	3	5	10	28	121	3	43	29	28	423
Total	58	483	34	22	21	44	108	459	16	156	99	110	1610
05:00 PM	26	151	14	4	20	7	28	130	8	55	73	45	561
05:15 PM	15	158	9	8	9	16	18	161	4	70	99	43	610
05:30 PM	17	122	7	4	11	12	17	122	10	33	33	35	423
05:45 PM	14	106	9	11	11	12	34	148	9	37	26	27	444
Total	72	537	39	27	51	47	97	561	31	195	231	150	2038
Grand Total	153	1979	313	103	339	182	440	1631	100	382	345	307	6274
Apprch %	6.3	80.9	12.8	16.5	54.3	29.2	20.3	75.1	4.6	36.9	33.4	29.7	
Total %	2.4	31.5	5.0	1.6	5.4	2.9	7.0	26.0	1.6	6.1	5.5	4.9	


File Name: HilgWest Site Code: 00000000 Start Date: 1/30/2008

			ard Ave				olme Av tbound	е			ard Ave				olme Ave	Э	
		Jour	IIDOUIIU			VV 65	ibouriu			INOIL	ibouriu			Lasi	bouriu		
Start Time	Left	Thru	Right	App.	Left	Thru	Right	App.	Left	Thru	Right	App.	Left	Thru	Right	App.	Int.
Otan Time	Loit	111114	rtigitt	Total	Lon	IIIIu	Trigiti	Total	LCIT	IIIIu	rtigitt	Total	LCIT	IIIIu	Kigiit	Total	Total
Peak Hour Fro	m 07:00	AM to	11:45 /	AM - Peak	1 of 1										· · · · ·	'	
Intersection	08:00	AM															
Volume	15	531	131	677	40	194	49	283	163	379	41	583	20	10	29	59	1602
Percent	2.2	78.4	19.4		14.1	68.6	17.3		28.0	65.0	7.0		33.9	16.9	49.2		
08:15	4	400	0.4	404	40	45	40	71		00	20	407	_	0	2	40	440
Volume	4	133	24	161	16	45	13	74	53	92	22	167	5	2	3	10	412
Peak Factor																	0.972
High Int.	08:30	AM			08:15	AM			08:15	AM			08:00	AM			
Volume	6	138	42	186	16	45	13	74	53	92	22	167	6	4	8	18	
Peak Factor				0.910				0.956				0.873				0.819	

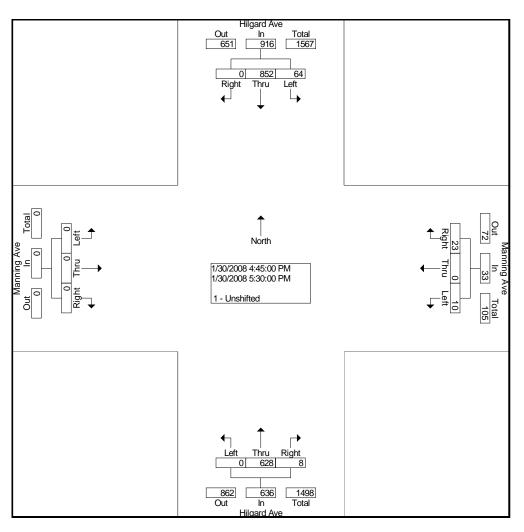
File Name: HilgWest Site Code: 00000000 Start Date: 1/30/2008

		U	ard Ave				olme Av tbound	е			ard Ave				olme Ave	Э	
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Fro	m 12:00	PM to	05:45 P	M - Peak	1 of 1											•	
Intersection	05:00	PM															
Volume	72	537	39	648	27	51	47	125	97	561	31	689	195	231	150	576	2038
Percent	11.1	82.9	6.0		21.6	40.8	37.6		14.1	81.4	4.5		33.9	40.1	26.0	İ	
05:15 Volume	15	158	9	182	8	9	16	33	18	161	4	183	70	99	43	212	610
Peak Factor																	0.835
High Int.	05:00	PM			05:45	PM			05:45	PM			05:15	PM			
Volume	26	151	14	191	11	11	12	34	34	148	9	191	70	99	43	212	
Peak Factor				0.848				0.919				0.902				0.679	


File Name: Hilmann Site Code: 00000000 Start Date: 1/30/2008

Page No : 1

		ilgard Ave			nning Ave			ilgard Ave			nning Ave	;	
		outhbound			estbound			orthbound			astbound		
Start Time	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Int. Total
Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
07:00 AM	0	79	0	0	0	12	0	55	0	0	0	0	146
07:15 AM	1	84	0	1	0	12	0	82	1	0	0	0	181
07:30 AM	0	103	0	1	0	8	0	105	1	0	0	0	218
 07:45 AM	0	97	0	1	0	13	0	138	1	0	0	0	250
Total	1	363	0	3	0	45	0	380	3	0	0	0	795
08:00 AM	6	108	0	2	0	21	0	175	0	0	0	0	312
08:15 AM	4	136	0	1	0	17	0	197	5	0	0	0	360
08:30 AM	3	140	0	1	0	19	0	174	3	0	0	0	340
08:45 AM	8	130	0	2	0	9	0	170	4	0	0	0	323
Total	21	514	0	6	0	66	0	716	12	0	0	0	1335
			,										
04:00 PM	11	166	0	1	0	10	0	151	3	0	0	0	342
04:15 PM	12	184	0	3	0	5	0	156	3	0	0	0	363
04:30 PM	20	174	0	5	0	5	0	138	3	0	0	0	345
04:45 PM	17	188	0	2	0	6	0	147	5	0	0	0	365
Total	60	712	0	11	0	26	0	592	14	0	0	0	1415
									'				
05:00 PM	10	227	0	2	0	6	0	160	0	0	0	0	405
05:15 PM	16	235	0	3	0	9	0	181	2	0	0	0	446
05:30 PM	21	202	0	3	0	2	0	140	1	0	0	0	369
05:45 PM	21	170	0	1	0	9	0	156	6	0	0	0	363
Total	68	834	0	9	0	26	0	637	9	0	0	0	1583
			- 1	-		- 1			- 1		-	- 1	
Grand Total	150	2423	0	29	0	163	0	2325	38	0	0	0	5128
Apprch %	5.8	94.2	0.0	15.1	0.0	84.9	0.0	98.4	1.6	0.0	0.0	0.0	
Total %	2.9	47.3	0.0	0.6	0.0	3.2	0.0	45.3	0.7	0.0	0.0	0.0	
				-		- 1			- 1			1	

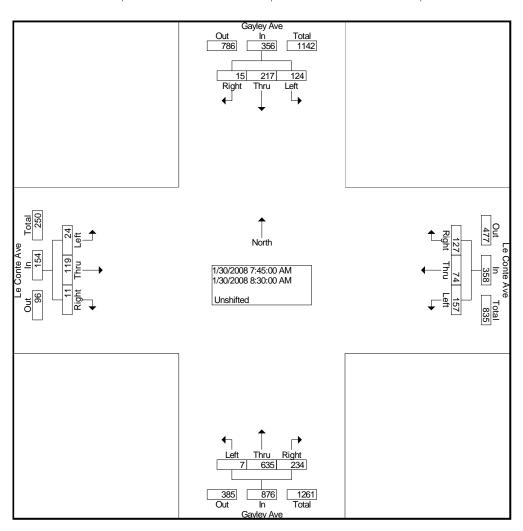

File Name: Hilmann Site Code: 00000000 Start Date: 1/30/2008

		_	ard Ave				ing Ave tbound				ard Ave				ing Ave		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Fro	m 07:00	AM to	11:45 A	M - Peak	1 of 1											•	
Intersection	08:00	AM															
Volume	21	514	0	535	6	0	66	72	0	716	12	728	0	0	0	0	1335
Percent	3.9	96.1	0.0		8.3	0.0	91.7		0.0	98.4	1.6		0.0	0.0	0.0		
08:15 Volume	4	136	0	140	1	0	17	18	0	197	5	202	0	0	0	0	360
Peak Factor																	0.927
High Int.	08:30	AM			08:00	AM			08:15	AM			6:45:0	0 AM			
Volume	3	140	0	143	2	0	21	23	0	197	5	202					
Peak Factor				0.935				0.783				0.901					

File Name: Hilmann Site Code: 00000000 Start Date: 1/30/2008

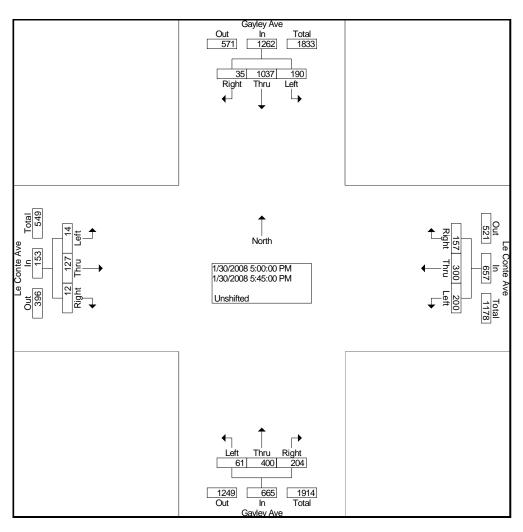
		_	ard Ave hbound				ing Ave tbound			_	ard Ave nbound				ing Ave		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Fro	m 12:00	PM to	05:45 P	M - Peak	1 of 1											•	
Intersection	04:45	PM															
Volume	64	852	0	916	10	0	23	33	0	628	8	636	0	0	0	0	1585
Percent	7.0	93.0	0.0		30.3	0.0	69.7		0.0	98.7	1.3		0.0	0.0	0.0		
05:15 Volume	16	235	0	251	3	0	9	12	0	181	2	183	0	0	0	0	446
Peak Factor																	0.888
High Int.	05:15	PM			05:15	PM			05:15	PM							
Volume	16	235	0	251	3	0	9	12	0	181	2	183					
Peak Factor				0.912				0.688				0.869					

File Name : GayLeConte Site Code : 00000000


Start Date : 1/30/2008

Page No : 1

		6	ayley Ave		1.0	Conte Av	<u> </u>		ayley Ave		Lo	Conte Ave		
			outhbound			estbound			orthbound			astbound	-	
	Start Time	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Int. Total
	Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	III. Total
	07:00 AM	28	52	1.0	35	5	30	1.0	123	37	3	1.0	0	331
	07:00 AM 07:15 AM	24	41	2	46	7	25	2	156	45	3	15	0	366
	07:30 AM	20	50	4	54	13	38	0	134	58	8	23	2	401
	07:45 AM	28	43	4	50	24	32	0	210	50	4	23 27	4	476
_	Total	100	186	8	185	49	125	3	623	190	18	81	6	1574
	Total	100	100	0	100	43	125	3	023	130	10	01	0	1374
	08:00 AM	38	62	9	32	12	36	3	144	57	7	39	3	442
	08:15 AM	27	55	1	31	21	26	2	144	61	9	27	3	407
	08:30 AM	31	57	1	44	17	33	2	137	66	4	26	1	419
	08:45 AM	34	74	1	35	11	29	1	142	69	5	41	1	443
	Total	130	248	12	142	61	124	8	567	253	25	133	8	1711
							,							
	04:00 PM	48	287	8	54	62	32	9	94	54	5	24	2	679
	04:15 PM	35	234	3	37	54	27	3	69	35	1	19	4	521
	04:30 PM	44	230	7	64	75	38	17	85	50	6	17	1	634
	04:45 PM	45	242	10	64	62	40	15	86	40	6	28	2	640
	Total	172	993	28	219	253	137	44	334	179	18	88	9	2474
	05:00 PM	47	312	9	58	87	37	13	91	57	2	23	4	740
	05:15 PM	47	251	10	45	75	31	15	88	47	3	36	2	650
	05:30 PM	52	234	8	56	61	46	23	118	42	5	35	4	684
	05:45 PM	44	240	8	41	77	43	10	103	58	4	33	2	663
	Total	190	1037	35	200	300	157	61	400	204	14	127	12	2737
	Grand Total	592	2464	83	746	663	543	116	1924	826	75	429	35	8496
	Apprch %	18.9	78.5	2.6	38.2	34.0	27.8	4.0	67.1	28.8	13.9	79.6	6.5	
	Total %	7.0	29.0	1.0	8.8	7.8	6.4	1.4	22.6	9.7	0.9	5.0	0.4	

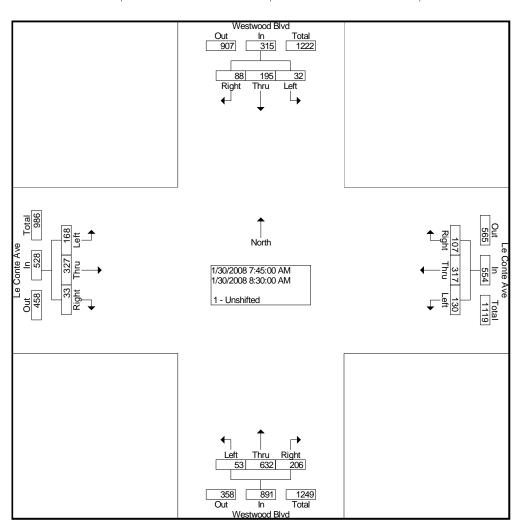

File Name : GayLeConte Site Code : 00000000 Start Date : 1/30/2008

		•	ey Ave hbound				nte Ave tbound				ey Ave				nte Ave		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Fro	m 07:00	AM to	11:45 A	AM - Peak	1 of 1											•	
Intersection	07:45	AM															
Volume	124	217	15	356	157	74	127	358	7	635	234	876	24	119	11	154	1744
Percent	34.8	61.0	4.2		43.9	20.7	35.5		0.8	72.5	26.7		15.6	77.3	7.1		
07:45	28	43	4	75	50	24	32	106	0	210	50	260	4	27	4	35	476
Volume																	0.040
Peak Factor																	0.916
High Int.	08:00	AM			07:45	AM			07:45	AM			08:00	AM			
Volume	38	62	9	109	50	24	32	106	0	210	50	260	7	39	3	49	
Peak Factor				0.817				0.844				0.842				0.786	

File Name : GayLeConte Site Code : 00000000 Start Date : 1/30/2008

			ey Ave hbound				nte Ave tbound			•	ey Ave hbound				nte Ave bound		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Fro	m 12:00	PM to	05:45 P	M - Peak	1 of 1											•	
Intersection	05:00	PM															
Volume	190	1037	35	1262	200	300	157	657	61	400	204	665	14	127	12	153	2737
Percent	15.1	82.2	2.8		30.4	45.7	23.9		9.2	60.2	30.7		9.2	83.0	7.8		
05:00 Volume	47	312	9	368	58	87	37	182	13	91	57	161	2	23	4	29	740
Peak Factor																	0.925
High Int.	05:00	PM			05:00	PM			05:30	PM			05:30	PM			
Volume	47	312	9	368	58	87	37	182	23	118	42	183	5	35	4	44	
Peak Factor				0.857				0.902				0.908				0.869	

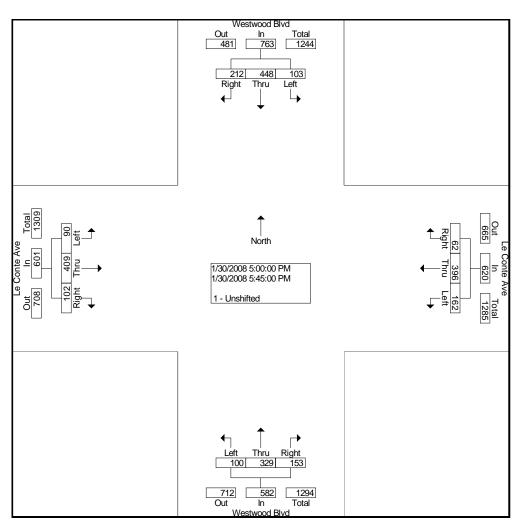
File Name: WestLeConte


Site Code : 00000000 Start Date : 1/30/2008

Page No : 1

		Wes	stwood Blv	/d	Le (Conte Ave	е	We	stwood Bl	vd	Le	Conte Ave)	
		Sc	outhbound		W	estbound		N	orthbound		Е	astbound		
	Start Time	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Int. Total
	Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
	07:00 AM	4	36	20	22	48	16	10	131	24	26	45	4	386
	07:15 AM	3	31	23	36	67	28	11	129	48	37	39	12	464
	07:30 AM	4	54	16	30	84	26	6	150	51	38	55	10	524
	07:45 AM	9	55	34	37	92	34	15	177	56	44	65	5	623
	Total	20	176	93	125	291	104	42	587	179	145	204	31	1997
										. 1				
	08:00 AM	6	44	21	33	71	21	20	145	51	38	89	6	545
	08:15 AM	7	45	13	30	80	30	9	153	40	38	96	12	553
	08:30 AM	10	51	20	30	74	22	9	157	59	48	77	10	567
	08:45 AM	18	60	21	27	68	19	23	116	37	36	58	10	493
	Total	41	200	75	120	293	92	61	571	187	160	320	38	2158
	04:00 DM	0.4	7.4	50	44	00	40	40	07	50	20	407	47	000
	04:00 PM	24 27	74	52	41	83	18	19	87	56	28	107	17	606
	04:15 PM		95	45	44	78	22	26	66	39	27	88	25	582
	04:30 PM	26	112	51	36	125	14	17	83	55	22	94	19	654
	04:45 PM	27	90	38	37	75	13	19 81	80	48	15	99	25	566
	Total	104	371	186	158	361	67	81	316	198	92	388	86	2408
	05:00 PM	25	107	60	36	117	13	21	75	40	29	100	21	644
	05:00 FM	31	115	60	40	101	17	19	91	37	15	98	26	650
	05:30 PM	24	117	52	38	80	18	20	77	29	17	102	30	604
	05:45 PM	23	109	40	48	98	14	40	86	47	29	102	25	668
_	Total	103	448	212	162	396	62	100	329	153	90	409	102	2566
	i Jiai	100	770	212	102	550	02	100	323	100	50	400	102	2000
	Grand Total	268	1195	566	565	1341	325	284	1803	717	487	1321	257	9129
	Apprch %	13.2	58.9	27.9	25.3	60.1	14.6	10.1	64.3	25.6	23.6	64.0	12.4	
	Total %	2.9	13.1	6.2	6.2	14.7	3.6	3.1	19.8	7.9	5.3	14.5	2.8	
							. 1			- 1				

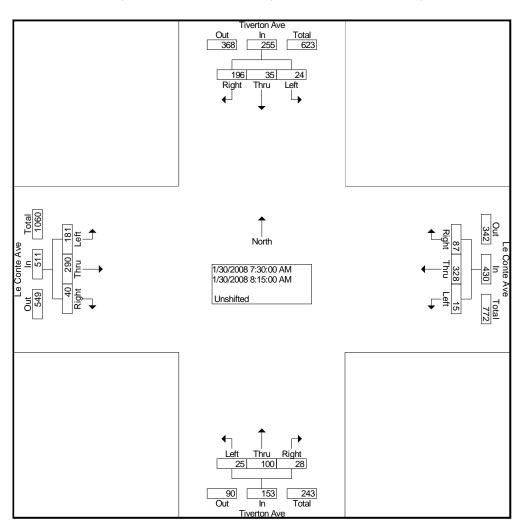
File Name: WestLeConte Site Code: 00000000 Start Date: 1/30/2008


		Westw	ood Blv	d		Le Co	nte Ave			Westw	ood Blv	d		Le Co	nte Ave		
		Sout	hbound			Wes	tbound			North	nbound			East	bound		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour From	m 07:00	AM to	11:45 A	M - Peak	1 of 1										•		
Intersection	07:45	AM															
Volume	32	195	88	315	130	317	107	554	53	632	206	891	168	327	33	528	2288
Percent	10.2	61.9	27.9		23.5	57.2	19.3		5.9	70.9	23.1		31.8	61.9	6.3		
07:45 Volume	9	55	34	98	37	92	34	163	15	177	56	248	44	65	5	114	623
Peak Factor																	0.918
High Int.	07:45	AM			07:45	AM			07:45	AM			08:15	AM			
Volume	9	55	34	98	37	92	34	163	15	177	56	248	38	96	12	146	
Peak Factor				0.804				0.850				0.898				0.904	

File Name: WestLeConte Site Code: 00000000

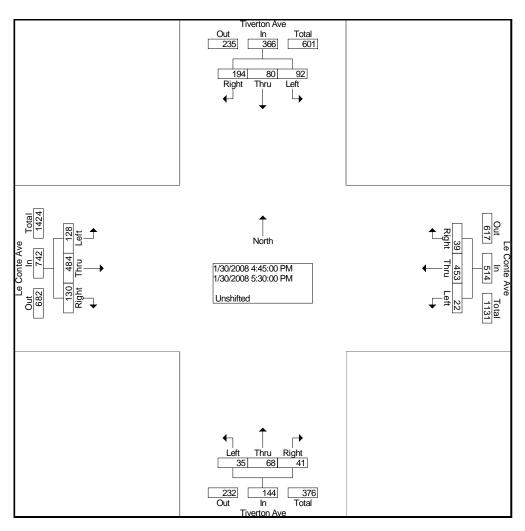
Start Date : 1/30/2008

	Westwood Blvd Southbound				Le Conte Ave Westbound				Westwood Blvd Northbound				Le Conte Ave Eastbound				
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Fro	Peak Hour From 12:00 PM to 05:45 PM - Peak 1 of 1																
Intersection	05:00	PM															
Volume	103	448	212	763	162	396	62	620	100	329	153	582	90	409	102	601	2566
Percent	13.5	58.7	27.8		26.1	63.9	10.0		17.2	56.5	26.3		15.0	68.1	17.0		
05:45 Volume	23	109	40	172	48	98	14	160	40	86	47	173	29	109	25	163	668
Peak Factor																	0.960
High Int.	05:15 PM				05:00 PM				05:45 PM				05:45 PM				
Volume	31	115	60	206	36	117	13	166	40	86	47	173	29	109	25	163	
Peak Factor				0.926				0.934				0.841				0.922	


File Name : TivLeConte Site Code : 00000000 Start Date : 1/30/2008

Page No : 1

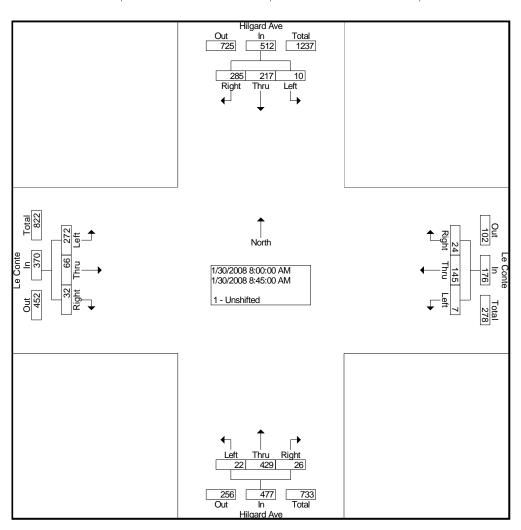
	Tiv	erton Ave		Le (Conte Ave	9		erton Ave	9	Le	Conte Ave	9	
	So	uthbound		W	estbound		No	orthbound		Е	astbound		
Start Time	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Int. Total
Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
07:00 AM	8	7	45	2	60	12	5	19	3	36	25	7	229
07:15 AM	5	6	50	2	61	16	4	26	6	46	37	6	265
07:30 AM	7	14	77	3	75	17	8	27	8	45	51	8	340
07:45 AM	7	10	52	5	87	22	6	29	3	59	69	7	356
Total	27	37	224	12	283	67	23	101	20	186	182	28	1190
	_		a= 1	_		a= 1	_		_ 1				
08:00 AM	7	6	37	2	74	25	6	17	7	41	94	11	327
08:15 AM	3	5	30	5	92	23	5	27	10	36	76	14	326
08:30 AM	3	3	32	3	104	22	5	28	9	45	69	3	326
08:45 AM	2	6	26	7	75	22	5	23	1	55	84	9	315
Total	15	20	125	17	345	92	21	95	27	177	323	37	1294
04:00 PM	24	19	57	6	104	12	10	5	6	28	108	29	408
04:15 PM	17	14	44	5	94	5	12	9	5	20	96	20	341
04:30 PM	11	18	60	7	99	8	6	14	8	36	114	28	409
04:45 PM	22	21	48	6	105	10	6	17	5	36	107	28	411
 Total	74	72	209	24	402	35	34	45	24	120	425	105	1569
. 0.0.			_00			00	٠.	.0	- '	0	0	.00	.000
05:00 PM	23	26	57	4	132	5	11	17	15	36	118	25	469
05:15 PM	31	25	41	8	108	11	8	17	12	27	131	37	456
05:30 PM	16	8	48	4	108	13	10	17	9	29	128	40	430
05:45 PM	18	7	41	7	96	11	6	13	9	23	121	35	387
Total	88	66	187	23	444	40	35	64	45	115	498	137	1742
			·						·				
Grand Total	204	195	745	76	1474	234	113	305	116	598	1428	307	5795
Apprch %	17.8	17.0	65.1	4.3	82.6	13.1	21.2	57.1	21.7	25.6	61.2	13.2	
Total %	3.5	3.4	12.9	1.3	25.4	4.0	1.9	5.3	2.0	10.3	24.6	5.3	


File Name : TivLeConte Site Code : 00000000 Start Date : 1/30/2008

			ton Ave hbound				nte Ave tbound				ton Ave				nte Ave		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Fro	m 07:00	AM to	11:45 /	AM - Peak	1 of 1											•	
Intersection	07:30	AM															
Volume	24	35	196	255	15	328	87	430	25	100	28	153	181	290	40	511	1349
Percent	9.4	13.7	76.9		3.5	76.3	20.2		16.3	65.4	18.3		35.4	56.8	7.8		
07:45 Volume	7	10	52	69	5	87	22	114	6	29	3	38	59	69	7	135	356
Peak Factor																	0.947
High Int.	07:30	AM			08:15	AM			07:30	AM			08:00	AM			
Volume	7	14	77	98	5	92	23	120	8	27	8	43	41	94	11	146	
Peak Factor				0.651				0.896				0.890				0.875	

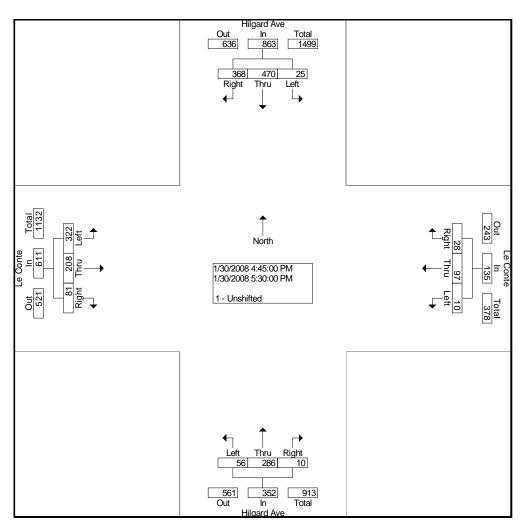
File Name : TivLeConte Site Code : 00000000 Start Date : 1/30/2008

			ton Ave				nte Ave tbound				ton Ave				nte Ave		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Fro	m 12:00	PM to	05:45 F	PM - Peak	1 of 1												
Intersection	04:45	PM															
Volume	92	80	194	366	22	453	39	514	35	68	41	144	128	484	130	742	1766
Percent	25.1	21.9	53.0		4.3	88.1	7.6		24.3	47.2	28.5		17.3	65.2	17.5		
05:00 Volume	23	26	57	106	4	132	5	141	11	17	15	43	36	118	25	179	469
Peak Factor																	0.941
High Int.	05:00	PM			05:00	PM			05:00	PM			05:30	PM			
Volume	23	26	57	106	4	132	5	141	11	17	15	43	29	128	40	197	
Peak Factor				0.863				0.911				0.837				0.942	


File Name : HilLeConte Site Code : 00000000 Start Date : 1/30/2008

Page No : 1

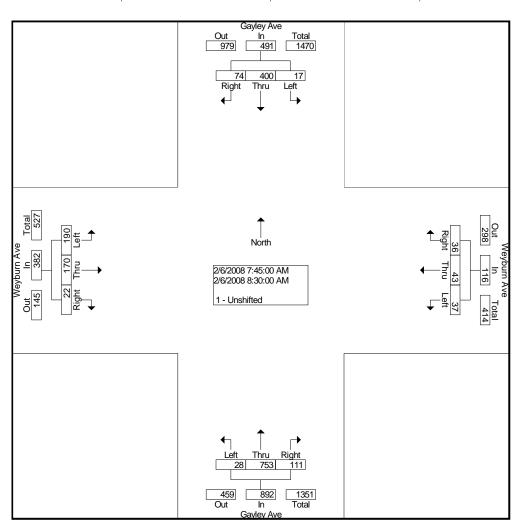
		Taranal Arra				mileu- i	- Orisilited				- 01-		
	Н	ilgard Ave			e Conte			ilgard Ave			e Conte		
		outhbound			estbound			orthbound			astbound		
Start Time	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Int. Total
Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
07:00 AM	0	36	45	2	21	4	11	34	1	21	2	5	182
07:15 AM	0	36	50	1	22	4	5	50	5	30	7	7	217
07:30 AM	2	34	71	1	20	6	6	54	6	49	9	5	263
07:45 AM	0	45	53	4	39	11	24	68	5	61	17	8	335
Total	2	151	219	8	102	25	46	206	17	161	35	25	997
08:00 AM	2	51	57	2	36	5	6	105	11	69	20	8	372
08:15 AM	4	53	75	2	39	7	8	120	5	78	20	7	418
08:30 AM	2	62	78	1	43	8	8	101	6	58	14	9	390
08:45 AM	2	51	75	2	27	4	0	103	4	67	12	8	355
Total	10	217	285	7	145	24	22	429	26	272	66	32	1535
			'			'			'				
04:00 PM	1	88	82	2	28	8	17	56	5	93	38	14	432
04:15 PM	2	103	81	3	22	4	15	74	2	82	44	19	451
04:30 PM	2	107	73	4	30	10	12	62	4	67	42	16	429
04:45 PM	3	106	83	0	27	7	12	64	0	85	46	27	460
Total	8	404	319	9	107	29	56	256	11	327	170	76	1772
			1			- 1			1			- 1	
05:00 PM	10	120	104	4	22	10	17	72	0	82	49	14	504
05:15 PM	8	140	91	4	26	9	13	87	7	81	56	20	542
05:30 PM	4	104	90	2	22	2	14	63	3	74	57	20	455
05:45 PM	4	94	71	2	30	3	13	75	7	82	39	15	435
Total	26	458	356	12	100	24	57	297	17	319	201	69	1936
. • • • • • • • • • • • • • • • • • • •			000			,	٠.	_0.		0.0	_0.	00	.000
Grand Total	46	1230	1179	36	454	102	181	1188	71	1079	472	202	6240
Apprch %	1.9	50.1	48.0	6.1	76.7	17.2	12.6	82.5	4.9	61.6	26.9	11.5	02.0
Total %	0.7	19.7	18.9	0.6	7.3	1.6	2.9	19.0	1.1	17.3	7.6	3.2	
i Stai 70	0.7	10.7	10.0	0.0	7.0	1.0	2.0	10.0			7.0	0.2	


File Name : HilLeConte Site Code : 00000000 Start Date : 1/30/2008

			ard Ave				Conte				rd Ave				Conte		
		Souti	hbound			vv es	tbound			Nortr	nbound			East	bound		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Fro	m 07:00	AM to	11:45 A	M - Peak	1 of 1												
Intersection	08:00	AM															
Volume	10	217	285	512	7	145	24	176	22	429	26	477	272	66	32	370	1535
Percent	2.0	42.4	55.7		4.0	82.4	13.6		4.6	89.9	5.5		73.5	17.8	8.6		
08:15	4	53	75	132	2	39	7	48	8	120	5	133	78	20	7	105	418
Volume		•			_		•			0	•				•		
Peak Factor																	0.918
High Int.	08:30	AM			08:30	AM			08:15	AM			08:15	AM			
Volume	2	62	78	142	1	43	8	52	8	120	5	133	78	20	7	105	
Peak Factor				0.901				0.846				0.897				0.881	

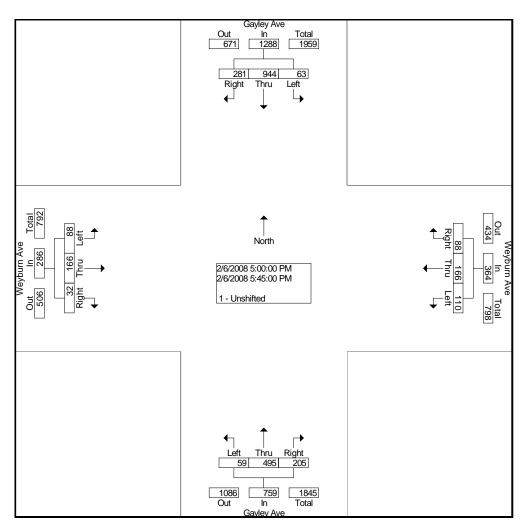
File Name: HilLeConte Site Code: 00000000 Start Date: 1/30/2008

		_	ard Ave				Conte tbound				ard Ave				Conte tbound		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Fro	m 12:00	PM to	05:45 F	M - Peak	1 of 1												
Intersection	04:45	PM															
Volume	25	470	368	863	10	97	28	135	56	286	10	352	322	208	81	611	1961
Percent	2.9	54.5	42.6		7.4	71.9	20.7		15.9	81.3	2.8		52.7	34.0	13.3		
05:15 Volume	8	140	91	239	4	26	9	39	13	87	7	107	81	56	20	157	542
Peak Factor																	0.905
High Int.	05:15	PM			05:15	PM			05:15	PM			04:45	PM			
Volume	8	140	91	239	4	26	9	39	13	87	7	107	85	46	27	158	
Peak Factor				0.903				0.865				0.822				0.967	


File Name: gayWey Site Code: 00000000 Start Date: 2/6/2008

Page No : 1

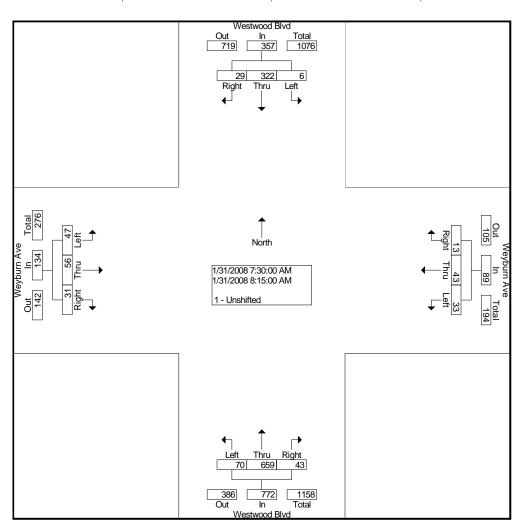
	G	ayley Ave		We	yburn Ave		G.	ayley Ave		We	yburn Ave	2	
		outhbound			estbound	,		orthbound			astbound		
Start Time	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Int. Total
Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
07:00 AM	6	71	17	16	10	6	2	138	17	27	28	10	348
07:15 AM	3	90	21	6	11	8	4	135	21	59	25	8	391
07:30 AM	7	102	23	8	17	4	1	183	28	38	29	4	444
 07:45 AM	4	100	17	7	14	10	7	198	21	51	43	9	481
Total	20	363	78	37	52	28	14	654	87	175	125	31	1664
08:00 AM	7	102	22	9	9	11	5	196	27	46	43	4	481
08:15 AM	3	99	23	9	10	13	8	190	30	46	38	3	472
08:30 AM	3	99	12	12	10	2	8	169	33	47	46	6	447
 08:45 AM	12	115	17	8	9	4	6	149	33	52	50	4	459
Total	25	415	74	38	38	30	27	704	123	191	177	17	1859
04:00 PM	12	179	60	26	44	17	0	102	35	21	21	0	533
04:00 PM 04:15 PM	8	179	49	26 17	32	17	8 14	102	25	7	∠ı 14	8 10	533 463
04:30 PM	o 8	170	64	28	32 45	17	14	102	25	25	14 25	16	590
04:30 PM 04:45 PM	o 12	186	70	20 21	45 33	16	19	119	37	25 28	25 44	8	600
 Total	40	734	243	92	154	65	59	449	123	81	104	42	2186
Total	40	7 54	243	32	134	05	33	443	123	01	104	42	2100
05:00 PM	15	227	81	25	52	19	13	105	44	16	40	12	649
05:15 PM	17	256	70	35	50	18	13	127	41	23	38	4	692
05:30 PM	16	264	76	24	37	29	18	131	44	18	39	7	703
05:45 PM	15	197	54	26	27	22	15	132	76	31	49	9	653
 Total	63	944	281	110	166	88	59	495	205	88	166	32	2697
			- 1			1			1				
Grand Total	148	2456	676	277	410	211	159	2302	538	535	572	122	8406
Apprch %	4.5	74.9	20.6	30.8	45.7	23.5	5.3	76.8	17.9	43.5	46.5	9.9	
Total %	1.8	29.2	8.0	3.3	4.9	2.5	1.9	27.4	6.4	6.4	6.8	1.5	


File Name : gayWey Site Code : 00000000 Start Date : 2/6/2008

			ey Ave			,	urn Ave				ey Ave				urn Ave		
		Sout	hbound			vves	tbound			Norti	nbound			Easi	bound		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Fro	m 07:00	AM to	11:45 A	AM - Peak	(1 of 1												
Intersection	07:45	AM															
Volume	17	400	74	491	37	43	36	116	28	753	111	892	190	170	22	382	1881
Percent	3.5	81.5	15.1		31.9	37.1	31.0		3.1	84.4	12.4		49.7	44.5	5.8		
08:00 Volume	7	102	22	131	9	9	11	29	5	196	27	228	46	43	4	93	481
Peak Factor																	0.978
High Int.	08:00	AM			08:15	AM			08:00	AM			07:45	AM			
Volume	7	102	22	131	9	10	13	32	5	196	27	228	51	43	9	103	
Peak Factor				0.937				0.906				0.978				0.927	

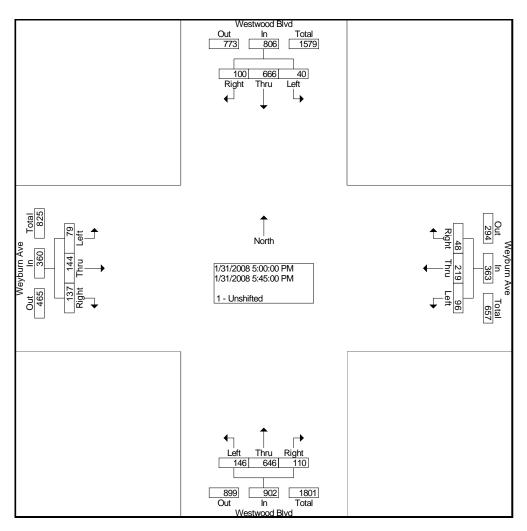
File Name: gayWey Site Code: 00000000 Start Date: 2/6/2008

		•	ey Ave hbound				urn Ave tbound				ey Ave hbound			•	urn Ave bound		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Fro	m 12:00	PM to	05:45 F	PM - Peak	1 of 1											•	
Intersection	05:00	PM															
Volume	63	944	281	1288	110	166	88	364	59	495	205	759	88	166	32	286	2697
Percent	4.9	73.3	21.8		30.2	45.6	24.2		7.8	65.2	27.0		30.8	58.0	11.2		
05:30 Volume	16	264	76	356	24	37	29	90	18	131	44	193	18	39	7	64	703
Peak Factor																	0.959
High Int.	05:30	PM			05:15	PM			05:45	PM			05:45	PM			
Volume	16	264	76	356	35	50	18	103	15	132	76	223	31	49	9	89	
Peak Factor				0.904				0.883				0.851				0.803	


File Name: WestWey Site Code: 00000000 Start Date: 1/31/2008

Page No : 1

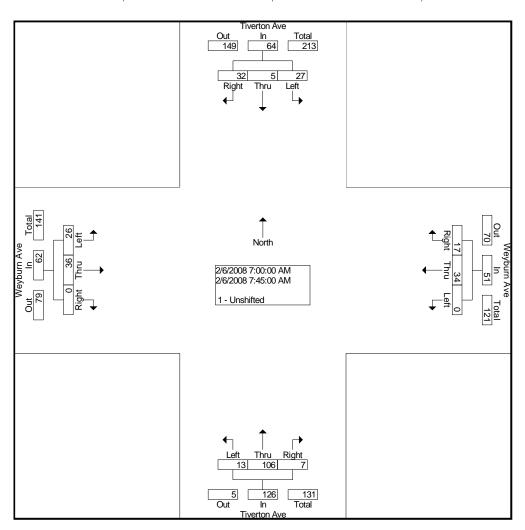
		stwood Bly			yburn Av	е		stwood Bl			yburn Ave	Э	
		outhbound			estbound			orthbound			astbound		
Start Time	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Int. Total
Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
07:00 AM	2	53	4	13	11	2	14	133	12	14	18	10	286
07:15 AM	1	73	8	6	5	3	18	162	19	8	5	10	318
07:30 AM	2	86	7	8	13	1	16	173	6	13	5	10	340
07:45 AM	0	80	10	7	5	8	28	180	13	11	16	8	366
Total	5	292	29	34	34	14	76	648	50	46	44	38	1310
08:00 AM	1	81	6	7	14	3	10	149	10	8	19	5	313
08:15 AM	3	75	6	11	11	1	16	157	14	15	16	8	333
08:30 AM	2	59	1	7	13	6	13	170	17	12	9	7	316
08:45 AM	2	80	5	8	7	2	16	164	14	8	15	7	328
Total	8	295	18	33	45	12	55	640	55	43	59	27	1290
			1			_ 1			1			1	
04:00 PM	3	176	21	17	39	7	21	132	26	12	18	24	496
04:15 PM	6	145	15	17	23	4	24	128	12	21	21	31	447
04:30 PM	5	161	17	25	48	6	27	151	19	17	24	25	525
04:45 PM	4	170	17	21	36	17	34	140	20	25	21	31	536
Total	18	652	70	80	146	34	106	551	77	75	84	111	2004
05:00 PM	10	181	33	24	50	5	26	137	27	27	32	41	593
05:15 PM	16	195	29	29	58	10	39	171	26	16	40	30	659
05:30 PM	7	137	17	20	52	16	34	152	26	16	38	25	540
05:45 PM	7	153	21	23	59	17	47	186	31	20	34	41	639
Total	40	666	100	96	219	48	146	646	110	79	144	137	2431
Cross of Total	74	4005	047	0.40	444	400	202	0405	202	0.40	224	242	7005
Grand Total	71	1905	217	243	444	108	383	2485	292	243	331	313	7035
Apprch %	3.2	86.9	9.9	30.6	55.8	13.6	12.1	78.6	9.2	27.4	37.3	35.3	
Total %	1.0	27.1	3.1	3.5	6.3	1.5	5.4	35.3	4.2	3.5	4.7	4.4	


File Name: WestWey Site Code: 00000000 Start Date: 1/31/2008

			ood Blv	d		,	urn Ave				ood Blv	d		,	urn Ave		
		Sout	hbound			Wes	tbound			North	nbound			East	bound		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Fro	m 07:00	AM to	11:45 A	AM - Peak	(1 of 1												
Intersection	07:30	AM															
Volume	6	322	29	357	33	43	13	89	70	659	43	772	47	56	31	134	1352
Percent	1.7	90.2	8.1		37.1	48.3	14.6		9.1	85.4	5.6		35.1	41.8	23.1		
07:45 Volume	0	80	10	90	7	5	8	20	28	180	13	221	11	16	8	35	366
Peak Factor																	0.923
High Int.	07:30	AM			08:00	AM			07:45	AM			08:15	AM			
Volume	2	86	7	95	7	14	3	24	28	180	13	221	15	16	8	39	
Peak Factor				0.939				0.927				0.873				0.859	

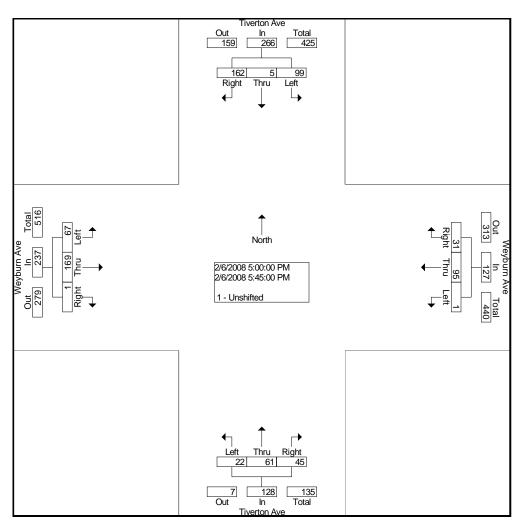
File Name: WestWey Site Code: 00000000 Start Date: 1/31/2008

			ood Blv hbound	d			urn Ave tbound				ood Blv	d		•	urn Ave		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Fro	m 12:00	PM to	05:45 F	PM - Peak	1 of 1			,								•	
Intersection	05:00	PM															
Volume	40	666	100	806	96	219	48	363	146	646	110	902	79	144	137	360	2431
Percent	5.0	82.6	12.4		26.4	60.3	13.2		16.2	71.6	12.2		21.9	40.0	38.1	İ	
05:15 Volume	16	195	29	240	29	58	10	97	39	171	26	236	16	40	30	86	659
Peak Factor																	0.922
High Int.	05:15	PM			05:45	PM			05:45	PM			05:00	PM			
Volume	16	195	29	240	23	59	17	99	47	186	31	264	27	32	41	100	
Peak Factor				0.840				0.917				0.854				0.900	


File Name: TivWey Site Code: 00000000 Start Date: 2/6/2008

Page No : 1

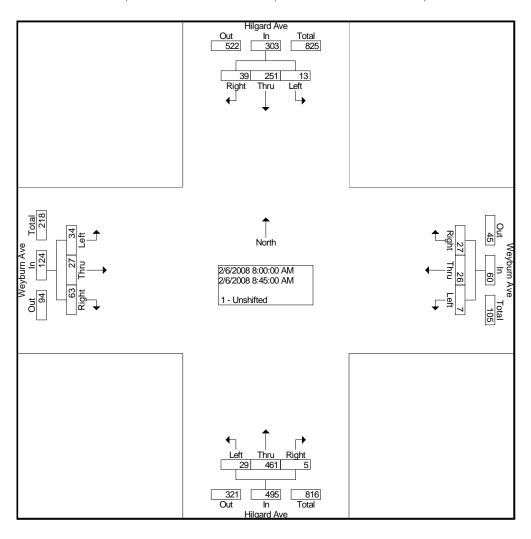
		erton Ave			yburn Ave	Э		erton Ave	-		yburn Ave)	
	So	uthbound			estbound		No	orthbound			astbound		
Start Time	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Int. Total
Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
07:00 AM	5	0	13	0	4	2	7	38	2	5	7	0	83
07:15 AM	2	5	7	0	10	5	3	27	1	8	6	0	74
07:30 AM	15	0	6	0	11	5	3	19	2	6	11	0	78
07:45 AM	5	0	6	0	9	5	0	22	2	7	12	0	68
Total	27	5	32	0	34	17	13	106	7	26	36	0	303
08:00 AM	1	0	1	0	7	1	3	18	4	5	10	1	51
08:15 AM	4	0	8	0	9	4	4	17	0	6	10	2	64
08:30 AM	6	3	8	0	6	4	4	22	7	9	7	0	76
08:45 AM	3	3	7	0	14	9	4	29	9	7	18	1	104
Total	14	6	24	0	36	18	15	86	20	27	45	4	295
04:00 PM	21	4	39	0	17	4	3	11	7	10	22	0	138
04:15 PM	11	2	32	1	21	7	3	10	8	7	25	1	128
04:30 PM	22	5	23	0	11	4	4	8	6	6	27	1	117
04:45 PM	27	0	23	0	17	11	8	11	12	11	26	2	148
Total	81	11	117	1	66	26	18	40	33	34	100	4	531
05:00 PM	26	1	38	0	26	10	4	16	8	19	39	0	187
05:15 PM	30	2	34	0	24	7	4	17	11	12	46	1	188
05:30 PM	17	1	47	0	22	10	7	13	7	14	46	0	184
05:45 PM	26	1	43	1	23	4	7	15	19	22	38	0	199
Total	99	5	162	1	95	31	22	61	45	67	169	1	758
Grand Total	221	27	335	2	231	92	68	293	105	154	350	9	1887
Apprch %	37.9	4.6	57.5	0.6	71.1	28.3	14.6	62.9	22.5	30.0	68.2	1.8	
Total %	11.7	1.4	17.8	0.1	12.2	4.9	3.6	15.5	5.6	8.2	18.5	0.5	
1 3 2 2 7 0				0			0.0		0.0	O. <u>L</u>		0.5	


File Name: TivWey Site Code: 00000000 Start Date: 2/6/2008

			ton Ave			,	urn Ave				ton Ave				urn Ave		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Fro	m 07:00	AM to	11:45 A	M - Peak	1 of 1										· · · ·	<u>'</u>	
Intersection	07:00	AM															
Volume	27	5	32	64	0	34	17	51	13	106	7	126	26	36	0	62	303
Percent	42.2	7.8	50.0		0.0	66.7	33.3		10.3	84.1	5.6		41.9	58.1	0.0		
07:00	5	0	13	18	0	4	2	6	7	38	2	47	5	7	0	12	83
Volume	5	U	13	10	U	4	2	O	,	30	2	47	5	,	U	12	03
Peak Factor																	0.913
High Int.	07:30	AM			07:30	AM			07:00	AM			07:45	AM			
Volume	15	0	6	21	0	11	5	16	7	38	2	47	7	12	0	19	
Peak Factor				0.762				0.797				0.670				0.816	

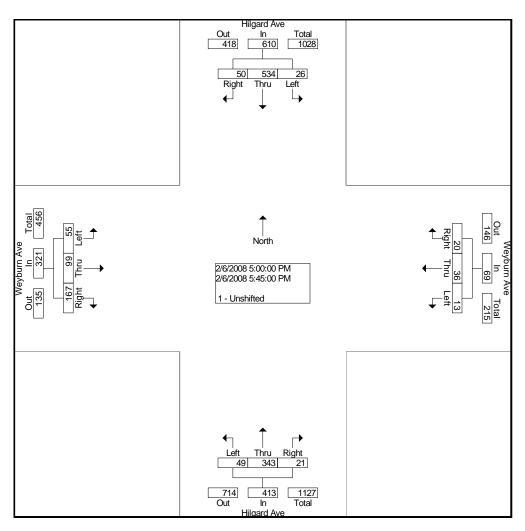
File Name: TivWey Site Code: 00000000 Start Date: 2/6/2008

			ton Ave			,	urn Ave tbound				ton Ave				urn Ave		
		Sout	ibouria			VV 65	ibouria			NOIL	ibouria			E a 5 1	bouria		
Start Time	Left	Thru	Right	App.	Left	Thru	Right	App.	Left	Thru	Right	App.	Left	Thru	Right	App.	Int.
Otan Inno			. tig.it	Total	_0		····g····	Total	_0		rugin	Total			g	Total	Total
Peak Hour Fro	m 12:00	PM to	05:45 F	PM - Peak	1 of 1											'	
Intersection	05:00	PM															
Volume	99	5	162	266	1	95	31	127	22	61	45	128	67	169	1	237	758
Percent	37.2	1.9	60.9		8.0	74.8	24.4		17.2	47.7	35.2		28.3	71.3	0.4		
05:45	26	1	43	70	1	23	4	28	7	15	19	41	22	38	0	60	199
Volume	20		43	70	'	23	4	20	,	13	19	41	22	30	U	00	199
Peak Factor																	0.952
High Int.	05:45	PM			05:00	PM			05:45	PM			05:30	PM			
Volume	26	1	43	70	0	26	10	36	7	15	19	41	14	46	0	60	
Peak Factor				0.950				0.882				0.780				0.988	


File Name: HilWey Site Code: 00000000 Start Date: 2/6/2008

Page No : 1

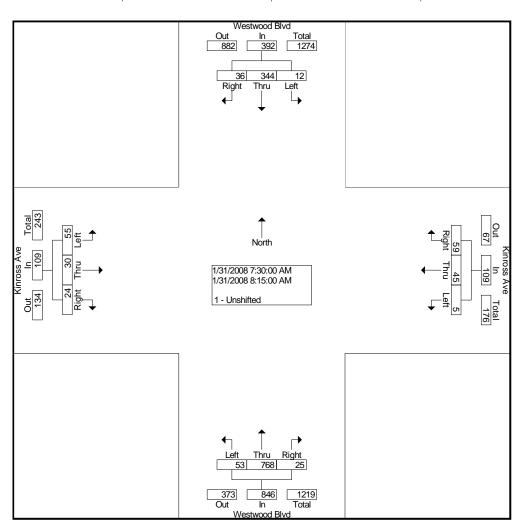
Г		Hi	ilgard Ave		We	yburn Ave		H	ilgard Ave		We	yburn Ave	9	
			outhbound			estbound			orthbound			astbound		
	Start Time	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Int. Total
	Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
	07:00 AM	1	33	4	1	4	8	2	56	1	5	2	6	123
	07:15 AM	0	38	5	1	4	1	6	59	2	1	3	8	128
	07:30 AM	1	51	4	2	8	5	6	83	2	3	2	27	194
	07:45 AM	1	47	6	2	7	8	12	106	0	5	4	15	213
	Total	3	169	19	6	23	22	26	304	5	14	11	56	658
	00.00.414		00	441		•	441		440	0	_	_	00	0.40
	08:00 AM	2	62	11	1	2	11	6	113	2	7	5	20	242
	08:15 AM	4	56	11	1	9	4	10	106	0	9	10	9	229
	08:30 AM	3	74	6	4	6	9	6	103	2	11	3	13	240
_	08:45 AM	4	59	11	1	9	3	7	139	1	7	9	21	271
	Total	13	251	39	7	26	27	29	461	5	34	27	63	982
	04:00 PM	1	94	20	2	8	6	5	65	1	11	18	18	249
	04:15 PM	5	85	8	0	12	6	2	63	2	10	15	33	241
	04:30 PM	7	94	8	1	9	5	7	85	3	11	19	37	286
	04:45 PM	4	126	7	1	7	9	10	101	6	15	18	36	340
_	Total	17	399	43	4	36	26	24	314	12	47	70	124	1116
				'			'			'			'	
	05:00 PM	11	132	16	4	12	4	11	78	2	10	30	32	342
	05:15 PM	6	136	11	5	11	4	11	83	5	13	34	41	360
	05:30 PM	6	133	19	2	3	4	15	92	7	12	15	45	353
	05:45 PM	3	133	4	2	10	8	12	90	7	20	20	49	358
	Total	26	534	50	13	36	20	49	343	21	55	99	167	1413
	Grand Total	59	1353	151	30	121	95	128	1422	43	150	207	410	4169
	Apprch %	3.8	86.6	9.7	12.2	49.2	38.6	8.0	89.3	2.7	19.6	27.0	53.5	
	Total %	1.4	32.5	3.6	0.7	2.9	2.3	3.1	34.1	1.0	3.6	5.0	9.8	


File Name: HilWey Site Code: 00000000 Start Date: 2/6/2008

			ard Ave hbound			,	urn Ave tbound				ard Ave				urn Ave bound		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Fro	m 07:00	AM to	11:45 A	M - Peak	1 of 1												
Intersection	08:00	AM															
Volume	13	251	39	303	7	26	27	60	29	461	5	495	34	27	63	124	982
Percent	4.3	82.8	12.9		11.7	43.3	45.0		5.9	93.1	1.0		27.4	21.8	50.8		
08:45 Volume	4	59	11	74	1	9	3	13	7	139	1	147	7	9	21	37	271
Peak Factor																	0.906
High Int.	08:30	AM			08:30	AM			08:45	AM			08:45	AM			
Volume	3	74	6	83	4	6	9	19	7	139	1	147	7	9	21	37	
Peak Factor				0.913				0.789				0.842				0.838	

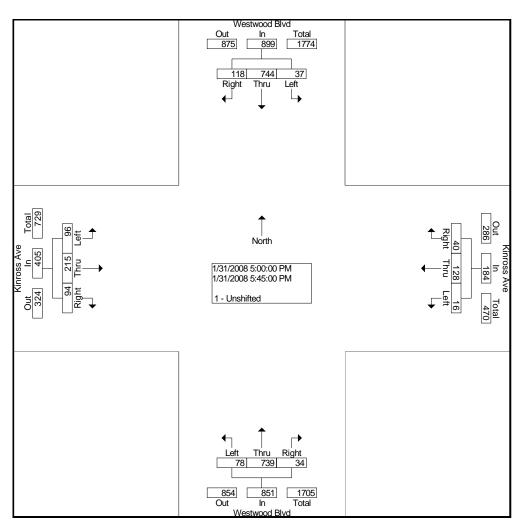
File Name: HilWey Site Code: 00000000 Start Date: 2/6/2008

		U	ard Ave hbound				urn Ave tbound				ard Ave			•	urn Ave tbound		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Fro	m 12:00	PM to	05:45 F	M - Peak	1 of 1												
Intersection	05:00	PM															
Volume	26	534	50	610	13	36	20	69	49	343	21	413	55	99	167	321	1413
Percent	4.3	87.5	8.2		18.8	52.2	29.0		11.9	83.1	5.1		17.1	30.8	52.0		
05:15 Volume	6	136	11	153	5	11	4	20	11	83	5	99	13	34	41	88	360
Peak Factor																	0.981
High Int.	05:00	PM			05:00	PM			05:30	PM			05:45	PM			
Volume	11	132	16	159	4	12	4	20	15	92	7	114	20	20	49	89	
Peak Factor				0.959				0.863				0.906				0.902	


File Name: WestKin Site Code: 00000000 Start Date: 1/31/2008

Page No : 1

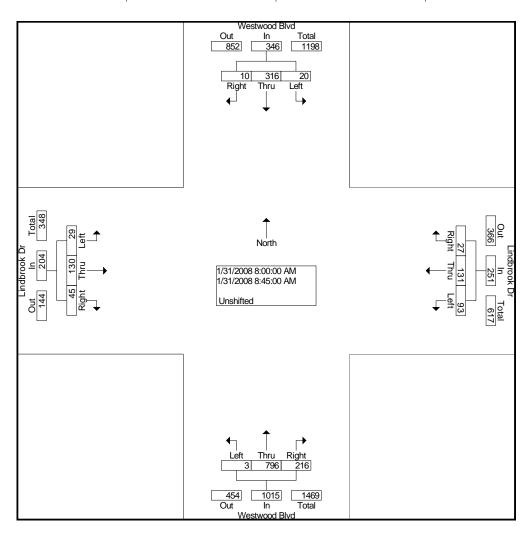
	۱۸۷۵	stwood Blv	rd	Kir	ross Ave		\Me	stwood Bl	vd	Kir	ross Ave		
		Southbound Left Thru Right			estbound	·		orthbound			astbound		
Start Time				Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Int. Total
Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
07:00 AM	3	74	3	1	8	21	7	149	5	9	9	6	295
07:15 AM	1	73	12	0	11	24	11	179	5	9	7	7	339
07:30 AM	5	90	9	1	14	15	11	194	7	9	10	4	369
07:45 AM	7	81	11	2	17	18	19	197	4	14	3	4	377
Total	16	318	35	4	50	78	48	719	21	41	29	21	1380
			·			·							
08:00 AM	0	79	8	2	8	17	17	193	4	18	8	8	362
08:15 AM	0	94	8	0	6	9	6	184	10	14	9	8	348
08:30 AM	4	75	4	2	11	7	9	181	7	14	18	6	338
08:45 AM	6	74	10	2	7	14	9	167	9	15	11	3	327
Total	10	322	30	6	32	47	41	725	30	61	46	25	1375
04:00 PM	11	184	32	2	17	13	12	158	12	14	25	16	496
04:15 PM	8	169	22	6	17	16	11	152	7	13	13	13	447
04:30 PM	16	188	25	3	18	14	14	194	2	17	31	11	533
04:45 PM	13	194	33	4	21	14	17	179	16	27	19	22	559
Total	48	735	112	15	73	57	54	683	37	71	88	62	2035
			. 1			1							
05:00 PM	14	191	27	2	15	11	18	186	14	23	51	22	574
05:15 PM	10	196	32	2	30	7	23	158	5	22	46	26	557
05:30 PM	6	165	30	7	33	9	20	181	8	24	49	28	560
05:45 PM	7	192	29	5	50	13	17	214	7	27	69	18	648
Total	37	744	118	16	128	40	78	739	34	96	215	94	2339
O 4.T. / .!	444	0440	005	44	000	000	004	0000	400	000	070	000	74.00
Grand Total	111	2119	295	41	283	222	221	2866	122	269	378	202	7129
Apprch %	4.4	83.9	11.7	7.5	51.8	40.7	6.9	89.3	3.8	31.7	44.5	23.8	
Total %	1.6	29.7	4.1	0.6	4.0	3.1	3.1	40.2	1.7	3.8	5.3	2.8	


File Name: WestKin Site Code: 00000000 Start Date: 1/31/2008

			ood Bly	d			ss Ave				ood Blv	d			ss Ave		
		Sout	hbound			vv es	tbound			Norti	nbound			Easi	bound		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Fro	m 07:00	AM to	11:45 A	M - Peak	1 of 1												
Intersection	07:30	AM															
Volume	12	344	36	392	5	45	59	109	53	768	25	846	55	30	24	109	1456
Percent	3.1	87.8	9.2		4.6	41.3	54.1		6.3	90.8	3.0		50.5	27.5	22.0		
07:45	7	81	11	99	2	17	18	37	19	197	4	220	14	3	4	21	377
Volume	,	01		99		17	10	31	13	131	7	220	17	3	7	21	3//
Peak Factor																	0.966
High Int.	07:30	AM			07:45	AM			07:45	AM			08:00	AM			
Volume	5	90	9	104	2	17	18	37	19	197	4	220	18	8	8	34	
Peak Factor				0.942				0.736				0.961				0.801	

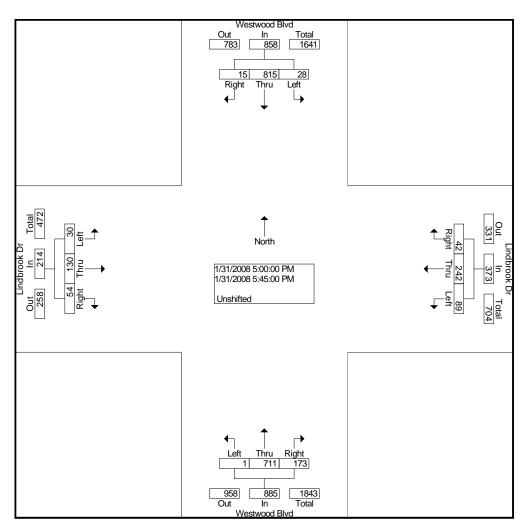
File Name: WestKin Site Code: 00000000 Start Date: 1/31/2008

			ood Blv	-			ss Ave tbound				ood Blv	d			ss Ave		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Fro	m 12:00	PM to	05:45 F	PM - Peak	1 of 1												
Intersection	05:00	PM															
Volume	37	744	118	899	16	128	40	184	78	739	34	851	96	215	94	405	2339
Percent	4.1	82.8	13.1		8.7	69.6	21.7		9.2	86.8	4.0		23.7	53.1	23.2		
05:45 Volume	7	192	29	228	5	50	13	68	17	214	7	238	27	69	18	114	648
Peak Factor																	0.902
High Int.	05:15	PM			05:45	PM			05:45	PM			05:45	PM			
Volume	10	196	32	238	5	50	13	68	17	214	7	238	27	69	18	114	
Peak Factor				0.944				0.676				0.894				0.888	


File Name: WestLindb Site Code: 00000000 Start Date: 1/31/2008

Page No : 1

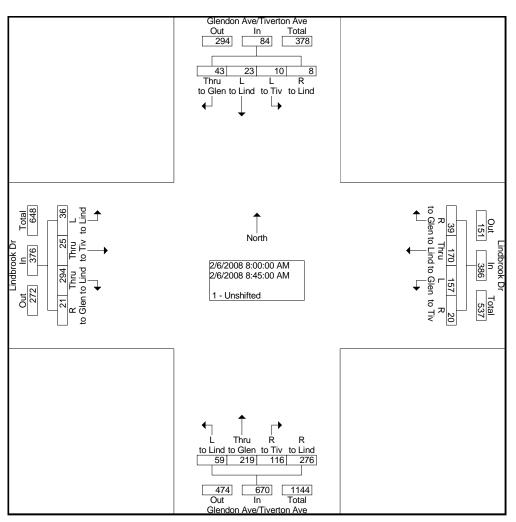
	We	stwood Blv	′d	Lin	dbrook Di	·		stwood Blv	/d	Lin	dbrook Dr		
		outhbound		W	estbound			orthbound			astbound		
Start Time	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Int. Total
Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
07:00 AM	2	69	3	11	10	7	0	154	31	6	8	9	310
07:15 AM	2	74	4	17	23	4	1	185	38	7	14	2	371
07:30 AM	2	87	0	13	20	12	0	196	42	3	26	4	405
07:45 AM	2	70	1	16	26	11	0	220	51	8	27	5	437
Total	8	300	8	57	79	34	1	755	162	24	75	20	1523
									1				
08:00 AM	12	73	0	18	33	7	1	208	55	5	21	15	448
08:15 AM	3	82	5	20	41	5	2	194	53	6	34	8	453
08:30 AM	3	73	2	30	30	6	0	188	51	12	31	12	438
08:45 AM	2	88	3	25	27	9	0	206	57	6	44	10	477
Total	20	316	10	93	131	27	3	796	216	29	130	45	1816
			_ 1			1	_		1				
04:00 PM	12	187	8	32	45	11	2	165	39	4	36	12	553
04:15 PM	10	170	3	33	42	5	6	147	30	8	32	16	502
04:30 PM	10	196	3	31	53	10	1	144	47	6	28	16	545
04:45 PM	6	209	4	25	48	12	0	147	40	6	28	20	545
Total	38	762	18	121	188	38	9	603	156	24	124	64	2145
0- 00 514		0.10				4-1						54 l	001
05:00 PM	6	212	2	28	52	17	1	169	54	9	30	21	601
05:15 PM	8	206	3	24	76	13	0	166	47	9	38	10	600
05:30 PM	10	195	6	20	63	5	0	185	32	4	32	12	564
05:45 PM	4	202	4	17	51	7	0	191	40	8	30	11	565
Total	28	815	15	89	242	42	1	711	173	30	130	54	2330
			. 1			1			- 1			1	
Grand Total	94	2193	51	360	640	141	14	2865	707	107	459	183	7814
Apprch %	4.0	93.8	2.2	31.6	56.1	12.4	0.4	79.9	19.7	14.3	61.3	24.4	
Total %	1.2	28.1	0.7	4.6	8.2	1.8	0.2	36.7	9.0	1.4	5.9	2.3	


File Name: WestLindb Site Code: 00000000 Start Date: 1/31/2008

		Westw	ood Blv	d		Lindb	rook Dr			Westw	ood Blv	d		Lindb	rook Dr		
		Sout	hbound			Wes	tbound			North	nbound			East	bound		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Fro	m 07:00	AM to	11:45 A	M - Peak	1 of 1												
Intersection	08:00	AM															
Volume	20	316	10	346	93	131	27	251	3	796	216	1015	29	130	45	204	1816
Percent	5.8	91.3	2.9		37.1	52.2	10.8		0.3	78.4	21.3		14.2	63.7	22.1		
08:45 Volume	2	88	3	93	25	27	9	61	0	206	57	263	6	44	10	60	477
Peak Factor																	0.952
High Int.	08:45	08:45 AM			08:15	AM			08:00	AM			08:45	AM			
Volume	2	88	3	93	20	41	5	66	1	208	55	264	6	44	10	60	
Peak Factor				0.930				0.951				0.961				0.850	

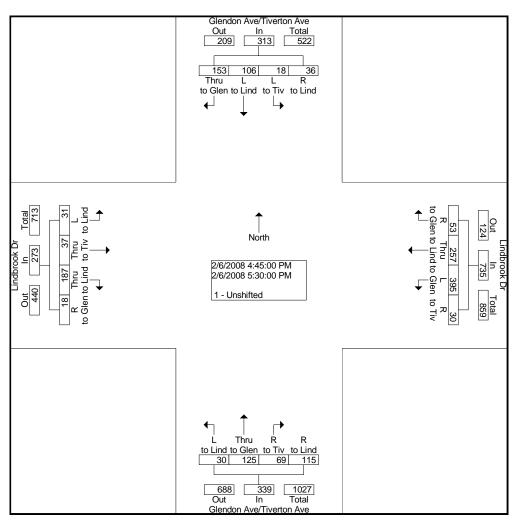
File Name: WestLindb Site Code: 00000000 Start Date: 1/31/2008

			ood Blvo	d			rook Dr				ood Blvo	b			rook Dr		
		Sout	nbouna			vves	lbouria			NOIT	ibouria			⊏ası	bound		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour From	m 12:00	PM to	05:45 P	M - Peak	1 of 1											,	
Intersection	05:00	PM														1	
Volume	28	815	15	858	89	242	42	373	1	711	173	885	30	130	54	214	2330
Percent	3.3	95.0	1.7		23.9	64.9	11.3		0.1	80.3	19.5		14.0	60.7	25.2		
05:00 Volume	6	212	2	220	28	52	17	97	1	169	54	224	9	30	21	60	601
Peak Factor																	0.969
High Int.	05:00	PM			05:15	PM			05:45	PM			05:00	PM			
Volume	6	212	2	220	24	76	13	113	0	191	40	231	9	30	21	60	
Peak Factor				0.975				0.825				0.958				0.892	


File Name: LindTivGlen Site Code: 00000000 Start Date: 2/6/2008

Page No : 1

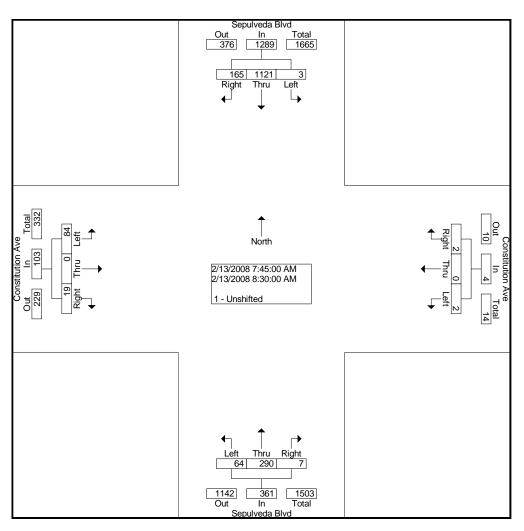
	Glend	on Ave	Tivertor	n Ave		Lindbro	ook Dr		Glend	lon Ave/	Tivertor	n Ave		Lindbr	ook Dr		
		South	oound			Westb	ound			Northb	ound			Eastb	ound		
Start Time	L to Tiv	L to Lind	Thru to Glen	R to Lind	L to Glen	Thru to Lind	R to Glen	R to Tiv	L to Lind	Thru to Glen	R to Tiv	R to Lind	L to Lind	Thru to Tiv	Thru to Lind	R to Glen	Int. Total
Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
07:00 AM	1	1	2	2	19	18	4	0	17	35	23	41	5	18	17	2	205
07:15 AM	1	2	2	0	25	22	3	5	8	37	23	37	4	7	37	3	216
07:30 AM	2	7	2	1	31	32	8	7	11	36	16	70	2	9	45	5	284
07:45 AM	1	5	4	2	40	34	10	4	19	44	20	89	3	10	53	3	341
Total	5	15	10	5	115	106	25	16	55	152	82	237	14	44	152	13	1046
08:00 AM	1	4	8	2	37	51	15	5	13	51	37	68	6	1	67	7	373
08:15 AM	2	5	7		35	37	10	3	15	50	25	67	7	5	71	6	347
08:30 AM	0	8	16	3	45	51	7	7	15	57	28	69	10	9	68	2	395
08:45 AM	7	6	12	1	40	31	7	5	16	61	26	72	13	10_	88	6	401
Total	10	23	43	8	157	170	39	20	59	219	116	276	36	25	294	21	1516
04:00 PM	4	21	19	5	78	66	3	4	5	17	14	13	4	25	33	10	321
04:15 PM	6	18	22	8	69	56	5	8	9	25	20	19	5	12	41	9	332
04:30 PM	3	20	29	10	83	58	3	6	5	30	13	30	3	9	55	10	367
04:45 PM	3	23	21	8	78	61	5	10	8	18	14	35	4	11	54	4	357
Total	16	82	91	31	308	241	16	28	27	90	61	97	16	57	183	33	1377
05:00 PM	2	31	46	6	110	61	8	5	3	40	22	36	9	7	48	4	438
05:15 PM	9	29	51	10	108	73	21	8	10	35	16	32	10	10	42	5	469
05:30 PM	4	23	35	12	99	62	19	7	9	32	17	12	8	9	43	5	396
05:45 PM	2	20	37	11	78	53	11	5	9	29	15	16	10	14	37	8	355
Total	17	103	169	39	395	249	59	25	31	136	70	96	37	40	170	22	1658
Grand Total Apprch % Total %	48 7.2 0.9	223 33.4 4.0	313 46.9 5.6	83 12.4 1.5	975 49.5 17.4	766 38.9 13.7	139 7.1 2.5	89 4.5 1.6	172 9.5 3.1	597 33.1 10.7	329 18.2 5.9	706 39.1 12.6	103 8.9 1.8	166 14.3 3.0	799 69.1 14.3	89 7.7 1.6	5597


File Name : LindTivGlen Site Code : 00000000 Start Date : 2/6/2008

	Gle		Ave/Ti outhbo		Ave			dbroo estbo			Gle		Ave/Ti		Ave			dbroo astbou			
Start Time	L to Tiv	L to Lin d	Thr u to Gle n	R to Lin d	App. Total	L to Gle n	Thr u to Lin d	R to Gle n	R to Tiv	App. Total	L to Lin d	Thr u to Gle n	R to Tiv	R to Lin d	App. Total	L to Lin d	Thr u to Tiv	Thr u to Lin d	R to Gle n	App. Total	Int. Total
Peak Hour F	rom 0	7:00 /	AM to	11:45	AM - Pe	eak 1 d	of 1														
Intersecti on	08:00) AM																			
Volume	10	23	43	8	84	157	170	39	20	386	59	219	116	276	670	36	25	294	21	376	1516
Percent	11. 9	27. 4	51. 2	9.5		40. 7	44. 0	10. 1	5.2		8.8	32. 7	17. 3	41. 2		9.6	6.6	78. 2	5.6		
08:45 Volume	7	6	12	1	26	40	31	7	5	83	16	61	26	72	175	13	10	88	6	117	401
Peak																					0.945
Factor																					
High Int.	08:30			_		08:30		_	_	4.40	08:45					08:45			_		
Volume Peak	0	8	16	3	27 0.77	45	51	7	7	110 0.87	16	61	26	72	175 0.95	13	10	88	6	117 0.80	
Factor					8					7					7					3	

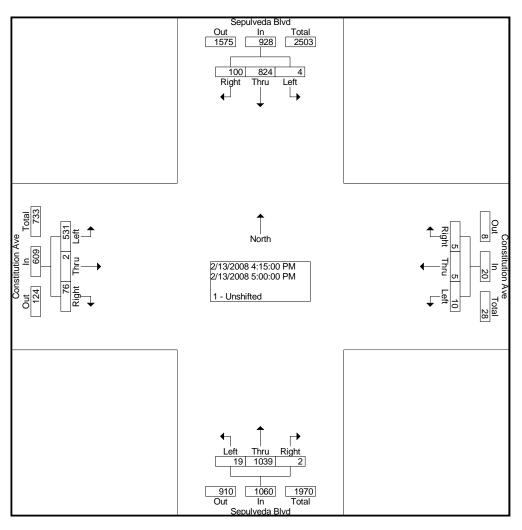
File Name : LindTivGlen Site Code : 00000000 Start Date : 2/6/2008

	Gle		Ave/Ti		Ave			dbroo estbou			Gle		Ave/Ti orthbo	verton und	Ave			dbroo astbou			
Start Time	L to Tiv	L to Lin d	Thr u to Gle n	R to Lin d	App. Total	L to Gle n	Thr u to Lin d	R to Gle n	R to Tiv	App. Total	L to Lin d	Thr u to Gle n	R to Tiv	R to Lin d	App. Total	L to Lin d	Thr u to Tiv	Thr u to Lin d	R to Gle n	App. Total	Int. Total
Peak Hour I	rom 1	2:00 F	PM to (05:45	PM - Pe	eak 1 d	of 1									ı					
Intersecti on	04:45	5 PM																			
Volume	18	106	153	36	313	395	257	53	30	735	30	125	69	115	339	31	37	187	18	273	1660
Percent	5.8	33. 9	48. 9	11. 5		53. 7	35. 0	7.2	4.1		8.8	36. 9	20. 4	33. 9		11. 4	13. 6	68. 5	6.6		
05:15 Volume	9	29	51	10	99	108	73	21	8	210	10	35	16	32	93	10	10	42	5	67	469
Peak Factor																					0.885
High Int.	05:15					05:15					05:00					04:45					
Volume	9	29	51	10	99	108	73	21	8	210	3	40	22	36	101	4	11	54	4	73	
Peak					0.79					0.87					0.83					0.93	
Factor					0					5					9					5	


File Name: SepConst Site Code: 00000000 Start Date: 2/13/2008

Page No : 1

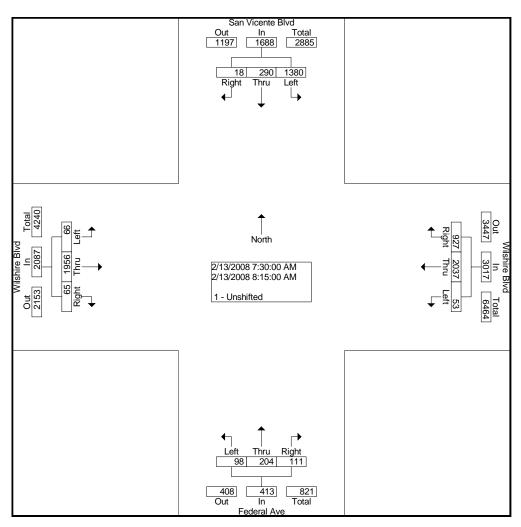
_						Cioapoi		Chomito	· ч					
		Sep	ulveda Blv	vd	Cons	stitution A	ve	Sep	ulveda Bl	vd	Cons	stitution Av	ve	
		Sc	outhbound		W	estbound		Ň	orthbound		E	astbound		
	Start Time	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Int. Total
	Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
	07:00 AM	1	210	41	0	1	0	8	36	1	5	1	7	311
	07:15 AM	0	262	29	1	0	0	18	51	1	7	0	5	374
	07:30 AM	0	267	44	0	0	0	15	67	0	9	0	0	402
	07:45 AM	0	280	44	0	0	0	18	66	2	16	0	2	428
	Total	1	1019	158	1	1	0	59	220	4	37	1	14	1515
	08:00 AM	0	286	42	1	0	0	18	77	2	20	0	6	452
	08:15 AM	1	291	35	0	0	0	12	72	2	25	0	7	445
	08:30 AM	2	264	44	1	0	2	16	75	1	23	0	4	432
_	08:45 AM	1_	271	28	0	0	1	14	78	1	22	0	10	426
	Total	4	1112	149	2	0	3	60	302	6	90	0	27	1755
	04:00 PM	0	141	13	0	1	0	2	275	1	125	0	16	574
	04:15 PM	0	181	26	2	0	1	5	270	1	132	0	22	640
	04:30 PM	2	229	22	3	2	0	4	258	0	130	0	23	673
_	04:45 PM	1	220	26	4	2	2	8	246	0	138	1	17	665
	Total	3	771	87	9	5	3	19	1049	2	525	1	78	2552
										1				
	05:00 PM	1	194	26	1	1	2	2	265	1	131	1	14	639
	05:15 PM	0	216	27	0	0	0	1	235	0	128	0	17	624
	05:30 PM	0	213	39	0	0	1	1	198	1	105	1	35	594
_	05:45 PM	1	237	23	0	1	1	0	211	1	126	0	28	629
	Total	2	860	115	1	2	4	4	909	3	490	2	94	2486
	Grand Total	10	3762	509	13	8	10	142	2480	15	1142	4	213	8308
	Apprch %	0.2	87.9	11.9	41.9	25.8	32.3	5.4	94.0	0.6	84.0	0.3	15.7	
	Total %	0.1	45.3	6.1	0.2	0.1	0.1	1.7	29.9	0.2	13.7	0.0	2.6	


File Name : SepConst Site Code : 00000000 Start Date : 2/13/2008

		Sepulv	eda Blv	d	(Constit	ution Av	'e		Sepulv	eda Blv	d		Constit	ution Av	'e	
		Soutl	hbound			Wes	tbound			North	nbound			East	bound		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Fro	m 07:0	0 AM to	11:45	AM - Pea	k 1 of 1												
Intersection	07:45	AM															
Volume	3	1121	165	1289	2	0	2	4	64	290	7	361	84	0	19	103	1757
Percent	0.2	87.0	12.8		50.0	0.0	50.0		17.7	80.3	1.9		81.6	0.0	18.4		
08:00 Volume	0	286	42	328	1	0	0	1	18	77	2	97	20	0	6	26	452
Peak Factor																	0.972
High Int.	08:00	AM			08:30	AM			08:00	AM			08:15	AM			
Volume	0	286	42	328	1	0	2	3	18	77	2	97	25	0	7	32	
Peak Factor				0.982				0.333				0.930				0.805	

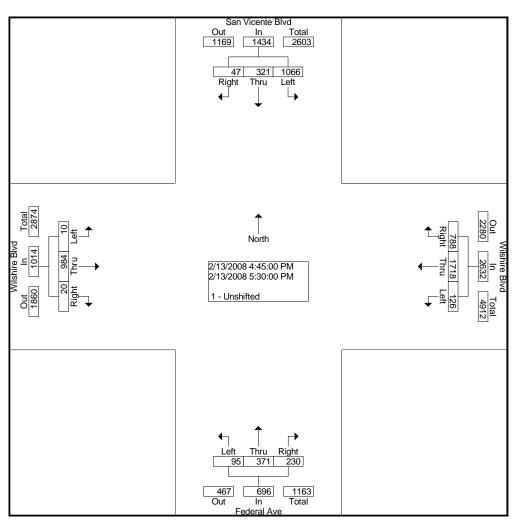
File Name: SepConst Site Code: 00000000 Start Date: 2/13/2008

			eda Blv	-	(ution Av	е			eda Blv	d			ution Av	'e	
Start Time	Left	Thru	Right	Ann	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Fro	m 12:0	0 PM to	05:45	PM - Pea	k 1 of 1		· · · · · ·										
Intersection	04:15	PM															
Volume	4	824	100	928	10	5	5	20	19	1039	2	1060	531	2	76	609	2617
Percent	0.4	88.8	10.8		50.0	25.0	25.0		1.8	98.0	0.2		87.2	0.3	12.5		
04:30 Volume	2	229	22	253	3	2	0	5	4	258	0	262	130	0	23	153	673
Peak Factor																	0.972
High Int.	04:30	PM			04:45	PM			04:15	PM			04:45	PM			
Volume	2	229	22	253	4	2	2	8	5	270	1	276	138	1	17	156	
Peak Factor				0.917				0.625				0.960				0.976	


File Name: WilSanVfed Site Code: 00000000 Start Date: 2/13/2008

Page No : 1

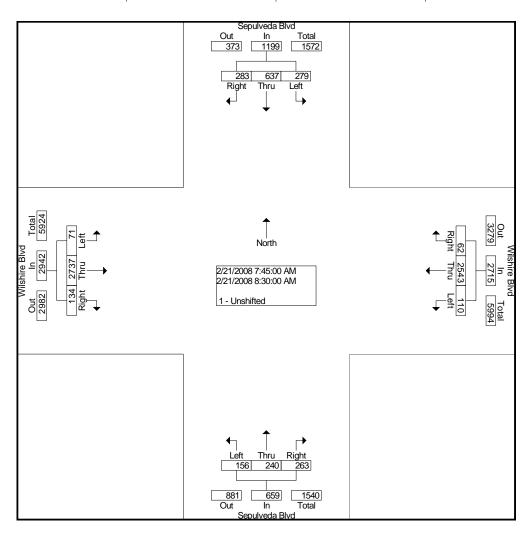
	0	\	le cal	14/:1			- Ulistilite			147	Indian Dha		
		Vicente B			shire Blv			ederal Ave			Ishire Blv	ן נ	
0:		outhbound			estbound			orthbound			astbound	D: 1.	
Start Time	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Int. Total
Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
07:00 AM	188	30	3	10	353	189	8	37	17	6	361	2	1204
07:15 AM	241	34	5	6	398	267	8	51	17	30	428	13	1498
07:30 AM	389	59	4	11	447	260	8	41	27	13	500	16	1775
07:45 AM	359	73	2	16	507	246	26	51	30	14	527	12	1863
Total	1177	196	14	43	1705	962	50	180	91	63	1816	43	6340
08:00 AM	306	65	8	15	522	226	38	59	23	22	516	21	1821
08:15 AM	326	93	4	11	561	195	26	53	31	17	413	16	1746
08:30 AM	322	63	16	20	550	202	23	47	18	15	407	24	1707
08:45 AM	307	72	9	18	501	220	38	67	24	5	359	15	1635
Total	1261	293	37	64	2134	843	125	226	96	59	1695	76	6909
			'			,			'			'	
04:00 PM	279	84	12	53	439	170	19	66	43	9	316	10	1500
04:15 PM	266	55	10	30	405	198	10	80	55	6	233	6	1354
04:30 PM	240	77	5	31	392	218	22	77	54	5	248	8	1377
04:45 PM	282	89	13	20	392	191	22	98	49	0	300	5	1461
Total	1067	305	40	134	1628	777	73	321	201	20	1097	29	5692
												1	
05:00 PM	273	91	13	38	414	203	17	87	60	4	202	5	1407
05:15 PM	273	70	12	29	444	179	27	91	59	6	243	5	1438
05:30 PM	238	71	9	39	468	215	29	95	62	0	239	5	1470
05:45 PM	228	89	6	26	443	234	19	81	48	4	223	5	1406
Total	1012	321	40	132	1769	831	92	354	229	14	907	20	5721
Total	1012	021	10	.02	1700	001		00 1		• • •	001		0.2.
Grand Total	4517	1115	131	373	7236	3413	340	1081	617	156	5515	168	24662
Apprch %	78.4	19.3	2.3	3.4	65.7	31.0	16.7	53.0	30.3	2.7	94.5	2.9	21002
Total %	18.3	4.5	0.5	1.5	29.3	13.8	1.4	4.4	2.5	0.6	22.4	0.7	
i Otal 70	10.5	4.5	0.5	1.5	23.3	13.0	1.4	7.4	2.5	0.0	ZZ. +	0.7	


File Name: WilSanVfed Site Code: 00000000 Start Date: 2/13/2008

		San Vic	ente Bl	vd		Wilsh	ire Blvd			Fede	ral Ave			Wilsh	ire Blvd		
		South	nbound			Wes	tbound			North	nbound			East	bound		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Fro	m 07:0	0 AM to	11:45		k 1 of 1			Total				Total				Total	Total
Intersection	07:30	AM															
Volume	1380	290	18	1688	53	2037	927	3017	98	204	111	413	66	1956	65	2087	7205
Percent	81.8	17.2	1.1		1.8	67.5	30.7		23.7	49.4	26.9		3.2	93.7	3.1		
07:45 Volume	359	73	2	434	16	507	246	769	26	51	30	107	14	527	12	553	1863
Peak Factor																	0.967
High Int.	07:30	AM			07:45	AM			08:00	AM			08:00	AM			
Volume	389	59	4	452	16	507	246	769	38	59	23	120	22	516	21	559	
Peak Factor				0.934				0.981				0.860				0.933	

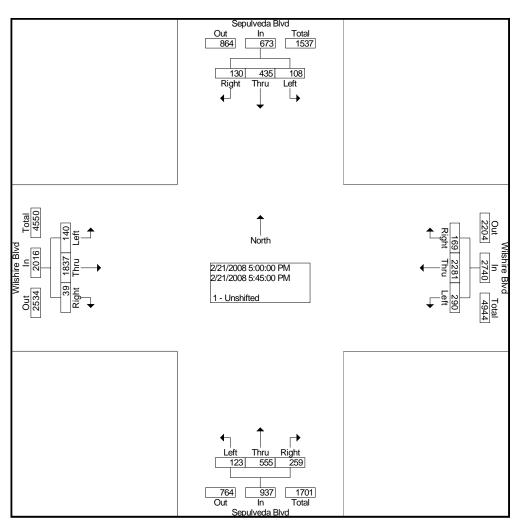
File Name: WilSanVfed Site Code: 00000000 Start Date: 2/13/2008

			ente Bl				ire Blvd tbound				ral Ave				ire Blvd		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Fro	m 12:0	0 PM to	05:45	PM - Pea	k 1 of 1						'				'		
Intersection	04:45	PM															
Volume	1066	321	47	1434	126	1718	788	2632	95	371	230	696	10	984	20	1014	5776
Percent	74.3	22.4	3.3		4.8	65.3	29.9		13.6	53.3	33.0		1.0	97.0	2.0		
05:30 Volume	238	71	9	318	39	468	215	722	29	95	62	186	0	239	5	244	1470
Peak Factor																	0.982
High Int.	04:45	PM			05:30	PM			05:30	PM			04:45	PM			
Volume	282	89	13	384	39	468	215	722	29	95	62	186	0	300	5	305	
Peak Factor				0.934				0.911				0.935				0.831	


File Name : SepWil Site Code : 00000000 Start Date : 2/21/2008

Page No : 1

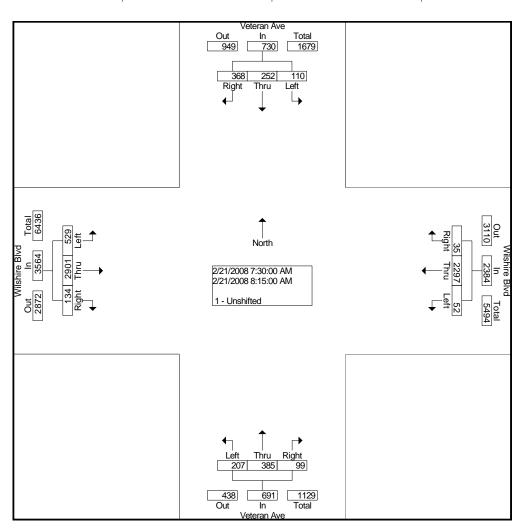
	Sep	ulveda Blv	rd	Wil	Ishire Blvo		Sep	ulveda Bl	/d	Wi	Ishire Blvo	i	
		outhbound		W	estbound		Ň	orthbound		Е	astbound		
Start Time	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Int. Total
Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
07:00 AM	50	128	81	13	543	13	25	33	39	6	440	38	1409
07:15 AM	52	141	88	16	662	13	31	35	49	8	601	48	1744
07:30 AM	63	152	83	25	604	23	40	59	49	12	669	45	1824
07:45 AM	82	157	77	24	656	16	43	63	67	14	706	28	1933
Total	247	578	329	78	2465	65	139	190	204	40	2416	159	6910
08:00 AM	57	140	65	26	614	17	46	61	61	19	691	45	1842
08:15 AM	65	160	67	28	623	16	37	59	62	24	709	38	1888
08:30 AM	75	180	74	32	650	13	30	57	73	14	631	23	1852
08:45 AM	60	164	76	26	638	9	43	66	84	8	545	39	1758
Total	257	644	282	112	2525	55	156	243	280	65	2576	145	7340
04:00 PM	30	120	31	47	507	69	22	130	61	34	399	9	1459
04:15 PM	28	92	29	44	487	57	23	151	48	40	441	9	1449
04:30 PM	33	98	31	57	537	67	35	155	66	37	480	9	1605
04:45 PM	29	85	36	53	467	49	16	134	59	41	520	13	1502
Total	120	395	127	201	1998	242	96	570	234	152	1840	40	6015
05:00 PM	27	97	36	59	566	36	32	144	54	37	451	13	1552
05:15 PM	29	122	33	79	567	41	29	142	63	37	511	14	1667
05:30 PM	24	105	32	74	584	48	35	131	74	36	425	4	1572
05:45 PM	28	111	29	78	564	44	27	138	68	30	450	8	1575
Total	108	435	130	290	2281	169	123	555	259	140	1837	39	6366
Grand Total	732	2052	868	681	9269	531	514	1558	977	397	8669	383	26631
Apprch %	20.0	56.2	23.8	6.5	88.4	5.1	16.9	51.1	32.0	4.2	91.7	4.1	
Total %	2.7	7.7	3.3	2.6	34.8	2.0	1.9	5.9	3.7	1.5	32.6	1.4	


File Name : SepWil Site Code : 00000000 Start Date : 2/21/2008

		Sepulv	eda Blv	d		Wilsh	ire Blvd			Sepulv	eda Blv	d		Wilsh	ire Blvd		
		Sout	hbound			Wes	tbound			North	nbound			East	bound		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour From	m 07:00	AM to	11:45 A	M - Peak	1 of 1												
Intersection	07:45	AM															
Volume	279	637	283	1199	110	2543	62	2715	156	240	263	659	71	2737	134	2942	7515
Percent	23.3	53.1	23.6		4.1	93.7	2.3		23.7	36.4	39.9		2.4	93.0	4.6		
07:45 Volume	82	157	77	316	24	656	16	696	43	63	67	173	14	706	28	748	1933
Peak Factor																	0.972
High Int.	08:30	AM			07:45	AM			07:45	AM			08:15	AM			
Volume	75	180	74	329	24	656	16	696	43	63	67	173	24	709	38	771	
Peak Factor				0.911				0.975				0.952				0.954	

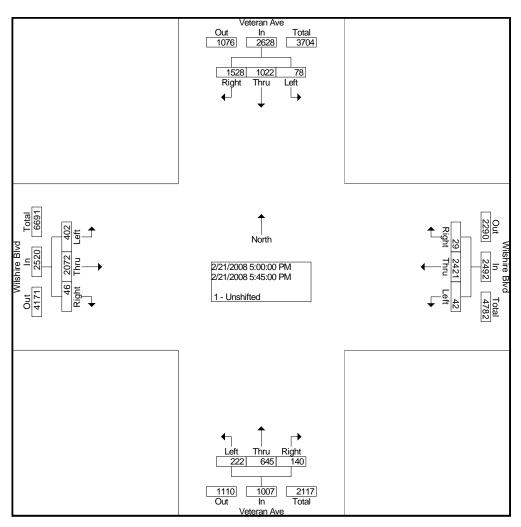
File Name : SepWil Site Code : 00000000 Start Date : 2/21/2008

			eda Blv	d			ire Blvd				eda Blv	d			ire Blvd		
		Sout	hbound			Wes	tbound			North	nbound			East	tbound		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Fro	m 12:00	PM to	05:45 F	M - Peak	(1 of 1												
Intersection	05:00	PM															
Volume	108	435	130	673	290	2281	169	2740	123	555	259	937	140	1837	39	2016	6366
Percent	16.0	64.6	19.3		10.6	83.2	6.2		13.1	59.2	27.6		6.9	91.1	1.9		
05:15 Volume	29	122	33	184	79	567	41	687	29	142	63	234	37	511	14	562	1667
Peak Factor																	0.955
High Int.	05:15	PM			05:30	PM			05:30	PM			05:15	PM			
Volume	29	122	33	184	74	584	48	706	35	131	74	240	37	511	14	562	
Peak Factor				0.914				0.970				0.976				0.897	


File Name: VetWil Site Code: 00000000 Start Date: 2/21/2008

Page No : 1

		Ve	eteran Ave	;	Wi	Ishire Blvo		Ve	eteran Ave)	Wi	Ishire Blvc	i	
		Sc	outhbound		W	estbound		No	orthbound		Е	astbound		
	Start Time	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Int. Total
	Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
	07:00 AM	14	18	60	8	414	3	36	30	10	112	557	42	1304
	07:15 AM	20	28	89	14	473	7	45	69	12	147	690	42	1636
	07:30 AM	27	73	87	9	563	4	42	70	23	141	712	46	1797
_	07:45 AM	22	53	106	14	604	5	60	100	25	141	769	25	1924
	Total	83	172	342	45	2054	19	183	269	70	541	2728	155	6661
				1						- 1			1	
	08:00 AM	28	69	89	20	521	11	53	117	27	127	717	29	1808
	08:15 AM	33	57	86	9	609	15	52	98	24	120	703	34	1840
	08:30 AM	40	90	80	22	547	14	52	106	28	152	617	27	1775
_	08:45 AM	37	63	84	15	503	10	57	106	38	138	640	48	1739
	Total	138	279	339	66	2180	50	214	427	117	537	2677	138	7162
	04:00 PM	24	164	206	22	539	7	44	145	39	96	477	11	1774
	04:15 PM	22	174	215	11	577	6	51	152	34	97	493	18	1850
	04:30 PM	28	193	316	19	593	4	49	152	44	108	490	30	2026
	04:45 PM	21	165	300	14	606	7	49	127	39	100	550	10	1988
_	Total	95	696	1037	66	2315	24	193	576	156	401	2010	69	7638
							1							
	05:00 PM	21	199	278	12	598	12	49	172	25	102	531	3	2002
	05:15 PM	17	253	427	13	597	6	68	149	55	114	502	16	2217
	05:30 PM	23	268	426	8	642	3	54	171	31	97	519	15	2257
	05:45 PM	17	302	397	9	584	8	51	153	29	89	520	12	2171
	Total	78	1022	1528	42	2421	29	222	645	140	402	2072	46	8647
	Grand Total	394	2169	3246	219	8970	122	812	1917	483	1881	9487	408	30108
	Apprch %	6.8	37.3	55.9	2.4	96.3	1.3	25.3	59.7	15.0	16.0	80.6	3.5	
	Total %	1.3	7.2	10.8	0.7	29.8	0.4	2.7	6.4	1.6	6.2	31.5	1.4	

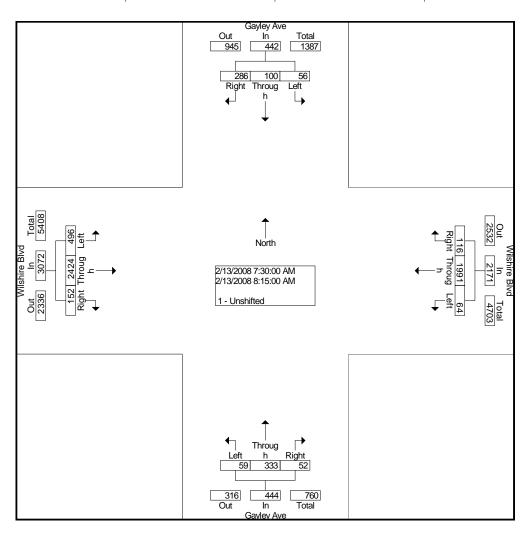

File Name: VetWil Site Code: 00000000 Start Date: 2/21/2008

		Vete	an Ave			Wilsh	ire Blvd			Veter	an Ave			Wilsh	ire Blvd		
		Sout	hbound			Wes	tbound			North	nbound			East	tbound		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour From	m 07:00	AM to	11:45 A	M - Peak	1 of 1												
Intersection	07:30	AM															
Volume	110	252	368	730	52	2297	35	2384	207	385	99	691	529	2901	134	3564	7369
Percent	15.1	34.5	50.4		2.2	96.4	1.5		30.0	55.7	14.3		14.8	81.4	3.8		
07:45 Volume	22	53	106	181	14	604	5	623	60	100	25	185	141	769	25	935	1924
Peak Factor																	0.958
High Int.	• •				08:15	AM			08:00	AM			07:45	AM			
Volume	27	73	87	187	9	609	15	633	53	117	27	197	141	769	25	935	
Peak Factor				0.976				0.942				0.877				0.953	

File Name: VetWil Site Code: 00000000 Start Date: 2/21/2008

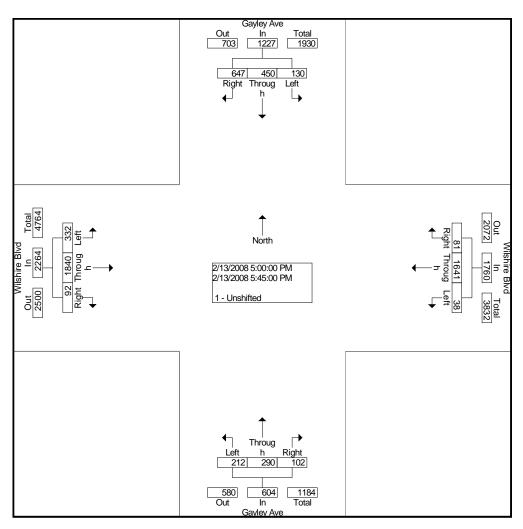
			ran Ave hbound				ire Blvd tbound				an Ave				ire Blvd bound		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour From	m 12:00	PM to	05:45 F	M - Peak	1 of 1												
Intersection	05:00	PM															
Volume	78	1022	1528	2628	42	2421	29	2492	222	645	140	1007	402	2072	46	2520	8647
Percent	3.0	38.9	58.1		1.7	97.2	1.2		22.0	64.1	13.9		16.0	82.2	1.8		
05:30 Volume	23	268	426	717	8	642	3	653	54	171	31	256	97	519	15	631	2257
Peak Factor																	0.958
High Int.	05:30 PM				05:30	PM			05:15	PM			05:00	PM			
Volume	23	268	426	717	8	642	3	653	68	149	55	272	102	531	3	636	
Peak Factor				0.916				0.954				0.926				0.991	

File Name: WilshireGay Site Code: 00000000


Start Date : 2/13/2008

Page No : 1

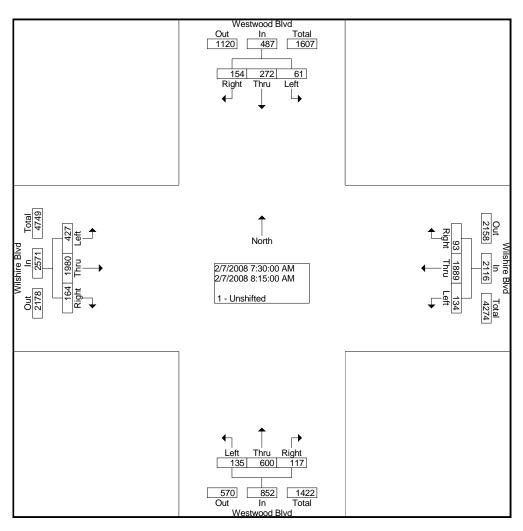
		Gayley Ave)	V	/ilshire Blv	d	(Sayley Ave	9	V	ilshire Blv	t	
		Southbound	b	\	Vestbound	l	N	Northbound	d	I	Eastbound		
Start Time		Throug h	Right	Left	Throug h	Right	Left	Throug h	Right	Left	Throug h	Right	Int. Total
Factor		1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
07:00 AM	7	8	63	15	330	21	11	60	7	112	430	31	1095
07:15 AM	9	16	65	9	409	28	17	60	7	120	571	35	1346
07:30 AM	11	18	79	9	489	25	11	63	12	133	590	27	1467
07:45 AM		31	77	20	511	30	15	106	10	129	634	38	1609
Total	35	73	284	53	1739	104	54	289	36	494	2225	131	5517
08:00 AM		19	67	22	476	31	13	78	10	128	595	43	1498
08:15 AM		32	63	13	515	30	20	86	20	106	605	44	1555
08:30 AM	-	24	58	16	430	24	26	71	21	93	540	34	1356
08:45 AM		61	70	33	388	29	38	70	23	129	562	34	1475
Total	94	136	258	84	1809	114	97	305	74	456	2302	155	5884
04:00 PM	0.4	70	400	40	400	04	44	50	40	70	454	05.	4050
04:00 PM	_	79	129	12	423	21	41	53	12	78	451	25	1358
04:15 PM	_	83	140	4	440	22	35	33	16	71	453	19	1348
04:30 PM		87	143	8	464	25	34	50	21	73	451	22	1419
04:45 PM Total		98 347	164 576	7 31	429 1756	31 99	41 151	54 190	17 66	88 310	495 1850	16 82	1465
TOtal	132	347	5/6	31	1730	99	151	190	00	310	1000	02	5590
05:00 PM		95	168	8	414	14	54	68	32	80	485	17	1464
05:15 PM	31	85	178	2	386	28	57	71	28	79	469	33	1447
05:30 PM	32	117	163	15	424	21	43	69	17	94	440	24	1459
05:45 PM	38	153	138	13	417	18	58	82	25	79	446	18	1485
Total	130	450	647	38	1641	81	212	290	102	332	1840	92	5855
Grand Total	391	1006	1765	206	6945	398	514	1074	278	1592	8217	460	22846
Apprch %		31.8	55.8	2.7	92.0	5.3	27.5	57.6	14.9	15.5	80.0	4.5	22040
Appron % Total %		31.6 4.4	7.7	0.9	30.4	1.7	27.5	4.7	14.9	7.0	36.0	2.0	
i Olai %	1.7	4.4	1.1	0.9	30.4	1.7	2.2	4.7	1.2	7.0	30.0	2.0	


File Name: WilshireGay Site Code: 00000000 Start Date: 2/13/2008

		Gayl	ey Ave			Wilsh	ire Blvd			Gayl	ey Ave			Wilsh	ire Blvd		
		South	nbound			Wes	tbound			North	nbound			East	bound		
Start Time	Left	Thro ug h	Right	App. Total	Left	Thro ug h	Right	App. Total	Left	Thro ug h	Right	App. Total	Left	Thro ug h	Right	App. Total	Int. Total
Peak Hour Fro	m 07:00	AM to	11:45 A	M - Peak	1 of 1												
Intersection	07:30	AM															
Volume	56	100	286	442	64	1991	116	2171	59	333	52	444	496	2424	152	3072	6129
Percent	12.7	22.6	64.7		2.9	91.7	5.3		13.3	75.0	11.7		16.1	78.9	4.9		
07:45 Volume	8	31	77	116	20	511	30	561	15	106	10	131	129	634	38	801	1609
Peak Factor																	0.952
High Int.	07:45 AM				07:45	AM			07:45	ΑM			07:45	AM			
Volume	8	31	77	116	20	511	30	561	15	106	10	131	129	634	38	801	
Peak Factor				0.953				0.967				0.847				0.959	

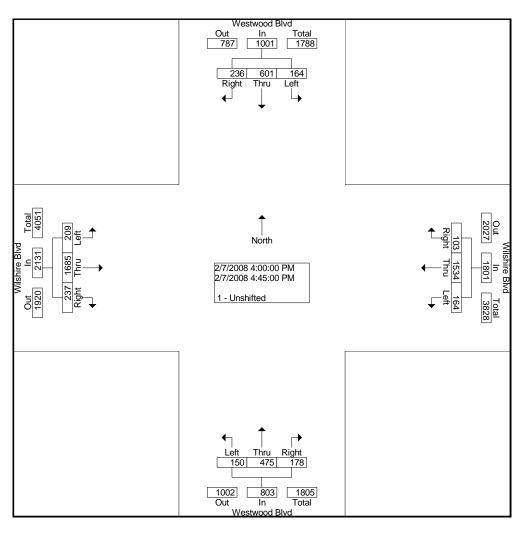
File Name: WilshireGay Site Code: 00000000 Start Date: 2/13/2008

		Gayle	ey Ave			Wilsh	ire Blvd			Gayl	ey Ave			Wilsh	ire Blvd		
		South	nbound			Wes	tbound			North	nbound			East	bound		
Start Time	Left	Thro ug h	Right	App. Total	Left	Thro ug h	Right	App. Total	Left	Thro ug h	Right	App. Total	Left	Thro ug h	Right	App. Total	Int. Total
Peak Hour Fro	ur From 12:00 PM to 05:45 PM ction 05:00 PM				1 of 1						•				•	•	
Intersection	05:00	PM															
Volume	130	450	647	1227	38	1641	81	1760	212	290	102	604	332	1840	92	2264	5855
Percent	10.6	36.7	52.7		2.2	93.2	4.6		35.1	48.0	16.9		14.7	81.3	4.1		
05:45 Volume	38	153	138	329	13	417	18	448	58	82	25	165	79	446	18	543	1485
Peak Factor																	0.986
High Int.	05:45 PM			05:30	PM			05:45 l	PM			05:00	PM				
Volume	38	153	138	329	15	424	21	460	58	82	25	165	80	485	17	582	
Peak Factor				0.932				0.957				0.915				0.973	


File Name: WestWil Site Code: 00000000 Start Date: 2/7/2008

Groups	Printed- 1	 Unshifted

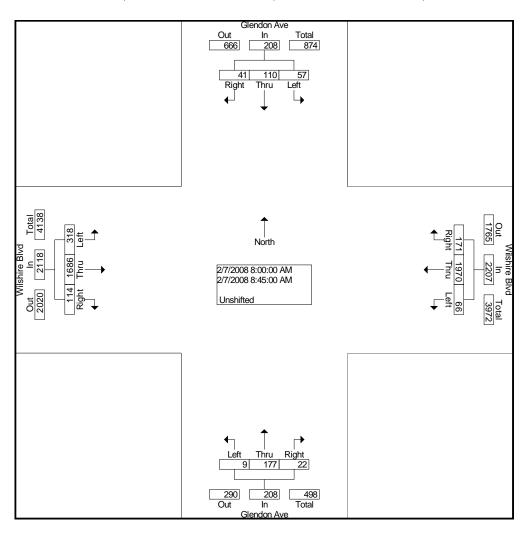
		stwood Bl		Wil	shire Blv	d		stwood Bl			Ishire Blv	t	
O: 1 T		outhbound			estbound			orthbound			astbound	D: 14	1 . =
Start Time	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Int. Total
Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
07:00 AM	9	52	30	14	293	32	17	80	12	71	309	23	942
07:15 AM	15	50	34	30	391	24	28	118	14	108	434	58	1304
07:30 AM	14	69	46	30	470	15	35	133	30	104	476	51	1473
07:45 AM	13	63	34	30	489	21	33	154	26	108	543	47	1561
Total	51	234	144	104	1643	92	113	485	82	391	1762	179	5280
08:00 AM	18	75	35	37	469	27	37	158	29	111	472	28	1496
08:15 AM	16	65	39	37	461	30	30	155	32	104	489	38	1496
08:30 AM	26	76	43	63	373	30	26	161	25	72	449	36	1380
08:45 AM	34	74	36	69	384	43	40	172	28	81	471	62	1494
Total	94	290	153	206	1687	130	133	646	114	368	1881	164	5866
			'			,			'				
04:00 PM	31	154	71	29	380	30	34	122	42	52	417	55	1417
04:15 PM	32	157	52	42	373	20	50	96	45	50	405	59	1381
04:30 PM	44	141	56	45	386	29	32	127	44	54	420	61	1439
04:45 PM	57	149	57	48	395	24	34	130	47	53	443	62	1499
Total	164	601	236	164	1534	103	150	475	178	209	1685	237	5736
			_00							_00		_0.	0.00
05:00 PM	39	167	57	34	340	19	38	131	44	56	448	42	1415
05:15 PM	33	146	53	24	296	19	40	153	35	53	443	46	1341
05:30 PM	42	160	51	23	385	17	39	159	41	35	419	51	1422
05:45 PM	41	165	40	57	367	25	51	143	48	54	366	54	1411
Total	155	638	201	138	1388	80	168	586	168	198	1676	193	5589
iotai	100	000	201	100	1000	00	100	000	100	100	1070	100	0000
Grand Total	464	1763	734	612	6252	405	564	2192	542	1166	7004	773	22471
Apprch %	15.7	59.5	24.8	8.4	86.0	5.6	17.1	66.5	16.4	13.0	78.3	8.6	
Total %	2.1	7.8	3.3	2.7	27.8	1.8	2.5	9.8	2.4	5.2	31.2	3.4	
rotar 70		7.0	0.0		_,.0	1.0	2.0	0.0		0.2	J 1.12	0	


File Name: WestWil Site Code: 00000000 Start Date: 2/7/2008

		Westw	ood Blv	⁄d		Wilsh	ire Blvd			Westw	ood Blv	d		Wilsh	ire Blvd		
		Sout	hbound			Wes	tbound			North	nbound			East	tbound		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Fro	m 07:0	0 AM to	11:45	AM - Pea	ık 1 of 1												
Intersection	07:30	AM															
Volume	61	272	154	487	134	1889	93	2116	135	600	117	852	427	1980	164	2571	6026
Percent	12.5	55.9	31.6		6.3	89.3	4.4		15.8	70.4	13.7		16.6	77.0	6.4		
07:45 Volume	13	63	34	110	30	489	21	540	33	154	26	213	108	543	47	698	1561
Peak Factor																	0.965
High Int.	07:30 AM				07:45	AM			08:00	AM			07:45	AM			
Volume	14	69	46	129	30	489	21	540	37	158	29	224	108	543	47	698	
Peak Factor				0.944				0.980				0.951				0.921	

File Name: WestWil Site Code: 00000000 Start Date: 2/7/2008

			ood Blv nbound	rd			ire Blvd tbound				ood Blv	d			ire Blvd bound		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Fro	m 12:0	0 PM to	05:45	PM - Pea	k 1 of 1												
Intersection	04:00	PM															
Volume	164	601	236	1001	164	1534	103	1801	150	475	178	803	209	1685	237	2131	5736
Percent	16.4	60.0	23.6		9.1	85.2	5.7		18.7	59.2	22.2		9.8	79.1	11.1		
04:45 Volume	57	149	57	263	48	395	24	467	34	130	47	211	53	443	62	558	1499
Peak Factor																	0.957
High Int.	04:45	PM			04:45	PM			04:45	PM			04:45	PM			
Volume	57	149	57	263	48	395	24	467	34	130	47	211	53	443	62	558	
Peak Factor				0.952				0.964				0.951				0.955	


File Name: WilGlen Site Code: 00000000 Start Date: 2/7/2008

Page No : 1

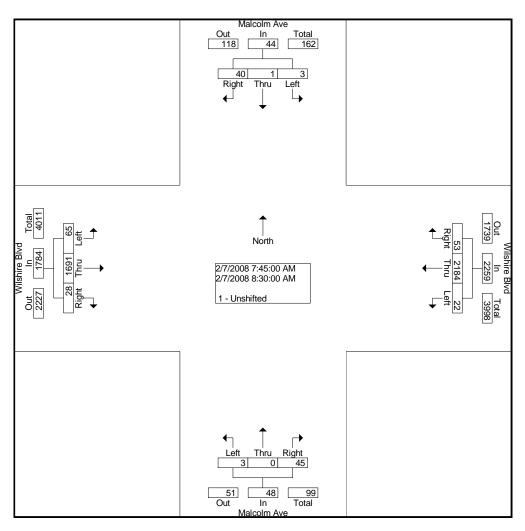
		endon Ave			Ishire Blvo			endon Ave	Э	Wi	Ishire Blvc	I	
		outhbound		W	estbound		N	orthbound			astbound		
Start Time	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Int. Total
Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
07:00 AM	5	5	8	4	360	34	1	27	2	44	268	27	785
07:15 AM	11	7	3	6	429	44	1	24	3	112	321	20	981
07:30 AM	9	9	3	11	484	51	1	26	10	80	405	24	1113
07:45 AM	11	7	4	6	521	35	3	29	5	97	441	27	1186
Total	36	28	18	27	1794	164	6	106	20	333	1435	98	4065
08:00 AM	12	16	7	13	509	39	2	41	7	84	410	23	1163
08:15 AM	15	21	11	18	522	35	3	46	4	75	421	33	1204
08:30 AM	12	44	5	15	469	56	2	53	5	70	412	27	1170
08:45 AM	18	29	18	20	470	41	2	37	6	89	443	31	1204
Total	57	110	41	66	1970	171	9	177	22	318	1686	114	4741
04:00 PM	40	30	33	4	402	12	4	29	20	16	449	11	1050
04:15 PM	41	26	39	6	395	16	6	41	18	19	440	9	1056
04:30 PM	28	47	34	5	408	22	13	33	15	30	469	8	1112
04:45 PM	26	60	24	4	410	16	16	53	8	33	498	12	1160
Total	135	163	130	19	1615	66	39	156	61	98	1856	40	4378
05:00 PM	35	84	23	5	357	19	14	63	15	27	489	8	1139
05:15 PM	41	80	28	4	308	24	14	56	8	27	462	8	1060
05:30 PM	36	78	30	3	369	8	6	35	13	19	470	14	1081
05:45 PM	22	78	23	2	381	9	7	63	8	8	447	12	1060
Total	134	320	104	14	1415	60	41	217	44	81	1868	42	4340
Grand Total	362	621	293	126	6794	461	95	656	147	830	6845	294	17524
Apprch %	28.4	48.7	23.0	1.7	92.0	6.2	10.6	73.1	16.4	10.4	85.9	3.7	
Total %	2.1	3.5	1.7	0.7	38.8	2.6	0.5	3.7	0.8	4.7	39.1	1.7	

File Name: WilGlen Site Code: 00000000 Start Date: 2/7/2008

			don Ave				ire Blvd				don Ave				ire Blvd		
		Sout	hbound			Wes	tbound			North	nbound			East	bound		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Fro	m 07:00	AM to	11:45 A	M - Peak	1 of 1												
Intersection	08:00	AM															
Volume	57	110	41	208	66	1970	171	2207	9	177	22	208	318	1686	114	2118	4741
Percent	27.4	52.9	19.7		3.0	89.3	7.7		4.3	85.1	10.6		15.0	79.6	5.4		
08:45 Volume	18	29	18	65	20	470	41	531	2	37	6	45	89	443	31	563	1204
Peak Factor																	0.984
High Int.	08:45 AM				08:15	AM			08:30	AM			08:45	AM			
Volume	18	29	18	65	18	522	35	575	2	53	5	60	89	443	31	563	
Peak Factor				0.800				0.960				0.867				0.940	

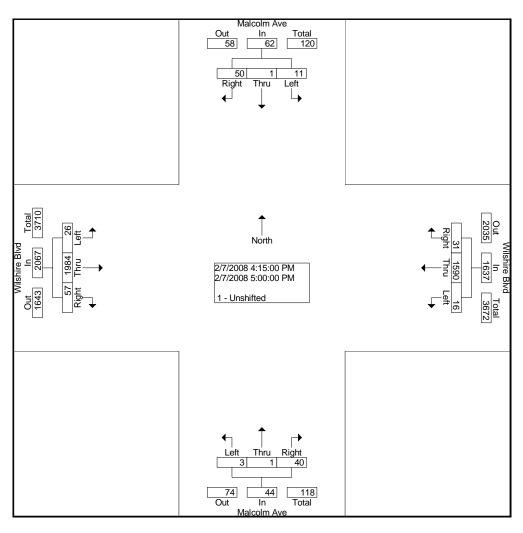
File Name: WilGlen Site Code: 00000000 Start Date: 2/7/2008

			don Ave				ire Blvd				don Ave				ire Blvd		
		Souti	hbound			vv es	tbound			Nortr	nbound			East	bound		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour From	m 12:00	PM to	05:45 F	M - Peak	1 of 1												
Intersection	04:30	PM															
Volume	130	271	109	510	18	1483	81	1582	57	205	46	308	117	1918	36	2071	4471
Percent	25.5	53.1	21.4		1.1	93.7	5.1		18.5	66.6	14.9		5.6	92.6	1.7		
04:45 Volume	26	60	24	110	4	410	16	430	16	53	8	77	33	498	12	543	1160
Peak Factor																	0.964
High Int.	05:15	:15 PM			04:30	PM			05:00	PM			04:45	PM			
Volume	41	80	28	149	5	408	22	435	14	63	15	92	33	498	12	543	
Peak Factor				0.856				0.909				0.837				0.953	


File Name: MalWil Site Code: 00000000 Start Date: 2/7/2008

Page No : 1

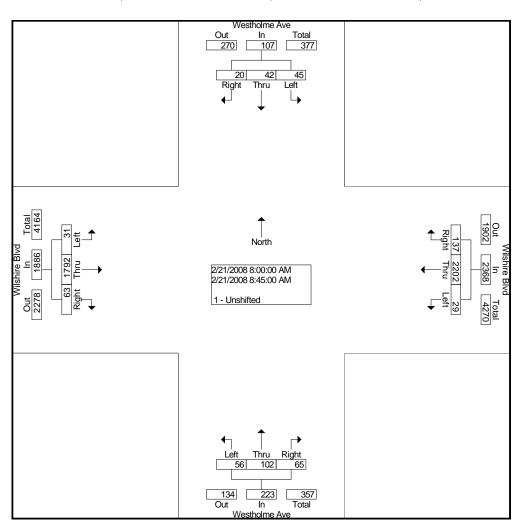
	Ma	Icolm Ave	<u>, </u>		shire Blv		Ma	ulcolm Ave	9	Wi	Ishire Blvo	1	
		outhbound			estbound			orthbound	-		astbound	•	
Start Time	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Int. Total
Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
07:00 AM	1	0	8	4	403	6	1	0	13	25	235	2	698
07:15 AM	1	0	11	1	491	7	3	0	7	17	315	3	856
07:30 AM	0	0	8	5	532	12	2	0	13	15	395	2	984
07:45 AM	11	1	11	4	559	16	3	0	22	25	427	8	1077
Total	3	1	38	14	1985	41	9	0	55	82	1372	15	3615
08:00 AM	1	0	9	6	547	15	0	0	12	17	401	9	1017
08:15 AM	0	0	12	4	567	9	0	0	7	15	415	6	1035
08:30 AM	1	0	8	8	511	13	0	0	4	8	448	5	1006
08:45 AM	1	0	10	4	499	11	2	0	8	13	459	5	1012
Total	3	0	39	22	2124	48	2	0	31	53	1723	25	4070
04.00 514			40	_	40=	_ 1			_ 1		4		
04:00 PM	0	0	10	7	405	5	0	1	5	9	477	11	930
04:15 PM	0	1	10	4	410	12	0	0	9	5	472	15	938
04:30 PM	6	0	23	0	401	9	1	0	10	8	484	12	954
04:45 PM	4	0	8	6	404	6	1	1	12	5	504	13	964
Total	10	1	51	17	1620	32	2	2	36	27	1937	51	3786
05:00 DM		0	0	0	075	4.1		0	0	0	504	47	054
05:00 PM	1	0	9	6	375	4	1	0	9	8	524	17	954
05:15 PM	0	0	1	20	319	11	0	0 0	8 7	8 7	478	18	863
05:30 PM	1	2	1	10	372	7	0	-	- 1	•	479 455	12	898
05:45 PM Total	<u>4</u> 6	<u>1</u> 3	6 17	14 50	376 1442	26	<u>1</u>	0	15 39	<u>8</u> 31	455 1936	13 60	897
rotai	О	3	17	50	1442	26	2	U	39	31	1936	60	3612
Grand Total	22	5	145	103	7171	147	15	2	161	193	6968	151	15083
Apprch %	12.8	2.9	84.3	1.4	96.6	2.0	8.4	1.1	90.4	2.6	95.3	2.1	13003
Total %	0.1	0.0	1.0	0.7	47.5	1.0	0.4	0.0	1.1	1.3	46.2	1.0	
Total 70	0.1	0.0	1.0	0.7	77.5	1.0	0.1	0.0	1.1	1.5	70.2	1.0	


File Name : MalWil Site Code : 00000000 Start Date : 2/7/2008

		Malco	olm Ave			Wilsh	ire Blvd			Malco	olm Ave			Wilsh	ire Blvd		
		Sout	hbound			Wes	tbound			North	nbound			East	bound		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Fro	m 07:0	0 AM to	11:45	AM - Pea	k 1 of 1												
Intersection	07:45	AM															
Volume	3	1	40	44	22	2184	53	2259	3	0	45	48	65	1691	28	1784	4135
Percent	6.8	2.3	90.9		1.0	96.7	2.3		6.3	0.0	93.8		3.6	94.8	1.6		
07:45 Volume	1	1	11	13	4	559	16	579	3	0	22	25	25	427	8	460	1077
Peak Factor																	0.960
High Int.	07:45	AM			08:15	AM			07:45	AM			08:30	AM			
Volume	1	1	11	13	4	567	9	580	3	0	22	25	8	448	5	461	
Peak Factor				0.846				0.974				0.480				0.967	

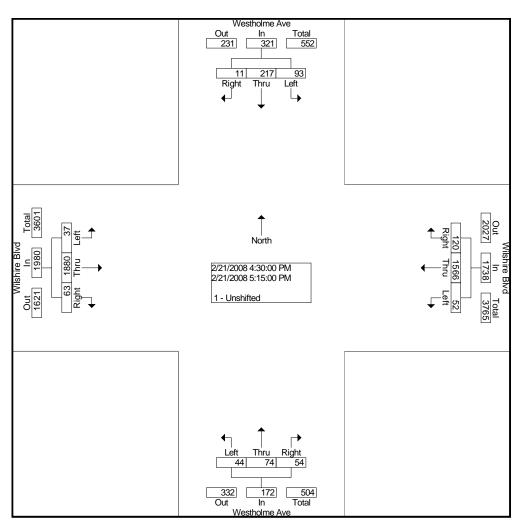
File Name : MalWil Site Code : 00000000 Start Date : 2/7/2008

			olm Ave				ire Blvd tbound				olm Ave				ire Blvd bound		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Fro	m 12:0	0 PM to	05:45	PM - Pea	k 1 of 1												
Intersection	04:15	PM															
Volume	11	1	50	62	16	1590	31	1637	3	1	40	44	26	1984	57	2067	3810
Percent	17.7	1.6	80.6		1.0	97.1	1.9		6.8	2.3	90.9		1.3	96.0	2.8		
04:45 Volume	4	0	8	12	6	404	6	416	1	1	12	14	5	504	13	522	964
Peak Factor																	0.988
High Int.	04:30	PM			04:15	PM			04:45	PM			05:00	PM			
Volume	6	0	23	29	4	410	12	426	1	1	12	14	8	524	17	549	
Peak Factor				0.534				0.961				0.786				0.941	


File Name: WestHwil Site Code: 00000000 Start Date: 2/21/2008

Page No : 1

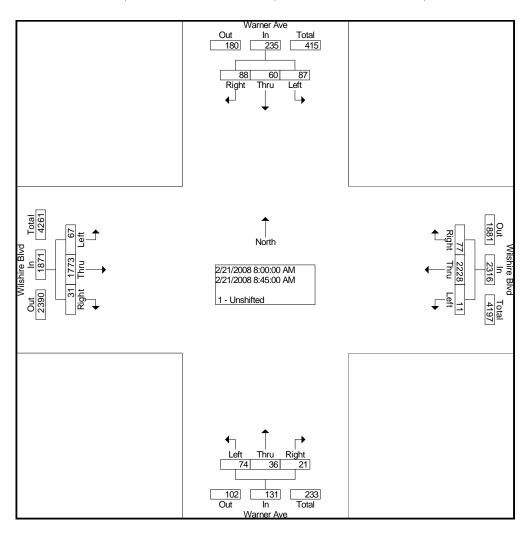
	Wes	tholme Av	/e	Wi	Ishire Blv	b	We	stholme A	ve	Wi	Ishire Blvc	I	
	So	uthbound		W	estbound		N	orthbound		Е	astbound		
Start Time	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Int. Total
Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
07:00 AM	5	6	1	2	364	12	18	11	1	7	261	8	696
07:15 AM	3	4	5	1	460	10	11	7	8	2	343	14	868
07:30 AM	9	5	3	4	510	49	15	18	7	11	410	13	1054
07:45 AM	12	4	4	4	539	16	11	19	12	5	433	23	1082
Total	29	19	13	11	1873	87	55	55	28	25	1447	58	3700
			i i			1			1			1	
08:00 AM	15	7	7	5	525	23	20	31	18	9	412	14	1086
08:15 AM	8	11	6	6	584	15	7	23	15	5	454	15	1149
08:30 AM	8	13	7	8	564	18	22	21	11	8	458	11	1149
 08:45 AM	14	11	0	10	529	81	7	27	21	9	468	23	1200
Total	45	42	20	29	2202	137	56	102	65	31	1792	63	4584
04:00 PM	40	20	7	0	440	0	4.5	44	40	2	400	0	4000
	13	30	7	2	440 411	9	15 7	11	18	3	463	9	1020
04:15 PM	12	27	4	10		6	=	19	9	6	464	10	985
04:30 PM 04:45 PM	14 21	52 45	5	17	432 411	19	10 13	22 15	11 21	8 15	471 476	18 16	1079
 Total	60	154	19	5 34	1694	19 53	45	67	59	32	1874	53	1060 4144
TOTAL	60	154	19	34	1094	55	45	67	59	32	10/4	55	4144
05:00 PM	29	58	2	12	376	19	9	22	10	9	463	18	1027
05:15 PM	29	62	1	18	347	63	12	15	12	5	470	11	1045
05:30 PM	19	47	3	18	381	38	7	26	19	4	441	17	1020
05:45 PM	21	34	7	9	376	20	10	17	10	6	400	19	929
 Total	98	201	13	57	1480	140	38	80	51	24	1774	65	4021
				-					- 1				
Grand Total	232	416	65	131	7249	417	194	304	203	112	6887	239	16449
Apprch %	32.5	58.3	9.1	1.7	93.0	5.3	27.7	43.4	29.0	1.5	95.2	3.3	
Total %	1.4	2.5	0.4	0.8	44.1	2.5	1.2	1.8	1.2	0.7	41.9	1.5	
			1			- 1		_	1				


File Name: WestHwil Site Code: 00000000 Start Date: 2/21/2008

			olme Av	е			ire Blvd				olme Av	е			ire Blvd		
		Sout	hbound			Wes.	tbound			Nortr	nbound			East	bound		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour From	m 07:00	AM to	11:45 A	M - Peak	1 of 1		·								,		•
Intersection	08:00	AM															
Volume	45	42	20	107	29	2202	137	2368	56	102	65	223	31	1792	63	1886	4584
Percent	42.1	39.3	18.7		1.2	93.0	5.8		25.1	45.7	29.1		1.6	95.0	3.3		
08:45 Volume	14	11	0	25	10	529	81	620	7	27	21	55	9	468	23	500	1200
Peak Factor																	0.955
High Int.	08:00	AM			08:45	AM			08:00	AM			08:45	AM			
Volume	15	7	7	29	10	529	81	620	20	31	18	69	9	468	23	500	
Peak Factor				0.922				0.955				0.808				0.943	

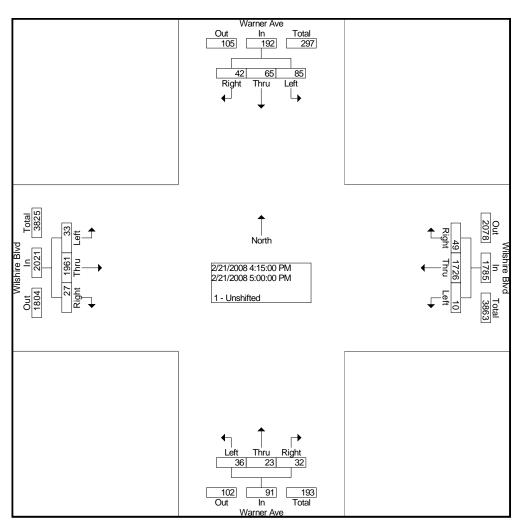
File Name: WestHwil Site Code: 00000000 Start Date: 2/21/2008

			olme Av	е			ire Blvd				olme Av	е			ire Blvd		
		Souti	hbound			vves	tbound			Nortr	nbound			Easi	bound		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour From	m 12:00	PM to	05:45 F	M - Peak	1 of 1												
Intersection	04:30	PM															
Volume	93	217	11	321	52	1566	120	1738	44	74	54	172	37	1880	63	1980	4211
Percent	29.0	67.6	3.4		3.0	90.1	6.9		25.6	43.0	31.4		1.9	94.9	3.2		
04:30 Volume	14	52	5	71	17	432	19	468	10	22	11	43	8	471	18	497	1079
Peak Factor																	0.976
High Int.	05:15	PM			04:30	PM			04:45	PM			04:45	PM			
Volume	29	62	1	92	17	432	19	468	13	15	21	49	15	476	16	507	
Peak Factor				0.872				0.928				0.878				0.976	


File Name: WarWil Site Code: 00000000 Start Date: 2/21/2008

Page No : 1

	Wa	arner Ave		Wi	shire Blvo		W	arner Ave	,	Wi	Ishire Blvo	1	
	So	uthbound		W	estbound		No	orthbound		Е	astbound		
Start Time	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Int. Total
Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
07:00 AM	1	3	15	1	342	5	6	1	2	8	249	6	639
07:15 AM	7	2	22	0	454	14	7	5	1	7	343	4	866
07:30 AM	9	6	24	2	522	11	8	8	6	6	429	6	1037
 07:45 AM	15	6	25	3	533	22	22	12	4	18	444	5	1109
Total	32	17	86	6	1851	52	43	26	13	39	1465	21	3651
08:00 AM	20	8	20	3	526	20	32	11	4	27	410	10	1091
08:15 AM	25	19	32	2	559	27	12	9	7	17	426	8	1143
08:30 AM	22	22	26	2	563	17	18	11	4	14	448	7	1154
 08:45 AM	20	11	10	4	580	13	12	5	6	9	489	6	1165
Total	87	60	88	11	2228	77	74	36	21	67	1773	31	4553
04:00 DM	4.5	00	20	_	404	40	40	0	٥١	4.5	474	40	4007
04:00 PM	15	22 12	20 19	5	424	13	12 7	8	9	15	471	13	1027
04:15 PM	24 14	10	-	2 5	426	12	9	4	13	12	464	12 7	1007 1042
04:30 PM 04:45 PM	19	16	12 6	0	461 428	17 7	9	10	5 8	4 7	488 505	2	1042
 Total	72	60	57	12	1739	49	37	5 27	35	38	1928	34	4088
TOlai	12	00	31	12	1739	49	31	21	33	30	1920	34	4000
05:00 PM	28	27	5	3	411	13	11	4	6	10	504	6	1028
05:15 PM	26	20	9	4	404	16	12	8	5	11	480	12	1007
05:30 PM	19	20	11	5	421	12	12	5	2	6	456	5	974
05:45 PM	17	15	8	2	433	8	11	13	2	15	413	10	947
 Total	90	82	33	14	1669	49	46	30	15	42	1853	33	3956
		-											
Grand Total	281	219	264	43	7487	227	200	119	84	186	7019	119	16248
Apprch %	36.8	28.7	34.6	0.6	96.5	2.9	49.6	29.5	20.8	2.5	95.8	1.6	
Total %	1.7	1.3	1.6	0.3	46.1	1.4	1.2	0.7	0.5	1.1	43.2	0.7	
												,	

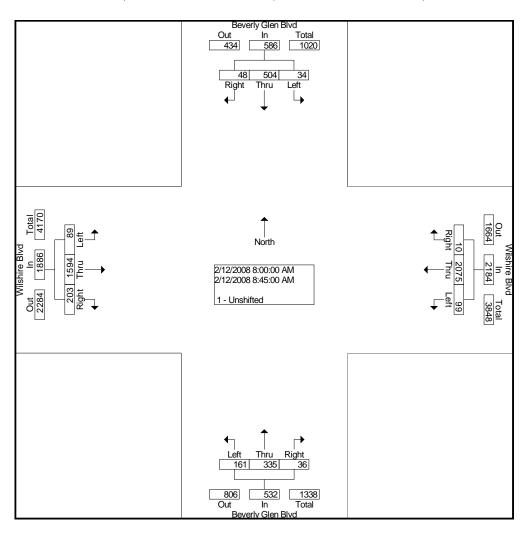

File Name: WarWil Site Code: 00000000 Start Date: 2/21/2008

			ner Ave				ire Blvd				ner Ave				ire Blvd		
		Sout	hbound			Wes	tbound			North	nbound			East	bound		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Fro	m 07:00	AM to	11:45 A	M - Peak	1 of 1												-
Intersection	08:00	AM															
Volume	87	60	88	235	11	2228	77	2316	74	36	21	131	67	1773	31	1871	4553
Percent	37.0	25.5	37.4		0.5	96.2	3.3		56.5	27.5	16.0		3.6	94.8	1.7		
08:45 Volume	20	11	10	41	4	580	13	597	12	5	6	23	9	489	6	504	1165
Peak Factor																	0.977
High Int.	08:15	AM			08:45	AM			08:00	AM			08:45	AM			
Volume	25	19	32	76	4	580	13	597	32	11	4	47	9	489	6	504	
Peak Factor				0.773				0.970				0.697				0.928	

File Name: WarWil Site Code: 00000000 Start Date: 2/21/2008

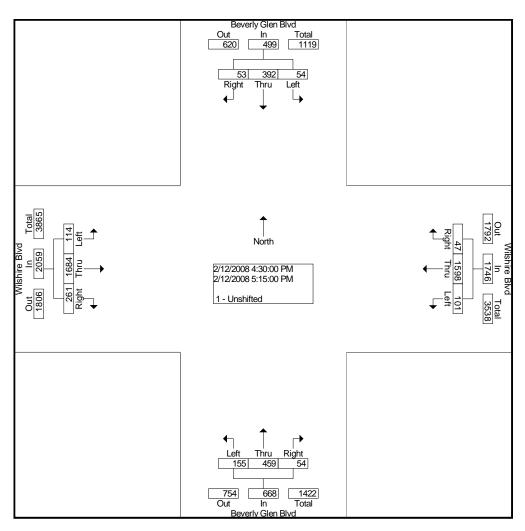
		Warr	ner Ave			Wilsh	ire Blvd			Warr	ner Ave			Wilsh	ire Blvd		
		Sout	hbound			Wes	tbound			North	nbound			East	tbound		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Fro	m 12:00	PM to	05:45 P	M - Peak	1 of 1											,	
Intersection	04:15	PM															
Volume	85	65	42	192	10	1726	49	1785	36	23	32	91	33	1961	27	2021	4089
Percent	44.3	33.9	21.9		0.6	96.7	2.7		39.6	25.3	35.2		1.6	97.0	1.3		
04:30 Volume	14	10	12	36	5	461	17	483	9	10	5	24	4	488	7	499	1042
Peak Factor																	0.981
High Int.	05:00	PM			04:30	PM			04:15	PM			05:00	PM			
Volume	28	27	5	60	5	461	17	483	7	4	13	24	10	504	6	520	
Peak Factor				0.800				0.924				0.948				0.972	

File Name : BevGlenWil


Site Code : 00000000 Start Date : 2/12/2008

Page No : 1

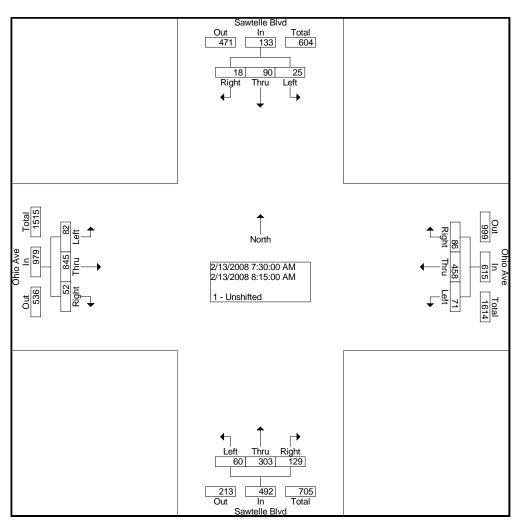
	Beve	rly Glen B	lvd	Wi	Ishire Blv	b	Beve	erly Glen E	Blvd	Wi	Ishire Blvd		
		outhbound		W	estbound			orthbound			astbound		
Start Time	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Int. Total
Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
07:00 AM	9	56	12	8	313	10	24	50	4	11	223	42	762
07:15 AM	11	85	20	11	361	12	31	81	4	20	280	40	956
07:30 AM	10	86	18	21	473	6	42	93	3	27	350	58	1187
07:45 AM	7	100	14	30	481	5	42	97	5	35	365	75	1256
Total	37	327	64	70	1628	33	139	321	16	93	1218	215	4161
08:00 AM	10	102	8	21	487	3	41	89	13	19	395	45	1233
08:15 AM	7	144	14	23	520	3	46	88	11	29	353	51	1289
08:30 AM	10	117	12	26	537	0	34	80	4	18	418	56	1312
08:45 AM	7	141	14	29	531	4	40	78	8	23	428	51	1354
Total	34	504	48	99	2075	10	161	335	36	89	1594	203	5188
04:00 PM	9	119	8	31	382	14	32	117	5	33	382	57	1189
04:00 PM	23	90	8	28	394	7	37	110	9	36	411	74	1227
04:30 PM	11	108	15	28	438	8	35	106	12	28	391	69	1249
04:45 PM	14	78	18	23	377	20	37	97	18	32	415	71	1200
Total	57	395	49	110	1591	49	141	430	44	129	1599	271	4865
05:00 PM	13	110	9	23	388	3	41	118	14	31	437	55	1242
05:15 PM	16	96	11	23 27	395	16	42	138	10	23	441	66	1242
05:30 PM	14	114	10	20	399	18	47	120	15	28	407	53	1245
05:45 PM	8	96	8	24	419	12	24	124	7	31	375	52	1180
Total	51	416	38	94	1601	49	154	500	46	113	1660	226	4948
Total	31	410	30	34	1001	49	134	300	40	113	1000	220	4340
Grand Total	179	1642	199	373	6895	141	595	1586	142	424	6071	915	19162
Apprch %	8.9	81.3	9.9	5.0	93.1	1.9	25.6	68.3	6.1	5.7	81.9	12.3	
Total %	0.9	8.6	1.0	1.9	36.0	0.7	3.1	8.3	0.7	2.2	31.7	4.8	


File Name: BevGlenWil Site Code: 00000000 Start Date: 2/12/2008

	Е	Beverly	Glen Bl	vd		Wilsh	ire Blvd		E	Beverly	Glen Bl	vd		Wilsh	ire Blvd		
		Sout	nbound			Wes	tbound			North	nbound			East	bound		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Fro	m 07:00	AM to	11:45 A	M - Peak	1 of 1												
Intersection	08:00	AM															
Volume	34	504	48	586	99	2075	10	2184	161	335	36	532	89	1594	203	1886	5188
Percent	5.8	86.0	8.2		4.5	95.0	0.5		30.3	63.0	6.8		4.7	84.5	10.8		
08:45 Volume	7	141	14	162	29	531	4	564	40	78	8	126	23	428	51	502	1354
Peak Factor																	0.958
High Int.	08:15	AM			08:45	AM			08:15	AM			08:45	AM			
Volume	7	144	14	165	29	531	4	564	46	88	11	145	23	428	51	502	
Peak Factor				0.888				0.968				0.917				0.939	

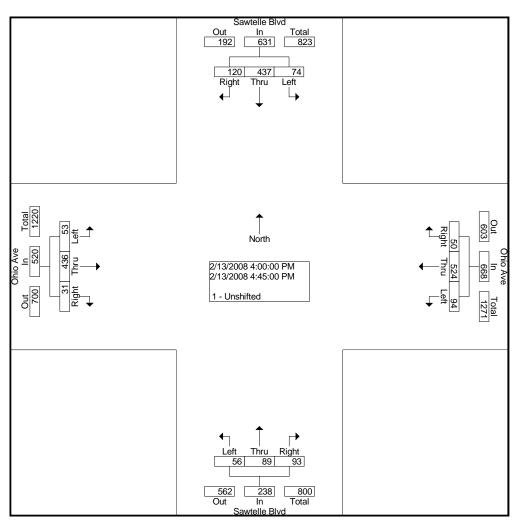
File Name: BevGlenWil Site Code: 00000000 Start Date: 2/12/2008

	E	•	Glen Bl	vd			ire Blvd		E		Glen Bl	vd			ire Blvd		
		Sout	hbound			vves	tbound			Nortr	nbound			East	bound		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour From	m 12:00	PM to	05:45 F	M - Peak	1 of 1												
Intersection	04:30	PM															
Volume	54	392	53	499	101	1598	47	1746	155	459	54	668	114	1684	261	2059	4972
Percent	10.8	78.6	10.6		5.8	91.5	2.7		23.2	68.7	8.1		5.5	81.8	12.7		
05:15 Volume	16	96	11	123	27	395	16	438	42	138	10	190	23	441	66	530	1281
Peak Factor																	0.970
High Int.	04:30	PM			04:30	PM			05:15	PM			05:15	PM			
Volume	11	108	15	134	28	438	8	474	42	138	10	190	23	441	66	530	
Peak Factor				0.931				0.921				0.879				0.971	


File Name: SawOhio Site Code : 00000000 Start Date : 2/13/2008 Page No : 1

Groups I	Printed- '	1 -	Unshifted
----------	------------	-----	-----------

_							TITILEU- I	- Orisilite						
		Sav	wtelle Blvc	t	C	hio Ave		Sa	wtelle Blv	d		Ohio Ave		
			uthbound		W	estbound		No.	orthbound			astbound		
	Start Time	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Int. Total
	Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
	07:00 AM	4	13	3	13	44	29	7	59	14	9	87	12	294
	07:15 AM	11	16	5	10	76	33	13	87	13	18	128	8	418
	07:30 AM	2	22	4	18	109	29	21	86	24	20	175	14	524
	07:45 AM	5	17	2	19	140	22	15	97	33	27	217	12	606
	Total	22	68	14	60	369	113	56	329	84	74	607	46	1842
	08:00 AM	7	26	7	18	89	26	7	67	29	23	227	14	540
	08:15 AM	11	25	5	16	120	9	17	53	43	12	226	12	549
	08:30 AM	8	23	5	17	100	18	8	46	43	9	217	15	509
_	08:45 AM	2	14	8	18	118	13	16	70	47	7	219	12	544
	Total	28	88	25	69	427	66	48	236	162	51	889	53	2142
				1			_ 1			1			- 1	
	04:00 PM	18	126	27	23	126	9	13	30	30	16	107	2	527
	04:15 PM	11	98	32	24	122	12	17	13	23	17	123	10	502
	04:30 PM	26	117	25	27	129	15	12	22	20	16	105	5	519
_	04:45 PM	19	96	36	20	147	14	14	24	20	4	101	14	509
	Total	74	437	120	94	524	50	56	89	93	53	436	31	2057
	05 00 DIA	4.0		0=		4.40				40				40=
	05:00 PM	12	97	25	28	148	14	14	22	19	8	97	11	495
	05:15 PM	13	87	9	27	147	6	15	36	24	6	91	9	470
	05:30 PM	16	88	21	30	166	13	15	24	22	7	86	12	500
_	05:45 PM	13	59	17	49	135	5	13	20	20	11	103	10	455
	Total	54	331	72	134	596	38	57	102	85	32	377	42	1920
				1			1						1	
	Grand Total	178	924	231	357	1916	267	217	756	424	210	2309	172	7961
	Apprch %	13.4	69.3	17.3	14.1	75.4	10.5	15.5	54.1	30.4	7.8	85.8	6.4	
	Total %	2.2	11.6	2.9	4.5	24.1	3.4	2.7	9.5	5.3	2.6	29.0	2.2	


File Name: SawOhio Site Code: 00000000 Start Date: 2/13/2008

		Sawte	elle Blvc	l		Ohi	o Ave			Sawte	elle Blvd			Ohi	o Ave		
		South	nbound			Wes	tbound			North	nbound			East	bound		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Fro	m 07:0	0 AM to	11:45	AM - Pea	k 1 of 1				·								
Intersection	07:30	AM															
Volume	25	90	18	133	71	458	86	615	60	303	129	492	82	845	52	979	2219
Percent	18.8	67.7	13.5		11.5	74.5	14.0		12.2	61.6	26.2		8.4	86.3	5.3		
07:45 Volume	5	17	2	24	19	140	22	181	15	97	33	145	27	217	12	256	606
Peak Factor																	0.915
High Int.	08:15	AM			07:45	AM			07:45	AM			08:00	AM			
Volume	11	25	5	41	19	140	22	181	15	97	33	145	23	227	14	264	
Peak Factor				0.811				0.849				0.848				0.927	

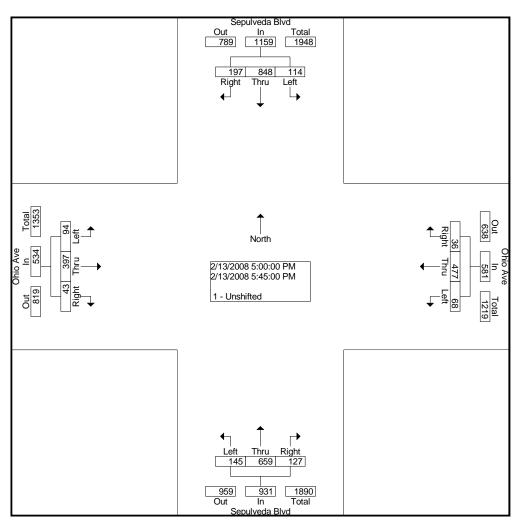
File Name: SawOhio Site Code: 00000000 Start Date: 2/13/2008

			elle Blvd				o Ave tbound				elle Blvd				o Ave		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Fro	m 12:0	0 PM to	05:45 F	PM - Pea	k 1 of 1		l								1		
Intersection	04:00	PM															
Volume	74	437	120	631	94	524	50	668	56	89	93	238	53	436	31	520	2057
Percent	11.7	69.3	19.0		14.1	78.4	7.5		23.5	37.4	39.1		10.2	83.8	6.0		
04:00 Volume	18	126	27	171	23	126	9	158	13	30	30	73	16	107	2	125	527
Peak Factor																	0.976
High Int.	04:00	PM			04:45	PM			04:00	PM			04:15	PM			
Volume	18	126	27	171	20	147	14	181	13	30	30	73	17	123	10	150	
Peak Factor				0.923				0.923				0.815				0.867	

File Name: SepOhio Site Code: 00000000 Start Date: 2/13/2008

Page No : 1

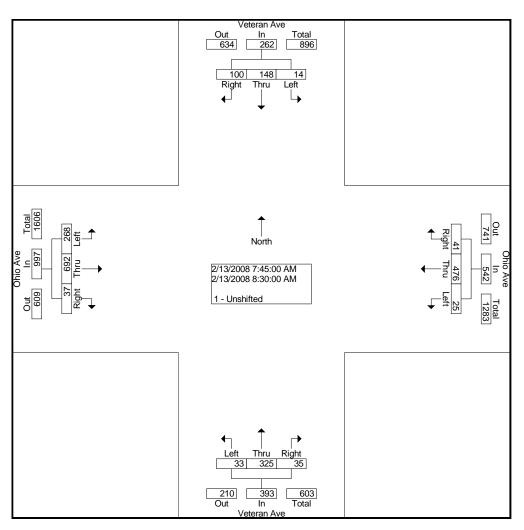
_						Cicapoi		Chorinto	ч					
			ulveda Blv			hio Ave			ulveda Bl			Ohio Ave		
		Sc	outhbound		W	estbound		N	orthbound		E	astbound		
	Start Time	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Int. Total
	Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
-	07:00 AM	4	102	17	11	63	15	23	88	27	36	71	12	469
	07:15 AM	4	137	21	25	105	5	23	114	25	33	105	19	616
	07:30 AM	15	112	26	27	130	15	31	96	34	29	159	14	688
	07:45 AM	10	111	14	16	148	19	31	106	25	47	169	25	721
	Total	33	462	78	79	446	54	108	404	111	145	504	70	2494
	08:00 AM	6	135	15	24	113	15	25	124	28	29	171	20	705
	08:15 AM	10	131	23	16	118	19	19	112	36	53	173	17	727
	08:30 AM	12	118	30	18	101	18	21	112	37	45	182	16	710
	08:45 AM	10	124	23	14	128	13	25	95	24	48	177	16	697
	Total	38	508	91	72	460	65	90	443	125	175	703	69	2839
	04:00 PM	15	189	52	20	135	15	35	141	22	16	127	13	780
	04:15 PM	11	197	35	18	110	25	26	171	27	28	106	13	767
	04:30 PM	25	182	45	17	114	10	40	142	29	32	109	15	760
	04:45 PM	34	160	38	13	116	13	29	146	26	25	106	18	724
	Total	85	728	170	68	475	63	130	600	104	101	448	59	3031
							Ţ			·				
	05:00 PM	24	213	41	15	125	8	38	159	42	20	77	10	772
	05:15 PM	20	211	53	12	130	8	36	172	34	23	110	11	820
	05:30 PM	35	211	52	24	119	10	43	172	26	19	106	12	829
	05:45 PM	35	213	51	17	103	10	28	156	25	32	104	10	784
	Total	114	848	197	68	477	36	145	659	127	94	397	43	3205
				'									'	
	Grand Total	270	2546	536	287	1858	218	473	2106	467	515	2052	241	11569
	Apprch %	8.1	76.0	16.0	12.1	78.6	9.2	15.5	69.1	15.3	18.3	73.1	8.6	
	Total %	2.3	22.0	4.6	2.5	16.1	1.9	4.1	18.2	4.0	4.5	17.7	2.1	
		-	-	- 1	-	-	- 1			- 1	-		- 1	


File Name: SepOhio Site Code: 00000000 Start Date: 2/13/2008

		Sepulv	eda Blv	ď		Ohi	o Ave			Sepulv	eda Blv	d		Ohi	o Ave		
		South	nbound			Wes	tbound			Nortl	nbound			East	bound		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Fro	m 07:0	0 AM to	11:45	AM - Pea	k 1 of 1												
Intersection	07:45	AM															
Volume	38	495	82	615	74	480	71	625	96	454	126	676	174	695	78	947	2863
Percent	6.2	80.5	13.3		11.8	76.8	11.4		14.2	67.2	18.6		18.4	73.4	8.2		
08:15 Volume	10	131	23	164	16	118	19	153	19	112	36	167	53	173	17	243	727
Peak Factor																	0.985
High Int.	08:15	AM			07:45	AM			08:00	AM			08:15	AM			
Volume	10	131	23	164	16	148	19	183	25	124	28	177	53	173	17	243	
Peak Factor				0.938				0.854				0.955				0.974	

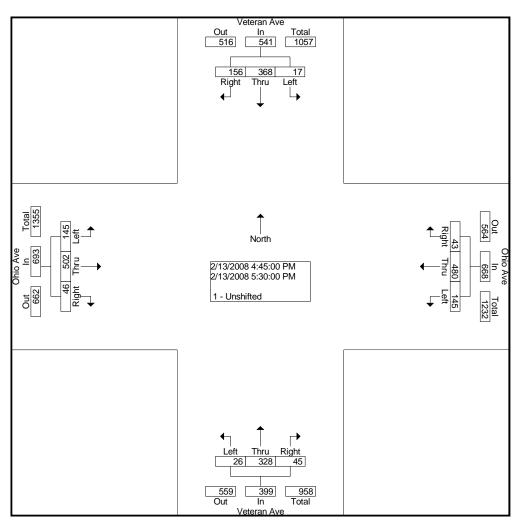
File Name: SepOhio Site Code: 00000000 Start Date: 2/13/2008

			eda Blv	d			o Ave tbound				eda Blv bound	d			o Ave		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Fro	m 12:0	0 PM to	05:45 l	PM - Pea	k 1 of 1			,									
Intersection	05:00	PM															
Volume	114	848	197	1159	68	477	36	581	145	659	127	931	94	397	43	534	3205
Percent	9.8	73.2	17.0		11.7	82.1	6.2		15.6	70.8	13.6		17.6	74.3	8.1		
05:30 Volume	35	211	52	298	24	119	10	153	43	172	26	241	19	106	12	137	829
Peak Factor																	0.967
High Int.	05:45	PM			05:30	PM			05:15	PM			05:45	PM			
Volume	35	213	51	299	24	119	10	153	36	172	34	242	32	104	10	146	
Peak Factor				0.969				0.949				0.962				0.914	


File Name: VetOhio Site Code : 00000000 Start Date : 2/13/2008 Page No : 1

Groups	Printed-	1 -	Unshifted
--------	----------	-----	-----------

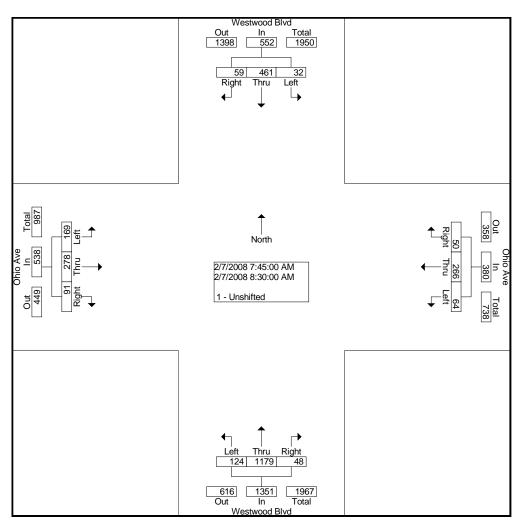
_						Cioapo i	TITICOU I	Officiality	<u> </u>					
		Ve	teran Ave		C	Ohio Ave		Ve	eteran Ave)		Ohio Ave		
		So	uthbound		W	estbound		N	orthbound		E	astbound		
	Start Time	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Int. Total
	Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
	07:00 AM	2	13	9	3	65	7	4	27	2	34	70	6	242
	07:15 AM	5	27	12	2	89	10	3	53	3	33	88	7	332
	07:30 AM	4	33	23	6	134	15	4	50	6	46	177	9	507
	07:45 AM	3	33	18	6	148	11	12	82	8	70	190	10	591
	Total	14	106	62	17	436	43	23	212	19	183	525	32	1672
	08:00 AM	2	27	22	6	133	12	5	80	4	59	159	7	516
	08:15 AM	4	52	29	6	108	6	13	78	13	65	166	11	551
	08:30 AM	5	36	31	7	87	12	3	85	10	74	177	9	536
_	08:45 AM	8	43	25	10	122	11	6	94	9	62	174	13	577
	Total	19	158	107	29	450	41	27	337	36	260	676	40	2180
	04:00 PM	6	96	36	17	115	9	10	71	10	41	112	21	544
	04:15 PM	3	91	48	25	92	9	15	78	2	42	108	9	522
	04:30 PM	7	98	42	24	124	11	3	92	7	24	134	13	579
_	04:45 PM	6	90	38	30	108	12	7	93	6	32	129	7	558
	Total	22	375	164	96	439	41	35	334	25	139	483	50	2203
	05:00 PM	2	93	47	32	125	9	6	86	9	46	126	13	594
	05:15 PM	5	89	28	43	123	10	8	66	11	33	133	14	563
	05:30 PM	4	96	43	40	124	12	5	83	19	34	114	12	586
_	05:45 PM	1	78	34	44	101	7	9	74	10	41	113	10	522
	Total	12	356	152	159	473	38	28	309	49	154	486	49	2265
	Grand Total	67	995	485	301	1798	163	113	1192	129	736	2170	171	8320
	Apprch %	4.3	64.3	31.4	13.3	79.5	7.2	7.9	83.1	9.0	23.9	70.5	5.6	
	Total %	0.8	12.0	5.8	3.6	21.6	2.0	1.4	14.3	1.6	8.8	26.1	2.1	


File Name: VetOhio Site Code: 00000000 Start Date: 2/13/2008

			an Ave				o Ave				an Ave				o Ave		
		South	nbound			Wes	tbound			North	nbound			East	bound		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Fro	m 07:0	0 AM to	11:45	AM - Pea	k 1 of 1												
Intersection	07:45	AM															
Volume	14	148	100	262	25	476	41	542	33	325	35	393	268	692	37	997	2194
Percent	5.3	56.5	38.2		4.6	87.8	7.6		8.4	82.7	8.9		26.9	69.4	3.7		
07:45 Volume	3	33	18	54	6	148	11	165	12	82	8	102	70	190	10	270	591
Peak Factor																	0.928
High Int.	08:15	AM			07:45	AM			08:15	AM			07:45	AM			
Volume	4	52	29	85	6	148	11	165	13	78	13	104	70	190	10	270	
Peak Factor				0.771				0.821				0.945				0.923	

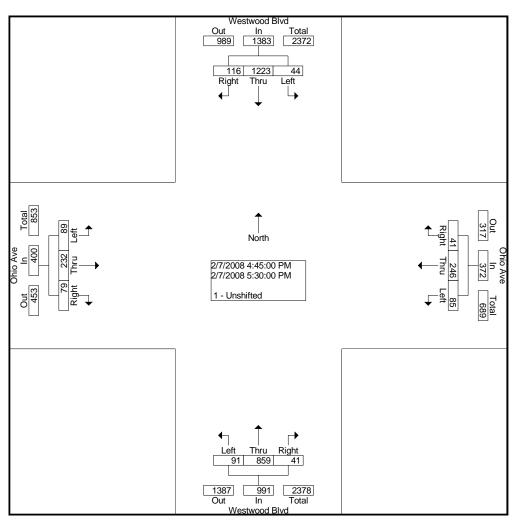
File Name: VetOhio Site Code: 00000000 Start Date: 2/13/2008

			an Ave				o Ave				an Ave				o Ave		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Fro	m 12:0	0 PM to	05:45 l	PM - Pea	k 1 of 1		•	,									
Intersection	04:45	PM															
Volume	17	368	156	541	145	480	43	668	26	328	45	399	145	502	46	693	2301
Percent	3.1	68.0	28.8		21.7	71.9	6.4		6.5	82.2	11.3		20.9	72.4	6.6		
05:00 Volume	2	93	47	142	32	125	9	166	6	86	9	101	46	126	13	185	594
Peak Factor																	0.968
High Int.	05:30	PM			05:15	PM			05:30	PM			05:00	PM			
Volume	4	96	43	143	43	123	10	176	5	83	19	107	46	126	13	185	
Peak Factor				0.946				0.949				0.932				0.936	


File Name: WestOhio Site Code: 00000000 Start Date: 2/7/2008

Page No : 1

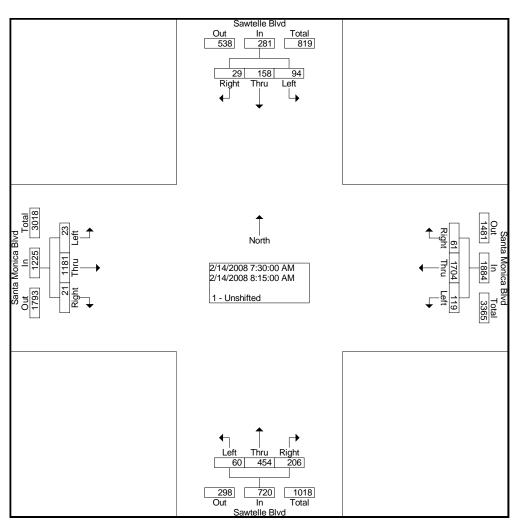
_						Cidapoi	TITICOG I	Oriorinto						
			stwood Blv			hio Ave		Wes	stwood Blv	/d	C			
			outhbound		W	estbound		No.	orthbound		E	astbound		
	Start Time	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Int. Total
	Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
	07:00 AM	4	61	9	10	21	5	18	152	10	21	18	14	343
	07:15 AM	5	72	8	13	38	13	14	218	10	26	33	8	458
	07:30 AM	15	89	7	24	65	15	35	217	13	32	70	9	591
	07:45 AM	9	107	14	20	95	18	41	288	14	31	95	13	745
	Total	33	329	38	67	219	51	108	875	47	110	216	44	2137
	08:00 AM	7	112	20	18	68	14	24	300	14	43	52	27	699
	08:15 AM	7	122	13	17	50	8	33	261	6	41	50	20	628
	08:30 AM	9	120	12	9	53	10	26	330	14	54	81	31	749
	08:45 AM	6	135	10	11	54	8	20	267	6	49	79	17	662
	Total	29	489	55	55	225	40	103	1158	40	187	262	95	2738
	04:00 PM	9	272	25	26	51	11	23	204	8	31	58	25	743
	04:15 PM	11	329	29	22	48	12	23	209	6	31	57	17	794
	04:30 PM	11	300	34	17	56	6	19	231	6	30	49	27	786
	04:45 PM	9	306	20	14	52	9	21	220	3	16	52	21	743
	Total	40	1207	108	79	207	38	86	864	23	108	216	90	3066
	05:00 PM	11	322	30	22	53	11	19	211	7	23	47	20	776
	05:15 PM	9	289	34	28	66	7	24	200	13	25	52	18	765
	05:30 PM	15	306	32	21	75	14	27	228	18	25	81	20	862
	05:45 PM	7	313	3	14	56	16	27	176	6	32	51	22	723
	Total	42	1230	99	85	250	48	97	815	44	105	231	80	3126
	Grand Total	144	3255	300	286	901	177	394	3712	154	510	925	309	11067
	Apprch %	3.9	88.0	8.1	21.0	66.1	13.0	9.2	87.1	3.6	29.2	53.0	17.7	
	Total %	1.3	29.4	2.7	2.6	8.1	1.6	3.6	33.5	1.4	4.6	8.4	2.8	
							,						•	


File Name: WestOhio Site Code: 00000000 Start Date: 2/7/2008

		Westw	ood Blv	⁄d	Ohio Ave					Westw	ood Blv	d	Ohio Ave				
		Soutl	hbound		Westbound					North	nbound		Eastbound				
Start Time	Left	Thru	Right	App.	Left	Thru	Right	Арр.	Left	Thru	Right	App.	Left	Thru	Right	App.	Int.
				Total				Total				Total				Total	Total
Peak Hour From 07:00 AM to 11:45 AM - Peak 1 of 1																	
Intersection	07:45	AM															
Volume	32	461	59	552	64	266	50	380	124	1179	48	1351	169	278	91	538	2821
Percent	5.8	83.5	10.7		16.8	70.0	13.2		9.2	87.3	3.6		31.4	51.7	16.9		
08:30	9	120	12	141	9	53	10	72	26	330	14	370	54	81	31	166	749
Volume	3	120	12		J	55	10	12	20	550	17	370	54	01	51	100	745
Peak Factor																	0.942
High Int. 08:15 AM			07:45 AM			08:30	AM			08:30							
Volume	7	122	13	142	20	95	18	133	26	330	14	370	54	81	31	166	
Peak Factor				0.972				0.714				0.913				0.810	

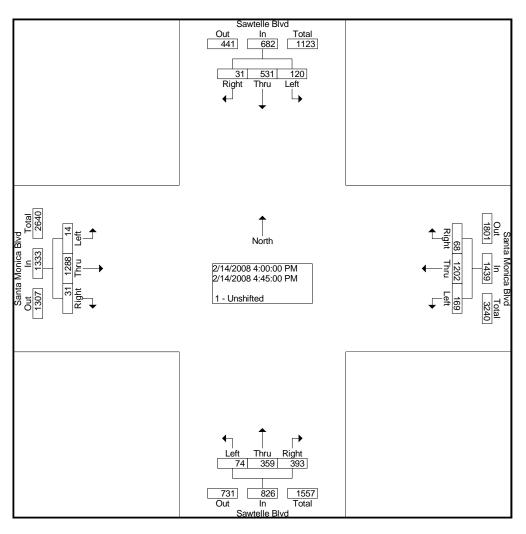
File Name: WestOhio Site Code: 00000000 Start Date: 2/7/2008

			ood Blv	d	Ohio Ave Westbound						ood Blv	d	Ohio Ave Eastbound				
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Fro	m 12:0	0 PM to	05:45	PM - Pea	k 1 of 1			,								<u> </u>	
Intersection	04:45	PM															
Volume	44	1223	116	1383	85	246	41	372	91	859	41	991	89	232	79	400	3146
Percent	3.2	88.4	8.4		22.8	66.1	11.0		9.2	86.7	4.1		22.3	58.0	19.8		
05:30 Volume	15	306	32	353	21	75	14	110	27	228	18	273	25	81	20	126	862
Peak Factor																	0.912
High Int.	ligh Int. 05:00 PM			05:30 PM			05:30	PM			05:30 PM						
Volume	11	322	30	363	21	75	14	110	27	228	18	273	25	81	20	126	
Peak Factor				0.952				0.845				0.908				0.794	


File Name: SawSM Site Code: 00000000 Start Date: 2/14/2008

Page No : 1

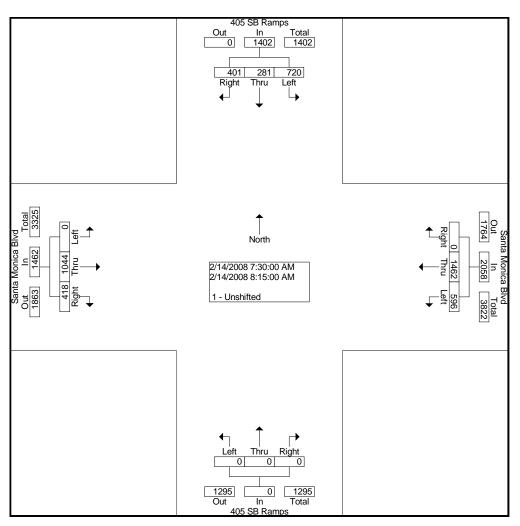
_								- Orisilite						
			wtelle Blvd			Monica E			wtelle Blv	-		Monica E	3lvd	
			uthbound			estbound			orthbound			astbound		
	Start Time	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Int. Total
	Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
	07:00 AM	29	25	6	31	268	33	8	52	33	3	225	6	719
	07:15 AM	8	20	0	31	331	38	17	66	25	2	244	6	788
	07:30 AM	32	30	2	27	388	15	15	91	50	3	310	2	965
	07:45 AM	18	37	6	41	470	14	18	117	48	6	317	6	1098
	Total	87	112	14	130	1457	100	58	326	156	14	1096	20	3570
	08:00 AM	23	54	13	19	412	14	15	113	53	8	292	11	1027
	08:15 AM	21	37	8	32	434	18	12	133	55	6	262	2	1020
	08:30 AM	21	35	5	27	411	9	6	85	65	3	274	6	947
	08:45 AM	20	40	9	34	501	18	9	104	56	1	227	3	1022
	Total	85	166	35	112	1758	59	42	435	229	18	1055	22	4016
	04:00 PM	33	108	15	41	280	23	21	61	100	2	299	10	993
	04:15 PM	32	111	4	46	276	17	11	124	93	2	366	7	1089
	04:30 PM	30	168	7	35	321	15	20	53	97	3	291	12	1052
	04:45 PM	25	144	5	47	325	13	22	121	103	7	332	2	1146
	Total	120	531	31	169	1202	68	74	359	393	14	1288	31	4280
							·			,				
	05:00 PM	50	129	10	26	279	22	10	71	126	0	259	2	984
	05:15 PM	24	107	6	27	273	9	6	55	118	4	307	9	945
	05:30 PM	33	82	6	40	283	13	6	78	122	2	309	3	977
	05:45 PM	37	64	7	35	287	6	5	51	149	3	238	5	887
	Total	144	382	29	128	1122	50	27	255	515	9	1113	19	3793
				'			,			'			'	
	Grand Total	436	1191	109	539	5539	277	201	1375	1293	55	4552	92	15659
	Apprch %	25.1	68.6	6.3	8.5	87.2	4.4	7.0	47.9	45.1	1.2	96.9	2.0	
	Total %	2.8	7.6	0.7	3.4	35.4	1.8	1.3	8.8	8.3	0.4	29.1	0.6	
	. 0.0. 70	5		٠ ا	U	· · · ·			0.0	0.0	J. 1		0.0	


File Name: SawSM Site Code: 00000000 Start Date: 2/14/2008

		Sawte	elle Blvc	l	S	anta M	onica B	lvd		Sawte	elle Blvd		S	anta M	onica B	lvd	
		South	hbound			Wes	tbound			North	nbound			East	bound		
Start Time	Left	Thru	Right	App.	Left	Thru	Right	App.	Left	Thru	Right	App.	Left	Thru	Right	App.	Int.
				Total				Total				Total				Total	Total
Peak Hour Fro	m 07:0	O AM to	11:45	AM - Pea	ak 1 of 1												
Intersection	07:30	AM															
Volume	94	158	29	281	119	1704	61	1884	60	454	206	720	23	1181	21	1225	4110
Percent	33.5	56.2	10.3		6.3	90.4	3.2		8.3	63.1	28.6		1.9	96.4	1.7		
07:45	18	37	6	61	41	470	14	525	18	117	48	183	6	317	6	329	1098
Volume	10	01	U	01	"	470	17	020	10	117	70	100	0	517	U	323	1000
Peak Factor																	0.936
High Int.	08:00	AM			07:45	AM			08:15	AM			07:45	AM			
Volume	23	54	13	90	41	470	14	525	12	133	55	200	6	317	6	329	
Peak Factor				0.781				0.897				0.900				0.931	

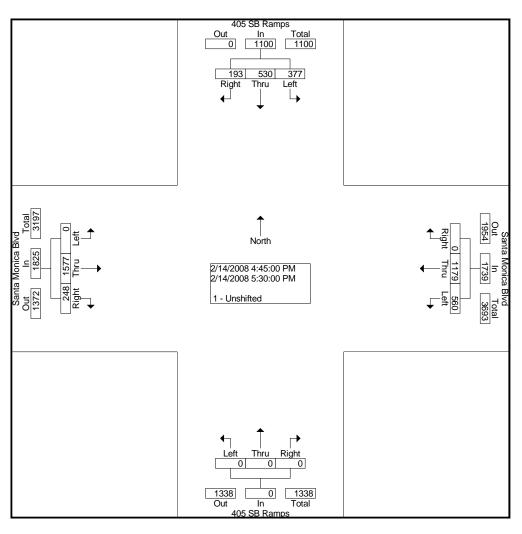
File Name: SawSM Site Code: 00000000 Start Date: 2/14/2008

			elle Blvd nbound		S		onica B tbound	lvd			elle Blvd nbound		S		onica B tbound	lvd	
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Fro	m 12:0	0 PM to	05:45 l	PM - Pea	k 1 of 1											<u>.</u>	
Intersection	04:00	PM															
Volume	120	531	31	682	169	1202	68	1439	74	359	393	826	14	1288	31	1333	4280
Percent	17.6	77.9	4.5		11.7	83.5	4.7		9.0	43.5	47.6		1.1	96.6	2.3		
04:45 Volume	25	144	5	174	47	325	13	385	22	121	103	246	7	332	2	341	1146
Peak Factor																	0.934
High Int.	04:30	PM			04:45	PM			04:45	PM			04:15	PM			
Volume	30	168	7	205	47	325	13	385	22	121	103	246	2	366	7	375	
Peak Factor				0.832				0.934				0.839				0.889	


File Name: 405sbSM Site Code : 00000000 Start Date : 2/14/2008 Page No : 1

Groups	Printed-	1 -	Unshifted
--------	----------	-----	-----------

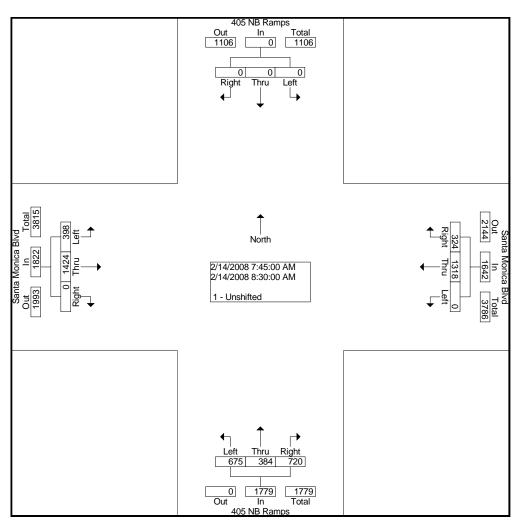
_						Cidapai		Officialite	u					
		405	SB Ramp	os	Santa	Monica E	Blvd	405	SB Ramp	os	Santa	Monica E	Blvd	
		Sc	outhbound		W	estbound		No	orthbound		E	astbound		
	Start Time	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Int. Total
	Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
	07:00 AM	115	52	69	141	257	0	0	0	0	0	180	90	904
	07:15 AM	151	54	60	168	329	0	0	0	0	0	172	98	1032
	07:30 AM	160	71	79	146	360	0	0	0	0	0	265	128	1209
	07:45 AM	176	74	101	154	410	0	0	0	0	0	262	114	1291
	Total	602	251	309	609	1356	0	0	0	0	0	879	430	4436
													·	
	08:00 AM	189	71	113	136	322	0	0	0	0	0	269	91	1191
	08:15 AM	195	65	108	160	370	0	0	0	0	0	248	85	1231
	08:30 AM	216	46	148	136	289	0	0	0	0	0	269	99	1203
	08:45 AM	210	59	162	159	386	0	0	0	0	0	245	64	1285
	Total	810	241	531	591	1367	0	0	0	0	0	1031	339	4910
	04:00 PM	68	130	30	133	300	0	0	0	0	0	371	53	1085
	04:15 PM	71	109	38	158	296	0	0	0	0	0	430	55	1157
	04:30 PM	76	127	44	132	312	0	0	0	0	0	348	67	1106
	04:45 PM	73	121	44	168	324	0	0	0	0	0	400	56	1186
	Total	288	487	156	591	1232	0	0	0	0	0	1549	231	4534
	05:00 PM	109	148	59	144	273	0	0	0	0	0	367	75	1175
	05:15 PM	97	136	42	139	284	0	0	0	0	0	392	63	1153
	05:30 PM	98	125	48	109	298	0	0	0	0	0	418	54	1150
	05:45 PM	97	119	41	162	271	0	0	0	0	0	359	46	1095
	Total	401	528	190	554	1126	0	0	0	0	0	1536	238	4573
													·	
	Grand Total	2101	1507	1186	2345	5081	0	0	0	0	0	4995	1238	18453
	Apprch %	43.8	31.4	24.7	31.6	68.4	0.0	0.0	0.0	0.0	0.0	80.1	19.9	
	Total %	11.4	8.2	6.4	12.7	27.5	0.0	0.0	0.0	0.0	0.0	27.1	6.7	


File Name : 405sbSM Site Code : 00000000 Start Date : 2/14/2008

		405 SE	3 Ramp	s	S	anta M	onica B	lvd		405 SE	3 Ramp	S	S	anta M	onica B	lvd	
		Soutl	hbound			Wes	tbound			North	nbound			East	tbound		
Start Time	Left	Thru	Right	App.	Left	Thru	Right	App.	Left	Thru	Right	App.	Left	Thru	Right	App.	Int.
				Total				Total			19	Total			1	Total	Total
Peak Hour Fro	m 07:0	0 AM to	11:45	AM - Pea	ak 1 of 1												
Intersection	07:30	AM															
Volume	720	281	401	1402	596	1462	0	2058	0	0	0	0	0	1044	418	1462	4922
Percent	51.4	20.0	28.6		29.0	71.0	0.0		0.0	0.0	0.0		0.0	71.4	28.6		
07:45	176	74	101	351	154	410	0	564	0	0	0	0	0	262	114	376	1291
Volume	170	7 -	101	551	104	710	U	304	0	U	U	U	0	202	117	370	1231
Peak Factor																	0.953
High Int.	08:00	AM			07:45	AM			6:45:0	0 AM			07:30	AM			
Volume	189	71	113	373	154	410	0	564	0	0	0	0	0	265	128	393	
Peak Factor				0.940				0.912								0.930	

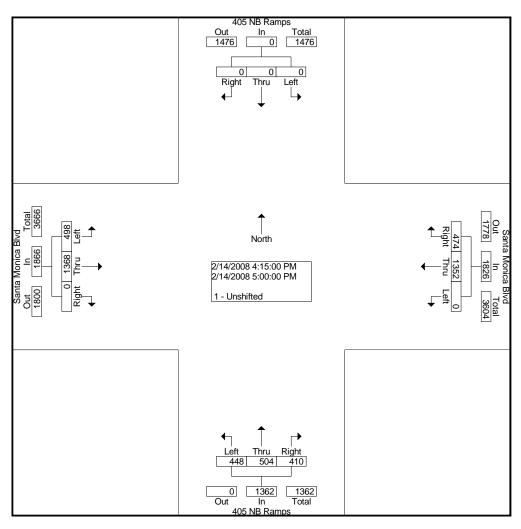
File Name : 405sbSM Site Code : 00000000 Start Date : 2/14/2008

			Ramp hbound	S	S		onica B tbound	lvd			Ramp	S	S		onica B tbound	lvd	
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Fro	m 12:0	0 PM to	05:45	PM - Pea	ak 1 of 1												
Intersection	04:45	PM															
Volume	377	530	193	1100	560	1179	0	1739	0	0	0	0	0	1577	248	1825	4664
Percent	34.3	48.2	17.5		32.2	67.8	0.0		0.0	0.0	0.0		0.0	86.4	13.6		
04:45 Volume	73	121	44	238	168	324	0	492	0	0	0	0	0	400	56	456	1186
Peak Factor																	0.983
High Int.	05:00	PM			04:45	PM							05:30	PM			
Volume	109	148	59	316	168	324	0	492	0	0	0	0	0	418	54	472	
Peak Factor				0.870				0.884								0.967	


File Name: 405nbSM Site Code : 00000000 Start Date : 2/14/2008 Page No : 1

Groups	Printed-	1 -	Unshifted
--------	----------	-----	-----------

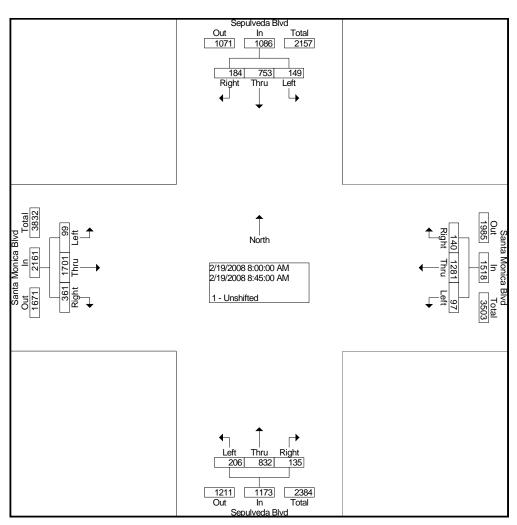
								- Orisilite						
			NB Ramp			Monica E	-		NB Ram			a Monica E	3lvd	
			outhbound		W	estbound			orthbound			astbound		
Star	t Time	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Int. Total
	Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
07:	00 AM	0	0	0	0	246	44	159	66	199	80	207	0	1001
	15 AM	0	0	0	0	292	82	197	89	184	66	251	0	1161
07:	30 AM	0	0	0	0	307	70	196	82	150	72	343	0	1220
07:	45 AM	0	0	0	0	356	81	223	111	175	94	355	0	1395
	Total	0	0	0	0	1201	277	775	348	708	312	1156	0	4777
	00 AM	0	0	0	0	294	88	164	90	179	99	355	0	1269
08:	15 AM	0	0	0	0	372	77	152	96	191	88	350	0	1326
08:	30 AM	0	0	0	0	296	78	136	87	175	117	364	0	1253
08:	45 AM	0	0	0	0	372	86	159	98	194	110	337	0	1356
	Total	0	0	0	0	1334	329	611	371	739	414	1406	0	5204
04:	00 PM	0	0	0	0	328	106	116	122	116	133	297	0	1218
04:	15 PM	0	0	0	0	343	116	101	112	81	128	379	0	1260
04:	30 PM	0	0	0	0	339	113	108	144	121	114	295	0	1234
04:	45 PM	0	0	0	0	371	134	118	109	103	128	345	0	1308
	Total	0	0	0	0	1381	469	443	487	421	503	1316	0	5020
05:	00 PM	0	0	0	0	299	111	121	139	105	128	349	0	1252
05:	15 PM	0	0	0	0	300	91	116	118	84	147	332	0	1188
05:	30 PM	0	0	0	0	277	92	128	158	112	134	369	0	1270
05:	45 PM	0	0	0	2	319	128	111	124	98	127	334	0	1243
	Total	0	0	0	2	1195	422	476	539	399	536	1384	0	4953
										·				
Grand	d Total	0	0	0	2	5111	1497	2305	1745	2267	1765	5262	0	19954
App	orch %	0.0	0.0	0.0	0.0	77.3	22.6	36.5	27.6	35.9	25.1	74.9	0.0	
	otal %	0.0	0.0	0.0	0.0	25.6	7.5	11.6	8.7	11.4	8.8	26.4	0.0	
				1			-	-	-	-				


File Name : 405nbSM Site Code : 00000000 Start Date : 2/14/2008

		405 NE	3 Ramp	s	S	anta M	onica B	lvd		405 N	3 Ramp	S	S	anta M	onica B	lvd	
		Soutl	hbound			Wes	tbound			North	nbound			East	tbound		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Fro	m 07:0	Ο ΛΝΛ tc	11.45		k 1 of 1			TOtal				TOlai				TOtal	TOlai
Intersection			11.43	AIVI - F Co	1	ı			ı				I			1	
				_													
Volume	0	0	0	0	0	1318	324	1642	675	384	720	1779	398	1424	0	1822	5243
Percent	0.0	0.0	0.0		0.0	80.3	19.7		37.9	21.6	40.5		21.8	78.2	0.0		
07:45	0	0	0	0	0	356	81	437	223	111	175	509	94	355	0	449	1395
Volume	U	U	U	U	0	330	01	437	223	111	173	309	34	333	U	443	1393
Peak Factor																	0.940
High Int.	6:45:0	0 AM			08:15	AM			07:45	AM			08:30	AM			
Volume	0	0	0	0	0	372	77	449	223	111	175	509	117	364	0	481	
Peak Factor								0.914				0.874				0.947	

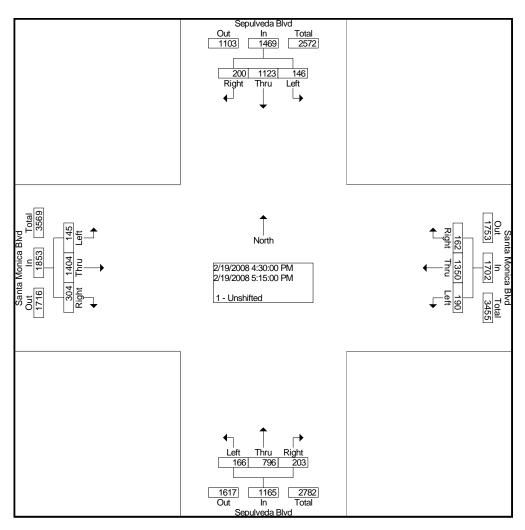
File Name : 405nbSM Site Code : 00000000 Start Date : 2/14/2008

			3 Ramp	S	S		onica B tbound	lvd			3 Ramp	S	S		onica B tbound	lvd	
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Fro	m 12:0	0 PM to	05:45	PM - Pea	k 1 of 1											,	
Intersection	04:15	PM															
Volume	0	0	0	0	0	1352	474	1826	448	504	410	1362	498	1368	0	1866	5054
Percent	0.0	0.0	0.0		0.0	74.0	26.0		32.9	37.0	30.1		26.7	73.3	0.0		
04:45 Volume	0	0	0	0	0	371	134	505	118	109	103	330	128	345	0	473	1308
Peak Factor																	0.966
High Int.					04:45	PM			04:30	PM			04:15	PM			
Volume	0	0	0	0	0	371	134	505	108	144	121	373	128	379	0	507	
Peak Factor								0.904				0.913				0.920	


File Name : SepSM Site Code : 00000000 Start Date : 2/19/2008

Page No : 1

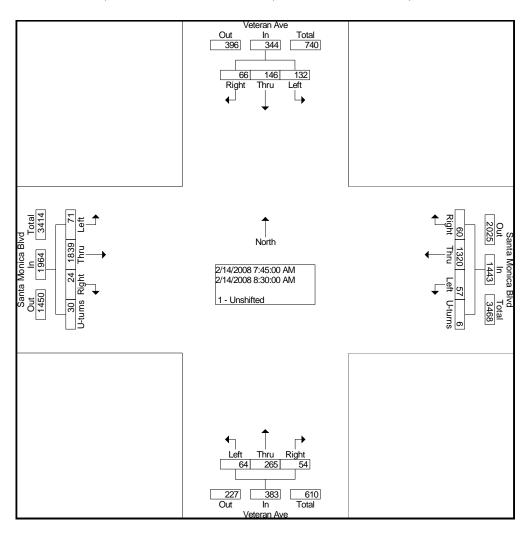
	Sep	ulveda Blv	'd	Santa	Monica E		Sep	ulveda Bl	/d	Santa	Monica E	lvd	
	Sc	outhbound		W	estbound		No	orthbound		Е	astbound		
Start Time	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Int. Total
Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
07:00 AM	30	106	32	30	232	15	40	155	21	35	227	90	1013
07:15 AM	34	136	45	25	306	23	50	124	29	40	308	94	1214
07:30 AM	25	144	65	23	314	34	48	294	46	30	373	81	1477
07:45 AM	39	139	61	31	335	33	40	195	33	31	401	104	1442
Total	128	525	203	109	1187	105	178	768	129	136	1309	369	5146
08:00 AM	34	168	43	22	341	31	46	197	47	34	417	85	1465
08:15 AM	34	157	47	27	333	34	49	221	35	24	440	76	1477
08:30 AM	43	211	49	28	317	39	55	203	28	21	436	89	1519
08:45 AM	38	217	45	20	290	36	56	211	25	20	408	111	1477
Total	149	753	184	97	1281	140	206	832	135	99	1701	361	5938
									1				
04:00 PM	33	248	46	42	354	34	40	268	38	38	349	55	1545
04:15 PM	33	232	42	45	363	41	37	166	41	41	388	66	1495
04:30 PM	36	282	50	44	338	31	36	217	45	35	394	70	1578
04:45 PM	29	250	38	44	382	51	38	186	39	41	338	83	1519
Total	131	1012	176	175	1437	157	151	837	163	155	1469	274	6137
			1			1			1			1	
05:00 PM	42	289	56	57	325	38	49	213	59	36	359	70	1593
05:15 PM	39	302	56	45	305	42	43	180	60	33	313	81	1499
05:30 PM	44	278	64	45	274	54	45	226	56	41	361	90	1578
05:45 PM	43	233	60	41	323	49	50	205	65	34	315	97	1515
Total	168	1102	236	188	1227	183	187	824	240	144	1348	338	6185
0 17.1												4040	22.422
Grand Total	576	3392	799	569	5132	585	722	3261	667	534	5827	1342	23406
Apprch %	12.1	71.2	16.8	9.1	81.6	9.3	15.5	70.1	14.3	6.9	75.6	17.4	
Total %	2.5	14.5	3.4	2.4	21.9	2.5	3.1	13.9	2.8	2.3	24.9	5.7	


File Name : SepSM Site Code : 00000000 Start Date : 2/19/2008

		Sepulv	eda Blv	d	S	anta M	onica Bl	vd		Sepulv	eda Blv	d	S	anta M	onica B	lvd	
		Sout	hbound			Wes	tbound			North	nbound			East	bound		
Start Time	Left	Thru	Right	Арр.	Left	Thru	Right	App.	Left	Thru	Right	Арр.	Left	Thru	Right	App.	Int.
Otart Timo		11114	rtigiti	Total			rtigiti	Total			rugin	Total	Lon		rtigin	Total	Total
Peak Hour Fro	m 07:00	AM to	11:45 A	M - Peak	1 of 1												
Intersection	08:00	AM															
Volume	149	753	184	1086	97	1281	140	1518	206	832	135	1173	99	1701	361	2161	5938
Percent	13.7	69.3	16.9		6.4	84.4	9.2		17.6	70.9	11.5		4.6	78.7	16.7		
08:30	43	211	49	303	28	317	39	384	55	203	28	286	21	436	89	546	1519
Volume	70	211	73	303	20	317	33	304	55	200	20	200	21	730	03	340	1010
Peak Factor																	0.977
High Int.	08:30	AM			08:00	AM			08:15	AM			08:30	AM			
Volume	43	211	49	303	22	341	31	394	49	221	35	305	21	436	89	546	
Peak Factor				0.896				0.963				0.961				0.989	

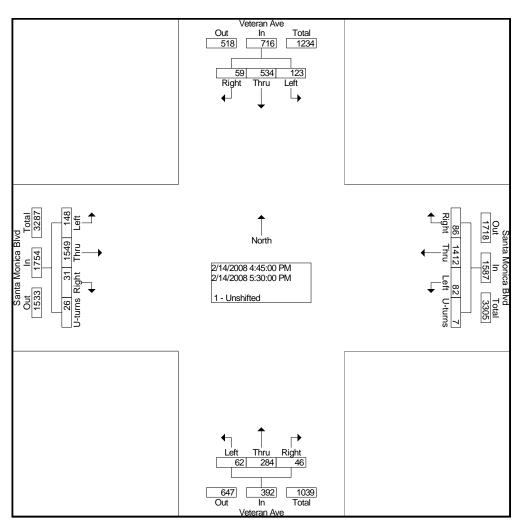
File Name: SepSM Site Code: 00000000 Start Date: 2/19/2008

		Sepulv	eda Blv	d	S	anta M	onica B	lvd		Sepulv	eda Blv	d	S	anta M	onica Bl	vd	
		Sout	hbound			Wes	tbound			North	nbound			East	tbound		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Fro	m 12:00	PM to	05:45 F	M - Peak	1 of 1											•	
Intersection	04:30	PM															
Volume	146	1123	200	1469	190	1350	162	1702	166	796	203	1165	145	1404	304	1853	6189
Percent	9.9	76.4	13.6		11.2	79.3	9.5		14.2	68.3	17.4		7.8	75.8	16.4		
05:00 Volume	42	289	56	387	57	325	38	420	49	213	59	321	36	359	70	465	1593
Peak Factor																	0.971
High Int.	05:15	PM			04:45	PM			05:00	PM			04:30	PM			
Volume	39	302	56	397	44	382	51	477	49	213	59	321	35	394	70	499	
Peak Factor				0.925				0.892				0.907				0.928	


File Name: VetSM Site Code: 00000000 Start Date: 2/14/2008

Page No : 1

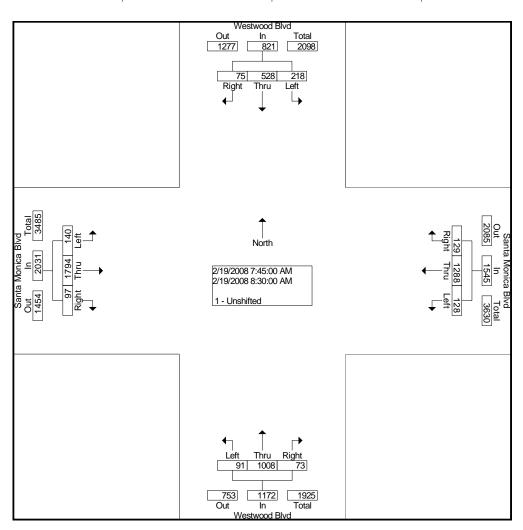
						Cioups i							. 5.		ī
		eteran Av		S		nica Blvd	1		eteran Av		S		nica Blvo	1	
	So	outhboun	nd		West	ound		N	orthboun	d		Eastb	ound		
Start Time	Left	Thru	Right	Left	Thru	Right	U-	Left	Thru	Right	Left	Thru	Right	U-	Int. Total
Start Time	Len	IIIIu	Kigiit	Leit	IIIIu	Kignt	turns	LOIL	IIIIu	Kigiit	Leit	IIIIu	Kigiit	turns	IIII. TOtal
Factor		1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
07:00 AM	14	18	16	2	261	9	0	15	24	5	9	313	8	12	706
07:15 AM	-	17	11	9	318	17	0	7	43	5	12	347	6	15	823
07:30 AM	25	22	14	8	335	11	0	20	68	6	20	405	5	8	947
07:45 AM		36	16	15	346	12	1	20	60	6	16	438	6	5	1010
Tota	88	93	57	34	1260	49	1	62	195	22	57	1503	25	40	3486
							,			·					
08:00 AM	27	30	16	13	314	16	0	19	54	9	18	460	9	5	990
08:15 AM	34	32	17	15	327	14	2	15	82	21	20	472	5	8	1064
08:30 AM	38	48	17	14	333	18	3	10	69	18	17	469	4	12	1070
08:45 AM	32	39	19	20	301	13	2	12	84	15	9	436	9	11	1002
Tota	131	149	69	62	1275	61	7	56	289	63	64	1837	27	36	4126
										·					
04:00 PM	27	109	24	20	317	84	2	8	61	5	29	375	10	4	1075
04:15 PM	37	103	19	15	358	31	1	15	47	4	38	385	33	12	1098
04:30 PM	_	119	18	11	259	32	1	4	60	10	31	419	11	9	1015
04:45 PM	24	138	13	25	367	32	2	15	61	12	40	363	9	9	1110
Tota		469	74	71	1301	179	6	42	229	31	138	1542	63	34	4298
	_						- 1	l	_	- 1					
05:00 PM	41	135	19	21	360	16	4	14	82	13	29	416	9	7	1166
05:15 PM		124	12	17	337	24	1	14	59	10	36	378	9	6	1057
05:30 PM		137	15	19	348	14	0	19	82	11	43	392	4	4	1116
05:45 PM		94	17	33	385	19	Ö	5	60	9	74	351	10	3	1088
Tota		490	63	90	1430	73	5	52	283	43	182	1537	32	20	4427
Tota	121	700	00	55	1-100	, 0	5	02	200	-10	102	1007	02	20	7721
Grand Total	465	1201	263	257	5266	362	19	212	996	159	441	6419	147	130	16337
Appreh %		62.3	13.6	4.4	89.2	6.1	0.3	15.5	72.9	11.6	6.2	89.9	2.1	1.8	
Total %		7.4	1.6	1.6	32.2	2.2	0.1	1.3	6.1	1.0	2.7	39.3	0.9	0.8	
i Stai 70	2.0	7Т	1.5	1.0	02.2	۷.۷	0.1	10	0.1	1.0	2.1	00.0	0.0	0.0	


File Name: VetSM Site Code: 00000000 Start Date: 2/14/2008

			ran Ave hbound				a Monio Vestbou					an Ave				a Monid			
Start Time	Left	Thru	Righ t	App. Total	Left	Thru	Righ t	U- turn s	App. Total	Left	Thru	Righ t	App. Total	Left	Thru	Righ t	U- turn s	App. Total	Int. Total
Peak Hour Fr	om 07:	00 AM	to 11:4	5 AM - I	Peak 1	of 1								•	•				
Intersectio n	07:45	AM																	
Volume	132	146	66	344	57	132 0	60	6	1443	64	265	54	383	71	183 9	24	30	1964	4134
Percent	38.4	42.4	19.2		4.0	91.5	4.2	0.4		16.7	69.2	14.1		3.6	93.6	1.2	1.5		
08:30 Volume	38	48	17	103	14	333	18	3	368	10	69	18	97	17	469	4	12	502	1070
Peak																			0.966
Factor High Int.	08:30	AM			07:45	AM				08:15	AM			08:15	AM				
Volume	38	48	17	103	15	346	12	1	374	15	82	21	118	20	472	5	8	505	
Peak Factor				0.835					0.965				0.811					0.972	

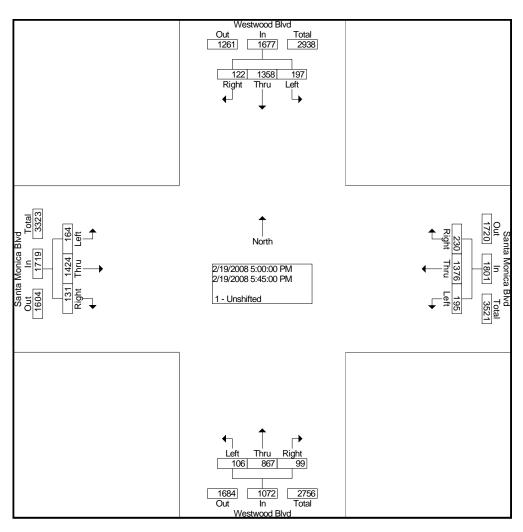
File Name: VetSM Site Code: 00000000 Start Date: 2/14/2008

			an Ave				a Monio					an Ave				a Monic			
Start Time	Left	Thru	Righ t	App. Total	Left	Thru	Righ t	U- turn s	App. Total	Left	Thru	Righ t	App. Total	Left	Thru	Righ t	U- turn s	App. Total	Int. Total
Peak Hour Fr	om 12:	00 PM	to 05:4	5 PM -	Peak 1	of 1													
Intersectio n	04:45	PM																	
Volume	123	534	59	716	82	141 2	86	7	1587	62	284	46	392	148	154 9	31	26	1754	4449
Percent	17.2	74.6	8.2		5.2	89.0	5.4	0.4		15.8	72.4	11.7		8.4	88.3	1.8	1.5		
05:00 Volume	41	135	19	195	21	360	16	4	401	14	82	13	109	29	416	9	7	461	1166
Peak Factor																			0.954
High Int.	05:00	PM			04:45	PM				05:30	PM			05:00	PM				
Volume	41	135	19	195	25	367	32	2	426	19	82	11	112	29	416	9	7	461	
Peak Factor				0.918					0.931				0.875					0.951	


File Name: WestSM Site Code: 00000000 Start Date: 2/19/2008

Page No : 1

	We	estwood Blv	/d	Santa	Monica E		We	stwood Bl	vd	Santa	Monica E	lvd	
	S	outhbound			estbound		N	orthbound		E	astbound		
Start Time	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Int. Total
Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
07:00 AM	22	65	14	19	231	22	16	160	9	26	311	17	912
07:15 AM	31	80	21	31	261	26	32	202	18	23	328	20	1073
07:30 AM	32	120	20	33	363	42	36	236	18	44	384	24	1352
07:45 AM	52	158	21	37	306	43	20	249	18	41	430	21	1396
Total	137	423	76	120	1161	133	104	847	63	134	1453	82	4733
08:00 AM		112	14	39	337	27	27	218	15	31	444	26	1329
08:15 AM	68	124	24	27	291	27	26	276	21	35	459	26	1404
08:30 AM	59	134	16	25	354	32	18	265	19	33	461	24	1440
08:45 AM		165	20	36	305	38	10	238	21	26	440	26	1370
Total	211	535	74	127	1287	124	81	997	76	125	1804	102	5543
04.00 514		007	40	00	007	50 l	4=	470	00	00	005	0.4	4504
04:00 PM		307	40	33	387	52	15	170	30	32	365	34	1524
04:15 PM		295	29	52	337	52	21	198	35	34	355	30	1498
04:30 PM		280	31	44	341	48	20	186	23	44	373	25	1459
04:45 PM	52	320	28	45 174	299	46	23 79	236	19	38 148	357	36	1499
Total	215	1202	128	174	1364	198	79	790	107	140	1450	125	5980
05:00 PM	46	329	31	45	352	63	37	196	20	33	404	31	1587
05:15 PM	_	371	30	61	322	65	23	227	29	46	327	39	1586
05:30 PM	_	343	30	49	375	49	24	198	25	42	369	28	1581
05:45 PM	56	315	31	40	327	53	22	246	25	43	324	33	1515
Total		1358	122	195	1376	230	106	867	99	164	1424	131	6269
rotai	107	1000	122	100	1070	200	100	007	00	10-1	1727	101	0200
Grand Total	760	3518	400	616	5188	685	370	3501	345	571	6131	440	22525
Apprch %	16.2	75.2	8.6	9.5	80.0	10.6	8.8	83.0	8.2	8.0	85.8	6.2	
Total %		15.6	1.8	2.7	23.0	3.0	1.6	15.5	1.5	2.5	27.2	2.0	
			. 1			- 1			- 1			- 1	


File Name: WestSM Site Code: 00000000 Start Date: 2/19/2008

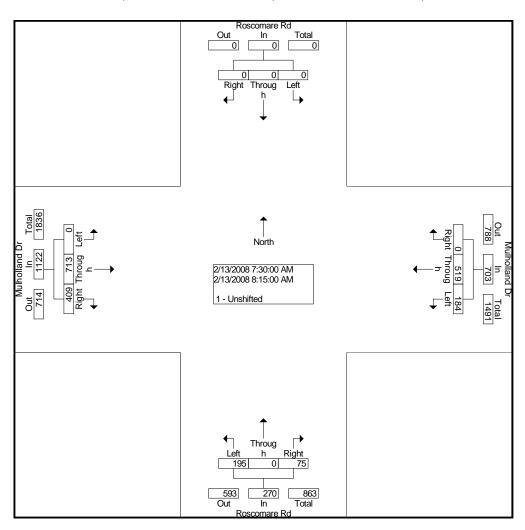
		Westw	ood Blv	b	S	anta M	onica Bl	vd		Westw	ood Blv	d	S	Santa M	onica Bl	vd	
		Sout	hbound			Wes	tbound			North	nbound			East	tbound		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour From	m 07:00	AM to	11:45 A	M - Peak	(1 of 1												
Intersection	07:45	AM															
Volume	218	528	75	821	128	1288	129	1545	91	1008	73	1172	140	1794	97	2031	5569
Percent	26.6	64.3	9.1		8.3	83.4	8.3		7.8	86.0	6.2		6.9	88.3	4.8		
08:30 Volume	59	134	16	209	25	354	32	411	18	265	19	302	33	461	24	518	1440
Peak Factor																	0.967
High Int.	07:45	AM			08:30	AM			08:15	AM			08:15	AM			
Volume	52	158	21	231	25	354	32	411	26	276	21	323	35	459	26	520	
Peak Factor				0.889				0.940				0.907				0.976	

File Name: WestSM Site Code: 00000000 Start Date: 2/19/2008

			ood Blvo	d	S		onica Bl	vd			ood Blv	d	S		onica Bl	vd	
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Fro	m 12:00	PM to	05:45 P	M - Peak	1 of 1												
Intersection	05:00	PM															
Volume	197	1358	122	1677	195	1376	230	1801	106	867	99	1072	164	1424	131	1719	6269
Percent	11.7	81.0	7.3		10.8	76.4	12.8		9.9	80.9	9.2		9.5	82.8	7.6		
05:00 Volume	46	329	31	406	45	352	63	460	37	196	20	253	33	404	31	468	1587
Peak Factor																	0.988
High Int.	05:15	PM			05:30	PM			05:45	PM			05:00	PM			
Volume	46	371	30	447	49	375	49	473	22	246	25	293	33	404	31	468	
Peak Factor				0.938				0.952				0.915				0.918	

City Traffic Counters (626) 256-4171

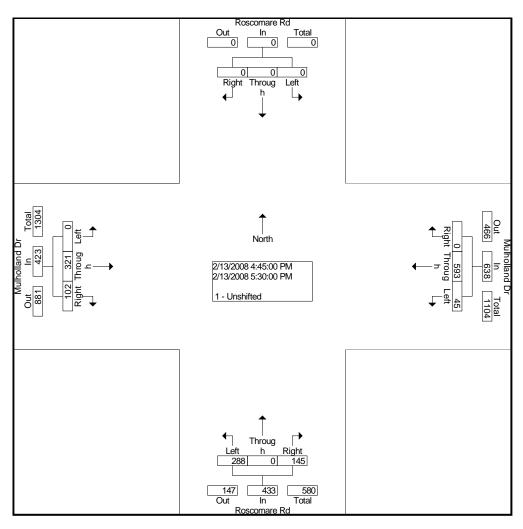
File Name: RoscoMul Site Code: 00000000 Start Date: 2/13/2008


Page No : 1

	Ro	scomare R	d	M	ulholland D	r	Ro	scomare F	Rd	М	ulholland D	r	
	S	outhbound		V	Vestbound		Ŋ	lorthbound	k	l	Eastbound		
Start Time	Left	Throug h	Right	Left	Throug h	Right	Left	Throug h	Right	Left	Throug h	Right	Int. Total
Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
07:00 AM	0	0	0	29	66	0	27	0	4	0	98	47	271
07:15 AM	0	0	0	35	102	0	31	0	4	0	115	59	346
07:30 AM	0	0	0	37	136	0	43	0	11	0	172	99	498
07:45 AM	0	0	0	49	148	0	51	0	11	0	152	97	508
Total	0	0	0	150	452	0	152	0	30	0	537	302	1623
08:00 AM	0	0	0	56	116	0	41	0	19	0	187	121	540
08:15 AM	0	0	0	42	119	0	60	0	34	0	202	92	549
08:30 AM	0	0	0	30	69	0	37	0	14	0	161	88	399
 08:45 AM	0	0	0	33	108	0	32	0	3	0	131	74	381
Total	0	0	0	161	412	0	170	0	70	0	681	375	1869
04.00 DM	0	0	0	45	407	0	0.5	0	07	0	70	00.1	0.40
04:00 PM	0	0	0	15	127	0	85	0	27	0	72	22	348
04:15 PM	0	0	0	14	116	0	50	0	25	0	69	23	297
04:30 PM	0	0	0	12	129	0	54	0	39	0	55	23	312
 04:45 PM	0	0	0	12	140	0	74	0	30	0	90	23	369
Total	0	0	0	53	512	0	263	0	121	0	286	91	1326
05:00 PM	0	0	0	14	141	0	67	0	40	0	82	25	369
05:15 PM	0	0	0	7	145	0	72	0	45	0	65	27	361
05:30 PM	0	0	0	12	167	0	75	0	30	0	84	27	395
05:45 PM	0	0	0	14	160	0	62	0	31	0	57	24	348
 Total	0	0	0	47	613	0	276	0	146	0	288	103	1473
Grand Total	0	0	0	411	1989	0	861	0	367	0	1792	871	6291
Apprch %	0.0	0.0	0.0	17.1	82.9	0.0	70.1	0.0	29.9	0.0	67.3	32.7	
Total %	0.0	0.0	0.0	6.5	31.6	0.0	13.7	0.0	5.8	0.0	28.5	13.8	

City Traffic Counters (626) 256-4171

File Name: RoscoMul Site Code: 00000000 Start Date: 2/13/2008

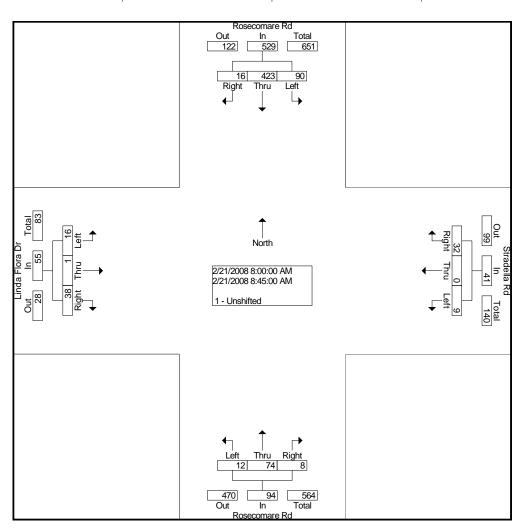

		Rosco	mare Rd			Mulho	lland Dr			Rosco	mare Ro	ł		Mulho	lland Dr		
		South	nbound			Wes	tbound			North	nbound			East	bound		
Start Time	Left	Thro ug h	Right	App. Total	Left	Thro ug h	Right	App. Total	Left	Thro ug h	Right	App. Total	Left	Thro ug h	Right	App. Total	Int. Total
Peak Hour Fro	m 07:00	AM to	11:45 A	M - Peak	1 of 1												
Intersection	07:30	AΜ															
Volume	0	0	0	0	184	519	0	703	195	0	75	270	0	713	409	1122	2095
Percent	0.0	0.0	0.0		26.2	73.8	0.0		72.2	0.0	27.8		0.0	63.5	36.5		
08:15 Volume	0	0	0	0	42	119	0	161	60	0	34	94	0	202	92	294	549
Peak Factor																	0.954
High Int.	6:45:00) AM			07:45	AM			08:15	ΑM			08:00	AM			
Volume	0	0	0	0	49	148	0	197	60	0	34	94	0	187	121	308	
Peak Factor								0.892				0.718				0.911	

City Traffic Counters (626) 256-4171

File Name: RoscoMul Site Code: 00000000 Start Date: 2/13/2008

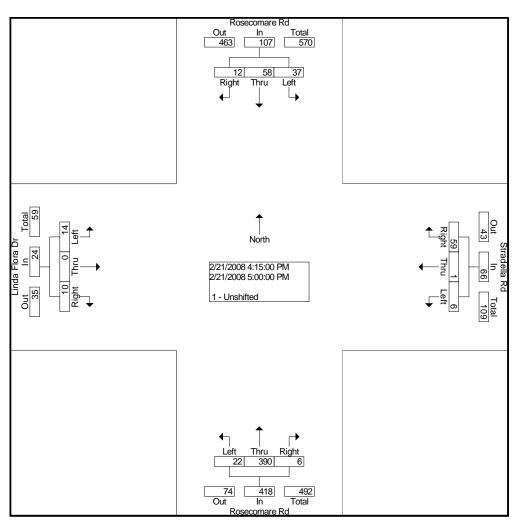
		Rosco	mare Ro	t		Mulho	lland Dr			Rosco	mare Ro	t		Mulho	lland Dr		
		South	nbound			Wes	tbound			North	nbound			East	bound		
Start Time	Left	Thro ug h	Right	App. Total	Left	Thro ug h	Right	App. Total	Left	Thro ug h	Right	App. Total	Left	Thro ug h	Right	App. Total	Int. Total
Peak Hour Fro	m 12:00	PM to	05:45 F	M - Peak	1 of 1												
Intersection	04:45	PM															
Volume	0	0	0	0	45	593	0	638	288	0	145	433	0	321	102	423	1494
Percent	0.0	0.0	0.0		7.1	92.9	0.0		66.5	0.0	33.5		0.0	75.9	24.1		
05:30 Volume	0	0	0	0	12	167	0	179	75	0	30	105	0	84	27	111	395
Peak Factor																	0.946
High Int.					05:30	PM			05:15	PM			04:45	PM			
Volume	0	0	0	0	12	167	0	179	72	0	45	117	0	90	23	113	
Peak Factor								0.891				0.925				0.936	

File Name : RoseLinStra


Site Code : 00000000 Start Date : 2/21/2008

Page No : 1

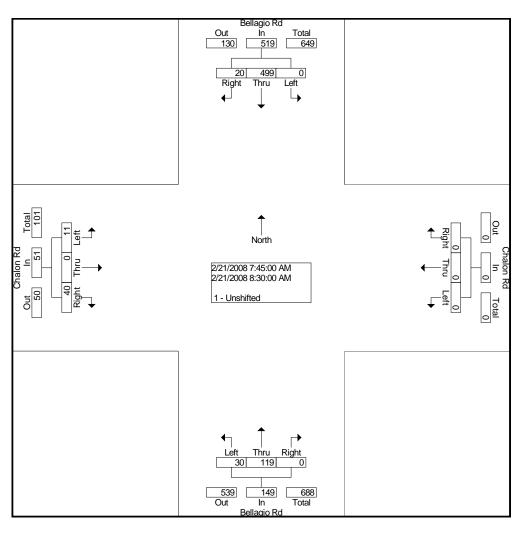
	Rose	ecomare F	Rd	Str	adella Rd		Ros	ecomare	Rd	Lino	da Flora D	r	
		uthbound		W	estbound		N	orthbound			astbound		
Start Time	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Int. Total
Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
07:00 AM	14	43	5	2	0	7	5	4	1	2	3	8	94
07:15 AM	21	76	1	3	0	13	0	8	1	5	0	6	134
07:30 AM	16	106	1	2	0	11	1	16	1	5	1	9	169
07:45 AM	12	99	3	3	0	19	0	10	3	1	0	10	160
 Total	63	324	10	10	0	50	6	38	6	13	4	33	557
08:00 AM	22	78	6	4	0	21	2	37	4	7	0	5	186
08:15 AM	17	128	4	3	0	4	5	13	0	4	0	8	186
08:30 AM	29	94	5	1	0	3	4	9	0	1	0	14	160
 08:45 AM	22	123	1	1	0	4	1	15	4	4	1	11	187
Total	90	423	16	9	0	32	12	74	8	16	1	38	719
04:00 DM	4.4	05	4.1	0	0	441	0	00			0	0	400
04:00 PM	11	25	4	3	0	14	6	69	1	4	0	2	139
04:15 PM	10	17	4	2	0	15	11	98	2	2	0	3	164
04:30 PM	7	15	3	0	0	15	5	93	1	3	0	2	144
 04:45 PM	15	13	13	7	0	12	4	96	1	6 15	0	4	155
Total	43	70	13	/	Ü	56	26	356	5	15	Ü	11	602
05:00 PM	5	13	3	2	1	17	2	103	2	3	0	1	152
05:00 FM	5	16	5	0	Ö	10	2	108	6	2	0	4	158
05:30 PM	7	9	4	0	0	12	9	102	2	3	0	1	149
05:45 PM	, 7	11	2	0	1	6	3	87	2	2	1	3	125
 Total	24	49	14	2	2	45	16	400	12	10	1	9	584
iotai	4-7	-10	1-7	_	_	- 1 0	.0	-100	12	10	'	3	004
Grand Total	220	866	53	28	2	183	60	868	31	54	6	91	2462
Apprch %	19.3	76.0	4.7	13.1	0.9	85.9	6.3	90.5	3.2	35.8	4.0	60.3	
Total %	8.9	35.2	2.2	1.1	0.1	7.4	2.4	35.3	1.3	2.2	0.2	3.7	
			1		-	,			- 1			- 1	


File Name: RoseLinStra Site Code: 00000000 Start Date: 2/21/2008

		Roseco	omare R	Rd		Strad	lella Rd			Roseco	mare R	d		Linda	Flora Dr		
		South	hbound			Wes	tbound			North	nbound			East	bound		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Fro	m 07:00	AM to	11:45 A	AM - Peak	1 of 1												
Intersection	08:00	AM															
Volume	90	423	16	529	9	0	32	41	12	74	8	94	16	1	38	55	719
Percent	17.0	80.0	3.0		22.0	0.0	78.0		12.8	78.7	8.5		29.1	1.8	69.1		
08:45 Volume	22	123	1	146	1	0	4	5	1	15	4	20	4	1	11	16	187
Peak Factor																	0.961
High Int.	08:15	AM			08:00	AM			08:00	AM			08:45	AM			
Volume	17	128	4	149	4	0	21	25	2	37	4	43	4	1	11	16	
Peak Factor				0.888				0.410				0.547				0.859	

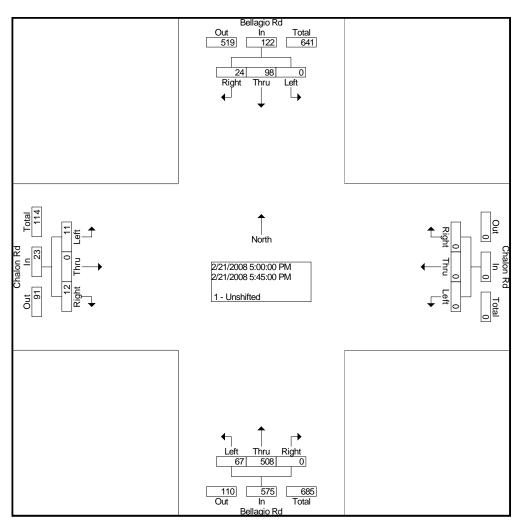
File Name: RoseLinStra Site Code: 00000000 Start Date: 2/21/2008

			mare R	d			lella Rd				mare R	d			Flora Dr		
		Sout	nbound			Wes	tbound			North	nbound			East	bound		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Fro	m 12:00	PM to	05:45 F	M - Peak	1 of 1												
Intersection	04:15	PM															
Volume	37	58	12	107	6	1	59	66	22	390	6	418	14	0	10	24	615
Percent	34.6	54.2	11.2		9.1	1.5	89.4		5.3	93.3	1.4		58.3	0.0	41.7		
04:15 Volume	10	17	4	31	2	0	15	17	11	98	2	111	2	0	3	5	164
Peak Factor																	0.938
High Int.	04:15	PM			05:00	PM			04:15	PM			04:45	PM			
Volume	10	17	4	31	2	1	17	20	11	98	2	111	6	0	4	10	
Peak Factor				0.863				0.825				0.941				0.600	


File Name: BellChal Site Code: 00000000 Start Date: 2/21/2008

Page No : 1

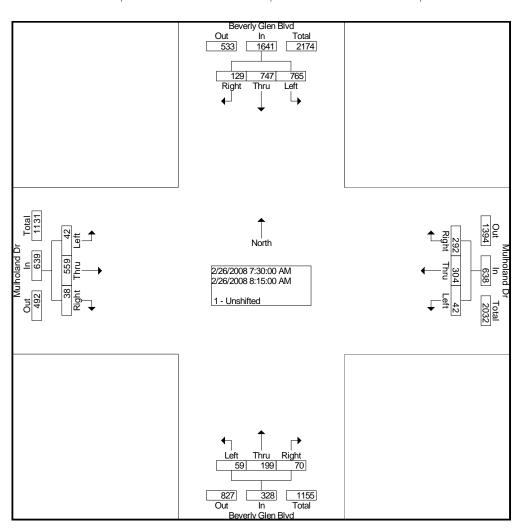
		В	ellagio Rd		Ch	nalon Rd		В	- ellagio Rd		C	halon Rd		
		Sc	outhbound		W	estbound		N	orthbound		Ea	astbound		
Start Ti	me	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Int. Total
Fac	ctor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
07:00 /	AM .	0	66	1	0	0	0	4	18	0	2	0	7	98
07:15 /	AM	0	83	2	0	0	0	3	23	0	1	0	6	118
07:30 /	AM	0	102	4	0	0	0	2	21	0	4	0	10	143
07:45 /	AM	0	124	10	0	0	0	9	27	0	1	0	12	183
To	otal	0	375	17	0	0	0	18	89	0	8	0	35	542
08:00		0	131	3	0	0	0	9	39	0	2	0	11	195
08:15 /		0	124	3	0	0	0	5	29	0	3	0	7	171
08:30 /		0	120	4	0	0	0	7	24	0	5	0	10	170
08:45 /		0	118	1	0	0	0	7	22	0	2	0	7	157
To	otal	0	493	11	0	0	0	28	114	0	12	0	35	693
				_ 1			_ 1	_		- 1			- 1	
04:00		0	31	7	0	0	0	7	98	0	1	0	2 2	146
04:15 I		0	35	8	0	0	0	8	108	0	2	0		163
04:30		0	27	10	0	0	0	6	102	0	6	0	5	156
04:45 I		0	29	5	0	0	0	12	126	0	4	0	4	180
To	otal	0	122	30	0	0	0	33	434	0	13	0	13	645
		_		_ 1	_		_ 1			- 1	_		- 1	
05:00 [0	28	7	0	0	0	10	131	0	2	0	2	180
05:15 F		0	22	3	0	0	0	17	127	0	1	0	5	175
05:30 I		0	25	6	0	0	0	17	122	0	5	0	2	177
05:45 I		0	23	8	0	0	0	23	128	0	3	0	3	188
To	otal	0	98	24	0	0	0	67	508	0	11	0	12	720
			4000										a= 1	
Grand To		0	1088	82	0	0	0	146	1145	0	44	0	95	2600
Apprch		0.0	93.0	7.0	0.0	0.0	0.0	11.3	88.7	0.0	31.7	0.0	68.3	
Tota	I %	0.0	41.8	3.2	0.0	0.0	0.0	5.6	44.0	0.0	1.7	0.0	3.7	


File Name : BellChal Site Code : 00000000 Start Date : 2/21/2008

		Bella	igio Rd			Cha	lon Rd			Bella	gio Rd			Cha	lon Rd		
		South	nbound			Wes	tbound			North	nbound			East	bound		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Fro	m 07:00) AM to	11./15 /		(1 of 1			Total				Total				Total	Total
			11.437	tivi - i Car	1 01 1											1	
Intersection	07:45	AM															
Volume	0	499	20	519	0	0	0	0	30	119	0	149	11	0	40	51	719
Percent	0.0	96.1	3.9		0.0	0.0	0.0		20.1	79.9	0.0		21.6	0.0	78.4		
08:00 Volume	0	131	3	134	0	0	0	0	9	39	0	48	2	0	11	13	195
Peak Factor																	0.922
High Int.	07:45	AM			6:45:0	0 AM			08:00	AM			08:30	AM			
Volume	0	124	10	134	0	0	0	0	9	39	0	48	5	0	10	15	
Peak Factor				0.968								0.776				0.850	

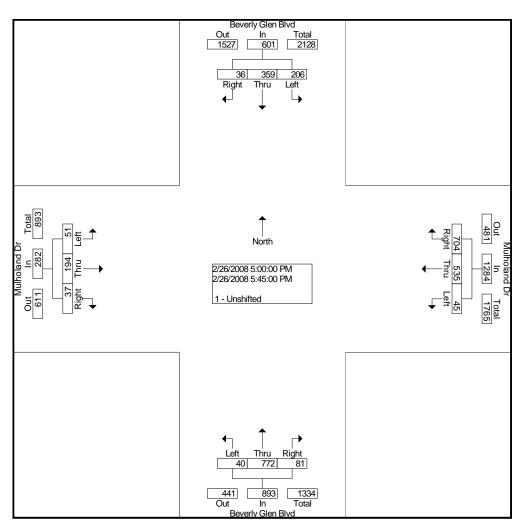
File Name : BellChal Site Code : 00000000 Start Date : 2/21/2008

			ngio Rd hbound				lon Rd tbound				ngio Rd nbound				lon Rd		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour From	m 12:00	PM to	05:45 F	M - Peak	1 of 1											•	
Intersection	05:00	PM															
Volume	0	98	24	122	0	0	0	0	67	508	0	575	11	0	12	23	720
Percent	0.0	80.3	19.7		0.0	0.0	0.0		11.7	88.3	0.0		47.8	0.0	52.2		
05:45 Volume	0	23	8	31	0	0	0	0	23	128	0	151	3	0	3	6	188
Peak Factor																	0.957
High Int.	05:00	PM							05:45	PM			05:30	PM			
Volume	0	28	7	35	0	0	0	0	23	128	0	151	5	0	2	7	
Peak Factor				0.871								0.952				0.821	


File Name : BevGmulh Site Code : 00000000 Start Date : 2/26/2008

Page No : 1

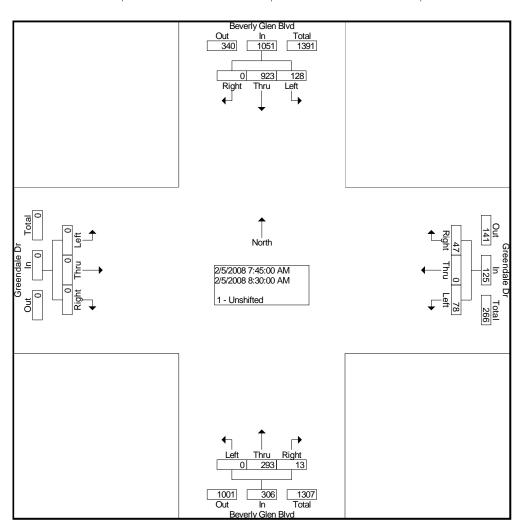
	Beve	rly Glen B	lvd	Mu	Iholand D		Beve	rly Glen B	llvd	Mu	lholand D	r	
		outhbound		W	estbound			orthbound		Е	astbound		
Start Time	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Int. Total
Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
07:00 AM	145	205	20	14	33	33	6	22	7	6	91	8	590
07:15 AM	140	206	25	12	60	42	8	33	19	6	98	10	659
07:30 AM	188	215	27	14	77	71	15	44	18	8	116	7	800
07:45 AM	174	161	38	9	89	89	21	55	25	7	156	12	836
Total	647	787	110	49	259	235	50	154	69	27	461	37	2885
08:00 AM	192	185	35	11	80	75	12	52	9	12	135	10	808
08:15 AM	211	186	29	8	58	57	11	48	18	15	152	9	802
08:30 AM	221	201	24	8	47	59	9	60	24	11	125	5	794
08:45 AM	203	202	20	9	43	55	11	51	15	11	156	1	777
Total	827	774	108	36	228	246	43	211	66	49	568	25	3181
									1				
04:00 PM	63	84	16	21	77	146	15	156	19	15	57	12	681
04:15 PM	58	75	13	15	107	158	7	166	18	16	42	15	690
04:30 PM	64	75	14	8	138	177	15	173	22	5	52	6	749
04:45 PM	53	87	14	14	155	156	8	174	20	9	59	5	754
Total	238	321	57	58	477	637	45	669	79	45	210	38	2874
									1				
05:00 PM	31	58	8	10	158	169	10	182	13	14	39	5	697
05:15 PM	58	89	11	11	118	159	12	223	30	10	46	8	775
05:30 PM	52	93	10	9	133	187	7	212	26	12	47	6	794
05:45 PM	65	119	7	15	126	189	11	155	12	15	62	18	794
Total	206	359	36	45	535	704	40	772	81	51	194	37	3060
Grand Total	1918	2241	311	188	1499	1822	178	1806	295	172	1433	137	12000
Apprch %	42.9	50.1	7.0	5.4	42.7	51.9	7.8	79.2	12.9	9.9	82.3	7.9	
Total %	16.0	18.7	2.6	1.6	12.5	15.2	1.5	15.1	2.5	1.4	11.9	1.1	


File Name: BevGmulh Site Code: 00000000 Start Date: 2/26/2008

	E	Beverly	Glen Bl	vd		Mulho	land Dr		E	Beverly	Glen Bl	vd		Mulho	oland Dr		
		Sout	hbound			Wes	tbound			North	nbound			East	bound		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour From	m 07:00	AM to	11:45 A	M - Peak	1 of 1												_
Intersection	07:30	AM															
Volume	765	747	129	1641	42	304	292	638	59	199	70	328	42	559	38	639	3246
Percent	46.6	45.5	7.9		6.6	47.6	45.8		18.0	60.7	21.3		6.6	87.5	5.9		
07:45 Volume	174	161	38	373	9	89	89	187	21	55	25	101	7	156	12	175	836
Peak Factor																	0.971
High Int.	07:30	AM			07:45	AM			07:45	AM			08:15	AM			
Volume	188	215	27	430	9	89	89	187	21	55	25	101	15	152	9	176	
Peak Factor				0.954				0.853				0.812				0.908	

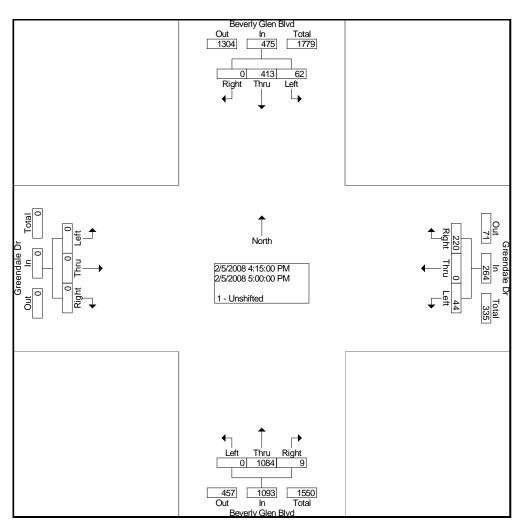
File Name: BevGmulh Site Code: 00000000 Start Date: 2/26/2008

	E	•	Glen Bl	vd			oland Dr		E		Glen Bl	vd			oland Dr		
		Sout		App.				App.		NOIL		App.		Lasi		App.	Int.
Start Time	Left	Thru	Right	Total	Left	Thru	Right	Total	Left	Thru	Right	Total	Left	Thru	Right	Total	Total
Peak Hour From	m 12:00	PM to	05:45 P	M - Peak	1 of 1						•					•	
Intersection	05:00	PM															
Volume	206	359	36	601	45	535	704	1284	40	772	81	893	51	194	37	282	3060
Percent	34.3	59.7	6.0		3.5	41.7	54.8		4.5	86.5	9.1		18.1	68.8	13.1		
05:45 Volume	65	119	7	191	15	126	189	330	11	155	12	178	15	62	18	95	794
Peak Factor																	0.963
High Int.	05:45	PM			05:00	PM			05:15	PM			05:45	PM			
Volume	65	119	7	191	10	158	169	337	12	223	30	265	15	62	18	95	
Peak Factor				0.787				0.953				0.842				0.742	


File Name : BevGgrennd Site Code : 00000000 Start Date : 2/5/2008

Page No : 1

	Be	verly Glen E	Blvd	Gre	eendale D	r	Beve	erly Glen I	Blvd	Gr	eendale D	r	
		Southbound		W	estbound'		N	Iorthbound		E	astbound		
Start Tim	e Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Int. Total
Facto	or 1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
07:00 Al	И 28	253	0	6	0	12	0	38	3	0	0	0	340
07:15 Al	И 32	218	0	13	0	12	0	60	6	0	0	0	341
07:30 Al	И 36	211	0	39	0	27	0	53	2	0	0	0	368
07:45 Al		200	0	55	0	26	0	65	2	0	0	0	389
Tota	al 137	882	0	113	0	77	0	216	13	0	0	0	1438
08:00 Al			0	11	0	10	0	76	1	0	0	0	370
08:15 Al	-		0	5 7	0	5	0	68	5	0	0	0	348
08:30 Al	И 35	238	0	7	0	6	0	84	5	0	0	0	375
08:45 Al			0	4	0	10	0	74	2	0	0	0	374
Tota	al 113	981	0	27	0	31	0	302	13	0	0	0	1467
04:00 PI			0	15	0	57	0	250	2	0	0	0	422
04:15 PI		-	0	9	0	51	0	282	4	0	0	0	465
04:30 PI	_		0	10	0	59	0	234	3	0	0	0	421
04:45 PI			0	7	0	57	0	270	1	0	0	0	459
Tota	al 56	400	0	41	0	224	0	1036	10	0	0	0	1767
05:00 PI	-		0	18	0	53	0	298	1	0	0	0	487
05:15 PI			0	12	0	68	0	233	3	0	0	0	422
05:30 PI		109	0	17	0	68	0	219	2	0	0	0	426
05:45 PI		81	0	9	0	79	0	173	1	0	0	0	350
Tota	al 50	381	0	56	0	268	0	923	7	0	0	0	1685
Grand Tota		_	0	237	0	600	0	2477	43	0	0	0	6357
Apprch 9			0.0	28.3	0.0	71.7	0.0	98.3	1.7	0.0	0.0	0.0	
Total 9	% 5.6	41.6	0.0	3.7	0.0	9.4	0.0	39.0	0.7	0.0	0.0	0.0	


File Name : BevGgrennd Site Code : 00000000 Start Date : 2/5/2008

	E	Beverly	Glen Bl	vd		Greer	ndale Dr		Е	Beverly	Glen Bl	vd		Greer	ndale Dr		
		Sout	hbound			Wes	tbound			North	nbound			East	tbound		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Fro	m 07:00	AM to	11:45 A	M - Peak	1 of 1												
Intersection	07:45	AM															
Volume	128	923	0	1051	78	0	47	125	0	293	13	306	0	0	0	0	1482
Percent	12.2	87.8	0.0		62.4	0.0	37.6		0.0	95.8	4.2		0.0	0.0	0.0		
07:45 Volume	41	200	0	241	55	0	26	81	0	65	2	67	0	0	0	0	389
Peak Factor																	0.952
High Int.	08:30	AM			07:45	AM			08:30	AM			6:45:0	0 AM			
Volume	35	238	0	273	55	0	26	81	0	84	5	89					
Peak Factor				0.962				0.386				0.860					

File Name : BevGgrennd Site Code : 00000000 Start Date : 2/5/2008

	E	•	Glen Bl				ndale Dr tbound		E	,	Glen Bl	vd			ndale Dr bound		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Fro	m 12:00	PM to	05:45 F	M - Peak	1 of 1											,	
Intersection	04:15	PM															
Volume	62	413	0	475	44	0	220	264	0	1084	9	1093	0	0	0	0	1832
Percent	13.1	86.9	0.0		16.7	0.0	83.3		0.0	99.2	8.0		0.0	0.0	0.0		
05:00 Volume	20	97	0	117	18	0	53	71	0	298	1	299	0	0	0	0	487
Peak Factor																	0.940
High Int.	04:45	PM			05:00	PM			05:00	PM							
Volume	9	115	0	124	18	0	53	71	0	298	1	299					
Peak Factor				0.958				0.930				0.914					

Appendix B: LOS Worksheets

- 1) Existing 2008
- 2) Future 2013 Without Project
- 3) Future 2013 With Project

Unsignalized Intersections Analyzed as 2-Phase Signalized Intersections with a Capacity of 1,200 VPH (per LADOT Traffic Study Policies and Procedures):

- 1) Existing 2008
- 2) Future 2013 Without Project
- 3) Future 2013 With Project

Westwood and Le Conte Analyzed with Scramble Phase

- 1) Existing 2008
- 2) Future 2013 Without Project
- 3) Future 2013 With Project

Existing LOS Analysis

Existing AM Peak

Thu Jul 17, 2008 10:27:48

Page 1-1

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA

Existing 2008 AM Peak

Scenario Report

Existing AM Peak Scenario:

Existing AM Peak Command: Volume: Existing AM

Geometry: Existing

Impact Fee: Default Impact Fee

Trip Generation: AM Peak Trip Distribution: Project Paths: Project Routes: Default Route Configuration: Existing

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

Existing AM Peak

Thu Jul 17, 2008 10:27:48

Page 2-1

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Existing 2008 AM Peak

Turning Movement Report AM Peak

Volume Type		rthbou Thru R			outhbo Thru			astbo Thru			estbou Thru		Total Volume
-11-			-5										
						Ln/Ova							
Base	12	485	72		1321	531	84	52	26	87	144	0	2818
Added	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	12	485	72	4	1321	531	84	52	26	87	144	0	2818
#2 Chu	rch Lai	ne and	San	Diego	Fwy :	SB On/C	off Ran	mp					
Base	0	143	317	223	656	0	0	2	1	1435	1	22	2800
Added	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	0	143	317	223	656	0	0	2	1	1435	1	22	2800
#3 Chu	rch Lai	ne and	Suns	set Bo	ıleva	rd							
Base	51	7	102	652	158	962	99	1713	111	6	1170	432	5463
Added	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	51	7	102	652	158	962	99	1713	111	6	1170	432	5463
#4 San	Diego	Fwy N	B On	Off R	amps a	and Sur	nset Bo	ouleva	ard				
Base	642	Ô	521	0	0	0	0	1473	949	0	976	0	4561
Added	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	642	0	521	0	0	0	0	1473	949	0	976	0	4561
#5 Vet	eran A	venue	and S	Sunset	Boule	evard							
Base	57	0	347	0	0	0	0	1726	185	295	926	0	3536
Added	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	57	0	347	0	0	0	0	1726	185	295	926	0	3536
#6 Bel	lagio 1	Way an	d Sur	nset B	ouleva	ard							
Base	41	5	8	172	50	254	178	1680	226	17	923	96	3650
Added	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	41	5	8	172	50	254	178	1680	226	17	923	96	3650
#7 Wes	twood 1	Boueva	rd ar	nd Sun	set Bo	oulevar	rd						
Base	26	0	21	0	0	0	0	1434	376	175	1016	0	3048
Added	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	26	0	21	0	0	0	0	1434	376	175	1016	0	3048
#8 Sto	ne Can	yon Ro	ad ar	nd Sun	set Bo	oulevar	rd						
Base	49	1	43	0	0	60	57	1270	240	89	1153	22	2984
Added	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	49	1	43	0	0	60	57	1270	240	89	1153	22	2984
#9 Hil	gard A	venue/	Copa	De Or	o Road	d and S	Sunset	Boule	evard				
Base	142	38	107	28	73	16		1031	261	452	1067	21	3254
Added	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	142	38	107	28	73	16	18	1031	261	452	1067	21	3254

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

Thu Jul 17, 2008 10:27:48

Page 2-2

Existing AM Peak Thu Jul 17, 2008 10:27:48 Page 2-3

UCLA NHIP and Amended LRDP Traffic Study

Existing 2008 AM Peak

Los Angeles, CA

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Existing 2008 AM Peak

					EXISCII	19 200	O AM I	-ear					
Volume	NT	arthhai	ınd	Q,	out hhou	ınd	r-	at hou	nd	TAT	act hou	nd	Total
Type													
Type	тегс	IIII u I	KIGIIC	тегс	IIII u	KIGIIC	петс	IIII u	Kigiic	петс	IIII u	Kigiic	vorume
U10 =	,	~ .		,	1 0		,	,					
#10 Bev													
Base	87	92	389	50	76	9		1022	106		1402	72	3799
Added	0	0	0	0	0	0	0		0	0		0	0
Total	87	92	389	50	76	9	15	1022	106	479	1402	72	3799
#11 Bev	erly	Glen I	Boule	zard aı	nd Sun:	set Bo	ulevaı	rd (Ea	st I/S)			
Base	0	0	0	148	0	811	313	1127	0	0	1123	33	3555
Added	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	0	0	0	148	0	811	313	1127	0	0	1123	33	3555
#12 Sep	ulve	da Bou	levaro	and :	San Die	ean Fw	v NB (off-Ra	crm				
Base	0		0		1307	0	276	0	9	0	0	0	1973
Added	0		0		0	0	0	0	0	0	0	0	0
Total	0		0	-	-	0	276	0	9	0	0	0	1973
10041		301	U		1507	0	270	U		· ·	U	U	1775
#13 Sep]	do Bour	1 0110 20	and t	Mont on	Arron							
Base	74		273		1103	22	ue 8	272	100	98	70	71	2731
Added	0	0	0	320	0	0	0		0	0	0	0	2/31
							8						
Total	74	312	273	328	1103	22	8	272	100	98	70	71	2731
#14 Lev							_			_		_	
Base		0	3		-	0	0	761	339	6	155	0	1301
Added	0		0			0		0	0	0	0	0	0
Total	37	0	3	0	0	0	0	761	339	6	155	0	1301
#15 Vet	eran	Avenue	e and	Montai	na Avei	nue/Ga	ley Av	venue					
Base	33	219	21	168	319	19	114	554	43	11	78	48	1627
Added	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	33	219	21	168	319	19	114	554	43	11	78	48	1627
#16 Gal	ev A	venue a	and St	rathmo	ore Pla	ace							
Base	5		280	474	265	3	2	118	14	95	18	47	1400
Added	0		0	0		0		0	0	0	0	0	0
Total	5		280	474		3	2		14	95	18	47	1400
10041	,	,,,	200	1,1	203	,	-	110		,,,	10	1,	1100
#17 Wot	oron	Arronii	and	Torrow	ina Arr	20110							
#17 Vet	eran 19		and 28	Lever:		enue 3	2	115	203	66	23	29	1129
Base													
Added	0		0	0	0	0	0		0	0	0	0	0
Total	19	233	28	21	387	3	2	115	203	66	23	29	1129
#18 Hil													
Base	207	276		27		53	16	24	94	59	85	28	1467
Added	0		0			0	0	0	0	0	0	0	0
Total	207	276	9	27	589	53	16	24	94	59	85	28	1467

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

Volume													Total
Type	Leit	Thru	Right	Leit	Thru	Right	Left T	hru	Right	Leit	Thru l	Right	Volume
#19 Bev	verly	Glen	Blvd a	nd Wyt	on Dr	/Comsto	ck Ave	[5-	Leg Int	ersec	tion-	Wyton	Split
Base	Pe Left Thru Right Left Thru Right Left Thru Right Left Thru Right Volume 9 Beverly Glen Blvd and Wyton Dr/Comstock Ave [5-Leg Intersection- Wyton Split se 8 300 5 46 498 3 1 22 11 30 33 38 995 ded 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 10												
Added	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	8	300	5	46	498	3	1	22	11	3.0	3.3	38	995
	Left Thru Right Left Thru Right Left Thru Right Left Thru Right Volume Beverly Glen Blvd and Wyton Dr/Comstock Ave [5-Leg Intersection- Wyton Split 8 300 5 46 498 3 1 22 11 30 33 38 995 d 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 8 300 5 46 498 3 1 22 11 30 33 38 995 Hilgard Avenue and Westholme Avenue 163 379 41 15 531 131 20 10 29 40 194 49 1602 d 0 0 0 0 0 0 0 0 0 0 0 0												
#20 Hil	lgard	Avenu	e and	Westho	olme A	venue							
Base	163	379	41	15	531	131	20	10	29	40	194	49	1602
Added	9 Beverly Glen Blvd and Wyton Dr/Comstock Ave [5-Leg Intersection- Wyton Split se 8 300 5 46 498 3 1 22 11 30 33 38 995 ded 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0												
Total	163	379	41	15	531	131	20	10	29	40	194	49	1602
IOCUI	105	515		10	331	131	20	10	2,	10	171	1.7	1002

Base	0	300	5	40	490	3	1	22	TT	30	33	30	995
Added	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	8	300	5	46	498	3	1	22	11	30	33	38	995
#20 Hil	aard	λτιοηιι	a and	Westho	lme 7	venue							
Base	163	379	41	15	531	131	20	10	29	40	194	49	1602
Added	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	163	379	41	15	531	131	20	10	29	40	194	49	1602
#21 Hil	gard	Avenu	e and	Mannin	g Ave	nue							
Base	0	716	12	21	514	0	0	0	0	6	0	66	1335
Added	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	0	716	12	21	514	0	Ō	Ō	0	6	ō	66	1335
#22 Gay	rley A			e Cont	e Ave	nue							
Base	7	635	234	124	217	15	24	119	11	157	74	127	1744
Added	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	7	635	234	124	217	15	24	119	11	157	74	127	1744
1100 ***		D 1		3	G t-								
#23 Wes								200	2.2	120	215	100	0000
Base	53	632	206	32	195	88	168	327	33	130	317	107	2288
Added	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	53	632	206	32	195	88	168	327	33	130	317	107	2288
#24 Tiv	erton	Drive	e and	Le Con	te Av	enue							
Base	25	100	28	24	35	196	181	290	40	15	328	87	1349
Added	0	0	0	0	0	0	0	0	0	0	0	0	0
	25	100			35	196	181	290			328		1349
Total	25	100	28	24	35	196	101	290	40	15	320	87	1349
#25 Hil	gard			Le Con		enue							
Base	22	429	26	10	217	285	272	66	32	7	145	24	1535
Added	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	22	429	26	10	217	285	272	66	32	7	145	24	1535
#26 Gay	rlasr A	tranija	and W	Jewhurn	Arren	110							
Base	28	753	111	17	400	74	190	170	22	37	43	36	1881
Added	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	28	753	111	17	400	74	190	170	22	37	43	36	1881
#27 Wes	twood	Boule	evard	and We	yburn	Avenue	2						
Base	70	659	43	6	322	29	47	56	31	33	43	13	1352
Added	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	70	659	43	6	322	29	47	56	31	33	43	13	1352
10041	, 0	000	13	O	222	2,5	1,	50	31	55	13	13	1002

Total

Rase Added

Added

#28 Tiverton Drvie and Weyburn Avenue Base 13 106 7 27 0 32 Added 0 0 0 0 0 0

#29 Hilgard Avenue and Weyburn Avenue

Total 13 106 7 27 0 32

#30 Westwood Boulevard and Kinross Avenue

#31 Westwood Boulevard and Lindbrook Drive Base 3 796 216 20 316 10 29 130 Added 0 0 0 0 0 0 0 0

#33 Sepulveda Boulevard and Constitution Avenue

#34 San Vicente Bouevard and Wilshire Bouelvard

#35 Sepulveda Boulevard and Wilshire Boulevard

#36 Veteran Avenue and Wilshire Boulevard

#32 Glendon/Tiverton/Lindbrook

Base 29 461 5 13 251 39 34 27 Added 0 0 0 0 0 0 0 0 0 0 Total 29 461 5 13 251 39 34 27

3 796 216 20 316 10 29 130

Thu Jul 17, 2008 10:27:48 Los Angeles, CA

UCLA NHIP and Amended LRDP Traffic Study

Existing 2008 AM Peak

Volume Northbound Southbound Eastbound Westbound Total

Type Left Thru Right Left Thru Right Left Thru Right Left Thru Right Volume

26 36

26 36

0 0

59 219 392 8 24 43 36 319 21 157 170 0 0 0 0 0 0 0 0 0 0 0

Total 59 219 392 8 24 43 36 319 21 157 170 39 1487

Base 98 204 111 1380 290 18 66 1956 65 53 2037 927 7205

Total 98 204 111 1380 290 18 66 1956 65 53 2037 927 7205

Base 156 240 263 279 637 283 71 2737 134 110 2543 62 7515 Added 0 0 0 0 0 0 0 0 0 0 0 0 0 Total 156 240 263 279 637 283 71 2737 134 110 2543 62 7515

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

0 0 0 0 0 0 0 0

0 0 0

0

63

63

0

45

0

0 34

7 26

5 45

5 45

93 131

0 0

45 93 131 27 1816

0 0 0

0 0

0

Ω 0

Page 2-4

17

0

17

2.7

Ω

298

298

982

0

59 1456

59 1456

27 1816

0 0

39 1487

2 1757

0

Ω

Ω

0

0

Thu Jul 17, 2008 10:27:48

Existing AM Peak

UCLA NHIP and Amended LRDP Traffic Study

Page 2-5

Los Angeles, CA Existing 2008 AM Peak

				Ŀ	xıstı	ng 200	8 AM .	Реак					
Volume	No	orthbou	and	Sc	uthbo	und	E:	astbo	und	We	estbo	und	Total
Type	Left	Thru I	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Volume
#37 Gay	vlev 1	venue	and I	Wilshir	e Boii	levard							
Base	59		52		100	286		2424	152	64	1991	116	6129
Added	0	0	0		0	0	0			0		0	
Total	59	333	52	56	100	286	496	2424	152	64	1991	116	6129
#38 Wes													
Base	135	600	117		272	154		1980	164		1889		602
Added	0	0	0	0	0	0	0		0	0	-	0	
Total	135	600	117	61	272	154	427	1980	164	134	1889	93	602
#39 Gle													
Base	9	177	22	57	110	41		1686	114		1970	171	474
Added	0	-	0	0	0	0	0	-	-	0	-	0	
Total	9	177	22	57	110	41	318	1686	114	66	1970	171	474
#40 Mai													
Base	3	0	45	3	1	40		1691	28		2184		413
Added	0	0	0	0	0	0		0	0	0		0	
Total	3		45	3	1	40		1691	28	22	2184	53	413!
#41 Wes													
Base	56	102	65	45	42	20		1792	63		2202		
Added	0		0		0	0	0			0		0	
Total	56	102	65	45	42	20	31	1792	63	29	2202	137	458
#42 Wax													
Base	74	36	21		60	88		1773	31		2228		455
Added	0	0	0	0	0	0	0	-	0	0		0	
Total	74	36	21	87	60	88	67	1773	31	11	2228	77	455
#43 Bev													
Base	161		36	34		48		1594			2075	10	518
Added	0	0	0	0	0	0	0		-	0	-	0	
Total	161	335	36	34	504	48	89	1594	203	99	2075	10	518
#44 Sav													
Base	60	303	129	25	90	18	82		52	71		86	221
Added	0	0	0	0	0	0	0		0	0		0	
Total	60	303	129	25	90	18	82	845	52	71	458	86	221
#45 Sep													
Base	96	454	126	38	495	82	174		78	74		71	286
Added	0		0	0	0	0	0	0	0	0	-	0	
Total	96	454	126	38	495	82	174	695	78	74	480	71	2863

Thu Jul 17, 2008 10:27:48

Page 2-6

Existing AM Peak Thu Jul 17, 2008 10:27:48

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Existing 2008 AM Peak

Added 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0														m-+-1
#46 Veteran Avenue and Ohio Avenue Base														
Base 33 325 35 14 148 100 268 692 37 25 476 41 219 Added 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Total 33 325 35 14 148 100 268 692 37 25 476 41 219 #47 Westwood Boulevard and Ohio Avenue Base 124 1179 48 32 461 59 169 278 91 64 266 50 282 Added 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Total 124 1179 48 32 461 59 169 278 91 64 266 50 282 #48 Sawtelle Boulevard and Santa Monica Boulevard Base 60 454 206 94 158 29 23 1181 21 119 1704 61 411 Added 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Total 60 454 206 94 158 29 23 1181 21 119 1704 61 411 #49 San Diego Fwy SB Ramps and Santa Monica Boulevard Base 0 0 0 720 281 401 0 1044 418 596 1462 0 492 #50 San Diego Fwy NB Ramps and Santa Monica Boulevard Base 675 384 720 0 0 0 398 1424 0 0 1318 324 524 #51 Sepulveda Boulevard and Santa Monica Boulevard Base 675 384 720 0 0 0 398 1424 0 0 1318 324 524 #51 Sepulveda Boulevard and Santa Monica Boulevard Base 206 832 135 149 753 184 99 1701 361 97 1281 140 593 #52 Veteran Avenue and Santa Monica Boulevard Base 206 832 135 149 753 184 99 1701 361 97 1281 140 593 #52 Veteran Avenue and Santa Monica Boulevard Base 64 265 54 132 146 66 101 1839 24 63 1320 60 413 #53 Westwood Boulevard and Santa Monica Boulevard Base 64 265 54 132 146 66 101 1839 24 63 1320 60 413 #53 Westwood Boulevard and Santa Monica Boulevard Base 91 1008 73 218 528 75 140 1794 97 128 1288 129 556 Added 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Total 91 1008 73 218 528 75 140 1794 97 128 1288 129 556	Туре	Leit	Thru	Right	Leit	Thru	Right	Leit	Thru	Right	Leit	Thru	Right	Volume
Added 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	#46 Ve	teran	Aveni	ıe and	Ohio A	Avenu	e							
#47 Westwood Boulevard and Ohio Avenue Base 124 1179 48 32 461 59 169 278 91 64 266 50 282 #48 Sawtelle Boulevard and Santa Monica Boulevard Base 60 454 206 94 158 29 23 1181 21 119 1704 61 411 #49 San Diego Fwy SB Ramps and Santa Monica Boulevard Base 0 0 0 720 281 401 0 1044 418 596 1462 0 492 #46 San Diego Fwy NB Ramps and Santa Monica Boulevard #50 San Diego Fwy NB Ramps and Santa Monica Boulevard #50 San Diego Fwy SB Ramps and Santa Monica Boulevard #51 Sepulveda Boulevard and Santa Monica Boulevard #52 Veteran Avenue and Santa Monica Boulevard #53 Westwood Boulevard and Santa Monica Boulevard #53 Westwood Boulevard and Santa Monica Boulevard #55 Westwood Boulevard and Santa Monica Boulevard #55 Westwood Boulevard and Santa Monica Boulevard #593 184 720 0 0 0 398 1424 0 0 1318 324 524 1401 0 1044 18 596 1462 0 492 1401 0 1044 18 18 596 1462 0 492 1401 0 1044 18 18 596 1462	Base	33	325	35	14	148	100	268	692	37	25	476	41	2194
#47 Westwood Boulevard and Ohio Avenue Base 124 1179 48 32 461 59 169 278 91 64 266 50 282 #48 Sawtelle Boulevard and Santa Monica Boulevard Base 60 454 206 94 158 29 23 1181 21 119 1704 61 411 #49 San Diego Fwy SB Ramps and Santa Monica Boulevard Base 0 0 0 720 281 401 0 1044 418 596 1462 0 492 #46 San Diego Fwy NB Ramps and Santa Monica Boulevard #50 San Diego Fwy NB Ramps and Santa Monica Boulevard #50 San Diego Fwy SB Ramps and Santa Monica Boulevard #51 Sepulveda Boulevard and Santa Monica Boulevard #52 Veteran Avenue and Santa Monica Boulevard #53 Westwood Boulevard and Santa Monica Boulevard #53 Westwood Boulevard and Santa Monica Boulevard #55 Westwood Boulevard and Santa Monica Boulevard #55 Westwood Boulevard and Santa Monica Boulevard #593 184 720 0 0 0 398 1424 0 0 1318 324 524 1401 0 1044 18 596 1462 0 492 1401 0 1044 18 18 596 1462 0 492 1401 0 1044 18 18 596 1462	Added	0	0	0	0	0	0	0	0	0	0	0	0	0
Base 124 1179 48 32 461 59 169 278 91 64 266 50 282 Added 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Total							268	692	37	25	476	41	2194
Added 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	#47 We	stwoo	d Boul				venue							
#48 Sawtelle Boulevard and Santa Monica Boulevard Base 60 454 206 94 158 29 23 1181 21 119 1704 61 411 Added 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Base			48	32	461	59	169	278					
#48 Sawtelle Boulevard and Santa Monica Boulevard Base 60 454 206 94 158 29 23 1181 21 119 1704 61 411 Added 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Added	0	0	0	0	0	0	0		0	0	0	0	
Base 60 454 206 94 158 29 23 1181 21 119 1704 61 411 Added 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Total	124	1179	48	32	461	59	169	278	91	64	266	50	2821
Total 60 454 206 94 158 29 23 1181 21 119 1704 61 411 #49 San Diego Fwy SB Ramps and Santa Monica Boulevard Base 0 0 0 720 281 401 0 1044 418 596 1462 0 492 Added 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0								Boule	vard					
Total 60 454 206 94 158 29 23 1181 21 119 1704 61 411 #49 San Diego Fwy SB Ramps and Santa Monica Boulevard Base 0 0 0 720 281 401 0 1044 418 596 1462 0 492 Added 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		60	454	206	94	158	29	23	1181	21	119	1704	61	4110
#49 San Diego Fwy SB Ramps and Santa Monica Boulevard Base 0 0 0 720 281 401 0 1044 418 596 1462 0 492 Added 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0														
Base 0 0 0 720 281 401 0 1044 418 596 1462 0 492 Added 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Total 0 0 0 720 281 401 0 1044 418 596 1462 0 492 #50 San Diego Fwy NB Ramps and Santa Monica Boulevard Base 675 384 720 0 0 0 398 1424 0 0 1318 324 524 Added 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Total 675 384 720 0 0 0 398 1424 0 0 1318 324 524 #51 Sepulveda Boulevard and Santa Monica Boulevard Base 206 832 135 149 753 184 99 1701 361 97 1281 140 593 Added 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Total 206 832 135 149 753 184 99 1701 361 97 1281 140 593 #52 Veteran Avenue and Santa Monica Boulevard Base 64 265 54 132 146 66 101 1839 24 63 1320 60 413 Added 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Total 206 832 135 149 753 184 99 1701 361 97 1281 140 593 #52 Veteran Avenue and Santa Monica Boulevard Base 64 265 54 132 146 66 101 1839 24 63 1320 60 413 Total 64 265 54 132 146 66 101 1839 24 63 1320 60 413 #53 Westwood Boulevard and Santa Monica Boulevard Base 91 1008 73 218 528 75 140 1794 97 128 1288 129 556 Added 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Total 91 1008 73 218 528 75 140 1794 97 128 1288 129 556	Total	60	454	206	94	158	29	23	1181	21	119	1704	61	4110
Added 0 0 0 0 720 281 401 0 1044 418 596 1462 0 492 #50 San Diego Fwy NB Ramps and Santa Monica Boulevard Base 675 384 720 0 0 0 398 1424 0 0 1318 324 524 Added 0 0 0 0 0 0 0 0 0 0 0 0 0 1318 324 524 #51 Sepulveda Boulevard and Santa Monica Boulevard Base 206 832 135 149 753 184 99 1701 361 97 1281 140 593. Added 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Total 206 832 135 149 753 184 99 1701 361 97 1281 140 593. #52 Veteran Avenue and Santa Monica Boulevard Base 64 265 54 132 146 66 101 1839 24 63 1320 60 413. Added 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Total 64 265 54 132 146 66 101 1839 24 63 1320 60 413. #53 Westwood Boulevard and Santa Monica Boulevard Base 91 1008 73 218 528 75 140 1794 97 128 1288 129 556. Added 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Total 91 1008 73 218 528 75 140 1794 97 128 1288 129 556.														
#50 San Diego Fwy NB Ramps and Santa Monica Boulevard Base 675 384 720 0 0 0 398 1424 0 0 1318 324 524 Added 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1318 324 524 #51 Sepulveda Boulevard and Santa Monica Boulevard Base 206 832 135 149 753 184 99 1701 361 97 1281 140 593 Added 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Total 206 832 135 149 753 184 99 1701 361 97 1281 140 593 #52 Veteran Avenue and Santa Monica Boulevard Base 64 265 54 132 146 66 101 1839 24 63 1320 60 413 Added 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Total 206 832 135 149 753 184 99 1701 361 97 1281 140 593 #52 Veteran Avenue and Santa Monica Boulevard Base 64 265 54 132 146 66 101 1839 24 63 1320 60 413 Added 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Base	0	0	0	720	281	401	0	1044	418	596	1462	0	4922
#50 San Diego Fwy NB Ramps and Santa Monica Boulevard Base 675 384 720 0 0 0 398 1424 0 0 1318 324 524 Added 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1318 324 524 #51 Sepulveda Boulevard and Santa Monica Boulevard Base 206 832 135 149 753 184 99 1701 361 97 1281 140 593 Added 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Total 206 832 135 149 753 184 99 1701 361 97 1281 140 593 #52 Veteran Avenue and Santa Monica Boulevard Base 64 265 54 132 146 66 101 1839 24 63 1320 60 413 Added 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Total 206 832 135 149 753 184 99 1701 361 97 1281 140 593 #52 Veteran Avenue and Santa Monica Boulevard Base 64 265 54 132 146 66 101 1839 24 63 1320 60 413 Added 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Added	0	0	0	0	0	0	0	0	0	0	0	0	0
Base 675 384 720 0 0 0 398 1424 0 0 1318 324 524 Added 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Total	0	0	0	720	281	401	0	1044	418	596	1462	0	4922
Total 675 384 720 0 0 0 398 1424 0 0 1318 324 524 #51 Sepulveda Boulevard and Santa Monica Boulevard Base 206 832 135 149 753 184 99 1701 361 97 1281 140 593. Added 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Total 206 832 135 149 753 184 99 1701 361 97 1281 140 593. #52 Veteran Avenue and Santa Monica Boulevard Base 64 265 54 132 146 66 101 1839 24 63 1320 60 413. Added 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Total 64 265 54 132 146 66 101 1839 24 63 1320 60 413. #53 Westwood Boulevard and Santa Monica Boulevard Base 91 1008 73 218 528 75 140 1794 97 128 1288 129 556. Added 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Total 91 1008 73 218 528 75 140 1794 97 128 1288 129 556.	#50 Sai	n Die	go Fwy	NB R	amps ar	nd Sai	nta Mor	nica Bo	ouleva	ard				
Total 675 384 720 0 0 0 398 1424 0 0 1318 324 524 #51 Sepulveda Boulevard and Santa Monica Boulevard Base 206 832 135 149 753 184 99 1701 361 97 1281 140 593. Added 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Total 206 832 135 149 753 184 99 1701 361 97 1281 140 593. #52 Veteran Avenue and Santa Monica Boulevard Base 64 265 54 132 146 66 101 1839 24 63 1320 60 413. Added 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Total 64 265 54 132 146 66 101 1839 24 63 1320 60 413. #53 Westwood Boulevard and Santa Monica Boulevard Base 91 1008 73 218 528 75 140 1794 97 128 1288 129 556. Added 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Total 91 1008 73 218 528 75 140 1794 97 128 1288 129 556.	Base	675	384	720	0	0	0	398	1424	0	0	1318	324	5243
#51 Sepulveda Boulevard and Santa Monica Boulevard Base 206 832 135 149 753 184 99 1701 361 97 1281 140 593. Added 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Added	- 0	0	- 0	0	0	0	0	0	0	0	0	0	0
Base 206 832 135 149 753 184 99 1701 361 97 1281 140 593 Added 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Total 206 832 135 149 753 184 99 1701 361 97 1281 140 593 #52 Veteran Avenue and Santa Monica Boulevard Base 64 265 54 132 146 66 101 1839 24 63 1320 60 413 Added 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Total 64 265 54 132 146 66 101 1839 24 63 1320 60 413 #53 Westwood Boulevard and Santa Monica Boulevard Base 91 1008 73 218 528 75 140 1794 97 128 1288 129 556 Added 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Total 91 1008 73 218 528 75 140 1794 97 128 1288 129 556	Total	675	384	720	0	0	0	398	1424	0	0	1318	324	5243
Added 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0							Monica	Boule	evard					
#52 Veteran Avenue and Santa Monica Boulevard Base 64 265 54 132 146 66 101 1839 24 63 1320 60 413 Added 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Total 64 265 54 132 146 66 101 1839 24 63 1320 60 413 #53 Westwood Boulevard and Santa Monica Boulevard Base 91 1008 73 218 528 75 140 1794 97 128 1288 129 556 Added 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Total 91 1008 73 218 528 75 140 1794 97 128 1288 129 556		206	832	135	149	753	184	99	1701	361	9.7	1281	140	5938
#52 Veteran Avenue and Santa Monica Boulevard Base 64 265 54 132 146 66 101 1839 24 63 1320 60 413 Added 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Total 64 265 54 132 146 66 101 1839 24 63 1320 60 413 #53 Westwood Boulevard and Santa Monica Boulevard Base 91 1008 73 218 528 75 140 1794 97 128 1288 129 556 Added 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Total 91 1008 73 218 528 75 140 1794 97 128 1288 129 556	Added	0	0	0	0	0	0	0	0	0	0			
Base 64 265 54 132 146 66 101 1839 24 63 1320 60 413 Added 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Total 64 265 54 132 146 66 101 1839 24 63 1320 60 413 #53 Westwood Bulevard and Santa Monica Boulevard Base 91 1008 73 218 528 75 140 1794 97 128 1288 129 556 Added 0 0 0 0 0 0 0 0 0 0 0 0 0 Total 91 1008 73 218 528 75 140 1794 97 128 1288 129 556	Total	206	832	135	149	753	184	99	1701	361	97	1281	140	5938
Total 64 265 54 132 146 66 101 1839 24 63 1320 60 413 #53 Westwood Boulevard and Santa Monica Boulevard Base 91 1008 73 218 528 75 140 1794 97 128 1288 129 556 Added 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		teran	Avenu	ie and	Santa	Moni	ca Boul	evard	1000	0.4		1200		4104
Total 64 265 54 132 146 66 101 1839 24 63 1320 60 413 #53 Westwood Boulevard and Santa Monica Boulevard Base 91 1008 73 218 528 75 140 1794 97 128 1288 129 556 Added 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Base	64	265	54	132	146	66	101	1839	24	63	1320	60	4134
#53 Westwood Boulevard and Santa Monica Boulevard Base 91 1008 73 218 528 75 140 1794 97 128 1288 129 556 Added 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Total 91 1008 73 218 528 75 140 1794 97 128 1288 129 556		0	0	- 0	- 0	0	0	- 0	0	0				
Base 91 1008 73 218 528 75 140 1794 97 128 1288 129 556 Added 0 0 0 0 0 0 0 0 0 0 0 Total 91 1008 73 218 528 75 140 1794 97 128 1288 129 556	Total	64	265	54	132	146	66	101	1839	24	63	1320	60	4134
Added 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	#53 We	stwoo	d Boul	levard	and Sa	anta I	Monica	Boule	vard					
	Base	91	T008	./3	218	528	75	140	1794	97	128	T288	129	5569
	Added	0	0	_ 0	0	0	_ 0	0	0	0	0	0	0	0
#54 Mulholland Drive and Roscomare Road Base 195 0 75 0 0 0 0 713 409 184 519 0 209 Added 0 0 0 0 0 0 0 0 0 0 0 0 0 Total 195 0 75 0 0 0 0 713 409 184 519 0 209														5569
Base 195 U 75 O O O 0 713 409 184 519 O 209. Added O O O O O O O O O O O O Total 195 O 75 O O O O 713 409 184 519 O 209.	#54 Mu	lholl	and Di	rive_a	nd Rose	comar	e Road	_					_	
Added 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Base	195	0	75	0	0	0	0	713	409	184	519	0	
Total 195 U 75 O O O 0713 409 184 519 O 209	Added	0	0	_ 0	0	0	0	0	0	0	0	0	0	0
	Total	195	0	75	0	0	0	0	713	409	184	519	0	2095

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

UCLA NHIP and Amended LRDP Traffic Study
Los Angeles, CA
Existing 2008 AM Peak

Page 2-7

				I	Existi	ing 200	8 AM E	eak					
Volume Type		rthbo				ound Right		stbou			estbo		Total Volume
-71-			3						3			5	
#55 Ros	scomar	e Roa	ad and	Strade	ella F	Road/Li	nda Fl	ora D	rive				
Base	12	74	8	90	423	16	16	1	38	9	0	32	719
Added		0	0	-	0	0	0	0	0	0	0	0	0
Total	12	74	8	90	423	16	16	1	38	9	0	32	719
#56 Be			d and (
Base	30	119	0	0		20	11	0	40	0	0	0	719
Added		0	0	-	0	0	0	0	0	0	0	0	0
Total	30	119	0	0	499	20	11	0	40	0	0	0	719
#57 Ber	verly	Glen	Boule	vard ar	nd Mul	lhollan	d Driv	re					
Base	59	199	70	765	747	129	42	559	38	42	304	292	3246
Added	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	59	199	70	765	747	129	42	559	38	42	304	292	3246
#58 Be	verly	Glen	Boule	vard ar	nd Gre	eendale	Drive	2					
Base	0	293	13	128	923	0	0	0	0	78	0	47	1482
Added		0	0		0	0	0	0	0	0	0	0	0
Total	0	293	13	128	923	0	0	0	0	78	0	47	1482

Thu Jul 17, 2008 10:27:49

Page 3-1

Existing AM Peak Thu Jul 17, 2008 10:27:49

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Existing 2008 AM Peak

> Impact Analysis Report Level Of Service

Intersection Base Future Change Del/ V/ Del/ V/ LOS Veh C LOS Veh # 1 Sepulveda Boulevard and Church D xxxxx 0.822 D xxxxx 0.822 + 0.000 V/C # 2 Church Lane and San Diego Fwy C xxxxx 0.794 C xxxxx 0.794 + 0.000 V/C # 3 Church Lane and Sunset Bouleva D xxxxx 0.892 D xxxxx 0.892 + 0.000 V/C # 5 Veteran Avenue and Sunset Boul E xxxxx 0.918 E xxxxx 0.918 + 0.000 V/C # 6 Bellagio Way and Sunset Boulev E xxxxx 0.908 E xxxxx 0.908 + 0.000 V/C # 7 Westwood Bouevard and Sunset B B xxxxx 0.641 B xxxxx 0.641 + 0.000 V/C # 8 Stone Canyon Road and Sunset B A xxxxx 0.564 A xxxxx 0.564 + 0.000 V/C # 9 Hilgard Avenue/Copa De Oro Roa # xxxxx 0.959 # xxxxx 0.959 # 0.000 # V/C # 10 Beverly Glen Boulevard and Sun E xxxxx 0.924 E xxxxx 0.924 + 0.000 V/C # 11 Beverly Glen Boulevard and Sun F xxxxx 1.183 F xxxxx 1.183 + 0.000 V/C # 12 Sepulveda Boulevard and San Di A xxxxx 0.568 A xxxxx 0.568 + 0.000 V/C # 13 Sepulveda Boulevard and Montan C xxxxx 0.782 C xxxxx 0.782 + 0.000 V/C # 14 Levering Avenue and Montana Av C 22.9 0.000 C 22.9 0.000 + 0.000 D/V # 15 Veteran Avenue and Montana Ave D xxxxx 0.841 D xxxxx 0.841 + 0.000 V/C # 16 Galey Avenue and Strathmore Pl B xxxxx 0.690 B xxxxx 0.690 + 0.000 V/C # 17 Veteran Avenue and Levering Av A xxxxx 0.544 A xxxxx 0.544 + 0.000 V/C # 18 Hilgard Avenue and Wyton Drive A xxxxx 0.460 A xxxxx 0.460 + 0.000 V/C # 19 Beverly Glen Blvd and Wyton Dr A xxxxx 0.405 A xxxxx 0.405 + 0.000 V/C # 20 Hilgard Avenue and Westholme A A xxxxx 0.531 A xxxxx 0.531 + 0.000 V/C # 21 Hilgard Avenue and Manning Ave A xxxxx 0.321 A xxxxx 0.321 + 0.000 V/C # 22 Gayley Avenue and Le Conte Ave A xxxxx 0.564 A xxxxx 0.564 + 0.000 V/C # 23 Westwood Boulevard and Le Cont C xxxxx 0.779 C xxxxx 0.779 + 0.000 V/C

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Existing 2008 AM Peak

Page 3-2

Intersection	Base Del/ V/	Future Del/ V/	Change in
# 24 Tiverton Drive and Le Conte Av	LOS Veh C A xxxxx 0.487	LOS Veh C A xxxxx 0.487	+ 0.000 V/C
# 25 Hilgard Avenue and Le Conte Av	A xxxxx 0.561	A xxxxx 0.561	+ 0.000 V/C
# 26 Gayley Avenue and Weyburn Aven	A xxxxx 0.479	A xxxxx 0.479	+ 0.000 V/C
# 27 Westwood Boulevard and Weyburn	A xxxxx 0.438	A xxxxx 0.438	+ 0.000 V/C
# 28 Tiverton Drvie and Weyburn Ave	A 7.7 0.150	A 7.7 0.150	+ 0.000 V/C
# 29 Hilgard Avenue and Weyburn Ave	A xxxxx 0.441	A xxxxx 0.441	+ 0.000 V/C
# 30 Westwood Boulevard and Kinross	D xxxxx 0.835	D xxxxx 0.835	+ 0.000 V/C
# 31 Westwood Boulevard and Lindbro	A xxxxx 0.548	A xxxxx 0.548	+ 0.000 V/C
# 32 Glendon/Tiverton/Lindbrook	B xxxxx 0.608	B xxxxx 0.608	+ 0.000 V/C
# 33 Sepulveda Boulevard and Consti	A xxxxx 0.541	A xxxxx 0.541	+ 0.000 V/C
$\ensuremath{\text{\#}}$ 34 San Vicente Bouevard and Wilsh	E xxxxx 0.943	E xxxxx 0.943	+ 0.000 V/C
# 35 Sepulveda Boulevard and Wilshi	F xxxxx 1.352	F xxxxx 1.352	+ 0.000 V/C
# 36 Veteran Avenue and Wilshire Bo	F xxxxx 1.170	F xxxxx 1.170	+ 0.000 V/C
# 37 Gayley Avenue and Wilshire Bou	E xxxxx 0.956	E xxxxx 0.956	+ 0.000 V/C
# 38 Westwood Boulevard and Wilshir	E xxxxx 0.999	E xxxxx 0.999	+ 0.000 V/C
# 39 Glendon Avenue and Wilshire Bo	E xxxxx 0.912	E xxxxx 0.912	+ 0.000 V/C
# 40 Malcolm Avenue and Wilshire Bo	F 467.1 0.000	F 467.1 0.000	+ 0.000 D/V
# 41 Westholme Avenue and Wilshire	C xxxxx 0.757	C xxxxx 0.757	+ 0.000 V/C
# 42 Warner Avenue and Wilshire Bou	B xxxxx 0.695	B xxxxx 0.695	+ 0.000 V/C
# 43 Beverly Glen Boulevard and Wil	D xxxxx 0.888	D xxxxx 0.888	+ 0.000 V/C
# 44 Sawtelle Boulevard and Ohio Av	E xxxxx 0.990	E xxxxx 0.990	+ 0.000 V/C
# 45 Sepulveda Boulevard and Ohio A	D xxxxx 0.821	D xxxxx 0.821	+ 0.000 V/C
# 46 Veteran Avenue and Ohio Avenue	C xxxxx 0.795	C xxxxx 0.795	+ 0.000 V/C
# 47 Westwood Boulevard and Ohio Av	C xxxxx 0.738	C xxxxx 0.738	+ 0.000 V/C
$\#$ 48 Sawtelle Boulevard and Santa $\ensuremath{\mathrm{M}}$	F xxxxx 1.334	F xxxxx 1.334	+ 0.000 V/C
Traffix 7.8.0115 (c) 2007 Dowling	Assoc. Licensed	to MMA, LONG BE	ACH, CA

Thu Jul 17, 2008 10:27:49

Page 3-3

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Existing 2008 AM Peak

Intersection		Future Del/ V/ LOS Veh C	Change in
# 49 San Diego Fwy SB Ramps and San	F xxxxx 1.068	F xxxxx 1.068	+ 0.000 V/C
# 50 San Diego Fwy NB Ramps and San	D xxxxx 0.884	D xxxxx 0.884	+ 0.000 V/C
# 51 Sepulveda Boulevard and Santa	F xxxxx 1.209	F xxxxx 1.209	+ 0.000 V/C
# 52 Veteran Avenue and Santa Monic	C xxxxx 0.721	C xxxxx 0.721	+ 0.000 V/C
# 53 Westwood Boulevard and Santa M	F xxxxx 1.038	F xxxxx 1.038	+ 0.000 V/C
# 54 Mulholland Drive and Roscomare	D xxxxx 0.819	D xxxxx 0.819	+ 0.000 V/C
# 55 Roscomare Road and Stradella R	B 12.5 0.632	B 12.5 0.632	+ 0.000 V/C
# 56 Bellagio Road and Chalon Road	B 11.9 0.603	B 11.9 0.603	+ 0.000 V/C
# 57 Beverly Glen Boulevard and Mul	E xxxxx 0.957	E xxxxx 0.957	+ 0.000 V/C
# 58 Beverly Glen Boulevard and Gre	D xxxxx 0.825	D xxxxx 0.825	+ 0.000 V/C

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

Existing AM Peak Thu Jul 17, 2008 10:27:49

Page 4-1

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Existing 2008 AM Peak

Level Of Service Computation Report		E	xisting 2008 AM	I Peak		
Intersection #1 Sepulveda Boulevard and Church Ln/Ovada P1 ***********************************						
Intersection #1 Sepulveda Boulevard and Church Ln/Ovada Pl ***********************************	Circu	lar 212 Plan	ning Method (Ba	se Volume Alte	ernative)	
Cycle (sec): 100						
Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/veh): xxxxxx Optimal Cycle: 104 Level Of Service: D East Sound Level Name: Sepulveda Boulevard Church Lane/Ovada Place Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R L - T - R L - T - R L - T - R L - T - R						*****
Optimal Cycle: 104						
**************************************	Loss Time (sec):	0 (Y+R	=4.0 sec) Aver		c/veh):	
Street Name: Sepulveda Boulevard Approach: North Bound South Bound East Bound West Bound Movement: L - T - R	Optimal Cycle:	104	Leve		*******	
Approach: North Bound						
Movement:	Approach: No:	rth Bound	South Bound	East Bou	and We	
Control: Permitted Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Movement: L	- T - R	L - T - F	L - T -	- R L -	
Rights: Include						
Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						
Volume Module: > Count Date: 14 Feb 2008 << 730-830						
Volume Module: >> Count Date: 14 Feb 2008 << 730-830 Base Vol: 12 485 72 4 1321 531 84 52 26 87 144 0 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0						
Base Vol: 12 485 72 4 1321 531 84 52 26 87 144 0 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0						
Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0					26 07	144 0
Initial Bse: 12 485 72 4 1321 531 84 52 26 87 144 0 User Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0						
PHF Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0						
PHF Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	User Adj: 1.00	1.00 1.00				
Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PHF Adj: 1.00	1.00 1.00				
Reduced Vol: 12 485 72 4 1321 531 84 52 26 87 144 0 PCE Adj: 6.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00						
PCE Adj: 6.00 1.00 1.00 2.00 1.00 1.00 1.00 1.00 1	Reduced Vol: 12	485 72				
FinalVolume: 72 485 72 8 1321 531 92 52 26 87 144 0						
Saturation Flow Module: Sat/Lane: 1425 1425 1425 1425 1425 1425 1425 1425						
Saturation Flow Module: Sat/Lane: 1425 1425 1425 1425 1425 1425 1425 1425						
Sat/Lane: 1425 1425 1425 1425 1425 1425 1425 1425	l l	1		-		
Adjustment: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0			1425 1425 142	5 1425 1425	1425 1425	1425 1425
Final Sat.: 816 3459 1425 6 2030 814 1545 870 435 1425 1425 0						
Capacity Analysis Module: Vol/Sat: 0.01 0.14 0.05 0.65 0.65 0.65 0.06 0.06 0.06 0.06						
Capacity Analysis Module: Vol/Sat: 0.01 0.14 0.05 0.65 0.65 0.06 0.06 0.06 0.06 0.10 0.00 Crit Volume: 12 930 85 144 Crit Moves: **** **** ****						
Vol/Sat: 0.01 0.14 0.05 0.65 0.65 0.65 0.06 0.06 0.06 0.06				-		
Crit Volume: 12 930 85 144 Crit Moves: **** **** ****						
CIIC MOVES.	Crit Volume: 12		93	0	85	144

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Existing 2008 AM Peak

Level Of Service Computation Report
Circular 212 Planning Method (Base Volume Alternative)

CIICU.	iar ziz Piaiiii	ng metnoa	(Base Volum	e Alternative)	
******	******	*****	******	*******	******
Intersection #2 Cl	hurch Lane and	l San Dieg	o Fwy SB On/	Off Ramp	
******	*********	******	*******	******	******
Cycle (sec):	100		Critical Vol	./Cap.(X):	0.794
Loss Time (sec):	0 (Y+R=4	.0 sec)	Average Dela	v (sec/veh):	xxxxxx

Cycle (sec): Loss Time (sec) Optimal Cycle ************************************	ec): e:	00 0 (Y+R=4 90 *******	1.0 sec)	Averag Level	al Vol./Car e Delay (se Of Service:	c/veh):	xxxx	C
Street Name: Approach: Movement:	L - T	- R	L - T	- R	San Diego East Bo L - T	- R	L - T	- R
Control: Rights: Min. Green: Lanes:	Permi Igno 0 0 0 1 1	tted re 0 0 2	Permit Inclu 0 0 1	ted de de 1	Split Ph Inclu 0 0 0 0 0	ase '' de 0	Split Ph	ase ' ide 0
Volume Modul Base Vol: Growth Adj: Initial Bse: User Adj: PHF Adj: PHF Volume: Reduct Vol: Reduced Vol: PCE Adj: MLF Adj: FinalVolume:	e: >> Coun 0 143 1.00 1.00 0 143 1.00 1.00 1.00 1.00 0 143 4.00 1.00 0 143	t Date: 1 317 1.00 1 317 0.00 1 0.00 1 0 0 0 0 0 0 0 0 0 0 0 0 0	4 Feb 200 223 656 .000 1.00 223 656 .000 1.00 .000 1.00 223 656 0 0 223 656 .000 1.00 .000 1.00	08 << 7 0 1.00 0 1.00 1.00 0 0 0 1.00 0 1.00 0 0 0	0 2 1.00 1.00 0 2 1.00 1.00 1.00 1.00	1 1.00 1 1.00 1.00 1.00 1 1.00	1435 1 1.00 1.00 1435 1 1.00 1.00 1.00 1.00 1435 1 0 0 1435 1 1.00 1.00 1.10 1.00	22 1.00 22 1.00 1.00 22 0 22 1.00 1.00
Saturation F Sat/Lane:	low Module 1425 1425 1.00 1.00 0.00 2.00 0 2850 	: 1425 1 1.00 1 2.00 1 2850 1 -	425 1425 1.00 1.00 1.00 2.00 1.425 2850	1425 1.00 0.00 0	1425 1425 1.00 1.00 0.00 0.67 0 950	1425 1.00 0.33 475 	1425 1425 1.00 1.00 1.97 0.01 2809 2 0.56 0.56 801 ****	1425 1.00 0.02 39

Existing AM	Реак		TH	u Jui	1/, 2	1008 10	:27:50)			Page	6-1
		UCLA	E	Lo: xisti	s Ange	l LRDP eles, C	A eak		ıdy			
********	Circu	lar 21	evel 0 2 Plan	f Ser	vice C	Computa l (Base	tion F Volur	Report	: :ernati	ve)		
Intersection								*****	*****	****	****	*****
Cycle (sec): Loss Time (sec) Optimal Cycle	ec): e: *****	10 17 *****	0 0 (Y+R 2 *****	=4.0	sec)	Critic Averag Level	al Vol e Dela Of Ser	L./Car ay (se cvice:	o.(X): ec/veh) : *****	:	0.8 xxx	892 xxx D *****
Street Name: Approach: Movement:	No	rth_Bo	und	Son	ıth Bo	ound	Ea	ast Bo	unset B ound - R	We	est B	ound - R
Movement:	Sp:	lit Ph Inclu 0	ase de 0 1 0	0 1	lit Ph Ovl 0 1 0	0 0 2	0 2 (rotect Inclu 0	ed ide 0 1 0	0 1 (Permit Ovl 0	0 0 1
Volume Module Base Vol: Growth Adj: Initial Bse: User Adj: PHF Adj: PHF Volume: Reduct Vol: Reduced Vol: PCE Adj: MLF Adj: FinalVolume:	51 1.00 51 1.00 1.00 51 0 51 1.00 1.00	Count 7 1.00 7 1.00 1.00 7 0 7 1.00 1.00 7	Date: 102 1.00 102 1.00 102 0 102 1.00 1.00 1.00 1.00 1.00	19 F6 652 1.00 652 1.00 652 0 652 1.00 1.10 717	158 1.00 158 1.00 158 1.00 158 0 158 1.00 1.00 1.00	08 << 8 962 1.00 962 1.00 1.00 962 0 962 1.00 1.10 1.10 1058	00-900 99 1.00 99 1.00 1.00 99 0 99 1.00 1.10	1713 1.00 1713 1.00 1713 1.00 1713 0 1713 1.00 1.00 1713	111 1.00 111 1.00 1.00 111 0 111 1.00 1.00	6 1.00 6 1.00 1.00 6 0 6 1.00 1.00	1170 1.00 1170 1.00 1.00 1170 0 1170 1.00 1.0	432 1.00 432 1.00 1.00 432 0 432 1.00 1.00 432
Saturation F: Sat/Lane: Adjustment: Lanes: Final Sat.:	low Mo 1425 1.00 1.00 1425	1425 1.00 1.00 1425	1425 1.00 1.00 1425	1425 1.00 1.64 2335	1425 1.00 0.36 515	1425 1.00 2.00 2850	1425 1.00 2.00 2850	1425 1.00 3.76 5353	1425 1.00 0.24 347	1425 1.00 1.00 1425	1425 1.00 2.00 2850	1425 1.00 1.00 1425
Capacity Anal Vol/Sat: Crit Volume: Crit Moves:	lysis 0.04	Modul 0.00	e: 0.07 102 ****	0.31	0.31	0.37 529 ****	0.04 54 ***	0.32	0.32	0.00	0.41 585 ****	0.30

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Existing 2008 AM Peak

Level Of Service Computation Report
Circular 212 Planning Method (Base Volume Alternative)

CIICUIUI	ZIZ LIGHTING MCCHO	a (babe volume Alecinacive)	
******	******	*********	*******
		Ramps and Sunset Boulevard	*****
Cycle (sec):	100	Critical Vol./Cap.(X):	0.967
Loss Time (sec):	0 (Y+R=4.0 sec)	Average Delay (sec/veh):	XXXXXX
0 1 1 2 0 1 1			_

Loss Time (sec):	0 (Y+R	=4.0 sec)	Averag	e Delay (se	ec/veh):	XXXX	XXX
Optimal Cycle:	180		Level	Of Service			E
*******	******	******	*****	*******	*****	******	*****
Street Name: San Approach: Non	Diego Fwy N	B On/Off Ra	mps	Sı	ınset Boı	ılevard	,
Approach: Noi	rtn Bound	South Bo	ouna	East Bo	ouna	west Bo	ound
Movement: L -							
Control: Spl	lit Dhaga	Cmlit Di		Down i	-	Downit.	
Dighta:	Include	Spilt Pi	iase	Permit	Lea	Tanor	. cea
Rights: Min. Green: 0	n n	0 0	n n	0 0	0	0 0	۰
Lanes: 1 (
Volume Module: >>							1
Base Vol: 642	0 521	0 0	0	0 1473	949	0 976	0
Growth Adj: 1.00	1.00 1.00	1.00 1.00	1.00	1.00 1.00	1.00	1.00 1.00	1.00
Initial Bse: 642				0 1473		0 976	0
User Adj: 1.00	1.00 1.00	1.00 1.00	1.00	1.00 1.00	1.00	1.00 1.00	0.00
PHF Adj: 1.00	1.00 1.00	1.00 1.00	1.00	1.00 1.00	1.00	1.00 1.00	0.00
PHF Volume: 642		0 0		0 1473			0
Reduct Vol: 0	0 0	0 0	0	0 0	0	0 0	0
Reduced Vol: 642							
PCE Adj: 1.00						1.00 1.00	
MLF Adj: 1.00		1.00 1.00		1.00 1.00		1.00 1.00	
FinalVolume: 642						0 976	
					-		
Saturation Flow Mo							
Sat/Lane: 1425						1425 1425	
Adjustment: 1.00		1.00 1.00		1.00 1.00		1.00 1.00	
Lanes: 1.00				0.00 2.00		0.00 3.00 0 4275	
Final Sat.: 1425	0 1425	0 0	U	U 2850	2850		
Capacity Analysis		1		1			
Vol/Sat: 0.45		0 00 0 00	0 00	0 00 0 52	0 27 /	0 00 0 22	0.00
VUI/Dat. 0.45	0.00 0.37	0.00 0.00	0.00	0.00 0.52	0.37	J.00 U.23	0.00

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

Crit Volume: 642 0 737 0
Crit Moves: **** ****

	UC		and Amended Los Ange xisting 200	eles, C		ıdy		
*******		212 Plan	ning Method	i (Base	tion Report	ernativ		*****
Intersection								
Cycle (sec): Loss Time (sec) Optimal Cycle	ec):	100 0 (Y+R 180	=4.0 sec)	Critic Averag Level	al Vol./Car e Delay (se Of Service:	o.(X): ec/veh):	0.9 xxxx	18 EXX E
Street Name: Approach: Movement:	L - T	- R	South Bo L - T	- R	Su East Bo L - T	ound - R	L - T	- R
Control: Rights: Min. Green: Lanes:	Split Ov	Phase	Split Ph Inclu 0 0	nase	Permit Inclu	ted ide 0	Prot+Per Inclu 0 0 1 0 2	mit ' de 0
Volume Module Base Vol: Growth Adj: Initial Bse: User Adj: PHF Adj: PHF Volume: Reduct Vol: Reduced Vol: PCE Adj: MLF Adj: FinalVolume:	57 1.00 1.0 57 1.00 1.0 1.00 1.0 57 0 57 1.00 1.0 57	0 347 0 1.00 0 347 0 1.00 0 1.00 0 347 0 0 347 0 1.00	19 Feb 200 0 0 1.00 1.00 0 0 1.00 1.00 0 0 0 0 0 0 0 0 0 0 1.00 1.00 0 0 1.00 1.00 1.00 1.00	08 << 7 0 0 1.00 0 1.00 0 0 0 0 0 0 0 0 0 0 0 0	45-845 0 1726 1.00 1.00 0 1726 1.00 1.00 1.00 1.00 0 1726 0 0 0 0 1726 1.00 1.00 1.00 1.00 1.00 1.00	185 1.00 1.00 185 0 185 1.00 1.00	295 926 1.00 1.00 295 926 1.00 1.00 1.00 1.00 295 926 0 0 295 926 1.00 1.00 295 926	0 1.00 0 1.00 1.00 0 0 0 1.00
Saturation F Sat/Lane: Adjustment: Lanes: Final Sat.:	low Modul 1425 142 1.00 1.0 1.00 0.0 1425	e: 5 1425 0 1.00 0 1.00 0 1425	1425 1425 1.00 1.00 0.00 0.00 0 0	1425 1.00 0.00	1425 1425 1.00 1.00 0.00 1.81 0 2574	1425 1.00	1425 1425 1.00 1.00 1.00 2.00 1425 2850	1425 1.00 0.00
Capacity Anal Vol/Sat: Crit Volume: Crit Moves:	lysis Mod 0.04 0.0 57 ****	ule:	0.00 0.00	0.00	0.00 0.67 956 ****	0.67	0.21 0.32 295 ****	0.00

Saturation Flow Module:

Capacity Analysis Module:

Sunset Boulevard

xxxxxx

L - T - R

UCLA NHIP and Amended LRDP Traffic Study

Intersection #7 Westwood Bouevard and Sunset Boulevard

Street Name: Westwood Boulevard

Volume Module: >> Count Date: 14 Feb 2008 << 730-830

Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/veh):
Optimal Cycle: 52 Level Of Service:

Los Angeles, CA

*********************** Cycle (sec): 100 Critical Vol./Cap.(X): 0.641

Control: Split Phase Split Phase Permitted Protected Rights: Include Include Control C
 Rights:
 Include
 Include
 Ovl
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 Lanes: 2 0 0 0 1 0 0 0 0 0 0 2 0 1 1 0 2 0 0

Base Vol: 26 0 21 0 0 0 1434 376 175 1016 0 Initial Bse: 26 0 21 0 0 0 1434 376 175 1016 0 PHF Volume: 26 0 21 0 0 0 1434 376 175 1016 0 FinalVolume: 29 0 21 0 0 0 1434 376 175 1016 0 ------|-----||-------|

Final Sat.: 2850 0 1425 0 0 0 0 2850 1425 1425 2850 0 ------|-----||-------|

Vol/Sat: 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.50 0.26 0.12 0.36 0.00 Crit Volume: 21 0 717 175 Crit Moves: **** ****

Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R

Existing 2008 AM Peak Level Of Service Computation Report Circular 212 Planning Method (Base Volume Alternative) *******************

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Existing 2008 AM Peak

Level Of Service Computation Report Circular 212 Planning Method (Base Volume Alternative)												

Intersection												
*******	****	****	*****	****	*****	*****	****	****	*****	****	****	*****
Cycle (sec):		10	0			Critic	al Vo	l./Cap).(X):		0.9	908
Loss Time (se	ec):		0 (Y+R	=4.0 8	sec)	Averag	re Del	ay (se	ec/veh)	:	XXXX	xxx
Optimal Cycle): 	18	0			Level	Of Se	rvice	:			E
Street Name: Approach:	Nor	th Bo	und	Sou	r uth Bo	ound	E	ast Bo	ound	W	est Bo	ound
Movement:	L -	· T	- R	L ·	- T	- R	L	- T	- R	L	- T	- R
Control:	Spl	it Ph	ase	Sp	lit Ph	nase	Pr	ot+Pe	rmit		Permit	ted
Rights:		Inclu	de 0		Incl	ıde		Incl	ıde		Incl	ıde
Min. Green: Lanes:						0 1	1 0	0 1	0	1 0	0 1	1 0
Lanes.												
Volume Module									1	ı		1
Base Vol:				172				1680	226	17	923	96
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00			1.00	1.00
Initial Bse:		5		172	50	254		1680	226	17		96
User Adj:					1.00	1.00		1.00	1.00		1.00	
PHF Adj: PHF Volume:	1.00	1.00	1.00	1.00	1.00	1.00 254		1.00	1.00	1.00	1.00	1.00
Reduct Vol:				1/2		254	1/8		226	17		96
Reduced Vol:			8			254	-	1680	-		-	-
PCE Adj:					1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MLF Adj:	1.10	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
FinalVolume:		5		172		254		1680	226	. 17		96
Saturation Fl Sat/Lane:				1275	1375	1375	1275	1375	1375	1275	1375	1375
Adjustment:			1.00		1.00	1.00		1.00			1.00	
	1.80		1.00	0.77		1.00		1.76	0.24		1.81	
Final Sat.:	2476	274	1375	1065	310	1375	1375	2424	326		2491	259
Capacity Anal												
Vol/Sat:		0.02	0.01	0.16	0.16		0.13	0.69			0.37	0.37
Crit Volume: Crit Moves:	25 ****					254			953 ***	17		
crit moves:												

Crit Volume: 49

Crit Moves: ****

Level Of Service Computation Report Circular 212 Planning Method (Base Volume Alternative)

Approach: North Bound Movement: L - T - R L -	Street Name:			Stone					S1	ınset B				
Control: Split Phase Split Phase Protected Protected Rights: Include Ovl Ignore Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0														
Control: Split Phase Rights: Include Ovl Ignore Include Include Nin. Green: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0														
Rights: Include Ov1 Ignore Include Min. Green: 0														
Lanes: 1 0 1! 0 0 0 0 0 0 1 1 0 2 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Control:	Sp	lit Ph	ase	Sp.	Lit Pr	ase	Pi	rotec	ted	Pı	rotect	ed	
Lanes: 1 0 1! 0 0 0 0 0 0 1 1 0 2 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1	Rights:		Inclu	ıde		Ovl			Igno:	re		Inclu	ıde	
Volume Module: >> Count Date: 26 Feb 2008 << 745-845 Base Vol: 49 1 43 0 0 60 57 1270 240 89 1153 22 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0														
Volume Module: >> Count Date: 26 Feb 2008 << 745-845 Base Vol: 49 1 43 0 0 60 57 1270 240 89 1153 22 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0														
Base Vol: 49 1 43 0 0 60 57 1270 240 89 1153 22 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0														
Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0														
Initial Bse: 49 1 43 0 0 60 57 1270 240 89 1153 22 User Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0						-								
User Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0							1.00							
PHF Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0					0	0	60	57	1270	240	89	1153	22	
PHF Volume: 49 1 43 0 0 60 57 1270 0 89 1153 22 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00	
Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PHF Adj:	1.00	1.00				1.00	1.00	1.00	0.00	1.00	1.00	1.00	
Reduced Vol: 49 1 43 0 0 60 57 1270 0 89 1153 22 PCE Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	PHF Volume:	49	1	43	0	0	60	57	1270	0	89	1153	22	
PCE Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Reduct Vol:	0	0	0	0	0	0					0	0	
MLF Adj: 1.10 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Reduced Vol:	49	1	43	0	0	60	57	1270	0	89	1153	22	
FinalVolume: 54 1 43 0 0 60 57 1270 0 89 1153 22	PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00	
Saturation Flow Module: Sat/Lane: 1375 1375 1375 1375 1375 1375 1375 1375	MLF Adj:	1.10	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00	
Saturation Flow Module: Sat/Lane: 1375 1375 1375 1375 1375 1375 1375 1375	FinalVolume:	54	1	43	0	0	60	57	1270	0	89	1153	22	
Sat/Lane: 1375 1375 1375 1375 1375 1375 1375 1375														
Adjustment: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Saturation F	low M	odule:											
Lanes: 1.10 0.02 0.88 0.00 0.00 1.00 1.00 2.00 1.00 1.00 1.96 0.04 Final Sat.: 1514 28 1208 0 0 1375 1375 2750 1375 1375 2699 51	Sat/Lane:	1375	1375	1375	1375	1375	1375	1375	1375	1375	1375	1375	1375	
Final Sat.: 1514 28 1208 0 0 1375 1375 2750 1375 1375 2699 51	Adjustment:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
	Lanes:	1.10	0.02	0.88	0.00	0.00	1.00	1.00	2.00	1.00	1.00	1.96	0.04	
Capacity Analysis Module:	Final Sat.:	1514	28	1208	0	0	1375	1375	2750	1375	1375	2699	51	
	Capacity Ana	İysis	Modul	.e: '										
					0.00	0.00	0.04	0.04	0.46	0.00	0.06	0.43	0.43	

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

		UCLA		Los	s Ange	l LRDP eles, C	A	ic Stu	ıdy			
********		lar 21	2 Plan	ning N	Method	Computa l (Base	Volur	ne Alt	ernati		*****	*****
Intersection												
Cycle (sec): Loss Time (sec) Optimal Cycle	ec):	10 18	0 0 (Y+R 0	=4.0 s	sec)	Critic Averag Level	al Vol e Dela Of Sei	l./Cap ay (se rvice:	o.(X): ec/veh)	:	0.9 xxxx	959 XXX E
Street Name: Approach: Movement:	Hilga No: L	ard Av rth Bo - T	enue/C und - R	opa De Sou L -	e Oro uth Bo		Ea	Su ast Bo - T	inset B ound - R	ouleva We L -	ard est Bo - T	ound - R
Control: Rights: Min. Green: Lanes:	Sp: 0 1	lit Ph Ovl 0	ase 0	. Sp: 0 0 0	lit Ph Inclu 0 1!	ase	0 1 (rotect Inclu 0	ed ide 0	P1 0	rotect Inclu 0	ed ide 0
Volume Module Base Vol: Growth Adj: Initial Bse: User Adj: PHF Adj: PHF Volume: Reduct Vol: Reduced Vol: PCE Adj: MLF Adj: FinalVolume:	142 1.00 142 1.00 1.00 1.00 142 0 142 1.00 1.10 1.56	Count 38 1.00 38 1.00 1.00 38 0 38 1.00 1.00 38	Date: 107 1.00 107 1.00 1.00 107 0 107 1.00 1.10	19 Fe 28 1.00 28 1.00 28 0 28 1.00 28 1.00 28 1.00 28 28 1.00 28	200 73 1.00 73 1.00 1.00 73 0 73 1.00 1.00 73		45-84! 18 1.00 18 1.00 1.00 18 0 18 1.00 1.00		261 1.00 261 1.00 1.00 261 0 261 1.00 1.00 261	1.00 452 1.00 1.00 452 0 452 1.00 1.00	1067 1.00 1067 1.00 1.00 1067 1.00 1.00 1.00	21 1.00 21 1.00 1.00 21 0 21 1.00 1.00
Saturation Fl Sat/Lane: Adjustment: Lanes: Final Sat.:	1375 1.00 1.50 2066	1375 1.00 0.37 503	1375 1.00 1.13 1557	1.00 0.24 329	0.62 858	1375 1.00 0.14 188	1.00 1.00 1375	1375 1.00 1.60 2194	1375 1.00 0.40 556	1.00	1375 1.00 1.96 2697	1375 1.00 0.04 53
Capacity Anal Vol/Sat: Crit Volume: Crit Moves:	lysis 0.08 104 ****	Modul 0.08	e: 0.08	1	0.09 117 ****	'	1	0.47 646 ****	0.47	452 ****	0.40	0.40

Existing AM Peak

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Existing 2008 AM Peak

Level Of Service Computation Report

*******		lar 2		ning N	Metho	d (Base	. Volu	me Al	ternati			
Intersection	#10 1	Bever	lv Glen	Boule	evard	and Su	inset :	Boule	vard			
Cycle (sec): Loss Time (s Optimal Cycl	ec):	10	00 0 (Y+R 30	=4.0 s	sec)	Critic Averag Level	al Vo ge Del Of Se	l./Ca ay (s rvice	p.(X): ec/veh) :	:	0. xxx	924 xxx E
Street Name: Approach: Movement:	No:	rth Bo	ound - R	Sou L -	ith B	ound – R	E. L	ast B - T	unset B ound - R 	W L	est B	- R
Control: Rights:	Sp.		nase '	Sp]	lit P	hase ude			tted '		ot+Pe: Incl	rmit
Min. Green: Lanes:	1		0 1	0 0		0 0	1		0 1 0 	1	0 1	1 0
Volume Modul Base Vol: Growth Adj: Initial Bse: User Adj: PHF Adj: PHF Volume: Reduct Vol: Reduct Vol: PCE Adj: MLF Adj: FinalVolume: Saturation F Sat/Lane:	87 1.00 87 1.00 1.00 87 0 87 1.00 1.00 87	Count 92 1.00 92 1.00 1.00 92 0 92 1.00 1.00 92	Date: 389 1.00 389 0.00 0.00 0 0 0 0.00 0.00 0.00	19 Fe 50 1.00 50 1.00 50 50 1.00 1.00 50 1.00 50 50 50	20 76 1.00 76 1.00 1.00 76 0 76 1.00 1.00 76	08 << 7 9 1.00 9 1.00 1.00 9 0 9 1.00 1.00 9	745-84 15 1.00 15 1.00 1.00 1.00 15 1.00 1.00	5 1022 1.00 1022 1.00 1.00 1022 0 1022 1.00 1.00	106 1.00 106 1.00 1.00 106 0 1.00 1.00	479 1.00 479 1.00 1.00 479 0 479 1.00 479 	1402 1.00 1.00 1402	1.00 72 1.00 1.00 72 0 72 1.00 1.00
Adjustment: Lanes: Final Sat.:	1.00 1.00 1375	1.00 1.00 1375	1.00 1.00 1375	1.00 0.37 509	1.00 0.56 774	1.00 0.07 92	1.00 1.00 1375	1.00 1.81 2492	1.00 0.19	1.00 1.00 1375	1.00 1.90 2616	1.00
Capacity Ana Vol/Sat: Crit Volume: Crit Moves:	lysis 0.06	Modu 0.07 92 ****	le: 0.00	0.10	0.10 135 ****		0.01	0.41 564 ****	0.41	0.35 479 ****	0.54	0.54

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA Traffix 7

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Existing 2008 AM Peak												
*************** Intersection	****** #11 Be	r 212 ***** verly	Plan ***** Glen	ning N ***** Boule	Method ***** evard	and Su	Volum ***** nset 1	me Ali ***** Boule	ternati ****** vard (E	***** ast I	/S)	
**************************************	ec):	100 0 180	(Y+R:	=4.0 s	sec)	Critic Averag Level	al Voi e Dela Of Se:	l./Cap ay (se rvice	p.(X): ec/veh) :	:	1.	183 xxx F
Street Name: Approach: Movement:	Nort L -	Beverl h Bou	y Glen nd R	n Boul Sou L	levaro uth Bo - T	d ound - R	Sur E	nset l ast Bo - T	Bouleva ound - R	rd (Ea	ast I est B - T	/S) ound - R
Control: Rights: Min. Green: Lanes:	Spli 0 0 0	t Pha include 0 0 0	se o	Sp:	lit Ph Inclu 0 1 0	nase ide 0	0 1	ot+Per Incl 0 0 2	rmit de ude 0 0 0	0 0	Permi Igno: 0 0 2	tted re 0 0 1
Volume Module Base Vol: Growth Adj: Initial Bse: User Adj: PHF Adj: PHF Volume: Reduct Vol: Reduced Vol: PCE Adj: MLF Adj: FinalVolume: Saturation FI Sat/Lane: Adjustment:	0 1.00 1 0 1 1.00 1 1 0 0 0 0 0 0 1 1.00 1 1 1.00 1 1 1.00 1 1 1.00 1 1 1.00 1 1 1.00 1 1 1 1	000 000 000 000 0 000 000	Date: 0 1.00 0 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0	19 Fe 148 1.00 148 1.00 148 1.00 148 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	eb 200 0 1.00 0 1.00 1.00 0 0 0 1.00 1.00		45-84 313 1.00 313 1.00 1.00 313 1.00 1.00 313 1.00 1.00	1127 1.00 1127 1.00 1.00 1127 0 1127 1.00 1.00	0 1.00 0 1.00 1.00 0 0 0 1.00 1.00 0	0 1.00 0 1.00 1.00 0 0 1.00 1.00 1.00	1123 1.00 1123 1.00 1.00	33 1.00 33 0.00 0.00 0 0 0.00 0.00 0
Lanes: Final Sat.:	0.00 0	00.0	0.00	0.31 440	0.69 985	1.00 1425	1.00 1425	2.00 2850	0.00	0.00	2.00	1.00
Capacity Anal	lysis M 0.00 C	odule	: '			0.57 811 ****		0.40	'	0.00	0.39 562 ****	0.00

Existing AM Peak

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Existing 2008 AM Peak

Level Of Service Computation Report

Circular 212 Planning Method (Base Vo	olume Alternative)
************	*********
Intersection #12 Sepulveda Boulevard and San Dies	go Fwy NB Off-Ramp
***********	*********

Cycle (sec): 100 Critical Vol./Cap.(X): 0.568
Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/yeh): xxxxxx

Loss Time (se	ec): e:	4	0 (Y+R 3	=4.0 :	sec)	Averag Level	e Dela Of Sei	ay (se rvice	ec/veh) :	:	XXXX	exx A
******	****	*****	*****	****	****	*****	****	****	*****	****	****	*****
Street Name:		Sepu	lveda	Boule	vard		Sa	an Die	ego Fwy	NB Of	Ef-Rar	an
Approach:	No	rth Bo	und	Son	uth B	ound	Ea	ast Bo	ound	We	est Bo	ound
Movement:	L	- T	- R	L	- т	- R	L -	- Т	- R	L -	- T	- R
Approach: Movement:												
Control: Rights: Min. Green: Lanes:		Permit	ted '		Permi	tted	Sp.	lit Pl	nase '	' Sp	lit Ph	nase '
Rights:		Inclu	de		Incl	ude		Incl	ıde		Incl	ude
Min. Green:	0	0	0	0	0	0	0	0	0	0	0	0
Lanes:	0	0 2	0 0	0	0 2	0 0	1 (1!	0 0	0 (0 0	0 0
Volume Module	e: >>	Count	Date:	13 F	eb 20	08 << 8	00-900)	'	1		'
Base Vol:												
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:												
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj: PHF Volume:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Volume:	0	381	0	0	1307	0	276	0	9	0	0	0
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:	0	381	0	0	1307	0	276	0	9	0	0	0
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.10	1.00	1.00	1.00	1.00	1.00
FinalVolume:	0	381	0	0	1307	0	304	0	9	0	0	0
Saturation F	low M	odule:										
Sat/Lane:	1425	1425	1425	1425	1425	1425	1425	1425	1425	1425	1425	1425
Adjustment:												
Lanes:	0.00	2.00	0.00	0.00	2.00	0.00	1.94	0.00	0.06	0.00	0.00	0.00
Final Sat.:	0	2850	0	0	2850	0	2768	0	82	0	0	0
Capacity Ana	lysis	Modul	e:									
Vol/Sat:	0 00	0 13	0 00	0 00	0 46	0 00	0 11	0 00	0 11	0 00	0 00	0 00

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

Capacity Madysis module.

Vol/Sat: 0.00 0.13 0.00 0.00 0.46 0.00 0.11 0.00 0.11 0.00 0.00
Crit Volume: 0 654 156 0
Crit Moves: **** ****

		UCLA		Los	s Ange	l LRDP eles, C	A	c Stu	ıdy			
********	Circu	lar 21	2 Plan	ning N	1ethod	Computa d (Base	Volum	e Alt	ernati	ve)	****	*****
Intersection												
Cycle (sec): Loss Time (sec) Optimal Cycle	ec):	10	0 0 (Y+R 5	=4.0 s	sec)	Critic Averag Level	al Vol e Dela Of Ser	./Cap y (se vice:	o.(X): ec/veh)	:	0.°	782 cxx C
Street Name: Approach: Movement:	L ·	rth Bo - T		Sou L -	ith Bo - T	- R	L -	st Bo	- R	We L -	est Bo - T	- R
Control: Rights: Min. Green: Lanes:	Pro 0	ot+Per Inclu 0) 2	de 0 0 1	0	Permit Inclu 0		0 0 0 0	ermit Inclu 0 1!	ted de 0 0 0	0	Permit Inclu 0	ted
Volume Module Base Vol: Growth Adj: Initial Bse: User Adj: PHF Adj: PHF Volume: Reduct Vol: Reduced Vol: PCE Adj: MLF Adj: FinalVolume:	74 1.00 74 1.00 1.00 74 0 74 1.00 1.00	Count 312 1.00 1.00 312 0 312 1.00 1.00 312 1.00 1.00 312 1.00 1.00 312	Date: 273 1.00 273 1.00 1.00 273 0 273 1.00 1.00 273	13 Fe 328 1.00 328 1.00 328 0 328 1.00 328 1.00 328 328 1.00 328	1103 1.00 1103 1.00 1.00 1103 0 1103 1.00 1.00	1.00 22 1.00 1.00 22 22 0 22 1.00 1.00 22	00-900 8 1.00 8 1.00 1.00 8 0 8 1.00 1.00	272 1.00 272 1.00 1.00 272 0 272 1.00	100 1.00 100 1.00 1.00 1.00 100 1.00 1.	98 1.00 1.00 98 0 98 2.00	70 1.00 70 1.00 1.00 70 0 70 1.00 1.00	71 1.00 71 1.00 1.00 71 0 71 1.00 1.00
Saturation F: Sat/Lane: Adjustment: Lanes: Final Sat.:	low Mo 1425 1.00 1.00 1425	odule: 1425 1.00 2.00 2850	1425 1.00 1.00 1425	1425 1.00 1.00 1425	1425 1.00 1.96 2794	1425 1.00 0.04 56	1425 1.00 0.02 30	1425 1.00	1425 1.00 0.26 375	1.00	1425 1.00 0.58 825	1425 1.00 0.42 600
Capacity Anal Vol/Sat: Crit Volume: Crit Moves:			e: 0.19	0.23	0.39	0.39 563 ****	0.27	0.27 380 ****	0.27	0.07 98 ****	0.08	0.12

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Existing 2008 AM Peak

Level Of Service Computation Report 2000 HCM Unsignalized Method (Base Volume Alternative)

Average Delay				0.8					Of Ser			
************* Street Name: Approach: Movement:	Nort L -	Le h Bo T	vering und - R	Avenu Sou L -	ie ith Bo - T	ound - R	Eá	ast Bo	Montana	Avenu We L -	ie est Bo - T	ound - R
Control: Rights: Lanes:	Sto	op Si Inclu 1!	gn ' de 0 0	0 (op Si Incli	ign ide 0 0	Uno	contro Incli	olled	Und	contro Inclu	olled ude 0 0
Volume Module Base Vol: Growth Adj: Initial Bse: User Adj: PHF Adj: PHF Volume: Reduct Vol: FinalVolume:	1.00 1 37 1.00 1 37 1.00 1 1.00 1 37 0	Count 0 1.00 0 1.00 1.00 0 0	Date: 3 1.00 3 1.00 1.00 3 0	7 Feb 0 1.00 0 1.00 1.00 0 0	2008 0 1.00 0 1.00 1.00 0 0	3 << 80 0 1.00 0 1.00 1.00 0	00-900 0 1.00 0 1.00 1.00 0 0	761 1.00 761 1.00 1.00 761 0	339 1.00 339 1.00 1.00 339 0	6 1.00 6 1.00	155 1.00 155 1.00 1.00 155 0	0 1.00 0 1.00 1.00
Critical Gap Critical Gp: FollowUpTim: Capacity Modu	Module 6.4 3.5	6.5 4.0	6.2	xxxxx	xxxx xxxx	xxxxx	xxxxx	xxxx	xxxxx	2.2	xxxx	xxxxx
Cnflict Vol: Potent Cap.: Move Cap.: Volume/Cap:	1098 1 238 236 0.16 0	215 213 0.00	327 327 0.01	XXXX XXXX	XXXX XXXX	XXXXX XXXXX	xxxx xxxx	XXXX XXXX	xxxxx xxxxx xxxxx	642 642 0.01	xxxx xxxx	xxxxx xxxxx xxxxx
Level Of Serv 2Way95thQ: Control Del: LOS by Move: Movement:	rice Mc xxxx x xxxx x	odule xxxx xxxx *	: xxxxx xxxxx *	xxxx xxxxx *	xxxx xxxx *	xxxxx	xxxx xxxxx *	xxxx xxxx *	xxxxx xxxxx *	0.0 10.7 B	xxxx	xxxxx *
Shared Cap: SharedQueue: Shrd ConDel: Shared LOS: ApproachDel: ApproachLOS:	cxxxx cxxxx 2 *	0.6 22.9 C	xxxxx xxxxx *	xxxxx xxxxx	xxxx xxxx *	xxxxx *	xxxxx xxxxx	xxxx xxxx *	xxxxx	0.0 10.7 B	xxxx xxxx	xxxxx xxxxx *

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

	Los Angeles, CA Existing 2008 AM Peak	
Level O	Of Service Computation Report	
Circular 212 Plan	nning Method (Base Volume Alternative)	
********	**************	**
	nue and Montana Avenue/Galey Avenue	**
Cycle (sec): 100	Critical Vol./Cap.(X): 0.841	
	R=4.0 sec) Average Delay (sec/veh): xxxxxx	
Optimal Cycle: 90		
	************	**
Street Name: Veteran	n Avenue Montana Avenue/Galey Avenue	
Approach: North Bound	South Bound East Bound West Bound	
Movement: L - T - R	L-T-R L-T-R L-T-R	
		-
Control: Permitted	Permitted Permitted Permitted	
Rights: Include	Include Include Include	
Min. Green: 0 0 0		0
Lanes: 0 0 1! 0 0	0 0 1! 0 0 0 0 1! 0 0 0 0 1! 0 0	
		-
Volume Module: >> Count Date:		
Base Vol: 33 219 21	168 319 19 114 554 43 11 78 4	8
Growth Adj: 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	0
Initial Bse: 33 219 21	168 319 19 114 554 43 11 78 4	8
User Adj: 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	0
PHF Adj: 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	0
PHF Volume: 33 219 21	168 319 19 114 554 43 11 78 4	8
Reduct Vol: 0 0 0	0 0 0 0 0 0 0	0
Reduced Vol: 33 219 21	168 319 19 114 554 43 11 78 4	8
PCE Adj: 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	0
MLF Adj: 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	0
FinalVolume: 33 219 21	168 319 19 114 554 43 11 78 4	8
		-
Saturation Flow Module:		
Sat/Lane: 1500 1500 1500	1500 1500 1500 1500 1500 1500 1500 1500	0
Adjustment: 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	0
Lanes: 0.12 0.80 0.08	0.33 0.63 0.04 0.16 0.78 0.06 0.08 0.57 0.3	5
Final Sat.: 181 1203 115		6
		-
Capacity Analysis Module:		
Vol/Sat: 0.18 0.18 0.18		9
Crit Volume: 33	506 711 11	
Crit Moves: ****	**** **** ***	

UCLA NHIP and Amended LRDP Traffic Study

Existing AM Peak

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Existing 2008 AM Peak

Level Of Service Computation Report

Circular 212 Planning Method (Base Volume Alternative) ******************* Intersection #16 Galey Avenue and Strathmore Place ******************* Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/veh): Optimal Cycle: 60 Level Of Service: xxxxxx Street Name: Galey Avenue Strathmore Place Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R Control: Permitted Prot+Permit Permitted Permitted Rights: Include Include Include Ovl
 Rights:
 Include
 Include
 Include
 Ovl

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 Volume Module: >> Count Date: 19 Feb 2008 << 745-845 Base Vol: 5 79 280 474 265 3 2 118 14 95 18 47 Initial Bse: 5 79 280 474 265 3 2 118 14 95 18 47 PHF Volume: 5 79 280 474 265 3 2 118 14 95 18 47 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 5 79 280 474 265 3 2 118 14 95 18 0 47 FinalVolume: 5 79 280 474 265 3 2 118 14 95 18 47 -----| Saturation Flow Module:

Lanes: 1.00 1.00 1.00 1.00 1.98 0.02 0.01 0.89 0.10 1.00 1.00 1.00 Final Sat.: 1425 1425 1425 1425 2818 32 21 1255 149 1425 1425 1425 -----||-----||-----||------|

Vol/Sat: 0.00 0.06 0.20 0.33 0.09 0.09 0.09 0.09 0.09 0.07 0.01 0.03

Crit Volume: 280 474 134 95 Crit Moves: **** **** ****

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

Los Angeles, C	UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Existing 2008 AM Peak						
Level Of Service Computa Circular 212 Planning Method (Base	Volume Alternative	2)					
Intersection #17 Veteran Avenue and Levering A	venue :*******	******					
Cycle (sec): 100 Critic Loss Time (sec): 0 (Y+R=4.0 sec) Averag Optimal Cycle: 32 Level	re Delav (sec/veh):	xxxxxx					
Street Name: Veteran Avenue	Levering A	Avenue					
Approach: North Bound South Bound	East Bound	West Bound					
Movement: I T - R I T - R	T T - R	T T - R					
Control: Permitted Permitted	-						
Control: Permitted Permitted	Permitted	Permitted					
Rights: Include Include Min. Green: 0 0 0 0 0 0	Include	Include					
Min. Green: 0 0 0 0 0 0 0 0 Lanes: 0 0 1! 0 0 0 1! 0 0	0 0 0	0 0 0					
Lanes: U U I: U U U U I: U U	0 0 1:0 0	0 0 1: 0 0					
Volume Module: >> Count Date: 13 Feb 2008 << 8	100-900						
Base Vol: 19 233 28 21 387 3	2 115 203	66 23 29					
Growth Adj: 1.00 1.00 1.00 1.00 1.00							
	2 115 203						
User Adj: 1.00 1.00 1.00 1.00 1.00 1.00		.00 1.00 1.00					
PHF Adj: 1.00 1.00 1.00 1.00 1.00 1.00 PHF Volume: 19 233 28 21 387 3	1.00 1.00 1.00 1	.00 1.00 1.00					
PHF Volume: 19 233 28 21 387 3	2 115 203	66 23 29					
Reduct Vol: 0 0 0 0 0 0							
Reduced Vol: 19 233 28 21 387 3							
PCE Adj: 1.00 1.00 1.00 1.00 1.00							
		1.00 1.00 1.00					
	2 115 203						
Saturation Flow Module:	-						
Dataration 110W Hodart							
Sat/Lane: 1500 1500 1500 1500 1500 1500 Adjustment: 1.00 1.00 1.00 1.00 1.00 1.00							
Lanes: 0.07 0.83 0.10 0.05 0.94 0.01							
Final Sat.: 102 1248 150 77 1412 11							
	-						
	1 11	1					

Existing AM Peak

Capacity Analysis Module:

Vol/Sat: 0.19 0.19 0.19 0.27 0.27 0.27 0.21 0.21 0.21 0.08 0.08 0.08

Crit Volume: 19 411 320 66 Crit Moves: **** **** ****

Crit Moves: ****

Level Of Service Computation Report Circular 212 Planning Method (Base Volume Alternative)

****************** Intersection #18 Hilgard Avenue and Wyton Drive ************************ Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/veh): xxxxxx Optimal Cycle: 27 Level Of Service: A Street Name: Hilgard Avenue Wyton Drive Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R - T - R Control: Permitted Permitted Permitted Permitted Rights: Include Include Include Include

Volume Module: >> Count Date: 30 Jan 2008 << 800-900

VOI WILL PROGUE		COULT	Ducc	50 00	200		00 200	,					
Base Vol:	207	276	9	27	589	53	16	24	94	59	85	28	
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Initial Bse:	207	276	9	27	589	53	16	24	94	59	85	28	
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
PHF Volume:	207	276	9	27	589	53	16	24	94	59	85	28	
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0	
Reduced Vol:	207	276	9	27	589	53	16	24	94	59	85	28	
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
FinalVolume:	207	276	9	27	589	53	16	24	94	59	85	28	
Saturation Fl	low Mo	odule:											
Sat/Lane:	1500	1500	1500	1500	1500	1500	1500	1500	1500	1500	1500	1500	
Adjustment:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Lanes:	1.00	1.94	0.06	1.00	2.00	1.00	1.00	1.00	1.00	0.34	0.50	0.16	
Final Sat.:	1500	2905	95	1500	3000	1500	1500	1500	1500	515	741	244	

Vol/Sat: 0.14 0.09 0.10 0.02 0.20 0.04 0.01 0.02 0.06 0.11 0.11 0.11 Crit Volume: 207 295 16 172

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Existing 2008 AM Peak

Level Of Service Computation Report Circular 212 Planning Method (Base Volume Alternative)

Existing AM Peak

******************* t incl.]tion #19 Beverly Glen Blvd and Wyton Dr/Comstock Ave [5-Leg Intersection *************************** Cycle (sec): 100 Critical Vol./Cap.(X): 0.405

0 (Y+R=15.0 sec) Average Delay (sec/veh):

Loss Time (se	ec): e:	2	0 (Y+R :4	=15.0	sec)	Averag	ge Dela Of Sei	ay (s rvice	ec/veh) :	:	XXX	XXX A
******	****	*****	*****	****	****	*****	*****	****	*****	****	****	*****
Street Name:		Bever	ly Gle	n Bou	levar	d	Wyt	on D	rive/Co	mstock	. Ave	nue
Approach:	No:	rth Bo	und	Sot	ıth B	ound	Ea	ast B	ound	We	est Bo	ound
Approach: Movement:	L	- T	- R	L ·	- T	- R	L ·	- T	- R	L -	- T	- R
Control:												
Rights:		Inclu	de		Incl	ude		Incl	ude		Incl	ude
Rights: Min. Green:	0	0	0	0	0	0	0	0	0	0	0	0
Lanes:	1	0 1	0 1	1 (1	0 1	0 (1!	0 0	0 (1!	0 0
			1	1			1					
Volume Module	e: >>	Count	Date	12 Ma	ay 20	08 << 5	700-800)	'	'		'
Base Vol:	8	300	5	46	498	3	1	22	11	30	33	38
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:	8	300	5	46	498	3	1	22	11	30	33	38
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:												
PHF Volume:	8	300	5	46	498	3	1	22	11	30	33	38
Reduct Vol: Reduced Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:	8	300	5	46	498	3	1	22	11	30	33	38
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
FinalVolume:	8	300	5	46	498	3	1	22	11	30	33	38
Saturation F	low M	odule:										
Sat/Lane:										1500	1500	1500
Adjustment:												
Lanes:	1.00	1.00	1.00	1.00	1.00	1.00	0.03	0.65	0.32	0.30	0.33	0.37
Final Sat.:	1500	1500	1500	1500	1500	1500	44	971	485	446	490	564
Capacity Ana	lysis	Modul	e:									
Vol/Sat:	0.01	0.20	0.00	0.03	0.33	0.00	0.02	0.02	0.02	0.07	0.07	0.07
Crit Volume: Crit Moves:	8				498		1				101	
********	****	*****	*****	****		+++++	*****	++++	*****	****		*****

Crit Moves: ****

72

Level Of Service Computation Report Circular 212 Planning Method (Base Volume Alternative) ************************* Intersection #20 Hilgard Avenue and Westholme Avenue ******************* 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): xxxxxx Optimal Cycle: 31 Level Of Service: Street Name: Hilgard Avenue Westholme Avenue Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R Control: Permitted Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 1 0 1 1 0 1 0 1 1 0 0 1 0 1 0 0 1! 0 0 Volume Module: >> Count Date: 30 Jan 2008 << 800-900 Base Vol: 163 379 41 15 531 131 20 10 29 40 194 49 Initial Bse: 163 379 41 15 531 131 20 10 29 40 194 49 PHF Adj: PHF Volume: 163 379 41 15 531 131 20 10 29 40 194 49 0 49 FinalVolume: 163 379 41 15 531 131 20 10 29 40 194 49 -----| Saturation Flow Module: Lanes: 1.00 1.80 0.20 1.00 1.60 0.40 0.68 0.34 0.98 0.14 0.69 0.17

Final Sat.: 1500 2707 293 1500 2406 594 1017 508 1475 212 1028 260

-----|----|-----|------|

Vol/Sat: 0.11 0.14 0.14 0.01 0.22 0.22 0.02 0.02 0.02 0.19 0.19 0.19

Crit Volume: 163 331 20 283
Crit Moves: **** **** ****

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA. LONG BEACH. CA

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Existing 2008 AM Peak Level Of Service Computation Report Circular 212 Planning Method (Base Volume Alternative) ******************* Intersection #21 Hilgard Avenue and Manning Avenue ******************* Cycle (sec): 100 Critical Vol./Cap.(X): 0.321 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): xxxxxx Optimal Cycle: 27 Level Of Service: Street Name: Hilgard Avenue Manning Avenue Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R T. - T - R Control: Permitted Permitted Split Phase Split Phase Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 0 0 1 1 0 1 0 2 0 0 0 0 0 0 0 0 1! 0 0 Volume Module: >> Count Date: 30 Jan 2008 << 800-900 Base Vol: 0 716 12 21 514 0 0 0 0 6 0 66 Initial Bse: 0 716 12 21 514 0 0 0 0 6 0 66 PHF Volume: 0 716 12 21 514 0 0 0 0 6 0 66 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 0 716 12 21 514 0 0 0 0 0 0 Ω 6 0 66 FinalVolume: 0 716 12 21 514 0 0 0 6 0 66 -----|-----|------| Saturation Flow Module: Lanes: 0.00 1.97 0.03 1.00 2.00 0.00 0.00 0.00 0.00 0.08 0.00 0.92 Final Sat: 0 2803 47 1425 2850 0 0 0 119 0 1306 -----|-----|------| Capacity Analysis Module:

Thu Jul 17, 2008 10:27:50

Existing AM Peak

Vol/Sat: 0.00 0.26 0.26 0.01 0.18 0.00 0.00 0.00 0.00 0.05 0.00 0.05

Crit Volume: 364 21 0
Crit Moves: **** ****

Saturation Flow Module:

Capacity Analysis Module:

Level Of Service Computation Report Circular 212 Planning Method (Base Volume Alternative)

circular 212 Flamming Method (base volume Arternative)

Intersection #22 Gayley Avenue and Le Conte Avenue

Cycle (sec): 100 Critical Vol./Cap.(X): 0.564 Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/veh): xxxxxx 33 Level Of Service: Optimal Cycle: Street Name: Gayley Avenue Le Conte Avenue Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R - T - R Control: Permitted Permitted Permitted Rights: Include Include Include Include
 Rights:
 Include
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 Volume Module: >> Count Date: 30 Jan 2008 << 745-845 Base Vol: 7 635 234 124 217 15 24 119 11 157 74 127 Initial Bse: 7 635 234 124 217 15 24 119 11 157 74 127 PHF Volume: 7 635 234 124 217 15 24 119 11 157 74 127 FinalVolume: 7 635 234 124 217 15 24 119 11 157 74 127 ------|

Lanes: 1.00 1.46 0.54 1.00 1.87 0.13 1.00 0.92 0.08 1.00 1.00 1.00 Final Sat.: 1500 2192 808 1500 2806 194 1500 1373 127 1500 1500 1500 -----|----|-----|------|

Vol/Sat: 0.00 0.29 0.29 0.08 0.08 0.08 0.02 0.09 0.09 0.10 0.05 0.08 Crit Volume: 435 124 130 157 Crit Moves: **** **** ****

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

	UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Existing 2008 AM Peak											
************ Intersection	Level Of Service Computation Report Circular 212 Planning Method (Base Volume Alternative) ************************************											
**************************************						Critical Vol./Cap.(X): 0.77 Average Delay (sec/veh): xxxxx Level Of Service:					779 xxx C	
Street Name: Approach: Movement:	Nort	West h Bou	wood 1 ind R	Bouler Sou	vard uth Bo	und - R	Ea	Le ast Bo - T	Conte	Avenu We	ie est Bo - T	ound - R
Control: Rights: Min. Green: Lanes:	0 1 0	ovl 0 0 2 (ed 0) 1	0	Permit Inclu 0) 2	ted de 0	0 1 (Permit Inclu 0	ted ide 0	Pro 0 1 (Incl Incl 0	rmit ude 0 0 1
Volume Modul- Base Vol: Growth Adj: Initial Bse: User Adj: PHF Adj: PHF Volume: Reduct Vol: Reduced Vol: FCE Adj: FinalVolume:	e: >> C 53 1.00 1 53 1.00 1 1.00 1 53 1.00 1 1.00 1 53 1.00 1 1.00 1 1.00 1 1.00 1 1.00 1 1.00 1	Count 632 1.00 632 1.00 632 0 632 1.00 632 1.00 632 1.00 1.00 632	Date: 206 1.00 206 1.00 206 0 206 1.00 1.00 206 1.00 1.00 206 1.7 1425	30 Ja 32 1.00 32 1.00 1.00 32 0 32 1.00 1.00 32 1.00 1.00 32 1.00 1.00	an 200 195 1.00 195 1.00 1.00 1.00 195 1.00 195 1.00 1.00 195 1.00 1.00 195 1.00 1.00	8 << 7 88 1.00 88 1.00 1.00 88 0 88 1.00 1.00	45-845 168 1.00 168 1.00 1.00 168 0 168 1.00 1.00 168 1.00	327 1.00 327 1.00 1.00 327 0 327 1.00 1.00 327	33 1.00 33 1.00 1.00 33 0 33 1.00 1.00 33 	130 1.00 130 1.00 1.00 130 1.00 1.00 1.0	317 1.00 317 1.00 1.00 317 0 317 1.00 1.00 317	107 1.00 107 1.00 1.00 1.07 0 107 1.00 1.00
Lanes: Final Sat.: 	 lysis N 0.05 (Module 0.30	 e:								1069	1069

HCLA NULD and Amended IDDD Traffic Chida

Existing AM Peak

Crit Moves:

Crit Moves: ****

Existing AM Peak

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Existing 2008 AM Peak ______

	Level Of Service Computation Report													
********										ternati		****	***	****
Intersection									****	*****	****	****	***	****
Cycle (sec):		10				Critic	al	Vol	./Cap	o.(X):			0.4	
Loss Time (se Optimal Cycle	≥:	2	18			Level	Of	Ser	vice	:				A
*******						*****	**	****					***	****
Street Name:			'iverto					_			Avenue West Bound			
Approach:														
Movement:														
Control:														
Rights:									Incl			Igi		
Min. Green:										0				
Lanes:										0 1				
Volume Module				30 Ja 24						4.0				0.7
Base Vol:		100	28					181				5 32		
Growth Adj: Initial Bse:		1.00	1.00	24	1.00	1.00		181	1.00	1.00		0 1.0	00 28	1.00
User Adi:			1.00		1.00				1.00		_	0 1.0		0.00
PHF Adi:			1.00	1.00		1.00			1.00	1.00		0 1.0		0.00
	25		28	24	35	196		181	290	40		5 3		0.00
Reduct Vol:				0		190		101	290				0	0
Reduced Vol:			28	24		-		181	-	-		-	28	0
			1.00		1.00				1.00			0 1.0		0.00
MLF Adi:			1.00	1.00		1.00			1.00	1.00		0 1.0		0.00
FinalVolume:		100	28	24		196		181		40		5 32		0.00
							1-							
Saturation F	Low Mo	odule:	'	1		'				'	'			
Sat/Lane:	1500	1500	1500	1500	1500	1500	1	500	1500	1500	150	0 150	00	1500
Adjustment:	1.00	1.00	1.00	1.00	1.00	1.00	1	.00	1.00	1.00	1.0	0 1.0	00	1.00
Lanes:	0.16	0.66	0.18	0.41	0.59	1.00	1	.00	1.00	1.00	1.0	0 1.0	00	1.00
Final Sat.:					890				1500		150	0 150	00	1500
~							-							
Capacity Anal	Lysis	Modul	.e:											

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

Vol/Sat: 0.10 0.10 0.10 0.04 0.04 0.13 0.12 0.19 0.03 0.01 0.22 0.00

Crit Volume: 25 196 181 328
Crit Moyee: **** **** ****

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Existing 2008 AM Peak Level Of Service Computation Report Circular 212 Planning Method (Base Volume Alternative) ************************* Intersection #25 Hilgard Avenue and Le Conte Avenue ************************ Cycle (sec): 100 Critical Vol./Cap.(X): 0.561 Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/veh): Optimal Cycle: 42 Level Of Service: xxxxxx Street Name: Hilgard Avenue Le Conte Avenue Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R Control: Permitted Permitted Split Phase Split Phase Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 1 0 0 1 0 1 0 1 0 1 1 1 0 0 1 0 1 0 1 Volume Module: >> Count Date: 30 Jan 2008 << 800-900 Base Vol: 22 429 26 10 217 285 272 66 32 7 145 24 Initial Bse: 22 429 26 10 217 285 272 66 32 7 145 24 PHF Volume: 22 429 26 10 217 285 272 66 32 7 145 24 -----| Saturation Flow Module: Lanes: 1.00 0.94 0.06 1.00 1.00 1.00 1.64 0.36 1.00 0.05 0.95 1.00 Final Sat.: 1425 1344 81 1425 1425 1425 2335 515 1425 66 1359 1425 ------|-----||-------| Capacity Analysis Module: Vol/Sat: 0.02 0.32 0.32 0.01 0.15 0.20 0.13 0.13 0.02 0.11 0.11 0.02

Crit Volume: 455 10 183 152 Crit Moves: *** **** ****

Level Of Service Computation Report

Circular 212 Planning Method (Base Volume Alternative) ************************* Intersection #26 Gayley Avenue and Weyburn Avenue ***************** Cycle (sec): 100 Critical Vol./Cap.(X): 0.479 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): XXXXXX Optimal Cycle: 28 Level Of Service: Street Name: Gayley Avenue Weyburn Avenue Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R T. - T - R Control: Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 1 0 1 1 0 1 0 1 1 0 0 1 0 1 0 0 1 0 Volume Module: >> Count Date: 6 Feb 2008 << 745-845 Base Vol: 28 753 111 17 400 74 190 170 22 37 43 36 Initial Bse: 28 753 111 17 400 74 190 170 22 37 43 36 PHF Volume: 28 753 111 17 400 74 190 170 22 37 43 36 0 36 FinalVolume: 28 753 111 17 400 74 190 170 22 37 43 36 -----|----|----|-----| Saturation Flow Module: Lanes: 1.00 1.74 0.26 1.00 1.69 0.31 0.99 0.89 0.12 1.00 0.54 0.46

Final Sat: 1500 2615 385 1500 2532 468 1492 1335 173 1500 816 684

-----|----|-----|------|

Vol/Sat: 0.02 0.29 0.29 0.01 0.16 0.16 0.13 0.13 0.13 0.02 0.05 0.05

Crit Volume: 432 17 190 79
Crit Moves: *** *** **** ****

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA. LONG BEACH. CA

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Existing 2008 AM Peak Level Of Service Computation Report Circular 212 Planning Method (Base Volume Alternative) ************************* Intersection #27 Westwood Boulevard and Weyburn Avenue ********************** 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): xxxxxx Optimal Cycle: 26 Level Of Service: Street Name: Westwood Boulevard Weyburn Avenue Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - F T. - T - R Control: Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 1 0 1 1 0 0 1 1 0 1 0 1 0 0 0 1! 0 0 Volume Module: >> Count Date: 31 Jan 2008 << 730-830 Base Vol: 70 659 43 6 322 29 47 56 31 33 43 13 Initial Bse: 70 659 43 6 322 29 47 56 31 33 43 13 PHF Volume: 70 659 43 6 322 29 47 56 31 33 43 13 FinalVolume: 70 659 43 24 322 29 47 56 31 33 43 13 -----|-----| Saturation Flow Module: Lanes: 1.00 1.88 0.12 0.15 1.85 1.00 0.70 0.84 0.46 0.37 0.48 0.15 Final Sat.: 1125 2112 138 174 2076 1125 789 940 521 417 544 164

-----|-----|------|

Vol/Sat: 0.06 0.31 0.31 0.03 0.16 0.03 0.06 0.06 0.06 0.08 0.08 0.08

Crit Volume: 351 6 47 89
Crit Moyes: **** **** ****

Thu Jul 17, 2008 10:27:51

Existing AM Peak

Capacity Analysis Module:

ApprAdjDel:

LOS by Appr:

7.9

A

Existing AM Peak

UCLA NHIP and Amended LRDP Traffic Study
Los Angeles, CA
Existing 2008 AM Peak

Level Of Service Computation Report 2000 HCM 4-Way Stop Method (Base Volume Alternative)

*******	*****	*****	*****	*****	****	******	****
Intersection	#28 Tiverton	Drvie and Wey	burn Ave	enue ******	*****	******	*****
Cycle (sec):	100		Critica	al Vol./Car).(X):	0.1	.50
Loss Time (s	ec): 0	(Y+R=4.0 sec)	Average	e Delay (se	c/veh):	7	.7
Optimal Cycl	e: 0		Level	Of Service:			A
*******	******	******	*****	******	*****	******	*****
Street Name:	Tiv	erton Drive d South B R L - T		V	Jeyburn Av	<i>r</i> enue	
Approach:	North Boun	d South B	ound	East Bo	und	West Bo	und
Movement:	L - T -	R L - T	- R	L - T	- R I	_ T	- R
Control:	Stop Sign	Stop S Incl	ign	Stop Si	.gn	Stop Si	.gn
Rights:	Include	0 0 0 0	ude	Inclu	ıde	Inclu	ıde
Lanes:	0 0 1! 0	0 0 0 1!					
TT-1 M-d-1							
	13 106	ate: 6 Feb 200 7 27 0	8 << 700 32	26 36	0	0 34	17
		.00 1.00 1.00				.00 1.00	17
	13 106			26 36		0 34	1.00
		.00 1.00 1.00				.00 1.00	1.00
		.00 1.00 1.00		1.00 1.00		.00 1.00	1.00
PHF Volume:	13 106	7 27 0	32	26 36	0	0 34	17
Reduct Vol:	0 0	0 0 0	0	0 0	0	0 0	0
Reduced Vol:	13 106	7 27 0	32	26 36	0		17
PCE Adj:	1.00 1.00 1	.00 1.00 1.00 .00 1.00 1.00	1.00	1.00 1.00	1.00 1	.00 1.00	1.00
		7 27 0			0		
Saturation F							
		.00 1.00 1.00					
		.06 0.46 0.00					
Final Sat.:	87 706	47 396 0 	469	329 455	0	0 554	277
Compaine 2ma	lysis Module:						
		.15 0.07 xxxx	0 07	0 00 0 00		0 06	0.06
Crit Moves:		.15 U.U/ XXXX	0.07	****	XXXX X	CXX U.U6	****
Delaw/Web:	7 9 7 9	7.9 7.3 0.0	7 3		0.0	0.0 7.4	7.4
		.00 1.00 1.00				.00 1.00	1.00
AdiDel/Veh:	7 9 7 9	7 9 7 3 0 0	7 3	7.8 7.8		0.0 7.4	7.4
LOS by Move:	A A	7.9 7.3 0.0 A A *	Α	A A			Α.
ApproachDel:	7.9	7.3					**
Delay Adj:		1.00		1.00		1.00	
	7.0			7.0		7 4	

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

7.3

7.8

A

7.4

Α

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Existing 2008 AM Peak							
Circular 212 Planning Metho	Level Of Service Computation Report Circular 212 Planning Method (Base Volume Alternative)						
Intersection #29 Hilgard Avenue and Wey	burn Avenue						
Cycle (sec): 100 Loss Time (sec): 0 (Y+R=4.0 sec) Optimal Cycle: 33	Critical Vol /Cap (X): 0 441						
Street Name: Hilgard Avenue Approach: North Bound South B Movement: L - T - R L - T	Weyburn Avenue Sound East Bound West Bound - R L - T - R L - T - R						
Control: Permitted Permit Rights: Include Incl Min. Green: 0 0 0 0 0 0 0 Lanes: 1 0 0 1 0 1 0 1 0 1 1 0 1	ude Include Include 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0						
Volume Module: >> Count Date: 6 Feb 200 Base Vol: 29 461 5 13 251 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	39 34 27 63 7 26 27 1.00 1.00 1.00 1.00 1.00 1.00 1.00 39 34 27 63 7 26 27 1.00 39 34 27 63 7 26 27 0 0 0 0 0 0 0 0 0 39 34 27 63 7 26 27						
Saturation Flow Module: Sat/Lane: 1425 1425 1425 1425 1425 Adjustment: 1.00 1.00 1.00 1.00 1.00 Lanes: 1.00 0.99 0.01 1.00 1.00 Final Sat.: 1425 1410 15 1425 1425	1425 1425 1425 1425 1425 1425 1425 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00						
Capacity Analysis Module: Vol/Sat: 0.02 0.33 0.33 0.01 0.18 Crit Volume: 466 13 Crit Moves: **** ****	0.03 0.02 0.06 0.06 0.04 0.04 0.04 90 60 ****						

Level Of Service Computation Report

Circular 212 Planning Method (Base Volume Alternative) ************************* Intersection #30 Westwood Boulevard and Kinross Avenue ************************ 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): xxxxxx Optimal Cycle: 87 Level Of Service: D Street Name: Westwood Boulevard Kinross Avenue Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R T. - T - R Control: Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 Lanes: 1 0 1 0 1 0 1 1 1 0 0 1 0 1 0 1 0 0 1 0 Volume Module: >> Count Date: 31 Jan 2008 << 730-830 Base Vol: 53 768 25 12 344 36 55 30 24 5 45 59 Initial Bse: 53 768 25 12 344 36 55 30 24 5 45 59 PHF Volume: 53 768 25 12 344 36 55 30 24 5 45 59 0 59 FinalVolume: 53 768 25 48 344 36 55 30 24 5 45 59 -----| Saturation Flow Module:

Lanes: 1.00 1.00 1.00 0.45 2.30 0.25 1.00 0.56 0.44 1.00 0.43 0.57

Final Sat: 1125 1125 1125 506 2585 284 1125 630 495 1125 487 638

Vol/Sat: 0.05 0.68 0.02 0.02 0.13 0.13 0.05 0.05 0.05 0.00 0.09 0.09

Crit Volume: 768 12 55 104 Crit Moves: *** *** *** ***

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA. LONG BEACH, CA

Existing AM Peak Thu Jul 17, 2008 10:27:51 UCLA NHIP and Amended LRDP Traffic Study

Los Angeles, CA

Existing 2008 AM Peak Level Of Service Computation Report Circular 212 Planning Method (Base Volume Alternative) ************************* Intersection #31 Westwood Boulevard and Lindbrook Drive ******************* Cycle (sec): 100 Critical Vol./Cap.(X): 0.548 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): xxxxxx Optimal Cycle: 32 Level Of Service: Street Name: Westwood Bouelvard Lindbrook Drive Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - F T. - T - R Control: Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 0 1 1 0 1 0 1 1 1 0 0 1 0 1 0 1 0 1 0 Volume Module: >> Count Date: 31 Jan 2008 << 800-900 Base Vol: 3 796 216 20 316 10 29 130 45 93 131 27 Initial Bse: 3 796 216 20 316 10 29 130 45 93 131 27 PHF Volume: 3 796 216 20 316 10 29 130 45 93 131 27 FinalVolume: 6 796 216 80 316 10 29 130 45 93 131 27 -----|----||------| Saturation Flow Module: Lanes: 0.02 1.98 1.00 1.00 1.93 0.07 0.28 1.28 0.44 0.74 1.04 0.22 Final Sat.: 17 2233 1125 1125 2167 83 320 1434 496 834 1174 242 Capacity Analysis Module:

Vol/Sat: 0.18 0.36 0.19 0.02 0.15 0.12 0.09 0.09 0.09 0.11 0.11 0.11

Crit Volume: 401 20 102 93 Crit Moves: *** *** ***

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Existing 2008 AM Peak

Level Of Service Computation Report Circular 212 Planning Method (Base Volume Alternative)

Circular 212 Fianning Method (Base Volume Arternative)

Intersection #32 Glendon/Tiverton/Lindbrook

Cycle (sec): 100 Critical Vol./Cap.(X): 0.608

Loss Time (se Optimal Cycle *******	c):	3	0 (Y+R:	=4.0 s	sec)	Averag	e Dela Of Sei	ay (se rvice	ec/veh) :	:	XXX	XXX B
*******	****	*****	****	****	****	*****	****	****	*****	*****	****	*****
Street Name: Approach: Movement:	Gler Nor L	ndon A rth Bo - T	venue/' und - R	Fivert Sou L	ton A uth B - T	venue ound - R	Ea L	L: ast Bo - T	indbroo ound - R	k Driv We L -	e st B	ound - R
Control:]	Permit	ted]	Permi	tted]	Permit	ted	P	ermi	tted
Rights: Min. Green:		Inclu	ıde		Incl	ude		Incl	ıde		Incl	ude
Lanes:												
Volume Module	: >>	Count	Date:	6 Fel	200	8 << 80	0-900					
Base Vol:	59	219	392	8	24	43		319	21	157	170	39
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:				8	24	43	36	319	21	157	170	39
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Volume:	59	219	392	8	24	43	36	319	21	157	170	39
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:	59	219	392	8	24	43	36	319	21	157	170	39
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	2.00	1.00	1.00
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
FinalVolume:	59	219	392	8	24	43	36	319	21	314	170	39
Saturation Fl	ow Mo	odule:										
Sat/Lane:	1500	1500	1500	1500	1500	1500	1500	1500	1500	1500	1500	1500
Adjustment:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Lanes:	1.00	1.00	1.00	1.00	2.00	1.00	0.10	0.90	1.00	1.00	0.85	0.15
Final Sat.:						1500						
Capacity Anal												
Vol/Sat:	0.04	0.15	0.26	0.01	0.01	0.03	0.24	0.24	0.01	0.10	0.13	0.17

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

Crit Volume: 392 8 355 157 Crit Moves: **** **** ****

Existing 2008 AM Peak Level Of Service Computation Report Circular 212 Planning Method (Base Volume Alternative) ************************* Intersection #33 Sepulveda Boulevard and Constitution Avenue ******************* Cycle (sec): 100 Critical Vol./Cap.(X): 0.541 Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/veh):
Optimal Cycle: 31 Level Of Service: XXXXXX Street Name: Sepulveda Boulevard Constitution Avenue Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - F L - T - R Control: Permitted Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 1 0 1 1 0 1 0 1 1 0 0 0 1! 0 0 0 0 1! 0 0 Volume Module: >> Count Date: 13 Feb 2008 << 745-845 Base Vol: 64 290 7 3 1121 165 84 0 19 2 0 2 Initial Bse: 64 290 7 3 1121 165 84 0 19 2 0 2 PHF Volume: 64 290 7 3 1121 165 84 0 19 2 0 2
Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0
Reduced Vol: 64 290 7 3 1121 165 84 0 19 2 0 2 FinalVolume: 64 290 7 3 1121 165 84 0 19 2 0 2 -----|----|-----||------| Saturation Flow Module: Lanes: 1.00 1.95 0.05 1.00 1.74 0.26 0.82 0.00 0.18 0.50 0.00 0.50 Final Sat.: 1500 2929 71 1500 2615 385 1223 0 277 750 0 750 -----|----||------| Capacity Analysis Module: Vol/Sat: 0.04 0.10 0.10 0.00 0.43 0.43 0.07 0.00 0.07 0.00 0.00 0.00 Crit Volume: 64 643 103 2 Crit Moves: ****

UCLA NHIP and Amended LRDP Traffic Study

Los Angeles, CA

Existing AM Peak

UCLA NHIP and Amended LRDP Traffic Study

Existing AM Peak

Crit Moves: ****

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Existing 2008 AM Peak

Level Of Service Computation Report Circular 212 Planning Method (Base Volume Alternative)

************************* Intersection #34 San Vicente Bouevard and Wilshire Bouelvard

************************ 0 (Y+R=4.0 sec) Average Delay (sec/veh): xxxxxx Loss Time (sec): Optimal Cycle: 180 Level Of Service:

Street Name: San Vicente Bouevard Wilshire Bouelvard Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R T. - T - R Control: Split Phase Split Phase Permitted Protected Rights: Ovl Include Include Ignore Lanes: 1 0 2 0 1 2 1 0 1 0 1 0 2 1 0 1 0 3 0 1 ------|-----|------| Volume Module: >> Count Date: 13 Feb 2008 << 730-830 Base Vol: 98 204 111 1380 290 18 66 1956 65 53 2037 927 Initial Bse: 98 204 111 1380 290 18 66 1956 65 53 2037 927 PHF Volume: 98 204 111 1380 290 18 66 1956 65 53 2037 0 0 0 FinalVolume: 98 204 111 1518 290 18 66 1956 65 53 2037 0 ------| Saturation Flow Module: Lanes: 1.00 2.00 1.00 3.00 0.94 0.06 1.00 2.90 0.10 1.00 3.00 1.00 Final Sat: 1425 2850 1425 4275 1342 83 1425 4138 137 1425 4275 1425

-----|----|-----|------|

Vol/Sat: 0.07 0.07 0.08 0.36 0.22 0.22 0.05 0.47 0.47 0.04 0.48 0.00

Crit Volume: 111 506 674 53 Crit Moves: **** **** ****

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA. LONG BEACH. CA

Los Angeles, CA Existing 2008 AM Peak Level Of Service Computation Report Circular 212 Planning Method (Base Volume Alternative) ************************* Intersection #35 Sepulveda Boulevard and Wilshire Boulevard ************************ 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): xxxxxx Optimal Cycle: 180 Level Of Service: Street Name: Sepulveda Boulevard Wilshire Boulevard Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - F T. - T - R Control: Protected Protected Protected Protected Rights: Include Include Include Include Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 1 0 1 1 0 1 0 1 1 0 1 0 3 1 0 2 0 4 1 0 -----|----|-----|------| Volume Module: >> Count Date: 21 Feb 2008 << 745-845 Base Vol: 156 240 263 279 637 283 71 2737 134 110 2543 62 Initial Bse: 156 240 263 279 637 283 71 2737 134 110 2543 62 PHF Volume: 156 240 263 279 637 283 71 2737 134 110 2543 62 -----|-----| Saturation Flow Module: Lanes: 1.00 1.00 1.00 1.00 1.38 0.62 1.00 3.81 0.19 2.00 4.88 0.12 Final Sat.: 1031 1031 1031 1031 1428 634 1031 3932 193 2063 5034 123 -----|----|-----||------| Capacity Analysis Module: Vol/Sat: 0.15 0.23 0.26 0.27 0.45 0.45 0.07 0.70 0.70 0.06 0.51 0.51

Crit Volume: 156 460 718 61

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Existing 2008 AM Peak .-----

Level Of Service Computation Report

	vice Computation Report Method (Base Volume Alternative)						
	Method (Base volume Alternative)						
	Intersection #36 Veteran Avenue and Wilshire Boulevard						
Cycle (sec): 100	Critical Vol./Cap.(X): 1.170						
Loss Time (sec): 0 (Y+R=4.0	sec) Average Delay (sec/veh): xxxxxx						
Optimal Cycle: 180	Level Of Service: F						
Street Name: Veteran Aven	ue Wilshire Boulevard uth Bound East Bound West Bound						
	- T - R L - T - R L - T - R						
	Permitted Protected Protected						
Min. Green: 0 0 0 0	Ovl Include Include 0 0 0 0 0 0						
	0 2 0 2 2 0 3 1 0 2 0 3 1 0						
Volume Module: >> Count Date: 21 F							
Base Vol: 207 385 99 110							
Growth Adj: 1.00 1.00 1.00 1.00 Initial Bse: 207 385 99 110	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00						
	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00						
	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00						
PHF Volume: 207 385 99 110							
Reduct Vol: 0 0 0 0							
Reduced Vol: 207 385 99 110							
	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00						
	1.00 1.10 1.10 1.00 1.00 1.10 1.00 1.00						
	252 405 582 2901 134 57 2297 35						
	1375 1375 1375 1375 1375 1375 1375						
	0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75						
	2.00 2.00 2.00 3.82 0.18 2.00 3.94 0.06						
Final Sat.: 1031 2063 1031 1031	2063 2063 2063 3943 182 2063 4063 62						
Capacity Analysis Module:							
	0.12 0.20 0.28 0.74 0.74 0.03 0.57 0.57						
Crit Volume: 207	126 291 583						
Crit Moves: ****	****						

Los Angeles, CA Existing 2008 AM Peak Level Of Service Computation Report Circular 212 Planning Method (Base Volume Alternative) ************************* Intersection #37 Gayley Avenue and Wilshire Boulevard ******************* Cycle (sec): 100 Critical Vol./Cap.(X): 0.956 Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/veh): xxxxxx Optimal Cycle: 180 Level Of Service: Street Name: Gayley Avenue Wilshire Boulevard Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - F L - T - R Control: Prot+Permit Permitted Protected Permitted Rights: Include Owl To Control Permitted Perm
 Rights:
 Include
 Ovl
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 Lanes: 1 0 2 0 1 1 0 1 0 2 2 0 3 1 0 1 0 3 1 0 Volume Module: >> Count Date: 13 Feb 2008 << 730-830 Base Vol: 59 333 52 56 100 286 496 2424 152 64 1991 116 Initial Bse: 59 333 52 56 100 286 496 2424 152 64 1991 116 PHF Volume: 59 333 52 56 100 286 496 2424 152 64 1991 116 MLF Adj: 1.00 1.00 1.00 1.00 1.00 1.10 1.10 1.00 1.00 1.00 1.00 1.00 FinalVolume: 59 333 52 56 100 315 546 2424 152 64 1991 116 Saturation Flow Module: Lanes: 1.00 2.00 1.00 1.00 1.00 2.00 2.00 3.76 0.24 1.00 3.78 0.22 Final Sat.: 1069 2138 1069 1069 1069 2138 2138 4023 252 1069 4040 235 -----| Capacity Analysis Module: Vol/Sat: 0.06 0.16 0.05 0.05 0.09 0.15 0.26 0.60 0.60 0.06 0.49 0.49 Crit Volume: 167 56 273 527
Crit Moves: **** **** ****

UCLA NHIP and Amended LRDP Traffic Study

Existing AM Peak

496

Wilshire Bouelvard

xxxxxx

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Existing 2008 AM Peak

Level Of Service Computation Report

Circular 212 Planning Method (Base Volume Alternative) ************************* Intersection #38 Westwood Boulevard and Wilshire Boulevard ************************ 0 (Y+R=4.0 sec) Average Delay (sec/veh): xxxxxx Loss Time (sec): Optimal Cycle: 180 Level Of Service: Street Name: Westwood Boulevard Wilshire Boulevard Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R T. - T - R Control: Prot+Permit Prot+Permit Protected Protected Lanes: 1 0 2 1 0 1 0 3 0 1 2 0 3 1 0 2 0 3 1 0 Volume Module: >> Count Date: 7 Feb 2008 << 730-830 Base Vol: 135 600 117 61 272 154 427 1980 164 134 1889 93 Initial Bse: 135 600 117 61 272 154 427 1980 164 134 1889 93 PHF Adj: PHF Volume: 135 600 117 61 272 154 427 1980 164 134 1889 93 0 93 MLF Adj: 1.00 1.00 1.00 1.00 1.00 1.10 1.00 1.10 1.00 1.10 1.00 FinalVolume: 135 600 117 61 272 154 470 1980 164 147 1889 93 -----|----|-----|------| Saturation Flow Module: Lanes: 1.00 2.51 0.49 1.00 3.00 1.00 2.00 3.69 0.31 2.00 3.81 0.19 Final Sat.: 1031 2589 505 1031 3094 1031 2063 3809 316 2063 3931 194

-----|----|-----|------|

Vol/Sat: 0.13 0.23 0.23 0.06 0.09 0.15 0.23 0.52 0.52 0.07 0.48 0.48

Crit Volume: 239 61 235 Crit Moyes: **** ****

Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - F T. - T - R Control: Permitted Permitted Protected Permitted Rights: Include Ovl Include Tooluge
 Rights:
 Include
 Ovl
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 Lanes: 0 0 1! 0 0 1 0 1 0 2 2 0 3 1 0 1 0 3 1 0 Volume Module: >> Count Date: 7 Feb 2008 << 800-900 Base Vol: 9 177 22 57 110 41 318 1686 114 66 1970 171 Initial Bse: 9 177 22 57 110 41 318 1686 114 66 1970 171 PHF Volume: 9 177 22 57 110 41 318 1686 114 66 1970 171 FinalVolume: 9 177 22 57 110 45 350 1686 114 66 1970 171 -----|----||------| Saturation Flow Module: Lanes: 0.04 0.85 0.11 1.00 1.00 2.00 2.00 3.75 0.25 1.00 3.68 0.32 Final Sat: 46 909 113 1069 1069 2138 2138 4004 271 1069 3934 341

Vol/Sat: 0.19 0.19 0.19 0.05 0.10 0.02 0.16 0.42 0.42 0.06 0.50 0.50

Crit Volume: 208 57 175 535 Crit Moves: **** **** ****

UCLA NHIP and Amended LRDP Traffic Study

Los Angeles, CA

Existing 2008 AM Peak

Level Of Service Computation Report

Circular 212 Planning Method (Base Volume Alternative)

Intersection #39 Glendon Avenue and Wilshire Bouelvard

Street Name: Glendon Avenue

Optimal Cycle: 180 Level Of Service:

0 (Y+R=4.0 sec) Average Delay (sec/veh):

Cycle (sec): 100 Critical Vol./Cap.(X): 0.912

Existing AM Peak

Loss Time (sec):

Capacity Analysis Module:

UCLA NHIP and Amended LRDP Traffic Study
Los Angeles, CA
Existing 2008 AM Peak

Level Of Service Computation Report 2000 HCM Unsignalized Method (Base Volume Alternative)

*******	****	*****	*****	****	*****	*****	****	****	*****	*****	****	*****	:
Intersection									*****	****	****	*****	,
Average Delay									Of Ser	vice:	F[46	7.1] ******	r
Street Name:		M	alcolm	Aven	ıe			Wi	lshire	Boule	vard		
Approach:	No	rth Bo	und	Son	ath Bo	ound	E	last B	ound	We	est B	ound	
Movement:									- R				
Control:	' s	top Si	.gn '	' St	op Si	.gn '	Ur	contr	olled	Un	contr	olled '	
Rights:		Inclu	ide		Inclu	ide		Incl	ude		Incl	ude	
Lanes:						0 0				1 (
Volume Module	e: >>	Count	Date:	7 Fel	2008		5-845	5				'	
Base Vol:	3	0	45	3	1	40	65	1691	28	22	2184	53	
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Initial Bse:	3	0	45	3	1	40	65	1691	28	22	2184	53	
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	

PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
PHF Volume:	3	0	45	3	1	40	65	1691			2184	53	
Reduct Vol:	0	0			0	0	0	0	0	0	0	0	
FinalVolume:	3	0	45	3	1	40	65	1691	28	22	2184	53	
Critical Gap	Modu:	le:											
Critical Gp:	7.5	6.5	6.9	7.5	6.5	6.9	4.1	xxxx	xxxxx	4.1	xxxx	xxxxx	
FollowUpTim:	3.5	4.0	3.3	3.5	4.0	3.3	2.2	xxxx	xxxxx	2.2	xxxx	xxxxx	
Capacity Modu	ıle:												
Cnflict Vol:	2608		578	2948	4104	755	2237	xxxx	xxxxx	1719	xxxx	xxxxx	
Potent Cap.:	12	2	464	7	3	356	235	xxxx	xxxxx	373	xxxx	xxxxx	
Move Cap.:	5	2	464	5	2	356	235	xxxx	xxxxx	373	xxxx	xxxxx	

Volume/Cap: 0.66 0.00 0.10 0.66 0.58 0.11 0.28 xxxx xxxx 0.06 xxxx xxxx

Note: Queue reported is the number of cars per lane.

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

Existing 2008 AM Peak Level Of Service Computation Report Circular 212 Planning Method (Base Volume Alternative) ************************* Intersection #41 Westholme Avenue and Wilshire Boulevard ************************* 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/v Optimal Cycle: 77 Level Of Service: xxxxxx Street Name: Westholme Avenue Wilshire Boulevard Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - F L - T - R Control: Permitted Permitted Protected Protected Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 0 0 1! 0 0 0 0 1! 0 0 1 0 3 0 1 1 0 2 1 0 Volume Module: >> Count Date: 21 Feb 2008 << 800-900 Base Vol: 56 102 65 45 42 20 31 1792 63 29 2202 137 Initial Bse: 56 102 65 45 42 20 31 1792 63 29 2202 137 PHF Volume: 56 102 65 45 42 20 31 1792 63 29 2202 137 -----|-----| Saturation Flow Module:

Lanes: 0.25 0.46 0.29 0.42 0.39 0.19 1.00 3.00 1.00 1.00 2.82 0.18 Final Sat.: 358 652 415 599 559 266 1425 4275 1425 1425 4025 250

Vol/Sat: 0.16 0.16 0.16 0.08 0.08 0.08 0.02 0.42 0.04 0.02 0.55 0.55

Crit Volume: 223 45 31 780 Crit Moves: *** **** ****

UCLA NHIP and Amended LRDP Traffic Study

Los Angeles, CA

Existing AM Peak

Capacity Analysis Module:

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Existing 2008 AM Peak

Level Of Service Computation Report Circular 212 Planning Method (Base Volume Alternative)											
*******					*****						
Intersection #42 Warner				******	*****						
Cycle (sec): 10 Loss Time (sec): Optimal Cycle: 18 ************************************	0 0 (Y+R=4.0 sec)	Critical Vo Average Del	ol./Cap.(X) Lay (sec/ve	: 0. h): xxx	695 xxx						
Optimal Cycle: 18	U *******	Level Of Se	ervice:	*****	B *****						
Street Name: Wa	arner Avenue		Wilshir	e Boulevard							
Street Name: Wa Approach: North Bot	und South Be	ound I	East Bound	West B	ound						
Movement: L - T	- R L - T	- R L	- T - F	L - T	– R						
Control: Permit			Danmittad								
Rights: Inclu											
	0 0 0			0 0 0							
Lanes: 1 0 1	0 1 1 0 0	1 0 1	0 2 1 0								
				-							
Volume Module: >> Count	Date: 21 Feb 20	08 << 800-90	00								
Base Vol: 74 36	21 87 60			1 11 2228							
Growth Adj: 1.00 1.00 Initial Bse: 74 36	1.00 1.00 1.00 21 87 60		0 1.00 1.0 7 1773 3	0 1.00 1.00 1 11 2228							
	1.00 1.00 1.00		/ 1//3 3 0 1.00 1.0								
	1.00 1.00 1.00		0 1.00 1.0								
PHF Volume: 74 36	21 87 60			1 11 2228							
	0 0 0										
Reduced Vol: 74 36				1 11 2228							
PCE Adj: 1.00 1.00	1.00 1.00 1.00	1.00 1.00	1.00 1.0	0 1.00 1.00	1.00						
MLF Adj: 1.00 1.00	1.00 1.00 1.00	1.00 1.00	1.00 1.0	0 1.00 1.00	1.00						
FinalVolume: 74 36	21 87 60			1 11 2228							
	1.1			-							
Saturation Flow Module:		1405 1405	- 1405 140	- 1405 1405	1 405						
	1425 1425 1425		5 1425 142								
Adjustment: 1.00 1.00	1.00 1.00 1.00 1.00 1.00 0.41) 1.00 1.0) 2.95 0.0								
Lanes: 1.00 1.00 Final Sat.: 1425 1425	1425 1425 578			3 1425 4132							
rinai bac 1425 1425		01/ 112.		J 1423 4132	113						

-----|

Vol/Sat: 0.05 0.03 0.01 0.06 0.10 0.05 0.42 0.42 0.01 0.54 0.54 Crit Volume: 74 148 601 768 Crit Moves: ****

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Existing 2008 AM Peak														
************ Intersection	Level Of Service Computation Report Circular 212 Planning Method (Base Volume Alternative) ************************************													
Cycle (sec): Loss Time (sec) Optimal Cycle ************************************	10 ec): e: 1:	00 0 (Y+R 80	=4.0 s	sec)	Critic Averag	al Vole e Dela	l./Cap ay (se	p.(X): ec/veh) :):	0. xxx	888 xxx D			
Street Name: Approach: Movement:	L - T	- R	L -	- T	- R	L ·	- T	- R	L ·	- T	- R			
Control: Rights: Min. Green: Lanes:	Prot+Pe: Incl 0 0 1 0 1	rmit on the state of the state	0	Permit Inclu 0	ted de	0 1	Incli Incli 0	ted ude 0 0 1	0 1 (rotec Incl 0 0 2	ted ' ude 0 10			
Volume Modul- Base Vol: Growth Adj: Initial Bse: User Adj: PHF Adj: PHF Volume: Reduced Vol: Reduced Vol: PCE Adj: MLF Adj: FinalVolume:	e: >> Coun 161 335 1.00 1.00 161 335 1.00 1.00 1.00 1.00 161 335 0 0 161 335 1.00 1.00 1.00 1.00 1.00 1.00	Date: 36 1.00 36 1.00 36 0 36 1.00 36 1.00 36	12 Fe 34 1.00 34 1.00 1.00 34 0 34 1.00 1.00 34	1.00 504 1.00 504 1.00 504 0 504 1.00 1.00 504	08 << 8 48 1.00 48 1.00 1.00 48 0 48 1.00 1.00 48	00-900 89 1.00 89 1.00 1.00 89 0 89 1.00 1.00	1594 1.00 1594 1.00 1.00 1594 0 1594 1.00 1.00	203 1.00 203 1.00 1.00 203 0 203 1.00 1.00 203	99 1.00 99 1.00 1.00 99 0 99 1.00 1.00	2075 1.00 2075 1.00 1.00 2075 0 2075 1.00	10 1.00 10 1.00 1.00 1.00 10 1.00 1.00			
Saturation F Sat/Lane: Adjustment: Lanes: Final Sat.:	1375 1375 1.00 1.00 1.00 1.81 1375 2483	1375 1.00 0.19 267	1.00 1.00 1375	1.00 1.83 2511	1.00 0.17 239	1.00 1.00 1375	1.00 3.00 4125	1.00 1.00 1375	1.00 1.00 1375	1375 1.00 2.99 4105	1.00 0.01 20			
Capacity Ana Vol/Sat: Crit Volume: Crit Moves:	lysis Modu 0.12 0.13 161 ****	le: 0.13	0.02	0.20	0.20 276 ****	0.06 89 ****	0.39	0.15	0.07	0.51	0.51 695 ****			

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Existing 2008 AM Peak

Level Of Service Computation Report Circular 212 Planning Method (Base Volume Alternative) ************************* Intersection #44 Sawtelle Boulevard and Ohio Avenue ************************ 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): xxxxxx Optimal Cycle: 180 Level Of Service: E Street Name: Sawtelle Boulevard Ohio Avenue Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R Control: Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 Lanes: 0 0 1! 0 0 0 0 1! 0 0 1 0 0 1 0 0 1 0 Volume Module: >> Count Date: 13 Feb 2008 << 730-830 Base Vol: 60 303 129 25 90 18 82 845 52 71 458 86 Initial Bse: 60 303 129 25 90 18 82 845 52 71 458 86 PHF Volume: 60 303 129 25 90 18 82 845 52 71 458 86 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 60 303 129 25 90 18 82 845 52 71 458 0 86 FinalVolume: 60 303 129 25 90 18 82 845 52 71 458 86 ------| Saturation Flow Module: Lanes: 0.12 0.62 0.26 0.19 0.68 0.13 1.00 0.94 0.06 1.00 0.84 0.16 Final Sat: 183 924 393 282 1015 203 1500 1413 87 1500 1263 237

Vol/Sat: 0.33 0.33 0.33 0.09 0.09 0.09 0.05 0.60 0.60 0.05 0.36 0.36

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA. LONG BEACH, CA

Crit Volume: 492 25 897 71
Crit Moves: **** ****

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Existing 2008 AM Peak Level Of Service Computation Report Circular 212 Planning Method (Base Volume Alternative) ******************* Intersection #45 Sepulveda Boulevard and Ohio Avenue ************************ 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): xxxxxx Optimal Cycle: 80 Level Of Service: Street Name: Sepulveda Boulevard Ohio Avenue Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - F T. - T - R Control: Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 1 0 1 1 0 1 0 1 1 0 1 0 0 1 0 1 0 0 1 0 Volume Module: >> Count Date: 13 Feb 2008 << 745-845 Base Vol: 96 454 126 38 495 82 174 695 78 74 480 71 Initial Bse: 96 454 126 38 495 82 174 695 78 74 480 71 PHF Volume: 96 454 126 38 495 82 174 695 78 74 480 71 FinalVolume: 96 454 126 38 495 82 174 695 78 74 480 71 -----|----||------| Saturation Flow Module: Lanes: 1.00 1.57 0.43 1.00 1.72 0.28 1.00 0.90 0.10 1.00 0.87 0.13 Final Sat: 1500 2348 652 1500 2574 426 1500 1349 151 1500 1307 193 -----|----|-----||------| Capacity Analysis Module: Vol/Sat: 0.06 0.19 0.19 0.03 0.19 0.19 0.12 0.52 0.52 0.05 0.37 0.37 Crit Volume: 96 289 773 74

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA. LONG BEACH. CA

Existing AM Peak

Crit Moves: ****

UCLA NHIP and Amended LRDP Traffic Study

Existing AM Peak

Capacity Analysis Module:

UCLA NHIP and Amended LRDP Traffic Study
Los Angeles, CA
Existing 2008 AM Peak

Level Of Service Computation Report Circular 212 Planning Method (Base Volume Alternative)

 Cycle (sec):
 100
 Critical Vol./Cap.(X):
 0.795

 Loss Time (sec):
 0 (Y+R=4.0 sec)
 Average Delay (sec/veh):
 xxxxxx

 Optimal Cycle:
 70
 Level Of Service:
 C

**********	,				пелет	01 261				
Street Name: Approach:										
Approach: I	Jorth Bo	und	Sot	ith Bo	ound	Εá	ast B	ound	West B	ound
Movement: L										
Control:	Permit	ted	I	ermit	ted	·	ermi	tted	Permi	tted
Rights:	Inclu	de		Inclu	ıde		Incl	ude	Incl	ude
Rights: Min. Green:	0 0	0	0	0	0	0	0	0	0 0	. 0
Lanes: 0	0 1!	0 0	0 (1!	0 0	1 (0 0	1 0	1 0 0	1 0
Volume Module:	>> Count	Date:	'13 F€	eb 200)8 << 7	45-845	5	,	'	
Base Vol:	3 3 3 2 5	35	14	148	100	268	692	37	25 476	41
Growth Adj: 1.0	0 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00 1.00	1.00
Initial Bse:	3 3 3 2 5	35	14	148	100	268	692	37	25 476	41
User Adj: 1.0	0 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00 1.00	1.00
PHF Adj: 1.0	00 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00 1.00	1.00
PHF Volume:	33 325	35	14	148	100	268	692	37	25 476	41
Reduct Vol:	0 0	0	0	0	0	0	0	0	0 0	0
Reduced Vol:	33 325	35	14	148	100	268	692	37	25 476	41
PCE Adj: 1.0	0 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00 1.00	1.00
MLF Adj: 1.0	0 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00 1.00	1.00
FinalVolume:	33 325	35	14	148	100	268	692	37	25 476	41
Saturation Flow										
Sat/Lane: 150										
Adjustment: 1.0										
Lanes: 0.0										
Final Sat.: 1:	26 1240	134	80	847	573	1500	1424	76	1500 1381	119
Capacity Analys:	s Modul	e:								
Vol/Sat: 0	26 0.26	0.26	0.17	0.17	0.17	0.18	0.49	0.49	0.02 0.34	0.34

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

Los Angeles, CA Existing 2008 AM Peak Level Of Service Computation Report Circular 212 Planning Method (Base Volume Alternative) ************************* Intersection #47 Westwood Boulevard and Ohio Avenue ************************* Cycle (sec): 100 Critical Vol./Cap.(X): 0.738 Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/veh): Optimal Cycle: 55 Level Of Service: xxxxxx Street Name: Westwood Boulevard Ohio Avenue Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - F L - T - R Control: Permitted Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 1 0 2 0 1 1 0 2 0 1 1 0 0 1 0 1 0 0 1 0 Volume Module: >> Count Date: 7 Feb 2008 << 745-845 Base Vol: 124 1179 48 32 461 59 169 278 91 64 266 50 Initial Bse: 124 1179 48 32 461 59 169 278 91 64 266 50 Saturation Flow Module: Lanes: 1.00 2.00 1.00 1.00 2.00 1.00 1.00 0.75 0.25 1.00 0.84 0.16

Final Sat.: 1500 3000 1500 1500 3000 1500 1500 1130 370 1500 1263 237

Vol/Sat: 0.08 0.39 0.03 0.02 0.15 0.04 0.11 0.25 0.25 0.04 0.21 0.21

Crit Volume: 590 32 169 316 Crit Moyes: **** **** ****

-----|

UCLA NHIP and Amended LRDP Traffic Study

Existing AM Peak

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Existing 2008 AM Peak

Level Of Service Computation Report Circular 212 Planning Method (Base Volume Alternative)

 Cycle (sec):
 100
 Critical Vol./Cap.(X):
 1.334

 Loss Time (sec):
 0 (Y+R=4.0 sec)
 Average Delay (sec/veh):
 xxxxxx

 Optimal Cycle:
 180
 Level Of Service:
 F

Loss Time (se	o. 5C):	1.0	0 (Y+R n	=4.0	sec)	Averag	e Del	ay (s	: XXXXXX F **********			
*******	- • • * * * *	*****	·****	****	****	*****	****	****	*****	****	****	*****
Street Name: Approach:												
Approach:	No:	rth Bo	und	So	uth Bo	ound	E	ast B	ound	W	est B	ound
Movement:	L	- T	- R	L	- T	- R	L	- T	- R	L	- T	- R
Control: Rights: Min. Green: Lanes:		Permit	ted		Permit	ted		Permi	tted	Pr	ot+Pe:	rmit
Rights:		Inclu	de		Incl	ıde		Incl	ude		Incl	ude
Min. Green:	0	0	0	0	0	0	C	0	0	0	0	0
Lanes:	0	0 1!	0 0	0	0 1!	0 0	1	0 2	1 0	1	0 2	1 0
	l			1			1					
Volume Module	: : >>	Count	Date:	14 F	eb 200	08 << 7	30-83	0				
Base Vol:	60	454	206	94	158	29	23	1181	21	119	1704	61
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:											1704	61
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Volume:								1181				
Reduct Vol:	0	0	0	0	0	0	C	0	0	0	0	0
Reduced Vol:	60	454	206	94	158	29	23	1181	21	119	1704	61
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
FinalVolume:												
Saturation F	Low M	odule:										
Sat/Lane:												
Adjustment:							0.75	0.75	0.75	0.75	0.75	0.75
Lanes:									0.05			
Final Sat.:	89	674	306	358	601	110	1069	3150	56	1069	3095	111
Capacity Anal	Lysis	Modul	e:	0.00	0 00	0.06			0 0 0		0 55	0 55

Vol/Sat: 0.67 0.67 0.67 0.26 0.26 0.26 0.02 0.37 0.37 0.11 0.55 0.55

Crit Volume: 720 94 23 588
Crit Moyes: *** *** ***

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

Los Angeles, CA Existing 2008 AM Peak Level Of Service Computation Report Circular 212 Planning Method (Base Volume Alternative) ************************* Intersection #49 San Diego Fwy SB Ramps and Santa Monica Boulevard ****************** Cycle (sec): 100 Critical Vol./Cap.(X): 1.068 Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/veh): XXXXXX Optimal Cycle: 180 Level Of Service: Street Name: San Diego Fwy SB Ramps Santa Monica Boulevard Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - F L - T - R Control: Split Phase Split Phase Permitted Protected Rights: Include Include Toolude Toolude
 Rights:
 Include
 Include
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0 Lanes: 0 0 0 0 0 1 1 0 1 1 0 0 3 1 0 2 0 3 0 0 Volume Module: >> Count Date: 14 Feb 2008 << 730-830 Base Vol: 0 0 0 720 281 401 0 1044 418 596 1462 0 Initial Bse: 0 0 0 720 281 401 0 1044 418 596 1462 0 PHF Volume: 0 0 0 720 281 401 0 1044 418 596 1462 0 FinalVolume: 0 0 0 792 281 441 0 1044 418 656 1462 0 -----|----|-----||------| Saturation Flow Module: Lanes: 0.00 0.00 0.00 2.00 0.78 1.22 0.00 3.00 1.00 2.00 3.00 0.00 Final Sat.: 0 0 0 2138 832 1306 0 3206 1069 2138 3206 0 Capacity Analysis Module: Vol/Sat: 0.00 0.00 0.00 0.37 0.34 0.34 0.00 0.33 0.39 0.31 0.46 0.00 Crit Volume: 0 396 418 328 Crit Moves: **** ****

Crit Moves:

Los Angeles, CA

UCLA NHIP and Amended LRDP Traffic Study

Existing AM Peak

Crit Moves: ****

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Existing 2008 AM Peak

Level Of Service Computation Report Circular 212 Planning Method (Base Volume Alternative)

C	ircular	ZIZ PIdIII	iing Method	i (Base vo	Jiulle Ait	ernative)	
******	******	*******	********	******	******	******	*****
Intersection	#50 San	Diego Fwy	NB Ramps	and Santa	a Monica	Boulevard	
********	******	*******	********	******	******	******	******
Cycle (sec):		100		Critical	Vol./Car).(X):	0.884

Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/veh): xxxxxx 160 Level Of Service: Optimal Cycle: D

********	****	*****	*****	*****	****	******	****	****	*****	****	*****	*****
Street Name: Approach:									a Monic			
Movement:									- R			- R
Control:	gς	lit Ph	ase '	ˈ Sp]	lit Pl	nase '	' P:	rotect	ted	· I	Permit	ted
Rights:		Inclu				ıde			ude		Incl	ude
Min. Green:	0	0	0			0	0	0	0	0	0	0
Lanes:	1	1 1	1 1	0 0	0 0	0 0					0 4	
Volume Module	: >>	Count	Date:	14 Fe	eb 20	08 << 7	45-84	5				
Base Vol:	675	384	720	0	0	0	398	1424	0	0	1318	324
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:	675	384	720	0	0	0	398	1424	0	0	1318	324
User Adj:			1.00			1.00		1.00			1.00	
PHF Adj:			1.00		1.00	1.00		1.00	1.00		1.00	
PHF Volume:		384	720	0	0	0	398	1424	0	0	1318	324
	0	-	0	0		0	0	0		0		-
Reduced Vol:				0	-	-	398		-		1318	
PCE Adj:			1.00			1.00		1.00	1.00		1.00	1.00
		1.00	1.10	1.00		1.00		1.00	1.00		1.00	1.00
FinalVolume:			792	. 0	0	0		1424	0	. 0	1318	324
Saturation Fl												
		1425	1425	1425		1425		1425	1425		1425	1425
Adjustment:			0.75	0.75		0.75		0.75	0.75		0.75	
		1.02	2.00	0.00		0.00		3.00	0.00		4.00	1.00
Final Sat.:	2113	1093	2138	, 0	U	0		3206	0 I		4275	1069
Compaint Amal		Madul		1								
Capacity Anal	ysis	MOGUL	e.									

Vol/Sat: 0.35 0.35 0.37 0.00 0.00 0.00 0.20 0.44 0.00 0.00 0.31 0.30

Crit Volume: 396 0 219 330
Crit Moves: **** ****

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

Existing 2008 AM Peak Level Of Service Computation Report Circular 212 Planning Method (Base Volume Alternative) ******************* Intersection #51 Sepulveda Boulevard and Santa Monica Boulevard ******************* Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/veh): xxxxxx Optimal Cycle: 180 Level Of Service: Street Name: Sepulveda Boulevard Santa Monica Boulevard Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - F L - T - R Control: Protected Protected Protected Protected Rights: Include Owl Lanes: 1 0 2 0 1 1 0 2 0 1 1 0 3 0 1 1 0 3 0 1 -------Volume Module: >> Count Date: 19 Feb 2008 << 800-900 Base Vol: 206 832 135 149 753 184 99 1701 361 97 1281 140 Initial Bse: 206 832 135 149 753 184 99 1701 361 97 1281 140 PHF Volume: 206 832 135 149 753 184 99 1701 361 97 1281 140 FinalVolume: 206 832 135 149 753 184 99 1701 361 97 1281 140 -----|-----| Saturation Flow Module: Lanes: 1.00 2.00 1.00 1.00 2.00 1.00 1.00 3.00 1.00 1.00 3.00 1.00 Final Sat.: 1031 2063 1031 1031 2063 1031 1031 3094 1031 1031 3094 1031 -----|----|-----||------| Capacity Analysis Module: Vol/Sat: 0.20 0.40 0.13 0.14 0.37 0.18 0.10 0.55 0.35 0.09 0.41 0.14

Crit Volume: 206 377 567 97

Loss Time (sec):

Saturation Flow Module:

Santa Monica Boulevard

xxxxxx

L - T - R

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Existing 2008 AM Peak

Level Of Service Computation Report Circular 212 Planning Method (Base Volume Alternative)

************************* Intersection #52 Veteran Avenue and Santa Monica Boulevard ************************

Cycle (sec): 100 Critical Vol./Cap.(X): 0.721 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): xxxxxx

Optimal Cycle: ********	'ycle: 82 Level Of Service: C									
Street Name:	Veterar	n Avenue	Santa Monica	a Boulevard						
Approach: N	orth Bound	South Bound	East Bound	West Bound						
			L - T - R							
Control: P	rot+Permit	Prot+Permit	Protected	Protected						
Rights:	Include	Include	Include	Ovl						
Min. Green:	0 0 0	0 0 0	0 0 0	0 0 0						
Lanes: 1	0 0 1 0	1 0 0 1 0	1 0 3 1 0	1 0 3 0 1						
Volume Module: >	> Count Date:	14 Feb 2008 << 7	45-845							
Base Vol: 6	4 265 54	132 146 66	101 1839 24	63 1320 60						
Growth Adj: 1.0	0 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00						
Initial Bse: 6	4 265 54	132 146 66	101 1839 24	63 1320 60						
User Adj: 1.0	0 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00						
PHF Adj: 1.0		1.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00						
PHF Volume: 6	4 265 54	132 146 66	101 1839 24	63 1320 60						
Reduct Vol:	0 0 0	0 0 0	0 0 0	0 0 0						
Reduced Vol: 6	4 265 54	132 146 66	101 1839 24	63 1320 60						
PCE Adj: 1.0	0 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00						
MLF Adj: 1.0		1.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00						
FinalVolume: 6	4 265 54	132 146 66		63 1320 60						
Saturation Flow	Module:									
Sat/Lane: 137	5 1375 1375	1375 1375 1375	1375 1375 1375	1375 1375 1375						
Adjustment: 1.0	0 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00						
	0 0.83 0.17	1.00 0.69 0.31		1.00 3.00 1.00						
Final Sat.: 137		1375 947 428		1375 4125 1375						
Capacity Analysi	s Module:									

Vol/Sat: 0.05 0.23 0.23 0.10 0.15 0.15 0.07 0.34 0.34 0.05 0.32 0.04 Crit Volume: 319 132 101 440
Crit Moves: **** **** ****

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

Lanes: 1.00 1.86 0.14 1.00 2.00 1.00 2.00 3.00 1.00 2.00 3.00 1.00 -----|----|-----||------| Capacity Analysis Module: Vol/Sat: 0.07 0.39 0.39 0.16 0.19 0.05 0.06 0.43 0.07 0.05 0.31 0.09 Crit Volume: 541 218 598 70 Crit Moves: **** **** ****

UCLA NHIP and Amended LRDP Traffic Study

Level Of Service Computation Report

Circular 212 Planning Method (Base Volume Alternative)

Intersection #53 Westwood Boulevard and Santa Monica Boulevard

Optimal Cycle: 180 Level Of Service:

Street Name: Westwood Boulevard

Volume Module: >> Count Date: 19 Feb 2008 << 745-845

Control: Prot+Permit Prot+Permit Protected Protected Rights: Include Include Ovl Ovl Lanes: 1 0 1 1 0 1 0 2 0 1 2 0 3 0 1 2 0 3 0 1

Base Vol: 91 1008 73 218 528 75 140 1794 97 128 1288 129 Initial Bse: 91 1008 73 218 528 75 140 1794 97 128 1288 129 MLF Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.10 1.00 1.00 1.10 1.00 1.00 FinalVolume: 91 1008 73 218 528 75 154 1794 97 141 1288 129 -----|----|-----||------|

0 (Y+R=4.0 sec) Average Delay (sec/veh):

Cycle (sec): 100 Critical Vol./Cap.(X): 1.038

Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - F

Los Angeles, CA Existing 2008 AM Peak

Saturation Flow Module:

Capacity Analysis Module:

Ω

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Existing 2008 AM Peak

Level Of Service Computation Report

	Circular 212 Planning Method (Base Volume Alternative)											
******	****	*****	*****	****	****	*****	****	****	*****	****	****	*****
Intersection *******						oscomar *****	e Road	1 ****	*****	****	****	*****
Cycle (sec): Loss Time (s		10	0 (11.17)	4 0		Critic	al Vol	L./Ca	p.(X):		0.	819
Optimal Cycl	ec): e:	12	0 (Y+R:	=4.0 8	sec)	Level	Of Sei	vice	ec/ven) :		XXX	D
										****	****	*****
Street Name: Approach:		Mu	ilholla	nd Dr:	ive				Roscoma	re Roa	ad	
Movement:												
Control:	g	lit Ph	ase .	gg.	lit Pl	nase	Pro	ot+Pe	rmit .	Pro	ot+Pe:	rmit .
Rights:		Inclu	ide		Incli	ıde		Ovl			Incl	ude
Rights: Min. Green: Lanes:	0	0	0	0	0	0	0	0	0	0	0	0
Lanes:	0	0 1	0 0	0 (າ ດັ	0 0	0 0	1	0 1	1 (าา	0 0
Volume Modul									1	1		1
Base Vol:	195	0	75	0	0	0	0	713	409	184	519	0
Growth Adj:								1.00	1.00	1.00	1.00	1.00
Initial Bse:	195	0	75	0	0	0	0	713	409	184	519	0
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Volume:								713	409	184	519	0
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0

Reduced Vol: 195 0 75 0 0 0 0 713 409 184 519

FinalVolume: 195 0 75 0 0 0 0 713 409 184 519 0

Final Sat : 1029 0 396 0 0 0 0 1425 1425 1425 1425 0 -----||-----||-----||------|

Vol/Sat: 0.19 0.00 0.19 0.00 0.00 0.00 0.50 0.29 0.13 0.36 0.00

Crit Volume: 270 0 713 184 Crit Moves: **** ****

-----|----|-----|

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA. LONG BEACH. CA

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Existing 2008 AM Peak

Existing AM Peak

Level Of Service Computation Report 2000 HCM 4-Way Stop Method (Base Volume Alternative) ******************* Intersection #55 Roscomare Road and Stradella Road/Linda Flora Drive ************************** 12.5 Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/veh): Optimal Cycle: 0 Level Of Service: Street Name: Roscomare Road Stradella Road/Linda Flora Drive Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R T. - T - R Control: Stop Sign Stop Sign Stop Sign Rights: Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 0 0 1! 0 0 0 0 1! 0 0 0 0 1! 0 0 0 0 1! 0 0 Volume Module: >> Count Date: 21 Feb 2008 << 800-900 Base Vol: 12 74 8 90 423 16 16 1 38 9 0 32 Initial Bse: 12 74 8 90 423 16 16 1 38 9 0 32 PHF Volume: 12 74 8 90 423 16 16 1 38 9 0 32 FinalVolume: 12 74 8 90 423 16 16 1 38 9 0 32 -----|-----|------| Saturation Flow Module: Lanes: 0.13 0.79 0.08 0.17 0.80 0.03 0.29 0.02 0.69 0.22 0.00 0.78 Final Sat.: 95 588 64 142 669 25 191 12 453 144 0 513 Capacity Analysis Module: Vol/Sat: 0.13 0.13 0.13 0.63 0.63 0.63 0.08 0.08 0.08 0.06 xxxx 0.06 Crit Moves: **** **** **** Delay/Veh: 8.3 8.3 8.3 14.1 14.1 14.1 8.3 8.3 8.3 8.2 0.0 8.2 AdjDel/Veh: 8.3 8.3 8.3 14.1 14.1 14.1 8.3 8.3 8.3 8.2 0.0 8.2 Adjuer, ...
LOS by Move: A A
ApproachDel: 8.3
Delay Adj: 1.00
Page 1: 8.3 LOS by Move: A A A B B B A A A * 14.1 8.3 8.2 1.00 1.00 1.00 14.1 8.3

Note: Queue reported is the number of cars per lane. ****************************

LOS by Appr:

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

В

AllWayAvgQ: 0.1 0.1 0.1 1.6 1.6 0.1 0.1 0.1 0.1 0.1 0.1

A

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Existing 2008 AM Peak

Level Of Service Computation Report

2000 HCM 4-Way Stop Method (Base Volume Alternative) ******************* Intersection #56 Bellagio Road and Chalon Road ****************** 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): 11.9 Optimal Cycle: 0 Level Of Service: Street Name: Bellagio Road Chalon Road Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R T. - T - R Control: Stop Sign Stop Sign Stop Sign Stop Sign Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 0 1 0 0 0 0 0 0 1 0 0 0 1! 0 0 0 0 0 Volume Module: >> Count Date: 21 Feb 2008 << 745-845 Base Vol: 30 119 0 0 499 20 11 0 40 0 0 Initial Bse: 30 119 0 0 499 20 11 0 40 0 0 PHF Volume: 30 119 0 0 499 20 11 0 40 0 0 0 Ω FinalVolume: 30 119 0 0 499 20 11 0 40 0 0 -----|----|-----||------| Saturation Flow Module: Lanes: 0.20 0.80 0.00 0.00 0.96 0.04 0.22 0.00 0.78 0.00 0.00 0.00 Final Sat.: 155 615 0 0 828 33 145 0 526 0 0 -----| Capacity Analysis Module: Vol/Sat: 0.19 0.19 xxxx xxxx 0.60 0.60 0.08 xxxx 0.08 xxxx xxxx xxxx Crit Moves: **** Delay/Veh: 8.6 8.6 0.0 0.0 13.2 13.2 8.2 0.0 8.2 0.0 0.0 0.0 AdjDel/Veh: 8.6 8.6 0.0 0.0 13.2 13.2 8.2 0.0 8.2 0.0 0.0 0.0 AdproachDel: 8.6 13.2 8.2
Delay Adj: 1.00 1.00 1.00
ApprAdjDel: 8.6 13.2 8.2
LOS by Appr: A B B A * A xxxxxx xxxxx LOS by Appr: A В A AllWayAvgO: 0.2 0.2 0.2 1.4 1.4 1.4 0.1 0.1 0.1 0.0 0.0 0.0

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

Note: Oueue reported is the number of cars per lane.

Existing 2008 AM Peak Level Of Service Computation Report Circular 212 Planning Method (Base Volume Alternative) ******************* Intersection #57 Beverly Glen Boulevard and Mulholland Drive ****************** 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): xxxxxx Optimal Cycle: 180 Level Of Service: Street Name: Beverly Glen Boulevard Mulholland Drive Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - F T. - T - R Control: Split Phase Split Phase Permitted Permitted Rights: Include Include Include Tancre
 Rights:
 Include
 Include
 Include
 Include
 Include
 Ignore

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 Lanes: 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 1 0 2 0 1 -----|----|-----|------| Volume Module: >> Count Date: 26 Feb 2008 << 730-830 Base Vol: 59 199 70 765 747 129 42 559 38 42 304 292 Initial Bse: 59 199 70 765 747 129 42 559 38 42 304 292 PHF Volume: 59 199 70 765 747 129 42 559 38 42 304 0

-----|-----||-------|

Lanes: 0.23 0.77 1.00 1.00 1.00 1.00 1.87 0.13 1.00 2.00 1.00

Final Sat: 326 1099 1425 1425 1425 1425 1425 2669 181 1425 2850 1425

-----|-----|------|

Vol/Sat: 0.18 0.18 0.05 0.54 0.52 0.09 0.03 0.21 0.21 0.03 0.11 0.00

Crit Volume: 258 765 299 42 Crit Moves: **** **** ****

Thu Jul 17, 2008 10:27:52

Los Angeles, CA

UCLA NHIP and Amended LRDP Traffic Study

Existing AM Peak

Saturation Flow Module:

Capacity Analysis Module:

Crit Moves: ****

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA

Existing 2008 AM Peak Level Of Service Computation Report Circular 212 Planning Method (Base Volume Alternative) ******************* Intersection #58 Beverly Glen Boulevard and Greendale Drive ******************* Cycle (sec): 100 Critical Vol./Cap.(X): 0.825 0 (Y+R=4.0 sec) Average Delay (sec/veh): xxxxxx Loss Time (sec): Optimal Cycle: 106 Level Of Service: ************************ Street Name: Beverly Glen Boulevard Greendale Drive Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R Control: Permitted Permitted Split Phase Rights: Include Include Include Include
 Rights:
 Include
 Include
 Include
 Include
 Include
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 Lanes: 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1! 0 0 Volume Module: >> Count Date: 5 Feb 2008 << 745-845 Base Vol: 0 293 13 128 923 0 0 0 78 0 47 Initial Bse: 0 293 13 128 923 0 0 0 78 0 47 PHF Volume: 0 293 13 128 923 0 0 0 78 0 47 FinalVolume: 0 293 13 128 923 0 0 0 78 0 47 -----|-----| Saturation Flow Module: Lanes: 0.00 0.96 0.04 0.12 0.88 0.00 0.00 0.00 0.00 0.62 0.00 0.38 Final Sat.: 0 1364 61 174 1251 0 0 0 889 0 536 -----|-----|------| Capacity Analysis Module: Vol/Sat: 0.00 0.21 0.21 0.74 0.74 0.00 0.00 0.00 0.00 0.09 0.00 0.09

Crit Volume: 0 1051 0 125
Crit Moves: ****

Thu Jul 17, 2008 10:28:04

Page 1-1

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA

Existing 2008 PM Peak

Scenario Report

Existing PM Peak Scenario:

Existing PM Peak Command: Volume: Existing PM Geometry: Existing

Impact Fee: Default Impact Fee

Trip Generation: PM Peak Trip Distribution: Project Paths: Project Routes: Default Route Configuration: Existing

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

Existing PM Peak

Thu Jul 17, 2008 10:28:04

Page 2-1

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Existing 2008 PM Peak

Turning Movement Report PM Peak

Volume Type		rthbou Thru I			uthbo Thru			astbo Thru			estbo Thru		Total Volume
11									J -			3	
#1 Sep													
Base	-	1621	226	3		365	558	102	18	65	96	7	3944
Added	0	-	0	0	0	0	0	100	0	0 65	0	0 7	0
Total	4	1621	226	3	879	365	558	102	18	65	96	,	3944
#2 Chu	rch La	ne and	l San	Diego	Fwy S	SB On/O	Off Ran	qn					
Base	6	636	249	96	456	0	5	3	9	900	1	26	2387
Added	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	6	636	249	96	456	0	5	3	9	900	1	26	2387
#3 Chu:	rch La	ne and	d Gune	et Boi	ıl evar	-d							
Base	126	39	77	532	92	717	407	1219	33	28	861	422	4553
Added	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	126	39	77	532	92	717	407	1219	33	28	861	422	4553
#4 San	Diama	E >	TD 0=	/055 D-			D						
#4 San	97	rwy i	NB OII,	OLL Re	പലുട ദ വ	0	iset Bo	996 996	870	0	1220	0	3266
Added	0	0	0.5	0	0	0	0	0.00	0 / 0	0	1220	0	0
Total	97	0	83	0	0	0	0	996	870	-	1220	0	3266
10041		Ü	0.5	Ü		Ü	Ü	,,,,	0,0	Ü	1000	Ü	3200
#5 Vet													
Base	373	0	396	0	0	0	0	859	151		1347	0	3400
Added	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	373	0	396	0	0	0	0	859	151	274	1347	0	3400
#6 Bel	lagio	Way ar	nd Sur	nset Bo	uleva	ard							
Base	261	96	30	55	6	136	333	856	82	15	1233	112	3215
Added	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	261	96	30	55	6	136	333	856	82	15	1233	112	3215
#7 Wes	hoowt	Boueva	ard ar	nd Suns	set Bo	nılevar	rd						
Base	195	0	191	0	0	0	0	870	94	46	1206	0	2602
Added	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	195	0	191	0	0	0	0	870	94	46	1206	0	2602
#8 Sto	no Con	ron B	d	ad Cuma	act Br	1 0***	c d						
Base	139	0	130	62	0	101		1213	124	158	978	22	3046
Added	133	0	0	0	0	0	110	1213	124	130	0 / 0	0	0.40
Total	139	0	130	62	0	101	-	1213	124	158	978	22	3046
			. ~		_				,				
#9 Hil										150	0.77	-	2005
Base	260 0	33	364	35	69	20	0	1145	120	158 0	871 0	7	3085
Added Total	260	0 33	0 364	0 35	0 69	0 20	-	1145	120	158	871	7	0 3085
IOLAL	∠60	33	304	35	09	∠0	3	1145	1∠0	T28	0 / 1	/	3005

Thu Jul 17, 2008 10:28:04

Page 2-2

Existing PM Peak Thu Jul 17, 2008 10:28:04

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Existing 2008 PM Peak

Volume Northbound Southbound Eastbound Westbound To													
Volume	T of t	Thru	Diaht	Toft.	Thru	Diaht	Toft.	Thru	una Biaht	T of t	Thru	und Diabt	Volume
Type	петс	IIII u	Kigiic	петс	IIII u	Kigiic	Terc	IIII u	Rigiic	Terc	IIII u	Kigiic	vorune
#10 Be	verly	Glen	Boulev	ard a	nd Su	nset Bo	ouleva:	rd					
Base	222	167	581	104			16	1286	60	389	960	79	3951
Added	0	0		0	0	0	0			0			
Total	222	167	581	104	68	19	16	1286	60	389	960	79	3951
		~3		,					. = /0	,			
		Gien 0			na Sui	nset Bo			ast I/S	0	000	100	2601
Base Added	-	-	0	115 0		364 0		1226	0	0	908	126 0	3601 0
Total					0		862			0	908		3601
IULAI	U	U	U	113	U	304	002	1220	U	U	300	120	3001
#12 Se	nulve	da Boi	ilevaro	and :	San D	iego Fv	JV NR (Off-Ra	amro				
Base			0							0	0	0	2573
Added		0							0	0	0	0	0
	0			0	855	0		0			0		
#13 Se						na Aver							
Base	127	1404	117	56		15		91	114	161			
Added Total	0	0	0	0	0	0	0	0	0				0
Total	127	1404	117	56	629	15	3	91	114	161	189	254	3160
U14 T -													
#14 Le Base	verin	g Avei	nue and	1 Mont	ana A	venue	0	222	106	1	506	0	1196
Added	253	0	0	0	0	0	0	322	106	1	0		1196
Total	253	0	Ω	0	0	0	0	333	106	1			1196
IOCAI	233	U	0	U	0	U	U	322	100		500	U	1100
#15 Ve	teran	Aveni	ie and	Monta	na Av	enue/Ga	alev A	venue					
Base				58		49				22	419	284	1983
Added	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	54	452	26	58	294	49	115	158	52	22	419	284	1983
#16 Ga													
Base		363			156	13		102		319			
Added	0	0	0			-		0					
Total	22	363	171	121	156	13	8	102	18	319	152	336	1781
U177 TT-				T									
#17 Ve Base			ie and	Lever		venue	0	41	83	52	96	68	1479
Added		0	40		351	0	0	41	0.3	0			
Total	174		40						83	52		68	1479
IUCAI	1/4	341	40	22	231	3	U	41	0.3	32	90	00	14/2
#18 Hi	lgard	Aveni	ie and	Wyton	Drive	e							
Base	117			33			50	110	320	20	26	12	1751
Added	0	0	0				0		0	0		0	0
Total	117	623	43	33	374	23	50	110	320	20	26	12	1751

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

UCLA NHIP and Amended LRDP Traffic Study
Los Angeles, CA
Existing 2008 PM Peak

Page 2-3

						ing 20							
	Northbound						Eastbound			Westbound Total			
Type	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Volume
#19 Be									-Leg In				
Base	25	727	14		458		19			46	66	123	1574
Added	0		0	0	0	0	0	0	0	0	0	0	(
Total	25	727	14	28	458	11	19	31	26	46	66	123	157
#20 Hi	lgard		ie and			Avenue							
Base	97		31	72		39	195	231	150	27	51	47	203
Added	0	0	0		0		0	0		0	0	0	
Total	97	561	31	72	537	39	195	231	150	27	51	47	203
#21 Hi	lgard					enue							
Base	0		8		852	0	0	0	0	10	0	23	158
Added	0	0	0	0	0	0	0	0	0	0	0	0	
Total	0	628	8	64	852	0	0	0	0	10	0	23	158
#22 Ga	yley i	Avenue	e and 1	Le Cont	te Ave	enue							
Base	61	400	204	190	1037	35	14	127	12	200	300	157	273
Added	0	0	0	0	0	0	0	0	0	0	0	0	
Total	61	400	204	190	1037	35	14	127	12	200	300	157	273
#23 We	stwood	d Boul	Levard	and Le	e Cont	e Aven	ue						
Base	100	329	153	103	448	212	90	409	102	162	396	62	256
Added	0	0	0	0	0	0	0	0	0	0	0	0	
Total	100	329	153	103	448	212	90	409	102	162	396	62	256
#24 Ti	verto	n Driv	e and	Le Cor	nte Av	venue							
Base	35	68	41	92	80	194	128	484	130	22	453	39	176
Added	0	0	0	0	0	0	0	0	0	0	0	0	
Total	35	68	41	92	80	194	128	484	130	22	453	39	176
#25 Hi	lgard	Avenu	ie and	Le Cor	nte Av								
Base	56	286	10	25		368	322	208		10	97	28	196
Added	0	0	0	0	0	0	0	0	0	0	0	0	
Total	56	286	10	25	470	368	322	208	81	10	97	28	196
#26 Ga	yley i	Avenue	e and V	Veyburi	n Aver	nue							
Base	59	495	205	63	944	281	88	166	32	110	166	88	269
Added	0	0	0	0	0	0	0	0	0	0	0	0	
Total	59	495	205	63	944	281	88	166	32	110	166	88	269
#27 We	stwood	d Boul	levard	and We	eyburı	n Avenu	.e						
Base	146		110		666	100		144	137	96	219	48	243
Added	0	0	0	0	0	0	0	0	0	0	0	0	
Total	146	646	110	40	666	100	79	144	137	96	219	48	243

Added 0 0 0

0 0

Added

Thu Jul 17, 2008 10:28:04

Page 2-4

Existing PM Peak Thu Jul 17, 2008 10:28:05

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Page 2-5

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

UCLA NHIP and Amended LRDP Traffic Study
Los Angeles. CA

Los Angeles, CA Existing 2008 PM Peak Volume Northbound Southbound Eastbound Westbound Total Type Left Thru Right Left Thru Right Left Thru Right Left Thru Right Volume #28 Tiverton Drvie and Weyburn Avenue Base 22 61 45 99 0 162 Added 0 0 0 0 0 0 67 169 1 1 95 31 753 0 0 0 0 0 0 0 22 61 45 99 0 162 67 169 31 753 Total #29 Hilgard Avenue and Weyburn Avenue Base 49 343 21 26 534 50 55 99 167 13 36 2.0 1413 0 0 0 0 0 0 0 0 Added 0 0 Ω Ω 49 343 21 26 534 50 55 99 167 13 36 2.0 1413 Total #30 Westwood Boulevard and Kinross Avenue Base 78 739 34 37 744 118 96 215 16 128 2339 94 40 Added 0 0 0 0 0 0 78 739 34 37 744 118 0 0 0 0 0 Ω 0 96 215 94 16 128 Total 40 2339 #31 Westwood Boulevard and Lindbrook Drive 1 711 173 28 815 15 30 130 0 0 0 0 0 0 0 0 89 242 Base 54 42 2330 Added 0 0 0 0 0 1 711 173 28 815 15 30 130 54 89 242 Total 42 2330 #32 Glendon/Tiverton/Lindbrook 30 125 184 36 124 153 31 224 18 395 257 53 1630 Rase Added 0 0 0 0 0 0 0 0 0 0 0 Ω 0 Total 30 125 184 36 124 153 31 224 18 395 257 #33 Sepulveda Boulevard and Constitution Avenue Base 19 1039 2 4 824 100 531 2 76 10 5
Added 0 0 0 0 0 0 0 0 0 0 0
Total 19 1039 2 4 824 100 531 2 76 10 5 5 2617 Ω 0 5 2617 #34 San Vicente Bouevard and Wilshire Bouelvard Base 95 371 230 1066 321 47 10 984 20 126 1718 788 5776 Added 0 0 0 0 0 0 0 0 0 0 0 0 0 Total 95 371 230 1066 321 47 10 984 Ο 0 0 Ω Ο 20 126 1718 788 #35 Sepulveda Boulevard and Wilshire Boulevard Base 123 555 259 108 435 130 140 1837 39 290 2281 169 6366

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

Ω

0 0 0 0 0

Total 222 645 140 78 1022 1528 402 2072 46 42 2421 29 8647

0 0

Λ

0

0 0

39 290 2281 169

46 42 2421 29

0 0

Ω

0

Λ

8647

0

0 0

Total 123 555 259 108 435 130 140 1837

Base 222 645 140 78 1022 1528 402 2072

#36 Veteran Avenue and Wilshire Boulevard

0

Thu Jul 17, 2008 10:28:05

Page 2-6

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Existing 2008 PM Peak

Existing 2008 PM Peak													
Volume	No	rthbou	nd	S	outhbo	und	Ea	astbo	und	We	estboi	ınd	
#46 Vet	eran	Avenue	and	Ohio 2	Avenue								
Base	26	328	45	17	368	156	145	502	46	145	480	43	2301
Added	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	26	328	45	17	368	156	145	502	46	145	480	43	2301
#47 Wes	twood	Boule	vard	and O	hio Av	enue							
Base	91	859	41	44	1223	116	89	232	79	85	246	41	3146
Added	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	91	859	41	44	1223	116	89	232	79	85	246	41	3146
#48 Saw	telle	Boule	vard	and S	anta M	Ionica	Boule	vard					
Base	74	359	393	120	531	31	14	1288	31	169	1202	68	4280
Added	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	74	359	393	120	531	31	14	1288	31	169	1202	68	4280
#49 San	Dieg	o Fwy	SB Ra	amps a	nd San	ta Mor	nica B	ouleva	ard				
Base	0	0	0	377	530	193	0	1577	248	560	1179	0	4664
Added	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	0	0	0	377	530	193	0	1577	248	560	1179	0	4664
#50 San	Diec	o Fwy l	NB Ra	amps a	nd San	ıta Mor	nica B	ouleva	ard				
Base	448	504	410	0	0	0	498	1368	0	0	1352	474	5054
Added	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	448	504	410	0	0	0	498	1368	0	0	1352	474	5054
#51 Sep	ulved	la Boule	evaro	d and	Santa	Monica	Boule	evard					
Base	166	796	203	146	1123	200	145	1404	304	190	1350	162	6189
Added	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	166	796	203	146	1123	200	145	1404	304	190	1350	162	6189
#52 Vet	eran	Avenue	and	Santa	Monic	a Boul	.evard						
Base	62	284	46	123	534	59	174	1549	31	89	1412	86	4449
Added	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	62	284	46	123	534	59	174	1549	31	89	1412	86	4449
#53 Wes	twood	l Boule	vard	and S	anta M	Ionica	Boule	vard					
Base	106	867	99		1358	122		1424	131	195	1376	230	6269
Added	0	0	0		0			0		0		0	0
Total	106	867	99		1358	122		1424			1376	230	6269
#54 Mul	holla	nd Dri	ve ai	nd Rose	comare	Road							
Base	288	0	145	0		0	0	321	102	45	593	0	1494
Added	0	0	0	0	0	0	0		0	0	0	0	0
Total	288	0	145	0	0	0	0	321	102	45	593	0	1494

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

Existing PM Peak

Thu Jul 17, 2008 10:28:05

Page 2-7

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA

					Exist	ing 20	08 PM	Peak					
Volume	N	orthbo	ound	Sc	uthbo	ound	Ea	stbou	ınd	We	estbo	und	Total
Type	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Volume
#55 Ro	scoma	re Roa	ad and	Strade	lla F	Road/Li	nda Fl	ora I	rive				
Base	22	390	6	37	58	12	14	0	10	6	1	59	615
Added	0	0			0	0	0	0	0	0	0	0	0
Total	22	390	6	37	58	12	14	0	10	6	1	59	615
#56 Be	llagi	Road	d and C	Chalon	Road								
Base	67			0	98	24		0	12	0	0	0	720
Added				-	0	0	0	0	0	0	0	0	0
Total	67	508	0	0	98	24	11	0	12	0	0	0	720
#57 Be	verly	Glen	Boulev	ard ar	d Mul	lhollan	d Driv	re					
Base	40	772	81	206	359	36	51	194	37	45	535	704	3060
Added	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	40	772	81	206	359	36	51	194	37	45	535	704	3060
#58 Be	verly	Glen	Boulev	ard ar	d Gre	eendale	Drive	1					
Base	0	1084	9	62	413	0	0	0	0	44	0	220	1832
Added	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	0	1084	9	62	413	0	0	0	0	44	0	220	1832

Thu Jul 17, 2008 10:28:06

Page 3-1

Existing PM Peak Thu Jul 17, 2008 10:28:06

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Existing 2008 PM Peak

Page 3-2

Future Intersection Base Change Del/ V/ Del/ V/ LOS Veh C LOS Veh C # 24 Tiverton Drive and Le Conte Av A xxxxx 0.545 A xxxxx 0.545 + 0.000 V/C # 25 Hilgard Avenue and Le Conte Av B xxxxx 0.641 B xxxxx 0.641 + 0.000 V/C # 26 Gayley Avenue and Weyburn Aven B xxxxx 0.676 B xxxxx 0.676 + 0.000 V/C # 27 Westwood Boulevard and Weyburn E xxxxx 0.930 E xxxxx 0.930 + 0.000 V/C # 28 Tiverton Drvie and Weyburn Ave A 9.9 0.358 A 9.9 0.358 + 0.000 V/C # 29 Hilgard Avenue and Weyburn Ave B xxxxx 0.644 B xxxxx 0.644 + 0.000 V/C # 30 Westwood Boulevard and Kinross E xxxxx 0.924 E xxxxx 0.924 + 0.000 V/C # 31 Westwood Boulevard and Lindbro A xxxxx 0.535 A xxxxx 0.535 + 0.000 V/C # 32 Glendon/Tiverton/Lindbrook A xxxxx 0.580 A xxxxx 0.580 + 0.000 V/C # 33 Sepulveda Boulevard and Consti C xxxxx 0.762 C xxxxx 0.762 + 0.000 V/C # 34 San Vicente Bouevard and Wilsh D xxxxx 0.838 D xxxxx 0.838 + 0.000 V/C # 35 Sepulveda Boulevard and Wilshi F xxxxx 1.110 F xxxxx 1.110 + 0.000 V/C # 36 Veteran Avenue and Wilshire Bo F xxxxx 1.624 F xxxxx 1.624 + 0.000 V/C # 37 Gayley Avenue and Wilshire Bou F xxxxx 1.193 F xxxxx 1.193 + 0.000 V/C # 38 Westwood Boulevard and Wilshir E xxxxx 0.924 E xxxxx 0.924 + 0.000 V/C # 39 Glendon Avenue and Wilshire Bo D xxxxx 0.867 D xxxxx 0.867 + 0.000 V/C # 40 Malcolm Avenue and Wilshire Bo F 319.9 0.000 F 319.9 0.000 + 0.000 D/V # 41 Westholme Avenue and Wilshire C xxxxx 0.732 C xxxxx 0.732 + 0.000 V/C # 42 Warner Avenue and Wilshire Bou A xxxxx 0.572 A xxxxx 0.572 + 0.000 V/C # 43 Beverly Glen Boulevard and Wil C xxxxx 0.756 C xxxxx 0.756 + 0.000 V/C # 44 Sawtelle Boulevard and Ohio Av D xxxxx 0.876 D xxxxx 0.876 + 0.000 V/C # 45 Sepulveda Boulevard and Ohio A D xxxxx 0.850 D xxxxx 0.850 + 0.000 V/C # 46 Veteran Avenue and Ohio Avenue D xxxxx 0.840 D xxxxx 0.840 + 0.000 V/C # 47 Westwood Boulevard and Ohio Av C xxxxx 0.732 C xxxxx 0.732 + 0.000 V/C # 48 Sawtelle Boulevard and Santa M F xxxxx 1.455 F xxxxx 1.455 + 0.000 V/C

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

Los Angeles, CA
Existing 2008 PM Peak

Impact Analysis Report

Level Of Service

Intersection Base Future Change Del/ V/ Del/ V/ LOS Veh LOS Veh C xxxxx 0.775 + 0.000 V/C # 1 Sepulveda Boulevard and Church C xxxxx 0.775 # 2 Church Lane and San Diego Fwy B xxxxx 0.664 B xxxxx 0.664 + 0.000 V/C # 3 Church Lane and Sunset Bouleva D xxxxx 0.824 D xxxxx 0.824 + 0.000 V/C # 4 San Diego Fwy NB On/Off Ramps A xxxxx 0.418 A xxxxx 0.418 + 0.000 V/C # 5 Veteran Avenue and Sunset Boul D xxxxx 0.808 D xxxxx 0.808 + 0.000 V/C # 6 Bellagio Way and Sunset Boulev E xxxxx 0.969 E xxxxx 0.969 + 0.000 V/C # 7 Westwood Bouevard and Sunset B A xxxxx 0.557 A xxxxx 0.557 + 0.000 V/C # 8 Stone Canyon Road and Sunset B C xxxxx 0.777 C xxxxx 0.777 + 0.000 V/C # 9 Hilgard Avenue/Copa De Oro Roa D xxxxx 0.839 D xxxxx 0.839 + 0.000 V/C # 10 Beverly Glen Boulevard and Sun F xxxxx 1.073 F xxxxx 1.073 + 0.000 V/C # 11 Beverly Glen Boulevard and Sun F xxxxx 1.179 F xxxxx 1.179 + 0.000 V/C # 12 Sepulveda Boulevard and San Di B xxxxx 0.606 B xxxxx 0.606 + 0.000 V/C # 13 Sepulveda Boulevard and Montan C xxxxx 0.791 C xxxxx 0.791 + 0.000 V/C # 14 Levering Avenue and Montana Av E 49.5 0.000 E 49.5 0.000 + 0.000 D/V # 15 Veteran Avenue and Montana Ave E xxxxx 0.953 E xxxxx 0.953 + 0.000 V/C # 16 Galey Avenue and Strathmore Pl B xxxxx 0.653 B xxxxx 0.653 + 0.000 V/C # 17 Veteran Avenue and Levering Av B xxxxx 0.666 B xxxxx 0.666 + 0.000 V/C # 18 Hilgard Avenue and Wyton Drive A xxxxx 0.471 A xxxxx 0.471 + 0.000 V/C # 19 Beverly Glen Blvd and Wyton Dr B xxxxx 0.673 B xxxxx 0.673 + 0.000 V/C # 20 Hilgard Avenue and Westholme A A xxxxx 0.470 A xxxxx 0.470 + 0.000 V/C # 21 Hilgard Avenue and Manning Ave A xxxxx 0.322 A xxxxx 0.322 + 0.000 V/C # 22 Gayley Avenue and Le Conte Ave B xxxxx 0.624 B xxxxx 0.624 + 0.000 V/C

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

23 Westwood Boulevard and Le Cont C xxxxx 0.758 C xxxxx 0.758 + 0.000 V/C

Thu Jul 17, 2008 10:28:06

Page 3-3

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Existing 2008 PM Peak

I	nte	rsection		Future Del/ V/ LOS Veh C	
#	49	San Diego Fwy SB Ramps and San	F xxxxx 1.031	F xxxxx 1.031	+ 0.000 V/C
#	50	San Diego Fwy NB Ramps and San	F xxxxx 1.011	F xxxxx 1.011	+ 0.000 V/C
#	51	Sepulveda Boulevard and Santa	F xxxxx 1.344	F xxxxx 1.344	+ 0.000 V/C
#	52	Veteran Avenue and Santa Monic	E xxxxx 0.945	E xxxxx 0.945	+ 0.000 V/C
#	53	Westwood Boulevard and Santa M	E xxxxx 0.994	E xxxxx 0.994	+ 0.000 V/C
#	54	Mulholland Drive and Roscomare	C xxxxx 0.720	C xxxxx 0.720	+ 0.000 V/C
#	55	Roscomare Road and Stradella R	B 10.2 0.497	B 10.2 0.497	+ 0.000 V/C
#	56	Bellagio Road and Chalon Road	B 13.2 0.657	B 13.2 0.657	+ 0.000 V/C
#	57	Beverly Glen Boulevard and Mul	E xxxxx 0.992	E xxxxx 0.992	+ 0.000 V/C
#	58	Beverly Glen Boulevard and Gre	E xxxxx 0.996	E xxxxx 0.996	+ 0.000 V/C

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

Existing PM Peak

Thu Jul 17, 2008 10:28:06

Page 4-1

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Existing 2008 PM Peak

Existing 2008 PM Peak													
Level Of Service Computation Report													
Circular 212 Planning Method (Base Volume Alternative)													

Intersection #1 Sepulveda Boulevard and Church Ln/Ovada Pl													
Cycle (sec): 100													
Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/veh): xxxxxx													
Optimal Cycle			33								C		

Street Name:		Sepu	ılveda	Boule	vard		(Churcl	n Lane/	Ovada Plac West E	e		
Approach:													
Movement:		- T				- R			- R	L - T			
Rights:		Inclu			Incl			Incl		Incl			
Min. Green:		0	0		0		0		0	0 0	-		
Lanes:			0 1			1 0		1!			1 0		
Volume Module													
Base Vol:	_	1621	226	3		365		102	18	65 96			
Growth Adj:		1.00			1.00	1.00		1.00		1.00 1.00			
Initial Bse:		1621	226		879	365	558		18	65 96			
User Adj: PHF Adi:		1.00	1.00		1.00	1.00		1.00	1.00	1.00 1.00			
PHF Adj. PHF Volume:		1621	226		879	365	558	102	1.00	65 96			
Reduct Vol:	-	1621	226	0	0/9	305	556	102	10	05 96			
Reduced Vol:		1621	226	3	-		558			65 96	-		
PCE Adi:		1.00	1.00		1.00			1.00		1.00 1.00			
MLF Adi:		1.00	1.00		1.00	1.00		1.00	1.00	1.00 1.00			
FinalVolume:		1621	226		879	365		102	18	65 96			
Saturation F	1			1			1		'	1			
Sat/Lane:		1425	1425	1425	1425	1425	1425	1425	1425	1425 1425	1425		
Adjustment:					1.00			1.00		1.00 1.00			
Lanes:		2.95	1.00		1.41			0.28	0.05	1.00 0.93			
Final Sat.:	65	4210	1425	7	2019	824	2384	396	70	1425 1328	97		
Capacity Ana	lysis	Modu]	e:	•			-						
Vol/Sat:	0.06	0.39	0.16	0.43	0.44	0.44	0.26	0.26	0.26	0.05 0.07	0.07		
Crit Volume:	4					631		367			103		
Crit Moves:	****					****		****			****		
*****	****	*****	*****	****	****	*****	****	****	*****	******	*****		

Crit Volume: 324 96 Crit Moves: *** ***

Level Of Service Computation Report Circular 212 Planning Method (Base Volume Alternative)												

Intersection										*****	****	*****
Cycle (sec):		10	0.0			Critica	al Vol	l./Cap	o.(X):		0.6	64
Cycle (sec): Loss Time (se Optimal Cycle	ec):		0 (Y+R:	=4.0 s	sec)	Average	e Dela	ay (se	ec/veh)	:	XXXX	XX
Optimal Cycle	e:	į	55			Level (Of Sei	rvice	:			В
Street Name:			Church	Lane		,	San	Diego	Fwy S	B On/C	off Ra	mps
Approach: Movement:						ouna - R					st Bo T	
Movement:												
Control:												
Rights:			re		Incl	ıde	SP.	Incli	ıde	SP1	Incli	ide
Min. Green:	0	0	0	0	0	ude 0	0	0	0	0	0	0
Lanes:			0 2			1 0	0 0	1!	0 0	1 (1!	0 0
Volume Module	: >>	Count	Date:	14 F€	eb 20	08 << 50	00-600)				
	6		249	96	456	0	5	3	9	900	1	26
Growth Adj:			1.00		1.00			1.00			1.00	1.00
Initial Bse:		636	249	96	456	0	5	-	9	900	1	26
User Adj:			0.00		1.00			1.00				1.00
PHF Adj:			0.00		1.00			1.00		1.00		1.00
	6		0	96			5		9	900		26
Reduct Vol:			0	0						0		0
Reduced Vol:			-	96					9			26
PCE Adj: MLF Adj:			0.00	1.00	1.00	1.00		1.00	1.00			1.00
FinalVolume:				96			5		1.00		1.00	26
					450				l			I
Saturation Fl												
Sat/Lane:	1425	1425	1425	1425	1425	1425	1425	1425	1425	1425	1425	1425
		1.00			1.00			1.00				1.00
	0.04		2.00		2.00			0.18				0.05
Final Sat.:	54	2796	2850		2850			251			3	
Capacity Anal				0 0-	0 1 -	0 00	0 0-	0 0-	0 0-	0 0-	0 05	0.06
Vol/Sat:												

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Existing 2008 PM Peak Level Of Service Computation Report Circular 212 Planning Method (Base Volume Alternative) ******************** Intersection #3 Church Lane and Sunset Boulevard ************************ Cycle (sec): 100 Critical Vol./Cap.(X): 0.824 Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/veh): xxxxxx Optimal Cycle: 106 Level Of Service: Street Name: Church Lane Sunset Boulevard Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R Control: Split Phase Split Phase Protected Permitted Rights: Include Out To 2 Rights: Include Ovl Include Ovl Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 1 0 1 1 0 1 1 0 0 2 2 0 3 1 0 1 0 2 0 1 Volume Module: >> Count Date: 19 Feb 2008 << 500-600 Base Vol: 126 39 77 532 92 717 407 1219 33 28 861 422 Initial Bse: 126 39 77 532 92 717 407 1219 33 28 861 422 PHF Volume: 126 39 77 532 92 717 407 1219 33 28 861 422 Reduct Vol: 126 39 77 532 92 717 407 1219 33 28 861 422 MLF Adj: 1.00 1.00 1.00 1.10 1.00 1.10 1.10 1.00 1.00 1.00 1.00 1.00 FinalVolume: 126 39 77 585 92 789 448 1219 33 28 861 422 -----| Saturation Flow Module: Lanes: 1.00 1.00 1.00 1.73 0.27 2.00 2.00 3.89 0.11 1.00 2.00 1.00 Final Sat.: 1425 1425 1425 2463 387 2850 2850 5550 150 1425 2850 1425 -----| Capacity Analysis Module: Vol/Sat: 0.09 0.03 0.05 0.24 0.24 0.28 0.16 0.22 0.22 0.02 0.30 0.30 Crit Volume: 126 394 224 431

Thu Jul 17, 2008 10:28:06

Existing PM Peak

Crit Moves: ****

Capacity Analysis Module:

Crit Moves: ****

274

Level Of Service Computation Report

Circular 212 Planning Method (Base Volume Alternative) ******************* Intersection #4 San Diego Fwy NB On/Off Ramps and Sunset Boulevard ******************** Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/veh): xxxxxx Optimal Cycle: 32 Level Of Service: ************************ Street Name: San Diego Fwy NB On/Off Ramps Sunset Boulevard Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R
 Control:
 Split Phase
 Split Phase
 Permitted
 Permitted

 Rights:
 Include
 Include
 Ovl
 Ignore

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 Lanes: 1 0 0 0 1 0 0 0 0 0 0 2 0 2 0 0 3 0 1 Volume Module: >> Count Date: 14 Feb 2008 << 500-600 Base Vol: 97 0 83 0 0 0 0 996 870 0 1220 0 Initial Bse: 97 0 83 0 0 0 996 870 0 1220 0 PHF Volume: 97 0 83 0 0 0 0 996 870 0 1220 0 ő 0 MLF Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.10 1.00 1.00 0.00 FinalVolume: 97 0 83 0 0 0 0 996 957 0 1220 0 -----|----|----||------| Saturation Flow Module:

Final Sat: 1425 0 1425 0 0 0 0 2850 2850 0 4275 1425 -----||-----||------||------|

Vol/Sat: 0.07 0.00 0.06 0.00 0.00 0.00 0.05 0.34 0.00 0.29 0.00 Crit Volume: 97 0 498 0

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

		UCLA		Los	Ange	l LRDP eles, C	'A		ıdy			
*******	 Circu	lar 21	2 Plan	ning N	iethod	Computa l (Base	Volum	ne Alt	ernati	ve)	****	*****
Intersection									*****	****	****	*****
Cycle (sec): Loss Time (sec) Optimal Cycle	ec): e: ****	10 11 ****	0 (Y+R 9	=4.0 s	sec)	Averag Level	e Dela Of Sei	ay (se	o.(X): ec/veh)	:	XXX	xxx D
Street Name: Approach:												
Approach: Movement:	L	- T	- R	L -	- Т	- R	L ·	- T	- R	L ·	- T	- R
Control: Rights: Min. Green: Lanes:	Sp: 0 1	lit Ph Ovl 0	ase 0 0 1	[q2 0 0 0	it Ph Inclu 0	nase inde 0 0 0 0	0 0	Permit Inclu 0 0 1	ted de 0	Pro 0	ot+Per Incl 0 0 2	rmit ude 0 0
Volume Module Base Vol: Growth Adj: Initial Bse: User Adj: PHF Adj: PHF Volume: Reduct Vol: Reduced Vol: PCE Adj: MLF Adj: FinalVolume:	e: >> 373 1.00 373 1.00 1.00 373 0 373 1.00 1.00 373	Count 0 1.00 0 1.00 0 0 0 0 0 0 1.00 0 0 1.00 0 0 0	Date: 396 1.00 396 1.00 396 0 396 1.00 396	19 Fe 0 1.00 0 1.00 0 0 0 1.00 1.00 0 0 0 0 0	200 0 1.00 0 1.00 0 0 0 1.00 1.00 1.00 0 0 0	08 << 5 0 1.00 0 1.00 1.00 0 0 0 1.00 0 1.00 0 0 0	00-600 0 1.00 0 1.00 1.00 0 0 0 1.00 1.00	859 1.00 859 1.00 1.00 859 0 859 1.00 1.00 859	151 1.00 151 1.00 1.00 151 0 151 1.00 1.00	274 1.00 274 1.00 1.00 274 0 274 1.00 1.00	1347 1.00 1347 1.00 1.00 1347 0 1347 1.00 1.00	0 1.00 0 1.00 1.00 0 0 1.00
Saturation F: Sat/Lane: Adjustment: Lanes: Final Sat.:	1425 1.00 1.00 1425	1425 1.00 0.00 0	1425 1.00 1.00 1425	1.00	1.00	1.00	1.00 0.00 0	1.00 1.70 2424	1.00 0.30 426	1.00 1.00 1425	1425 1.00 2.00 2850	1.00
Capacity Anal	İysis	Modul	e: '						'			

Existing PM Peak

Crit Volume: 373 0 505 274 Crit Moves: **** ****

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Existing 2008 PM Peak

Level Of Service Computation Report Circular 212 Planning Method (Base Volume Alternative)

Optimal Cycl	e:	18	0	Level Of Service: ************************************								E	
Street Name: Approach:													
Approach:	No	rth Bo	und	Soi	uth Bo	ound	Ea	ast B	ound	Wes	t Bo	ound	
Movement:	т	- T	– R	т	- т	- R	Т	- т	- R	T	т	- R	
													L
Control: Rights: Min. Green:	Sp.	lit Ph	ase '	Sp:	lit Ph	nase	Pro	ot+Pe:	rmit '	Pe	rmit	ted	
Rights:		Inclu	de		Incl	ıde		Incl	ude	I	nclı	ıde	
Min. Green:	0	0	0	0	0	0	0	0	0	0	0	0	
Lanes:	1 :	1 0	0 1	0 :	1 0	0 1	1 () 1	1 0	1 0	1	1 0	
		~ .											ı
Volume Modul	e: >>	Count	Date:	19 F	eb 200	18 << 5	000-600)	0.0	15.1	000	110	
Base Vol:													
Growth Adj:													
Initial Bse:										15 1			
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00 1	00	1.00	
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00 1	.00	1.00	
PHF Volume:													
Reduct Vol:													
Reduced Vol:													
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00 1	.00	1.00	
MLF Adj:	1.10	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00 1	.00	1.00	
FinalVolume:	287	96	30	. 55	6	136	333	856	82	15 1	.233	112	
Saturation F													
Sat/Lane:													
Adjustment:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00 1	.00	1.00	
Lanes:													
Final Sat.:	2061	689	1375	1240	135	1375	1375	2510	240	1375 2	521	229	
Capacity Ana													
Vol/Sat:									0.34	0.01 0	.49		
Crit Volume:		192				136	333					673	
Crit Moves:		****				****	****					****	

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Existing 2008 PM Peak												
**************************************	Circular 21 *********** #7 Westwoo	2 Planr ****** d Bouev	ning Metho ************ vard and S	od (Base ****** Sunset E	oulevard	ernati	*****					
Cycle (sec): Loss Time (se Optimal Cycle	Cycle (sec): 100 Critical Vol./Cap.(X): 0.557 Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/veh): xxxxxx Optimal Cycle: 135 Level Of Service: A											
Street Name: Approach: Movement:	Wes North Bo L - T	twood E und - R	Boulevard South B L - T	Bound - R	Si East Bo L - T	unset Bound - R	oulevard West B L - T	ound - R				
Control: Rights: Min. Green: Lanes:	Split Ph Inclu 0 0 2 0 0	ase de 0	Split I	Phase lude 0 0	Permit Ovl 0 0 0 0 2	0 0 1	Protectincl 0 0 0 1 0 2	ted ude 0 0				
Volume Module Base Vol: Growth Adj: Initial Bse: User Adj: PHF Adj: PHF Volume: Reduct Vol: Reduced Vol: PCE Adj: MLF Adj: FinalVolume:	e: >> Count 195	Date: 191 1.00 191 1.00 1.00 191 0 191 1.00 1.00	14 Feb 20 0 (1.00 1.00 0 (1.00 1.00 1.00 1.00 1.00 1.00 0 (1.00 1.00 1.00 1.00 0 (0.00 1.00	008 << 5 0 0 0 1.00 0 0 1.00 0 1.00 0 0 1.00 0	00-600 0 870 1.00 1.00 0 870 1.00 1.00 1.00 1.00 0 870 0 0 0 870 1.00 1.00 1.00 1.00 0 870	94 1.00 94 1.00 1.00 94 0 94 1.00 1.00 94	46 1206 1.00 1.00 46 1206 1.00 1.00 1.00 1.00 46 1206 0 0 46 1206 1.00 1.00 1.00 1.00 46 1206	0 1.00 0 1.00 1.00 0 0 1.00				
Saturation F. Sat/Lane: Adjustment: Lanes: Final Sat.:	low Module: 1425 1425 1.00 1.00 2.00 0.00 2850 0	1425 1.00 1.00 1425	1425 1425 1.00 1.00 0.00 0.00	5 1425 0 1.00 0 0.00	1425 1425 1.00 1.00 0.00 2.00 0 2850	1425 1.00 1.00 1425	1425 1425 1.00 1.00 1.00 2.00 1425 2850	1425 1.00 0.00				
Capacity Anal Vol/Sat: Crit Volume: Crit Moves:	lysis Modul 0.08 0.00	e:	0.00 0.00			·	•	0.00				

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Existing 2008 PM Peak

Level Of Service Computation Report
Circular 212 Planning Method (Base Volume Alternative)

Intersection #8 Stor		unset Boulevard **********	*****
Cycle (sec):	100	Critical Vol./Cap.(X):	0.777
Loss Time (sec):	0 (Y+R=4.0 sec)	Average Delay (sec/veh):	xxxxxx
Optimal Cycle:	102	Level Of Service:	C

Optimal Cycle	Optimal Cycle: 102 Level Of Service: C										
Street Name: Approach:	No:	rth Bo	und	Soi	ith Bo	nund	E	ast Bo	ound	West B	ound
Movement:	т	- т	- P	т	- т	- P	т.	- т	- P	т. – т	- P
	I			I						1	
Control:	Sp.	lit Ph	ıase	Sp.	Lit Pŀ	ıase	P:	rotect	ted	Protec	ted
Rights: Min. Green:		Inclu	ıde		Ovl			Igno:	re	Incl	ude
Min. Green:	0	0	0	0	0	0	0	0	0	0 0	0
Lanes:											
Volume Module											
	139			62	0					158 978	
Growth Adj:											
Initial Bse:						101				158 978	
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00				
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00				
PHF Volume:						101				158 978	
Reduct Vol:										0 0	
Reduced Vol:											22
PCE Adj:											
MLF Adj:											
FinalVolume:											
Saturation F											
Sat/Lane:											
Adjustment:											
Lanes:											
Final Sat.:										1375 2689	
Capacity Ana				0 10		0 10			0 00	0 11 0 05	0 26
Vol/Sat:											0.36
Crit Volume: Crit Moves:			141	163				607		158	
Crit Moves:											

Los Angeles, CA Existing 2008 PM Peak												
Level Of Service Computation Report Circular 212 Planning Method (Base Volume Alternative)												
Intersection #	Intersection #9 Hilgard Avenue/Copa De Oro Road and Sunset Boulevard											
Cycle (sec): Loss Time (sec Optimal Cycle:	: 142	Y+R=4.0	sec) Ave Lev	el Of Ser	ay (sec/ rvice:	veh):	xxxx	xx D				
Street Name: Approach: Movement:	North Bou	ınd So	uth Bound - T -	Ea Ea	ast Bour - T -	R L	West Bo	- R				
Control: Rights: Min. Green: Lanes:	Split Pha Ovl 0 0 1 0 1! 0	ase Sp 0 0 0 1 0	lit Phase Include 0 0 1! 0	0 0 0 1 (rotected Include 0 0 1 1	0 1	Protect Inclu 0 0 0 1	ed de 0				
Initial Bse: User Adj: 1 PHF Adj: 1 PHF Volume: Reduct Vol: Reduced Vol: PCE Adj: 1 MLF Adj: 1 FinalVolume:	: >> Count 260 33 1.00 1.00 260 33 1.00 1.00 1.00 1.00 1.00 1.00 1.00	364 35 1.00 1.00 364 35 1.00 1.00 364 35 0 0 364 35 1.00 1.00 1.10 1.00 400 35	eb 2008 < 69	< 415-51! 20	5 1145 1.00 1 1145 1.00 1 1.00 1 1145 0 1145 1.00 1	120 15 .00 1.0 120 15 .00 1.0 .00 1.0 120 15 0 120 15 .00 1.0 120 15 .00 1.0	00 1.00	7 1.00 7 1.00 1.00 7 0 7 1.00 1.00				
Adjustment: 1 Lanes: 1	1375 1375 1.00 1.00 1.19 0.14 1640 189	1.00 1.00 1.67 0.28 2296 388	1.00 1. 0.56 0. 765 2	00 1.00 16 1.00 22 1375	1.00 1 1.81 0 2489	.00 1.0 0.19 1.0 261 137	75 1375 00 1.00 00 1.98 75 2728	1375 1.00 0.02 22				
Capacity Analy Vol/Sat: (Crit Volume:	ysis Module	1.1	0.09 0.				1 0.32	'				

Capacity Analysis Module:

Crit Moves: ****

UCLA NHIP and Amended LRDP Traffic Study

Los Angeles, CA

Existing 2008 PM Peak

Level Of Service Computation Report

Circular 212 Planning Method (Base Volume Alternative)

Intersection #11 Beverly Glen Boulevard and Sunset Boulevard (East I/S)

Existing PM Peak

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Existing 2008 PM Peak

Level Of Service Computation Report Circular 212 Planning Method (Base Volume Alternative)

******************* Intersection #10 Beverly Glen Boulevard and Sunset Boulevard ******************

Cycle (sec): 100 Critical Vol./Cap.(X): 1.073 0 (Y+R=4.0 sec) Average Delay (sec/veh): xxxxxx Loss Time (sec): Optimal Cycle: 180 Level Of Service:

Street Name: Beverly Glen Boulevard Sunset Boulevard Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R T. - T - R Control: Split Phase Split Phase Permitted Prot+Permit Rights: Ignore Include Include Include
 Rights:
 Ignore
 Include
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 Lanes: 1 0 1 0 1 0 0 1! 0 0 1 0 1 1 0 1 1 0 1 1 0 Volume Module: >> Count Date: 19 Feb 2008 << 500-600 Base Vol: 222 167 581 104 68 19 16 1286 60 389 960 79 Initial Bse: 222 167 581 104 68 19 16 1286 60 389 960 79 PHF Adj: PHF Volume: 222 167 0 104 68 19 16 1286 60 389 960 79 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 222 167 0 104 68 19 16 1286 60 389 960 0 79 FinalVolume: 222 167 0 104 68 19 16 1286 60 389 960 79 Saturation Flow Module: Lanes: 1.00 1.00 1.00 0.54 0.36 0.10 1.00 1.91 0.09 1.00 1.85 0.15 Final Sat: 1375 1375 1375 749 490 137 1375 2627 123 1375 2541 209

Vol/Sat: 0.16 0.12 0.00 0.14 0.14 0.14 0.01 0.49 0.49 0.28 0.38 0.38

Crit Volume: 222 191 673 389

Cycle (sec): 100 Critical Vol./Cap.(X): 1.179 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): xxxxxx Optimal Cycle: 180 Level Of Service: Street Name: Beverly Glen Boulevard Sunset Boulevard (East I/S) Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - F T. - T - R Control: Split Phase Split Phase Prot+Permit Permitted Rights: Include Include Include Tanore
 Rights:
 Include
 Include
 Include
 Include
 Ignore

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0< Lanes: 0 0 0 0 0 0 1 0 1 0 1 0 2 0 0 0 2 0 1 -----|----|-----|------| Volume Module: >> Count Date: 19 Feb 2008 << 415-515 Base Vol: 0 0 0 115 0 364 862 1226 0 0 908 126 Initial Bse: 0 0 0 115 0 364 862 1226 0 0 908 126 PHF Volume: 0 0 0 115 0 364 862 1226 0 0 908 0 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 0 0 0 115 0 364 862 1226 0 0 908 FinalVolume: 0 0 0 115 0 364 862 1226 0 0 908 0 -----|----|-----|------| Saturation Flow Module: Lanes: 0.00 0.00 0.00 0.48 0.52 1.00 1.00 2.00 0.00 0.00 2.00 1.00 Final Sat.: 0 0 0 684 741 1425 1425 2850 0 0 2850 1425 -----|----|-----|------| Capacity Analysis Module: Vol/Sat: 0.00 0.00 0.00 0.17 0.00 0.26 0.60 0.43 0.00 0.00 0.32 0.00

Crit Volume: 0 364 862 454 Crit Moves: **** ****

Level Of Service Computation Report

		lar 21	2 Plan	ning N	Method	Computa d (Base	Volum	ne Alt	ernati			
******	*******************											
Intersection #12 Sepulveda Boulevard and San Diego Fwy NB Off-Ramp												
Cycle (sec):		10	0			Critic	al Vo	l./Car	.(X):		0.6	506
Loss Time (se	ec):		0 (Y+R	=4.0 s	sec)	Averag	ge Dela	ay (se	c/veh)	:	XXX	кхх
Optimal Cycle	≘:	4	7			Level	Of Ser	rvice:				В
******	****											
Street Name:		Sepu	lveda	Boulev	/ard		Sa	an Die	go Fwy	NB Of		
Approach:	No:	rth Bo	und	Sou	ıth Bo	ound	Εā	ast Bo	und	We	est Bo	
Movement:		- T				- R		- T			- T	
g												
Control:						tted						
Rights: Min. Green:		Inclu 0	ae O		Tuci	ude 0		incit	iae O	0		aae 0
Lanes:		0 2	-			0 0			0 0	-	0 0	-
папев.												
Volume Module									1	1		- 1
Base Vol:		1601	0	0	855	0	92		25	0	0	0
Growth Adj:		1.00	1.00	1.00		1.00		1.00	1.00		1.00	1.00
Initial Bse:		1601	0	0	855	0	92	0	25	0	0	0
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:		1.00	1.00	1.00		1.00		1.00	1.00	1.00	1.00	1.00
		1601	0		855	0	92	0	25	0	0	0
Reduct Vol:			0	0	0	0	0	-	0	0	-	0
Reduced Vol:			0	0	855	0	92	0	25	0	0	0
PCE Adj:			1.00		1.00			1.00	1.00		1.00	1.00
		1.00	1.00	1.00		1.00		1.00	1.00		1.00	1.00
FinalVolume:				0		0		0	25	. 0	0	0
Saturation Fl												
Saturation F.			1425	1425	1425	1425	1425	1425	1425	1425	1425	1425
			1.00	1.00		1.00		1.00	1.00		1.00	1.00
Lanes:		2.00	0.00	0.00		0.00		0.00	0.40		0.00	0.00
Final Sat.:		2850			2850	0		0	565		0	0
Capacity Anal	lysis	Modul	e:			'						
Vol/Sat:			0.00	0.00	0.30	0.00	0.04	0.00	0.04	0.00	0.00	0.00
Crit Volume:		800		0					63		0	
Crit Moves:		****		****					****			

Existing 2008 PM Peak Level Of Service Computation Report Circular 212 Planning Method (Base Volume Alternative) ******************* Intersection #13 Sepulveda Boulevard and Montana Avenue ************************ Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/veh): Optimal Cycle: 89 Level Of Service: xxxxxx Street Name: Sepulveda Boulevard Montana Avenue Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - F L - T - R Control: Prot+Permit Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 1 0 2 0 1 1 0 1 1 0 0 0 1! 0 0 0 1 0 1 0 Volume Module: >> Count Date: 13 Feb 2008 << 430-530 Base Vol: 127 1404 117 56 629 15 3 91 114 161 189 254 Initial Bse: 127 1404 117 56 629 15 3 91 114 161 189 254 PHF Volume: 127 1404 117 56 629 15 3 91 114 161 189 254 FinalVolume: 127 1404 117 56 629 15 3 91 114 161 189 254 Saturation Flow Module: Lanes: 1.00 2.00 1.00 1.00 1.95 0.05 0.01 0.44 0.55 0.53 0.63 0.84 Final Sat.: 1425 2850 1425 1425 2784 66 21 623 781 760 892 1199 ------|-----||-------| Capacity Analysis Module: Vol/Sat: 0.09 0.49 0.08 0.04 0.23 0.23 0.15 0.15 0.15 0.21 0.21 0.21 Crit Volume: 702 56 208 161 Crit Moves: **** **** ****

UCLA NHIP and Amended LRDP Traffic Study

Los Angeles, CA

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Existing 2008 PM Peak

Level Of Service Computation Report 2000 HCM Unsignalized Method (Base Volume Alternative)

2000 HCM Unsignalized Method (Base Volume Alternative)													
Intersection #14 Levering Avenue and Montana Avenue													

Street Name: Approach:		Le	evering	g Avenu	ie				Montana	Aven			
			- R			- R			- R				
-													
Control:				St	cop S:	ign				Uncontrolled Include			
Rights: Lanes:			ıde 0 0			ıde n n	0 (J U	uae 1 0	0	I N	n n	
Volume Module:													
Base Vol: Growth Adi: 1	253	1 00	1.00	1 00	1.00	1.00	1 00	322			506 1.00		
Initial Bse:		0	8	0	0	0	0			1.00			
User Adj: 1					1.00	1.00		1.00		1.00	1.00	1.00	
PHF Adj:				1.00		1.00		1.00			1.00		
PHF Volume: Reduct Vol:		0	8	-	0		0	322 0		1	506 0	0	
FinalVolume:		0	-	0			0			-	506		
Critical Gap N													
Critical Gp: FollowUpTim:		4.0							XXXXX			XXXXX	
Capacity Modul													
Cnflict Vol:			375			XXXXX			XXXXX			xxxxx	
Potent Cap.: Move Cap.:						XXXXX			XXXXX			XXXXX	
Volume/Cap: (XXXX			XXXX			xxxx	
-													
Level Of Servi				vvvv	vvvv	vvvvv	vvvv	vvvv	vvvvv	0 0	vvvv	xxxxx	
Control Del:xx												XXXXX	
LOS by Move:			*			*				A	*	*	
Movement:											- LTR		
Shared Cap.: 2 SharedQueue:xx												XXXXX	
Shrd ConDel:xx												XXXXX	
Shared LOS:			*							A	*	*	
ApproachDel:				X	xxxx		X	xxxx		X	xxxxx		
ApproachLOS: E * * * * * * * * * * * * * * * * * *													

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

Note: Queue reported is the number of cars per lane.

		UCLA		Lo	s Ange	l LRDP eles, C	A	ic Sti	ıdy			
******		lar 21	2 Plan	ning 1	Method		Volur	ne Alt	ernati		****	*****
Intersection												
Cycle (sec): Loss Time (sec) Optimal Cycle	ec): e:	10 18	0 0 (Y+R 0	=4.0 :	sec)	Critic Averag Level	al Vol e Dela Of Ser	l./Cap ay (se cvice:	o.(X): ec/veh)	:	0.9 xxxx	953 cxx E
Street Name: Approach: Movement:	L	rth Bo		So:	uth Bo - T	ound - R	Ea L -	ast Bo - T	- R	L We	est Bo - T	ound - R
Control: Rights: Min. Green: Lanes:												ted ide 0
Volume Modul Base Vol: Growth Adj: Initial Bse: User Adj: PHF Adj: PHF Volume: Reduct Vol: Reduced Vol: PCE Adj: MLF Adj: FinalVolume:	1.00 54 1.00 1.00 54 0 54 1.00 1.00	Count 452 1.00 452 1.00 1.00 452 0 452 1.00 1.00 452	Date: 26 1.00 26 1.00 26 0 26 1.00 1.00 26 1.00 26	13 F6 58 1.00 58 1.00 1.00 58 0 58 1.00 1.00	294 1.00 294 1.00 1.00 294 0 294 1.00 1.00 294 1.00 294		00-600 115 1.00 115 1.00 1.00 1.15 0 115 1.00 1.00	158 1.00 158 1.00 1.00 1.58 0 158 1.00	52 1.00 52 1.00 1.00 52 0 52 1.00 1.00 52	22 1.00 1.00 22 0 22 1.00	419 1.00 419 1.00 1.00 419 0 419 1.00 1.00	284 1.00 284 1.00 1.00 284 0 284 1.00 284
Saturation F Sat/Lane: Adjustment: Lanes: Final Sat.:	low M 1500 1.00 0.10 152	odule: 1500 1.00 0.85 1274	1500 1.00 0.05 73	1500 1.00 0.14 217	1500 1.00 0.74 1100	1500 1.00 0.12 183	1500 1.00 0.35 531	1500 1.00	1500 1.00 0.16 240	1.00	1500 1.00 0.58 867	1500 1.00 0.39 588
Capacity Ana Vol/Sat: Crit Volume: Crit Moves:	lysis 0.35	Modul 0.35		1	0.27	0.27	0.22	0.22	0.22	0.48	0.48 725 ****	0.48

Crit Moves:

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Existing 2008 PM Peak

******		lar 21	2 Plan	ning N	Metho	Computa d (Base	Volu	me Al	ternati				
Intersection	#16	Galey	Avenue	and S	Strat	hmore I	lace						
Cycle (sec): Loss Time (sec): Optimal Cycle	ec): e:	10	00 0 (Y+R 54	=4.0 s	sec)	Critic Averag Level	al Vo ge Del Of Se	l./Cap ay (se rvice	p.(X): ec/veh) :	:	0.0 xxx	653 xxx B	
Street Name:			Galey						trathmo				
Approach:											West Bound		
Movement:						- R							
Control:			ted:			 rmit					Permi		
Rights:		Incli		FIC	Incl	ude		Incl	ude		Ovl	ccea	
Min. Green:			0	0	0	0			0	() 0	0	
Lanes:			0 1) 1				0 0	1	0 1	0 1	
Volume Module	e: >>	Count	Date:	19 Fe	eb 20	08 << 4	45-54	5					
Base Vol:		363			156			102					
Growth Adj:		1.00	1.00		1.00			1.00			1.00	1.00	
Initial Bse:			171		156	13	8		18	319		336	
		1.00	1.00		1.00			1.00			1.00	1.00	
PHF Adj:			1.00		1.00			1.00	1.00		1.00	1.00	
PHF Volume:			171	121	156	13	8		18	319		336	
Reduct Vol:			-	0	0	-	0		-	(-	0	
Reduced Vol:			171	121	156		8			319		336	
PCE Adj:			1.00		1.00			1.00			1.00	1.00	
MLF Adj: FinalVolume:		363	1.00		1.00	1.00	1.00	1.00	1.00		152	1.00	
					150		,	102	10	21:	152	330	
Saturation F				1			1						
Sat/Lane:	1425	1425	1425	1425	1425	1425	1425	1425	1425	1425	1425	1425	
Adjustment:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Lanes:	1.00	1.00	1.00	1.00	1.85	0.15	0.06	0.80	0.14	1.00	1.00	1.00	
Final Sat.:					2631			1136		1425	5 1425	1425	
Companion Pro-													
Capacity Ana	rysis	Moau.	.e:										

Cycle (sec): 100 Critical Vol./Cap.(X): 0.666 Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/veh): Optimal Cycle: 43 Level Of Service: xxxxxx Street Name: Veteran Avenue Levering Avenue Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - F L - T - R Control: Permitted Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 0 0 1! 0 0 0 0 1! 0 0 0 0 1 0 0 0 1! 0 0 Volume Module: >> Count Date: 13 Feb 2008 << 500-600 Initial Bse: 174 547 40 22 351 5 0 41 83 52 96 68 PHF Volume: 174 547 40 22 351 5 0 41 83 52 96 68 Reduct Vol: 174 547 40 22 351 5 0 41 83 52 96 68 FinalVolume: 174 547 40 22 351 5 0 41 83 52 96 68 -----| Saturation Flow Module: Lanes: 0.23 0.72 0.05 0.06 0.93 0.01 0.00 0.33 0.67 0.24 0.45 0.31 Final Sat.: 343 1078 79 87 1393 20 0 496 1004 361 667 472 -----|-----|------| Capacity Analysis Module:

Vol/Sat: 0.51 0.51 0.51 0.25 0.25 0.25 0.00 0.08 0.08 0.14 0.14 0.14

Crit Volume: 761 22 0 216
Crit Moyes: **** **** ****

UCLA NHIP and Amended LRDP Traffic Study

Intersection #17 Veteran Avenue and Levering Avenue

Los Angeles, CA

Existing 2008 PM Peak Level Of Service Computation Report Circular 212 Planning Method (Base Volume Alternative) ********************

Existing PM Peak

Vol/Sat: 0.02 0.25 0.12 0.08 0.06 0.06 0.09 0.09 0.09 0.22 0.11 0.24 Crit Volume: 363 121 128 319
Crit Moyee: **** ****

Crit Moves:

UCLA NHIP and Amended LRDP Traffic Study

Existing PM Peak

Capacity Analysis Module:

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Existing 2008 PM Peak

Level Of Service Computation Report Circular 212 Planning Method (Base Volume Alternative)

CIIC	urar zrz rrainirni	g Mechou (base v	OTUME ATCETMACTIVE)	
**********	*****	******	******	*********
Intersection #18	Hilgard Avenue a	and Wyton Drive		
**********	*****	******	******	*********
Cycle (sec):	100	Critical	Vol./Cap.(X):	0.471

0 (Y+R=4.0 sec) Average Delay (sec/veh): xxxxxx Loss Time (sec): 27 Optimal Cycle: Level Of Service:

Street Name: Approach: Movement:	L	- T	- R	L ·	- T	- R	L	- T	- R	L -	- T	- R	
					 Permitted					Permitted			
Rights:		Inclu	de		Incl	ıde		Incl	ıde	Include			
Min. Green:	0	0	0	0	0	0	0	0	0				
Lanes:													
Volume Module													
Base Vol:		623	43		374				320			12	
Growth Adj:				1.00				1.00			1.00		
Initial Bse:			43		374		50		320	20	26	12	
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
PHF Volume:	117	623	43	33	374	23	50	110	320	20	26	12	
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0	
Reduced Vol:	117	623	43	33	374	23	50	110	320	20	26	12	
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
FinalVolume:	117	623	43	33	374	23	50	110	320	20	26	12	
Saturation F	low M	odule:											
Sat/Lane:	1500	1500	1500	1500	1500	1500	1500	1500	1500	1500	1500	1500	
Adjustment:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Lanes:				1.00	2.00	1.00	1.00	1.00	1.00	0.34	0.45	0.21	
Final Sat.:	1500	2806	194	1500	3000	1500	1500	1500	1500	517	672	310	
Capacity Ana	lysis	Modul				·	•						

Vol/Sat: 0.08 0.22 0.22 0.02 0.12 0.02 0.03 0.07 0.21 0.04 0.04 0.04

Crit Volume: 333 33 320 20
Crit Moves: **** ****

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

Los Angeles, CA Existing 2008 PM Peak Level Of Service Computation Report Circular 212 Planning Method (Base Volume Alternative) ******************** t incl.]tion #19 Beverly Glen Blvd and Wyton Dr/Comstock Ave [5-Leg Intersection ************************** Cycle (sec): 100 Critical Vol./Cap.(X): 0.673 Loss Time (sec): 0 (Y+R=15.0 sec) Average Delay (sec/veh):
Optimal Cycle: 44 Level Of Service: xxxxxx Street Name: Beverly Glen Boulevard Wyton Drive/Comstock Avenue Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - F L - T - R Control: Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 1 0 1 0 1 1 0 1 0 1 0 0 0 0 0 1! 0 0 Volume Module: >> Count Date: 12 May 2008 << 445-545 Base Vol: 25 727 14 28 458 11 19 31 26 46 66 123 Initial Bse: 25 727 14 28 458 11 19 31 26 46 66 123 PHF Volume: 25 727 14 28 458 11 19 31 26 46 66 123 FinalVolume: 25 727 14 28 458 11 19 31 26 46 66 123 Saturation Flow Module: Lanes: 1.00 1.00 1.00 1.00 1.00 1.00 0.25 0.41 0.34 0.20 0.28 0.52 Final Sat.: 1500 1500 1500 1500 1500 1500 375 612 513 294 421 785 -----|

Vol/Sat: 0.02 0.48 0.01 0.02 0.31 0.01 0.05 0.05 0.05 0.16 0.16 0.16

Crit Volume: 727 28 19 235 Crit Moyes: **** **** ****

Crit Moves: ****

Existing PM Peak

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Existing 2008 PM Peak

Level Of Service Computation Report

Circular 212 Planning Method (Base Volume Alternative) ******************* Intersection #20 Hilgard Avenue and Westholme Avenue ******************* 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): XXXXXX Optimal Cycle: 27 Level Of Service: Street Name: Hilgard Avenue Westholme Avenue Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R T. - T - R Control: Permitted Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 1 0 1 1 0 1 0 1 1 0 0 1 0 1 0 0 0 1! 0 0 Volume Module: >> Count Date: 30 Jan 2008 << 500-600 Base Vol: 97 561 31 72 537 39 195 231 150 27 51 47 Initial Bse: 97 561 31 72 537 39 195 231 150 27 51 47 PHF Volume: 97 561 31 72 537 39 195 231 150 27 51 47 0 47 FinalVolume: 97 561 31 72 537 39 195 231 150 27 51 47 -----|----|----||------| Saturation Flow Module: Lanes: 1.00 1.90 0.10 1.00 1.86 0.14 0.68 0.80 0.52 0.21 0.41 0.38 Final Sat.: 1500 2843 157 1500 2797 203 1016 1203 781 324 612 564 -----|----|-----|------| Capacity Analysis Module:

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA. LONG BEACH, CA

Vol/Sat: 0.06 0.20 0.20 0.05 0.19 0.19 0.19 0.19 0.19 0.08 0.08 0.08

Crit Volume: 97 288 195 125

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Existing 2008 PM Peak Level Of Service Computation Report Circular 212 Planning Method (Base Volume Alternative) ******************* Intersection #21 Hilgard Avenue and Manning Avenue ****************** 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): xxxxxx Optimal Cycle: 27 Level Of Service: Street Name: Hilgard Avenue Manning Avenue Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R T. - T - R Control: Permitted Permitted Split Phase Split Phase Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 0 0 1 1 0 1 0 2 0 0 0 0 0 0 0 0 1! 0 0 Volume Module: >> Count Date: 30 Jan 2008 << 445-545 Base Vol: 0 628 8 64 852 0 0 0 10 0 23 Initial Bse: 0 628 8 64 852 0 0 0 10 0 23 PHF Volume: 0 628 8 64 852 0 0 0 10 0 23 FinalVolume: 0 628 8 64 852 0 0 0 10 0 23 Saturation Flow Module: Lanes: 0.00 1.97 0.03 1.00 2.00 0.00 0.00 0.00 0.00 0.30 0.00 0.70 Final Sat.: 0 2814 36 1425 2850 0 0 0 432 0 993 -----|-----|------| Capacity Analysis Module:

Vol/Sat: 0.00 0.22 0.22 0.04 0.30 0.00 0.00 0.00 0.00 0.02 0.00 0.02 Crit Volume: 0 426 0 33 Crit Moyes: **** ****

Capacity Analysis Module:

Crit Moves: ****

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Existing 2008 PM Peak

Level Of Service Computation Report Circular 212 Planning Method (Base Volume Alternative) ******************* Intersection #22 Gayley Avenue and Le Conte Avenue ****************** 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): XXXXXX Optimal Cycle: 38 Level Of Service: В Street Name: Gayley Avenue Le Conte Avenue Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R T. - T - R Control: Permitted Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 ------|-----|------| Volume Module: >> Count Date: 30 Jan 2008 << 500-600 Base Vol: 61 400 204 190 1037 35 14 127 12 200 300 157 Initial Bse: 61 400 204 190 1037 35 14 127 12 200 300 157 PHF Volume: 61 400 204 190 1037 35 14 127 12 200 300 157 FinalVolume: 61 400 204 190 1037 35 14 127 12 200 300 157 ------| Saturation Flow Module:

Lanes: 1.00 1.32 0.68 1.00 1.93 0.07 1.00 0.91 0.09 1.00 1.00 1.00

Final Sat: 1500 1987 1013 1500 2902 98 1500 1371 129 1500 1500 1500

Vol/Sat: 0.04 0.20 0.20 0.13 0.36 0.36 0.01 0.09 0.09 0.13 0.20 0.10

Crit Volume: 61 536 139 200
Crit Moves: **** **** ****

Los Angeles, CA Existing 2008 PM Peak Level Of Service Computation Report Circular 212 Planning Method (Base Volume Alternative) ******************* Intersection #23 Westwood Boulevard and Le Conte Avenue ************************ 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): xxxxxx Optimal Cycle: 77 Level Of Service: Street Name: Westwood Boulevard Le Conte Avenue Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - F T. - T - R Control: Permitted Permitted Permitted Prot+Permit Rights: Ovl Include Include Include
 Rights:
 Ovl
 Include
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 Volume Module: >> Count Date: 30 Jan 2008 << 500-600 Base Vol: 100 329 153 103 448 212 90 409 102 162 396 62 Initial Bse: 100 329 153 103 448 212 90 409 102 162 396 62 PHF Volume: 100 329 153 103 448 212 90 409 102 162 396 62 FinalVolume: 100 329 153 103 448 212 90 409 102 162 396 62 -----|-----|------| Saturation Flow Module: Lanes: 1.00 2.00 1.00 1.00 2.00 1.00 1.00 1.60 0.40 1.00 1.00 1.00 Final Sat: 1069 2138 1069 1069 2138 1069 1069 1711 427 1069 1069 1069 -----|----|-----|------| Capacity Analysis Module: Vol/Sat: 0.09 0.15 0.14 0.10 0.21 0.20 0.08 0.24 0.24 0.15 0.37 0.06 Crit Volume: 100 224 90 396 Crit Moves: **** **** ****

UCLA NHIP and Amended LRDP Traffic Study

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Existing 2008 PM Peak

Circu	ılar 212 Plar	Of Service on the Method	d (Base	Volume Alt	ernative)						

**************************************	100 0 (Y+F	R=4.0 sec)	Critica Average	al Vol./Cap Delay (se	o.(X): ec/veh):	xxxxxx					
Street Name: Approach: No	Tiverto	on Drive South Bo	ound	Le East Bo	Conte Ave	nue West Bo	ound				
Movement: L	- T - R	L - T	- R 	L - T	- R L 	– T –––––	- R 				
Control: Rights: Min. Green:	Include	Incli	ıde	Inclu	ide	Tanor	re				
Lanes: 0	0 1! 0 0	0 1 0	0 1	1 0 1	0 1 1	0 1	0 1				
 Volume Module: >>											
Base Vol: 35 Growth Adj: 1.00	68 41 1.00 1.00	92 80 1.00 1.00	194 1.00	128 484 1.00 1.00	1.00 1.0	2 453 0 1.00	1.00				
Initial Bse: 35 User Adj: 1.00 PHF Adj: 1.00	1.00 1.00	92 80 1.00 1.00 1.00 1.00	1.00	128 484 1.00 1.00 1.00 1.00	1.00 1.0	2 453 0 1.00 0 1.00	39 0.00 0.00				
PHF Volume: 35 Reduct Vol: 0	68 41	92 80 0 0	194	128 484 0 0	130 2 0	2 453 0 0	0				
Reduced Vol: 35 PCE Adj: 1.00 MLF Adj: 1.00	1.00 1.00	1.00 1.00	1.00	1.00 1.00	1.00 1.0	2 453 0 1.00 0 1.00	0.00				
FinalVolume: 35	68 41	92 80	194	128 484	130 2		0				
Saturation Flow M											
Sat/Lane: 1500 Adjustment: 1.00				1500 1500 1.00 1.00		0 1500 0 1.00	1500				
Lanes: 0.24 Final Sat.: 365	0.48 0.28 708 427	0.53 0.47 802 698	1.00 1500	1.00 1.00 1500 1500	1.00 1.0 1500 150	0 1.00 0 1.00 0 1500	1.00				
	Module:										
Vol/Sat: 0.10 Crit Volume: Crit Moves:	0.10 0.10		0.13		0.09 0.0	1 0.30 453 ****	0.00				

Los Angeles, CA Existing 2008 PM Peak Level Of Service Computation Report Circular 212 Planning Method (Base Volume Alternative) ******************** Intersection #25 Hilgard Avenue and Le Conte Avenue ************************* Cycle (sec): 100 Critical Vol./Cap.(X): 0.641 Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/veh): Optimal Cycle: 52 Level Of Service: xxxxxx Street Name: Hilgard Avenue Le Conte Avenue Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R Control: Permitted Permitted Split Phase Split Phase Rights: Include Include Include Include
 Rights:
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Lanes: 1 0 0 1 0 1 0 1 0 1 1 1 0 0 1 0 1 0 1 Volume Module: >> Count Date: 30 Jan 2008 << 445-545 Base Vol: 56 286 10 25 470 368 322 208 81 10 97 28 Initial Bse: 56 286 10 25 470 368 322 208 81 10 97 28 PHF Volume: 56 286 10 25 470 368 322 208 81 10 97 28 MLF Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.10 1.00 1.00 1.00 1.00 1.00 FinalVolume: 56 286 10 25 470 368 354 208 81 10 97 28 -----|-----||-------| Saturation Flow Module: Lanes: 1.00 0.97 0.03 1.00 1.00 1.00 1.26 0.74 1.00 0.09 0.91 1.00 Final Sat.: 1425 1377 48 1425 1425 1425 1796 1054 1425 133 1292 1425 -----|----|-----|------| Capacity Analysis Module: Vol/Sat: 0.04 0.21 0.21 0.02 0.33 0.26 0.20 0.20 0.06 0.08 0.08 0.02 Crit Volume: 56 470 281 107 Crit Moves: ****

UCLA NHIP and Amended LRDP Traffic Study

Crit Moves: ****

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Existing 2008 PM Peak

Level Of Service Computation Report

Circular 212 Planning Method (Base Volume Alternative) ******************* Intersection #26 Gayley Avenue and Weyburn Avenue ***************** 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): XXXXXX Optimal Cycle: 44 Level Of Service: В Street Name: Gayley Avenue Weyburn Avenue Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R T. - T - R Control: Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 1 0 1 1 0 1 0 1 1 0 0 1 0 1 0 1 0 0 1 0 Volume Module: >> Count Date: 6 Feb 2008 << 500-600 Base Vol: 59 495 205 63 944 281 88 166 32 110 166 88 Initial Bse: 59 495 205 63 944 281 88 166 32 110 166 88 PHF Volume: 59 495 205 63 944 281 88 166 32 110 166 88 0 8.8 FinalVolume: 59 495 205 63 944 281 88 166 32 110 166 88 ------| Saturation Flow Module: Lanes: 1.00 1.41 0.59 1.00 1.54 0.46 0.62 1.16 0.22 1.00 0.65 0.35 Final Sat: 1500 2121 879 1500 2312 688 923 1741 336 1500 980 520 -----|----|-----|------| Capacity Analysis Module: Vol/Sat: 0.04 0.23 0.23 0.04 0.41 0.41 0.10 0.10 0.10 0.07 0.17 0.17 Crit Volume: 59 613 88 254
Crit Moves: **** **** ****

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA. LONG BEACH, CA

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Existing 2008 PM Peak Level Of Service Computation Report Circular 212 Planning Method (Base Volume Alternative) ******************* Intersection #27 Westwood Boulevard and Weyburn Avenue ********************** 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): xxxxxx Optimal Cycle: 180 Level Of Service: Street Name: Westwood Boulevard Weyburn Avenue Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - F T. - T - R Control: Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 1 0 1 1 0 0 1 1 0 1 0 1 0 0 0 1! 0 0 -----|----|-----|------| Volume Module: >> Count Date: 31 Jan 2008 << 500-600 Base Vol: 146 646 110 40 666 100 79 144 137 96 219 48 Initial Bse: 146 646 110 40 666 100 79 144 137 96 219 48 PHF Volume: 146 646 110 40 666 100 79 144 137 96 219 48 FinalVolume: 146 646 110 160 666 100 79 144 137 96 219 48 -----|-----|------| Saturation Flow Module:

Existing PM Peak

Capacity Analysis Module: Vol/Sat: 0.13 0.34 0.34 0.07 0.41 0.09 0.16 0.16 0.16 0.32 0.32 0.32 Crit Volume: 146 458 79 363 Crit Moyes: **** **** ****

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA. LONG BEACH. CA

Lanes: 1.00 1.71 0.29 0.55 1.45 1.00 0.44 0.80 0.76 0.26 0.61 0.13

Final Sat.: 1125 1923 327 614 1636 1125 494 900 856 298 679 149

-----|-----|------|

UCLA NHIP and Amended LRDP Traffic Study
Los Angeles, CA
Existing 2008 PM Peak

Level Of Service Computation Report 2000 HCM 4-Way Stop Method (Base Volume Alternative)

******************* Intersection #28 Tiverton Drvie and Weyburn Avenue ********************** Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/veh): 9.9
Optimal Cycle: 0 Level Of Service: A Street Name: Tiverton Drive Weyburn Avenue Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R T. - T - R Control: Stop Sign Stop Sign Stop Sign Stop Sign Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 0 0 1! 0 0 0 0 1! 0 0 0 0 1! 0 0 0 0 1! 0 0 Volume Module: >> Count Date: 6 Feb 2008 << 500-600 Base Vol: 22 61 45 99 0 162 67 169 1 1 95 31 Initial Bse: 22 61 45 99 0 162 67 169 1 1 95 31 PHF Volume: 22 61 45 99 0 162 67 169 1 1 95 31 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 22 61 45 99 0 162 67 169 1 1 95 0 31 FinalVolume: 22 61 45 99 0 162 67 169 1 1 95 31 -----| Saturation Flow Module: Lanes: 0.17 0.48 0.35 0.38 0.00 0.62 0.28 0.71 0.01 0.01 0.75 0.24 Final Sat.: 115 320 236 276 0 452 191 482 3 5 497 162 -----|----|-----| Capacity Analysis Module: Vol/Sat: 0.19 0.19 0.19 0.36 xxxx 0.36 0.35 0.35 0.35 0.19 0.19 0.19 Crit Moves: **** **** **** Delay/Veh: 9.0 9.0 9.0 10.1 0.0 10.1 10.5 10.5 10.5 9.1 9.1 9.1 AdjDel/Veh: 9.0 9.0 9.0 10.1 0.0 10.1 10.5 10.5 10.5 9.1 9.1 9.1 LOS by Appr: A В

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

Note: Queue reported is the number of cars per lane.

AllWayAvgQ: 0.2 0.2 0.2 0.5 0.5 0.5 0.5 0.5 0.2 0.2 0.2

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Existing 2008 PM Peak Level Of Service Computation Report Circular 212 Planning Method (Base Volume Alternative) ******************* Intersection #29 Hilgard Avenue and Weyburn Avenue ************************ Cycle (sec): 100 Critical Vol./Cap.(X): 0.644 Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/ve Optimal Cycle: 52 Level Of Service: 0 (Y+R=4.0 sec) Average Delay (sec/veh): xxxxxx Street Name: Hilgard Avenue Weyburn Avenue Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - F T. - T - R Control: Permitted Permitted Split Phase Split Phase Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 1 0 0 1 0 1 0 1 0 1 1 0 0 1 0 0 0 1! 0 0 Volume Module: >> Count Date: 6 Feb 2008 << 500-600 Base Vol: 49 343 21 26 534 50 55 99 167 13 36 20 Initial Bse: 49 343 21 26 534 50 55 99 167 13 36 20 PHF Volume: 49 343 21 26 534 50 55 99 167 13 36 20 FinalVolume: 49 343 21 26 534 50 55 99 167 13 36 20 -----|-----|------| Saturation Flow Module: Lanes: 1.00 0.94 0.06 1.00 1.00 1.00 0.37 0.63 0.19 0.52 0.29 Final Sat.: 1425 1343 82 1425 1425 1425 1425 530 895 268 743 413 -----|----|-----|------| Capacity Analysis Module: Vol/Sat: 0.03 0.26 0.26 0.02 0.37 0.04 0.04 0.19 0.19 0.05 0.05 0.05 Crit Volume: 49 534 266 69
Crit Moyes: **** **** ****

Capacity Analysis Module:

Level Of Service Computation Report

Circular 212 Planning Method (Base Volume Alternative) ******************* Intersection #30 Westwood Boulevard and Kinross Avenue ************************ 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): XXXXXX Optimal Cycle: 180 Level Of Service: Street Name: Westwood Boulevard Kinross Avenue Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R T. - T - R Control: Permitted Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 Lanes: 1 0 1 0 1 0 1 1 1 0 0 1 0 1 0 1 0 0 1 0 Volume Module: >> Count Date: 31 Jan 2008 << 500-600 Base Vol: 78 739 34 37 744 118 96 215 94 16 128 40 Initial Bse: 78 739 34 37 744 118 96 215 94 16 128 40 PHF Volume: 78 739 34 37 744 118 96 215 94 16 128 40 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 78 739 34 37 744 118 96 215 94 16 128 0 40 FinalVolume: 78 739 34 148 744 118 96 215 94 16 128 40 ------Saturation Flow Module:

Lanes: 1.00 1.00 1.00 0.66 1.99 0.35 0.47 1.07 0.46 1.00 0.76 0.24

Final Sat.: 1125 1125 1125 738 2243 394 533 1194 522 1125 857 268

Vol/Sat: 0.07 0.66 0.03 0.05 0.33 0.30 0.18 0.18 0.18 0.01 0.15 0.15

Crit Volume: 739 37 96 168 Crit Moves: *** *** ***

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA. LONG BEACH, CA

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Existing 2008 PM Peak Level Of Service Computation Report Circular 212 Planning Method (Base Volume Alternative) ******************* Intersection #31 Westwood Boulevard and Lindbrook Drive ************************ Cycle (sec): 100 Critical Vol./Cap.(X): 0.535 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): xxxxxx Optimal Cycle: 31 Level Of Service: Street Name: Westwood Bouelvard Lindbrook Drive Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - F T. - T - R Control: Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 0 1 1 0 1 0 1 1 1 0 0 1 0 1 0 1 0 1 0 Volume Module: >> Count Date: 31 Jan 2008 << 500-600 Base Vol: 1 711 173 28 815 15 30 130 54 89 242 42 Initial Bse: 1 711 173 28 815 15 30 130 54 89 242 42 PHF Volume: 1 711 173 28 815 15 30 130 54 89 242 42 FinalVolume: 4 711 173 112 815 15 30 130 54 89 242 42 -----|-----||-------| Saturation Flow Module: Lanes: 0.01 1.99 1.00 0.49 2.46 0.05 0.28 1.22 0.50 0.48 1.30 0.22 Final Sat.: 13 2237 1125 548 2773 54 315 1367 568 537 1460 253 Capacity Analysis Module: Vol/Sat: 0.08 0.32 0.15 0.05 0.29 0.28 0.10 0.10 0.10 0.17 0.17 0.17 Crit Volume: 358 28 30 187
Crit Moves: **** **** ****

Thu Jul 17, 2008 10:28:07

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Existing 2008 PM Peak

Level Of Service Computation Report
Circular 212 Planning Method (Base Volume Alternative)

Circular 212 Planning Method (Base Volume Alternative)										
Intersection #32 Glendon/Tiverton/Lindbrook	****									
Cycle (sec): 100 Critical Vol./Cap.(X): 0.58	n									
Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec(yeh): xxxxx	×									
Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/veh): xxxxx: Optimal Cycle: 34	A									

Street Name: Glendon Avenue/Tiverton Avenue Lindbrook Drive										
Approach: North Bound South Bound East Bound West Bound										
Movement: L - T - R L - T - R L - T -										
Control: Permitted Permitted Permitted Permitted										
Rights: Include Include Include Include	e .									
Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0										
Lanes: 1 0 1 0 1 1 0 2 1 0 0 1 0 0 1 0 1 0 1										
Base Vol: 30 125 184 36 124 153 31 224 18 395 257	53									
	1.00									
Initial Bse: 30 125 184 36 124 153 31 224 18 395 257	53									
	1.00									
PHF Adi: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	1.00									
PHF Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	53									
	0									
Reduced Vol: 30 125 184 36 124 153 31 224 18 395 257	53									
PCE Adj: 1.00 1.00 1.00 1.00 1.00 1.00 2.00 1.00 1	1.00									
	1.00									
FinalVolume: 30 125 184 36 124 153 62 224 18 395 257	53									
Saturation Flow Module:										
	1500									
	1.00									
	0.15 226									
Final Sat.: 1500 1500 1500 1500 3000 1500 182 1318 1500 1500 1274										
Capacity Analysis Module:										
Vol/Sat: 0.02 0.08 0.12 0.02 0.04 0.10 0.17 0.17 0.01 0.26 0.20	0 24									
Crit Volume: 184 36 255 395 Crit Moves: **** **** ****	J. 4									
Crit Movadine.										

Level Of Service Computation Report Circular 212 Planning Method (Base Volume Alternative) ******************** Intersection #33 Sepulveda Boulevard and Constitution Avenue ************************ Cycle (sec): 100 Critical Vol./Cap.(X): 0.762 Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/veh): Optimal Cycle: 61 Level Of Service: xxxxxx Street Name: Sepulveda Boulevard Constitution Avenue Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - F L - T - R Control: Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 1 0 1 1 0 1 0 1 1 0 0 0 1! 0 0 0 0 1! 0 0 Volume Module: >> Count Date: 13 Feb 2008 << 415-515 Base Vol: 19 1039 2 4 824 100 531 2 76 10 5 5 Initial Bse: 19 1039 2 4 824 100 531 2 76 10 5 5 PHF Volume: 19 1039 2 4 824 100 531 2 76 10 5 5 FinalVolume: 19 1039 2 4 824 100 531 2 76 10 5 5 -----|-----| Saturation Flow Module: Lanes: 1.00 1.99 0.01 1.00 1.78 0.22 0.87 0.01 0.12 0.50 0.25 0.25 Final Sat.: 1500 2994 6 1500 2675 325 1308 5 187 750 375 375 -----| Capacity Analysis Module: Vol/Sat: 0.01 0.35 0.35 0.00 0.31 0.31 0.41 0.41 0.41 0.01 0.01 0.01 Crit Volume: 521 4 609 10 Crit Moves: **** ****

UCLA NHIP and Amended LRDP Traffic Study

Los Angeles, CA

Existing 2008 PM Peak

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Existing 2008 PM Peak

Existing 2008 PM Peak											
Level Of Service Computation Report Circular 212 Planning Method (Base Volume Alternative)	****										
Intersection #34 San Vicente Bouevard and Wilshire Bouelvard											
Cycle (sec): 100 Critical Vol (Cap (V): 0.838											
Cycle (sec): 100 (Y+R=4.0 sec) Average Delay (sec/veh): xxxxxx Optimal Cycle: 180 Level Of Service: D											
Street Name: San Vicente Bouevard Wilshire Bouelvard											
Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T -											
Movement: L - T - R L - T - R L - T - R L - T -											
Control: Split Phase Split Phase Permitted Protecte	d .										
Rights: Ovl Include Include Ignore Min. Green: 0 0 0 0 0 0 0 0 0 0											
Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 0	0										
Lanes: 1 0 2 0 1 2 1 0 1 0 1 0 2 1 0 1 0 3 0											
Base Vol: 95 371 230 1066 321 47 10 984 20 126 1718	788										
	1.00										
Initial Bse: 95 371 230 1066 321 47 10 984 20 126 1718	788										
	0.00										
	0.00										
	0										
Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0	0										
Reduced Vol: 95 371 230 1066 321 47 10 984 20 126 1718	0										
	0.00										
FinalVolume: 95 371 230 1173 321 47 10 984 20 126 1718	0.00										
Saturation Flow Module:	'										
Sat/Lane: 1425 1425 1425 1425 1425 1425 1425 1425	1425										
	1.00										
	1.00										
	1425										
	0.00										
Crit Volume: 230 391 335 573 Crit Moves: **** **** ****											

	UCLA		ded LRDP ngeles, C 2008 PM	A	ıdy		
C ******	ircular 212	evel Of Servic 2 Planning Met	hod (Base	Volume Alt	ernati	ve) ******	*****
		eda Boulevard					
Cycle (sec): Loss Time (se Optimal Cycle	100 c): ()) (Y+R=4.0 sec	Critic) Averag Level	al Vol./Cap e Delay (se Of Service:	o.(X): ec/veh)	1.1 : xxxx	.10 xxx F
Street Name: Approach: Movement:	North Bou	lveda Boulevar und South - R L -	Bound T - R	East Bo L - T	ound - R	L - T	- R
Control: Rights: Min. Green: Lanes:	Protecte Include 0 0 1 0 1 1	ed Prot de In 0 0	ected clude 0 0 1 1 0	Protect Inclu 0 0 1 0 3	ed ide 0	Protect Inclu	ed
Volume Module Base Vol: Growth Adj: Initial Bse: User Adj: PHF Volume: Reduct Vol: Reduced Vol: PCE Adj:	: >> Count 123 555 1.00 1.00 123 555 1.00 1.00 1.00 1.00 123 555 0 0 123 555 1.00 1.00 1.00 1.00 1.00 1.00	1.00 1.00 1. 259 108 4 1.00 1.00 1. 1.00 1.00 1. 259 108 4 0 0 259 108 4 1.00 1.00 1. 1.00 1.00 1. 259 108 4	2008 << 5 35 130 00 1.00 35 130 00 1.00 00 1.00 00 1.00 0 35 130 0 0 0 35 130 0 1.00 0 1.00		39 1.00 39 1.00 1.00 39 0 39 1.00 1.00	290 2281 1.00 1.00 290 2281 1.00 1.00 1.00 1.00 290 2281 0 0 290 2281 1.00 1.00 1.10 1.00 319 2281	169 1.00 1.00 169 0 169 1.00 1.00
Saturation Fl Sat/Lane: Adjustment: Lanes: Final Sat.:	ow Module: 1375 1375 0.75 0.75 1.00 1.36 1031 1406	1375 1375 13 0.75 0.75 0. 0.64 1.00 1. 656 1031 15	75 1375 75 0.75 54 0.46 88 475	1375 1375 0.75 0.75 1.00 3.92 1031 4039	1375 0.75 0.08 86	1375 1375 0.75 0.75 2.00 4.66 2063 4801	1375 0.75 0.34 356
Capacity Anal Vol/Sat: Crit Volume: Crit Moves:	0.12 0.39		27 0.27	0.14 0.45 140 ****	0.45	0.15 0.48	0.48 490 ****

PHF Adj:

0 29

Level Of Service Computation Report

Circular 212 Planning Method (Base Volume Alternative) ************************* Intersection #36 Veteran Avenue and Wilshire Boulevard ************************* Cycle (sec): 100 Critical Vol./Cap.(X): 1.624 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): xxxxxx Optimal Cycle: 180 Level Of Service: Street Name: Veteran Avenue Wilshire Boulevard Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R T. - T - R Control: Prot+Permit Permitted Protected Protected Rights: Ovl Ovl Include Include
Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 1 0 2 0 1 1 0 2 0 2 2 0 3 1 0 2 0 3 1 0 Volume Module: >> Count Date: 21 Feb 2008 << 500-600 Base Vol: 222 645 140 78 1022 1528 402 2072 46 42 2421 29 Initial Bse: 222 645 140 78 1022 1528 402 2072 46 42 2421 29

FinalVolume:		645				1681			46		2421	29
Saturation Fl	Low Mo	odule:										
Sat/Lane:	1375	1375	1375	1375	1375	1375	1375	1375	1375	1375	1375	1375
Adjustment:	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75
Lanes:	1.00	2.00	1.00	1.00	2.00	2.00	2.00	3.91	0.09	2.00	3.95	0.05
Final Sat.:	1031	2063	1031	1031	2063	2063	2063	4035	90	2063	4076	49
Capacity Anal	ysis	Modul	e:									
Vol/Sat:	0.22	0.31	0.14	0.08	0.50	0.81	0.21	0.51	0.51	0.02	0.59	0.59
Crit Volume:	222					840	0					613
Crit Moves:	****					****	****					****

PHF Volume: 222 645 140 78 1022 1528 402 2072 46 42 2421 29

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Existing 2008 PM Peak Level Of Service Computation Report Circular 212 Planning Method (Base Volume Alternative) ******************* Intersection #37 Gayley Avenue and Wilshire Boulevard ******************** 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): xxxxxx Optimal Cycle: 180 Level Of Service: Street Name: Gayley Avenue Wilshire Boulevard Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - F T. - T - R Control: Prot+Permit Permitted Protected Permitted
Rights: Include Ovl Include Include
 Rights:
 Include
 Ovl
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 Lanes: 1 0 2 0 1 1 0 1 0 2 2 0 3 1 0 1 0 3 1 0 Volume Module: >> Count Date: 13 Feb 2008 << 500-600 Base Vol: 212 290 102 130 450 647 332 1840 92 38 1641 81 Initial Bse: 212 290 102 130 450 647 332 1840 92 38 1641 81 PHF Volume: 212 290 102 130 450 647 332 1840 92 38 1641 81 FinalVolume: 212 290 102 130 450 712 365 1840 92 38 1641 81 -----|-----|------| Saturation Flow Module: Lanes: 1.00 2.00 1.00 1.00 1.00 2.00 2.00 3.81 0.19 1.00 3.81 0.19 Final Sat.: 1069 2138 1069 1069 1069 2138 2138 4071 204 1069 4074 201 -----|-----|------| Capacity Analysis Module: Vol/Sat: 0.20 0.14 0.10 0.12 0.42 0.33 0.17 0.45 0.45 0.04 0.40 0.40 Crit Volume: 212 450 183 431 Crit Moyes: **** **** ****

Thu Jul 17, 2008 10:28:07

Capacity Analysis Module:

Level Of Service Computation Report

Circular 212 Planning Method (Base Volume Alternative) ************************* Intersection #38 Westwood Boulevard and Wilshire Boulevard ************************ 0 (Y+R=4.0 sec) Average Delay (sec/veh): xxxxxx Loss Time (sec): Optimal Cycle: 180 Level Of Service: Street Name: Westwood Boulevard Wilshire Boulevard Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R T. - T - R Control: Prot+Permit Prot+Permit Protected Protected Lanes: 1 0 2 1 0 1 0 3 0 1 2 0 3 1 0 2 0 3 1 0 Volume Module: >> Count Date: 7 Feb 2008 << 400-500 Base Vol: 150 475 178 164 601 236 209 1685 237 164 1534 103 Initial Bse: 150 475 178 164 601 236 209 1685 237 164 1534 103 PHF Adj: PHF Volume: 150 475 178 164 601 236 209 1685 237 164 1534 103 FinalVolume: 150 475 178 164 601 236 230 1685 237 180 1534 103 -----|----|-----|------| Saturation Flow Module: Lanes: 1.00 2.18 0.82 1.00 3.00 1.00 2.00 3.51 0.49 2.00 3.75 0.25 Final Sat.: 1031 2250 843 1031 3094 1031 2063 3616 509 2063 3865 260

-----|----|-----|------|

Vol/Sat: 0.15 0.21 0.21 0.16 0.19 0.23 0.11 0.47 0.47 0.09 0.40 0.40

Crit Volume: 218 164 481 90 Crit Moves: **** ****

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Existing 2008 PM Peak Level Of Service Computation Report Circular 212 Planning Method (Base Volume Alternative) ******************* Intersection #39 Glendon Avenue and Wilshire Bouelvard *********************** 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): xxxxxx Optimal Cycle: 180 Level Of Service: Street Name: Glendon Avenue Wilshire Bouelvard Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - F T. - T - R Control: Permitted Permitted Protected Permitted Rights: Include Ovl Include Include
 Rights:
 Include
 Ovl
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 Lanes: 0 0 1! 0 0 1 0 1 0 2 2 0 3 1 0 1 0 3 1 0 Volume Module: >> Count Date: 7 Feb 2008 << 430-530 Base Vol: 57 205 46 130 271 109 117 1918 36 18 1483 81 Initial Bse: 57 205 46 130 271 109 117 1918 36 18 1483 81 PHF Volume: 57 205 46 130 271 109 117 1918 36 18 1483 81 FinalVolume: 57 205 46 130 271 120 129 1918 36 18 1483 81 -----|-----|------| Saturation Flow Module: Lanes: 0.18 0.67 0.15 1.00 1.00 2.00 2.00 3.93 0.07 1.00 3.79 0.21 Final Sat: 198 711 160 1069 1069 2138 2138 4196 79 1069 4054 221 -----|----|-----|------| Capacity Analysis Module: Vol/Sat: 0.29 0.29 0.29 0.12 0.25 0.06 0.06 0.46 0.46 0.02 0.37 0.37 Crit Volume: 308 130 488 391 Crit Moves: **** ****

ApproachDel:

155.9

UCLA NHIP and Amended LRDP Traffic Study

Existing PM Peak

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Existing 2008 PM Peak

Level Of Service Computation Report 2000 HCM Unsignalized Method (Base Volume Alternative)

************************ Intersection #40 Malcolm Avenue and Wilshire Boulevard **********************

Average Delay	/ (sed	c/veh;): *****	7.2	****	Worst	Case 1	Level	Of Se	rvice:	F[319	9.9] *****
Street Name:			Malcoln							Boule	vard	
Approach:	No	rth Bo	ound		ath Bo	ound	Εa	ast Bo	ound		est Bo	
Movement:			- R	L -	- T	- R	L ·	- T	- R		- T	
Control:	St	top S:	ıgn	St	top S:	ıgn	Uno	contro	olled	Un		
Rights:											Incl	
Lanes:						0 0				1 (1 0
Volume Module												
		1		11	1	50		1984	E 7	16	1590	31
Growth Adj:		1.00			1.00	1.00		1.00			1.00	1.00
Initial Bse:				1.00	1.00	50		1984	57		1590	31
User Adi:					_	1.00		1.00			1.00	1.00
PHF Adj:				1.00		1.00			1.00		1.00	1.00
		1.00		1.00		50		1984	57		1590	31
Reduct Vol:						0				0		0
FinalVolume:						50					1590	-
Critical Gap							1 1			1 1		
Critical Gp:	7.5	6.5	6.9	7.5	6.5	6.9	4.1	xxxx	xxxxx	4.1	xxxx	xxxxx
FollowUpTim:					4.0			xxxx	xxxxx	2.2	xxxx	xxxxx
Capacity Modu												
Cnflict Vol:				2351						2041		
Potent Cap.:		5	392		5	487			xxxxx			xxxxx
Move Cap.:					4				XXXXX			xxxxx
Volume/Cap:			0.10			0.10			XXXX			XXXX
1 Of C												
Level Of Serv 2Way95thO:							0 0			0 0		
Zwaystny: Control Del:									XXXXX			
LOS by Move:									*			xxxxx *
Movement:										-	- I.TR	
Shared Cap.:												
SharedOueue:									XXXXX			XXXXX
Shrd ConDel:												
Shared LOS:								*				xxxxx
suared LOS:		r	-	-	r	-	-		-	-		-

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

319.9

~~****************************** Note: Queue reported is the number of cars per lane.

XXXXXX

XXXXXX

0021		Angeles, CA q 2008 PM Pe		ı									
Level Of Service Computation Report													
Circular 212 Planning Method (Base Volume Alternative)													
Intersection #41 Westholme Avenue and Wilshire Boulevard													
Intersection #41 Westholme Avenue and Wilshire Boulevard													
Cycle (sec): 10			l Vol./Cap.			^							
Loss Time (sec):													
	0 (11K=4.0 56)		f Service:	veii).	C								
*************				*****		*							
Street Name: We	stholme Avenue	e	Wilsl	nire Boule	/ard								
Approach: North Bo		h Bound			est Bound								
Movement: L - T		T - R	L - T -		- T - R								
Control: Permit			Protected		rotected								
Rights: Inclu		nclude	Include		Include								
		0 0	0 0		0 0								
Lanes: 0 0 1!		1! 0 0			2 1 0	ï							
Volume Module: >> Count						ı							
Base Vol: 44 74		217 11	37 1880	63 52	1566 120								
Growth Adj: 1.00 1.00	1.00 1.00 1				1.00 1.00								
Initial Bse: 44 74		217 11	37 1880		1566 120								
User Adj: 1.00 1.00	1.00 1.00 1	.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00								
PHF Adj: 1.00 1.00	1.00 1.00 1	.00 1.00	1.00 1.00	1.00 1.00	1.00 1.00								
PHF Volume: 44 74		217 11	37 1880		1566 120								
Reduct Vol: 0 0	0 0	0 0	0 0	0 0	0 0								
Reduced Vol: 44 74		217 11	37 1880		1566 120								
PCE Adj: 1.00 1.00	1.00 1.00 1				1.00 1.00								
MLF Adj: 1.00 1.00 FinalVolume: 44 74	1.00 1.00 1	.00 1.00 I 217 11	1.00 1.00 1 37 1880		1.00 1.00 1566 120								
FinalVolume: 44 /4			3/ 1880		1566 120								
Saturation Flow Module:		-				ı							
Sat/Lane: 1425 1425	1425 1425 1	425 1425 3	1425 1425	1425 1425	1425 1425								
Adjustment: 1.00 1.00	1.00 1.00 1				1.00 1.00								
Lanes: 0.26 0.43	0.31 0.29 0				2.79 0.21								
Final Sat.: 365 613	447 413	963 49	1425 4275	1425 1425	3971 304								
		-											
Capacity Analysis Modul													
Vol/Sat: 0.12 0.12					0.39 0.39								
Crit Volume: 44		321	627	52									
Crit Moves: ****	*	***	****	****									

******	Circular 2	212 Plan	ning Metho	d (Base	ation Repor	ternativ	ve) ******	*****	
Intersection						******	******	*****	
Cycle (sec): Loss Time (s Optimal Cycl	ec): e: *******	0 (Y+R 43	=4.0 sec)	Critic Averag Level	cal Vol./Caj ge Delay (s Of Service	p.(X): ec/veh): :	0.572 : xxxxxx A		
Street Name: Approach:	North H	Warner . Bound	Avenue South B	ound	Wi East B	lshire E ound	Boulevard West B	ound	
Control: Rights: Min. Green: Lanes:	1 0 1	0 1	1 0 0	1 0	1 0 2	1 0	1 0 2	1 0	
Volume Modul Base Vol: Growth Adj: Initial Bse: User Adj: PHF Adj: PHF Volume: Reduct Vol: Reduced Vol: PCE Adj: MLF Adj: FinalVolume:	36 2: 1.00 1.00 36 2: 1.00 1.00 1.00 1.00 36 2: 1.00 1.00 36 2: 1.00 1.00 36 2: 1.00 1.00	33 32 1.00 33 32 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	85 65 1.00 1.00 85 65 1.00 1.00 1.00 1.00 85 65 0 0 85 65 1.00 1.00 1.00 1.00 85 65	42 1.00 42 1.00 1.00 42 0 42 1.00 1.00	33 1961 1.00 1.00 33 1961 1.00 1.00 1.00 1.00 33 1961 1.00 1.00 1.00 1.00 33 1961	27 1.00 27 1.00 1.00 27 0 27 1.00 1.00 27	10 1726 1.00 1.00 10 1726 1.00 1.00 1.00 1.00 10 1726 0 0 10 1726 1.00 1.00 1.00 1.00 1.01 1726	49 1.00 49 1.00 1.00 49 0 49 1.00 1.00	
Saturation F Sat/Lane: Adjustment: Lanes: Final Sat.: 	low Module 1425 1425 1.00 1.00 1.00 1.00 1425 1425 	1425 1.00 1.00 1.00 1.425 	1425 1425 1.00 1.00 1.00 0.61 1425 866	1425 1.00 0.39 559 	1425 1425 1.00 1.00 1.00 2.96 1425 4217	1425 1.00 0.04 58 	1425 1425 1.00 1.00 1.00 2.92 1425 4157 	1425 1.00 0.08 118	

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

	UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Existing 2008 PM Peak													
	Level Of Service Computation Report Circular 212 Planning Method (Base Volume Alternative) ************************************													

Street Name: Beverly Glen Boulevard Wilshire Boulevard Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R														
Control: Prot+Permit														
Volume Module Base Vol: Growth Adj: Initial Bse: User Adj: PHF Adj: PHF Volume: Reduct Vol: Reduced Vol: PCE Adj: MLF Adj: FinalVolume:	155 1.00 155 1.00 1.00 1.00 1.55 0 1.55 1.00 1.00	Count 459 1.00 459 1.00 459 0 459 1.00 459 1.00 1.00		12 Fe 54 1.00 54 1.00 54 0 54 1.00	392 1.00 392 1.00 1.00 392 0 392 1.00 1.00 392	1.00 53 1.00 53 1.00 53 0 53 1.00 53 1.00	114 1.00 114 1.00 1.00 114 0 114 1.00 1.00	1684 1.00 1684 1.00 1.00 1684 0 1684 1.00	261 1.00 261 1.00 1.00 261 0 261 1.00 261	1.00 101 1.00 1.00 101 0 101 1.00	1598 1.00 1598 1.00 1.00 1598 0 1598 1.00 1.00	47 1.00 47 1.00 1.00 47 0 47 1.00 1.00		
Saturation F Sat/Lane: Adjustment: Lanes: Final Sat.:	low Mod 1375 1.00 1.00 1375	dule: 1375 1.00 1.79 2461	1375 1.00 0.21 289	1375 1.00 1.00 1375	1375 1.00 1.76 2422	1375 1.00 0.24 328	1375 1.00 1.00	1375 1.00	1375 1.00 1.00 1375	1.00	1375 1.00 2.91 4007	1375 1.00 0.09 118		
Capacity Anal Vol/Sat: Crit Volume: Crit Moves:	lysis 1		: '	1	0.16 223 ****	0.16	0.08 114 ****	0.41	0.19	0.07	0.40	0.40 548 ****		

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Existing 2008 PM Peak

Level Of Service Computation Report

Circular 212 Planning Method (Base Volume Alternative)												

Intersection #44 Sawtelle Boulevard an	d Ohio Avenue *******************************											
Cycle (sec): 100	Critical Vol./Cap.(X): 0.876											
Loss Time (sec): 0 (Y+R=4.0 sec)	Average Delay (sec/veh): xxxxxx											
Optimal Cycle: 116	Average Delay (sec/veh): xxxxxx Level Of Service: D											
Street Name: Sawtelle Boulevard Ohio Avenue Approach: North Bound South Bound East Bound West Bound												
Approach: North Bound South	Bound East Bound West Bound											
Movement: L - T - R L - T	- R L - T - R L - T - R											
	itted Permitted Permitted											
Control: Permitted Perm	itted Permitted Permitted											
Rights: Include Inc	lude Include Include											
Min. Green: 0 0 0 0	lude Include Include 0 0 0 0 0 0 0 ! 0 0 1 0 0 1 0 0 1 0											
Lanes: 0 0 1! 0 0 0 0 1	! 0 0 1 0 0 1 0 1 0 0 1 0											
Waluma Madula: >> Count Date: 13 Ech 3	 008 << 400-500											
Base Vol: 56 89 93 74 43												
Growth Adj: 1.00 1.00 1.00 1.00 1.0												
Initial Bse: 56 89 93 74 43												
User Adj: 1.00 1.00 1.00 1.00 1.0												
PHF Adj: 1.00 1.00 1.00 1.00 1.0												
PHF Volume: 56 89 93 74 43	7 120 53 436 31 94 524 50											
Reduct Vol: 0 0 0 0	0 0 0 0 0 0 0 0											
Reduced Vol: 56 89 93 74 43	7 120 53 436 31 94 524 50											
	0 1.00 1.00 1.00 1.00 1.00 1.00 1.00											
MLF Adj: 1.00 1.00 1.00 1.00 1.0												
	7 120 53 436 31 94 524 50											
Saturation Flow Module:												
Sat/Lane: 1500 1500 1500 1500 150	0 1500 1500 1500 1500 1500 1500 1500											
Adjustment: 1.00 1.00 1.00 1.00 1.0												
Lanes: 0.24 0.37 0.39 0.12 0.6												
Final Sat.: 353 561 586 176 103												
Capacity Analysis Module:	11											
Vol/Sat: 0.16 0.16 0.16 0.42 0.4	2 0.42 0.04 0.31 0.31 0.06 0.38 0.38											
Crit Volume: 56	631 53 574											
Crit Moves: ****	**** ***											

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Existing 2008 PM Peak Level Of Service Computation Report Circular 212 Planning Method (Base Volume Alternative) ******************* Intersection #45 Sepulveda Boulevard and Ohio Avenue *********************** Cycle (sec): 100 Critical Vol./Cap.(X): 0.850 Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/veh): Optimal Cycle: 96 Level Of Service: xxxxxx D Street Name: Sepulveda Boulevard Ohio Avenue Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - F L - T - R Control: Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 1 0 1 1 0 1 0 1 1 0 1 0 0 1 0 1 0 0 1 0 Volume Module: >> Count Date: 13 Feb 2008 << 500-600 Base Vol: 145 659 127 114 848 197 94 397 43 68 477 36 Initial Bse: 145 659 127 114 848 197 94 397 43 68 477 36 PHF Volume: 145 659 127 114 848 197 94 397 43 68 477 36 FinalVolume: 145 659 127 114 848 197 94 397 43 68 477 36 -----|-----| Saturation Flow Module: Lanes: 1.00 1.68 0.32 1.00 1.62 0.38 1.00 0.90 0.10 1.00 0.93 0.07 Final Sat.: 1500 2515 485 1500 2434 566 1500 1353 147 1500 1395 105 -----| Capacity Analysis Module: Vol/Sat: 0.10 0.26 0.26 0.08 0.35 0.35 0.06 0.29 0.29 0.05 0.34 0.34 Crit Volume: 145 523 94 513
Crit Moves: **** **** **** Crit Moves: ****

Crit Moves: ****

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Existing 2008 PM Peak

Level Of Service Computation Report

Circular 212 Planning Method (Base Volume Alternative)												
Intersection #46 Veteran Avenue and Ohio Avenue												
Cycle (sec):		10	00			Critic	al Vo	1./Ca	p.(X):		0.	840
Loss Time (se	ec):		0 (Y+R	=4.0 s	sec)	Averag	e Del	ay (s	ec/veh)	:	xxx	xxx
Optimal Cycle	e:	9	90			Level	Of Se	rvice	:			D
Street Name: Approach:		7	/eteran	Aveni	ıe				Ohio A	venue		
Approach:	No:	rth Bo	ound	Sot	ath Bo	ound	E	ast B	ound	W	est B	ound
Movement:	L	- T	- R	_ L -	- T	- R	L	- T	- R	L	- T	- R
Control:		Permit	ted]	ermi!	tted		Permi	tted		Permi	tted
Control: Rights: Min. Green: Lanes:		Inclu	ıde		Incl	ıde		Incl	ude		Incl	ude
Min. Green:	0	0 1.	0	0	. 1.	0	1 0	0	1 0	1 0		1 0
Lanes:	1	0 1:	0 0	1 0 0) I:	0 0	1	0 0	1 0	1	0	1 0
Volume Module	1	Count	Date:	13 04	ah 201	18 // /	145-54	5				
Base Vol:	26	328	45	17	368	156	145	502	46	145	480	43
Growth Adj:												
Initial Bse:	26	328	45	17	368	156	145	502	46	145	480	4.3
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adi:	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00
PHF Volume:	26	328	45	17	368	156	145	502	46	145	480	43
PHF Volume: Reduct Vol: Reduced Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:	26	328	45	17	368	156	145	502	46	145	480	43
PCE Adj:												
MLF Adj:												
FinalVolume:												
Saturation F												
Sat/Lane:				1500	1500	1500	1500	1500	1500	1500	1500	1500
Adjustment:												
Lanes:												
Final Sat.:	98	1233	169	47	1020	433	1500	1374	126	1500	1377	123
Capacity Anal						'			'			
Vol/Sat:	0.27	0.27	0.27	0.36							0.35	0.35
Crit Volume:	26				541			548		145		

Los Angeles, CA Existing 2008 PM Peak Level Of Service Computation Report Circular 212 Planning Method (Base Volume Alternative) ******************** Intersection #47 Westwood Boulevard and Ohio Avenue ************************ Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/veh):
Optimal Cycle: 54 Level Of Service: xxxxxx Street Name: Westwood Boulevard Ohio Avenue Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - F L - T - R Control: Permitted Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 1 0 2 0 1 1 0 2 0 1 1 0 0 1 0 1 0 0 1 0 Volume Module: >> Count Date: 7 Feb 2008 << 445-545 Base Vol: 91 859 41 44 1223 116 89 232 79 85 246 41 Initial Bse: 91 859 41 44 1223 116 89 232 79 85 246 41 PHF Volume: 91 859 41 44 1223 116 89 232 79 85 246 41 FinalVolume: 91 859 41 44 1223 116 89 232 79 85 246 41 -----| Saturation Flow Module: Lanes: 1.00 2.00 1.00 1.00 2.00 1.00 1.00 0.75 0.25 1.00 0.86 0.14 Final Sat.: 1500 3000 1500 1500 3000 1500 1500 1119 381 1500 1286 214 -----| Capacity Analysis Module: Vol/Sat: 0.06 0.29 0.03 0.03 0.41 0.08 0.06 0.21 0.21 0.06 0.19 0.19 Crit Volume: 91 612 311 85 Crit Moves: ****

UCLA NHIP and Amended LRDP Traffic Study

Capacity Analysis Module:

UCLA NHIP and Amended LRDP Traffic Study

Existing PM Peak

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Existing 2008 PM Peak

Level Of Service Computation Report

CII	Julai Ziz	Fiaimiing	MECHOU	. (Dase VOIUME Alter	liacive,	
*****	*******	******	*****	******	******	*******
				Santa Monica Bouley		
******	*******	******	*****	*******	******	******
Cycle (sec):	100			Critical Vol./Cap.	(X):	1.455
Loss Time (sec)	: 0	(Y+R=4.0)	sec)	Average Delay (sec	/veh):	XXXXXX
Optimal Cycle:	180			Level Of Service:		F

Optimal Cycle	≘:	18	0			Level	F ******						
Street Name: Approach:													
Movement:													
movement.													
Control:													
Rights: Min. Green:	0	IIICIU	ue n	0	THET	aue n	0	111011	uue n	0	THET	uue n	
Lanes:	Λ .	n 1 i	n n	0 0	1 11	0	1	n o	1 0	1 1	าว	1 0	
	l			1			1			1			
Volume Module)): >>	Count	Date:	14 Fe	eb 201	08 << 4	100-50	n	1	1		- 1	
Base Vol:										169	1202	68	
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Initial Bse:	74	359	393	120	531	31	14	1288	31	169	1202	68	
User Adj:				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
PHF Volume:													
Reduct Vol:						0	0	0	0	0	0	0	
Reduced Vol:									31				
PCE Adj:				1.00							1.00		
MLF Adj:				1.00					1.00		1.00		
FinalVolume:													
Saturation Fl													
Sat/Lane:													
Adjustment:				0.75				0.75			0.75		
Lanes:				0.18					0.07		2.84		
Final Sat.:									75			172	
										1			

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

Capacity Analysis Module: Vol/Sat: 0.77 0.77 0.77 0.64 0.64 0.64 0.01 0.41 0.41 0.16 0.40 0.40 Crit Volume: 826 120 440 169 Crit Moves: **** **** ****

	Los Angeles, C Existing 2008 PM												
Level Of Service Computation Report Circular 212 Planning Method (Base Volume Alternative)													
Intersection #49 San Diego Fwy SB Ramps and Santa Monica Boulevard													
Cycle (sec): 100 Critical Vol./Cap.(X): 1.031 Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/veh): xxxxxx Optimal Cycle: 180 Level Of Service: F													
Approach: North Bound Movement: L - T - R		Santa Monica East Bound L - T - R	West Bound L - T - R										
Control: Split Phase Rights: Include Min. Green: 0 0 0 0 Lanes: 0 0 0 0 0	Split Phase Include 0 0 0 1 1 0 1 1	Permitted Include 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Protected Include 0 0 0										
Volume Module: >> Count Date Base Vol: 0 0 0 Growth Adj: 1.00 1.00 1.00 Initial Bse: 0 0 0 User Adj: 1.00 1.00 1.00 PHF Adj: 1.00 1.00 1.00 PHF Volume: 0 0 0 Reduct Vol: 0 0 0 PCE Adj: 1.00 1.00 1.00 MLF Adj: 1.00 1.00 1.00 FinalVolume: 0 0 0	: 14 Feb 2008 << 2 377 530 193 1.00 1.00 1.00 377 530 193 1.00 1.00 1.00 1.00 1.00 1.00 377 530 193 0 0 0 377 530 193 1.00 1.00 1.00 1.10 1.00 1.00 1.10 1.00 1.10 415 530 212	$ \begin{array}{c} 45 - 545 \\ 0 \ 1577 \\ 248 \\ 1.00 \ 1.00 \\ 0 \ 1577 \\ 248 \\ 1.00 \ 1.00 \\ 1.00 \\ 1.00 \ 1.00 \\ 0 \\ 1577 \\ 248 \\ 0 \\ 0 \\ 0 \ 1577 \\ 248 \\ 1.00 \ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 1.00 \\ 248 \\ 1.00 \ 1.00 \\ 1.00 \\ 248 \\ 1.00 \ 1.00 \\ 1.00 \\ 248 \\ 1.00 \ 1.00 \\ 1.00 \\ 248 \\ 1.00 \ 1.00 \\ 1.00 \\ 248 \\ 1.00 \ 1.00 \\ 1.00 \\ 248 \\ 1.00 \ 1.00 \\ 1.00 \\ 248 \\ 1.00 \ 1.00 \\ 1.00 $	560 1179 0 1.00 1.00 1.00 560 1179 0 1.00 1.00 1.00 1.00 1.00 1.00 560 1179 0 0 0 0 560 1179 0 1.00 1.00 1.00 1.00 1.00 1.00 1.10 1.00 1.00 616 1179 0										
Saturation Flow Module: Sat/Lane: 1425 1425 1425 Adjustment: 0.75 0.75 Lanes: 0.00 0.00 0.00 Final Sat.: 0 0 0	0.75 0.75 0.75 1.43 1.57 1.00 1531 1675 1069	1425 1425 1425 0.75 0.75 0.75 0.00 3.46 0.54 0 3694 581	1425 1425 1425 0.75 0.75 0.75 2.00 3.00 0.00 2138 3206 0										
Capacity Analysis Module: Vol/Sat: 0.00 0.00 0.00 Crit Volume: 0 Crit Moves:		0.00 0.43 0.43 456 ****	0.29 0.37 0.00 308 ****										

Level Of Service Computation Report Circular 212 Planning Method (Base Volume Alternative)														
Intersection #5	Intersection #50 San Diego Fwy NB Ramps and Santa Monica Boulevard													
**************************************		********												
Loss Time (sec) Optimal Cycle:	0 (Y+F	R=4.0 sec)	Average Level 0	Delay (se Of Service:	c/veh):	XXXX	xx F							
	San Diego E	wv NB Ramps	3	Santa	Monica Bou	levard								
Movement: L	- T - R	L - T	- R	L - T	- R L		- R							
Control: Rights:	Split Phase Include		nase ide		ed ide	Permitt Includ	ted '							
Lanes: 1	1 1 1 1	0 0 0	0 0	2 0 3	0 0 0	0 4 (
Volume Module:				 5-515										
Growth Adj: 1.		0 0 1.00 1.00	1.00	498 1368 1.00 1.00	1.00 1.00	1352	474 1.00							
Initial Bse: 4 User Adj: 1.		0 0	0 1.00	498 1368 1.00 1.00		1352	474 1.00							
PHF Adj: 1. PHF Volume: 4	00 1.00 1.00	1.00 1.00		1.00 1.00 498 1368		1.00	1.00 474							
Reduct Vol:	0 0 0	0 0	0	0 0	0 0	0	0							
Reduced Vol: 4				498 1368 1.00 1.00		1352	474 1.00							
MLF Adj: 1.		1.00 1.00		1.10 1.00	1.00 1.00	1.00	1.00							
Saturation Flow Sat/Lane: 14	Module: 25 1425 1425	1425 1425	1425	1425 1425	1425 1425	5 1425	1425							
Adjustment: 0.	75 0.75 0.75	0.75 0.75	0.75	0.75 0.75	0.75 0.75	0.75	0.75							
Final Sat.: 15			0.00	2.00 3.00 2138 3206	0 (4.00 4275	1.00 1069							
Capacity Analys														
	31 0.22 0.30 32	0.00 0.00	0.00	0.26 0.43 274 ****	0.00 0.00	0.32	0.44 474 ****							
*********	**********	*********	******	*******	*****	*****	*****							

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Existing 2008 PM Peak Level Of Service Computation Report Circular 212 Planning Method (Base Volume Alternative) ******************* Intersection #51 Sepulveda Boulevard and Santa Monica Boulevard ************************ Cycle (sec): 100 Critical Vol./Cap.(X): 1.344 Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/veh): xxxxxx Optimal Cycle: 180 Level Of Service: Street Name: Sepulveda Boulevard Santa Monica Boulevard Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - F L - T - R Control: Protected Protected Protected Protected Rights: Include Owl Lanes: 1 0 2 0 1 1 0 2 0 1 1 0 3 0 1 1 0 3 0 1 -------Volume Module: >> Count Date: 19 Feb 2008 << 430-530 Base Vol: 166 796 203 146 1123 200 145 1404 304 190 1350 162 Initial Bse: 166 796 203 146 1123 200 145 1404 304 190 1350 162 PHF Volume: 166 796 203 146 1123 200 145 1404 304 190 1350 162 FinalVolume: 166 796 203 146 1123 200 145 1404 304 190 1350 162 -----|----|-----|------| Saturation Flow Module: Lanes: 1.00 2.00 1.00 1.00 2.00 1.00 1.00 3.00 1.00 1.00 3.00 1.00 Final Sat.: 1031 2063 1031 1031 2063 1031 1031 3094 1031 1031 3094 1031 -----|----|-----||------| Capacity Analysis Module: Vol/Sat: 0.16 0.39 0.20 0.14 0.54 0.19 0.14 0.45 0.29 0.18 0.44 0.16 Crit Volume: 166 562 468 190 Crit Moves: ****

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Existing 2008 PM Peak

) *******		lar 21	2 Plan	ning 1	Method	Computa d (Base	Volu	ne Alt	ernati			
Intersection	#52 1	Vetera	n Aven	ue and	l Sant	ta Moni	ca Boı	ılevaı	rd			
						Critic						
Loss Time (se			0 (Y+R	=4.0 s	sec)	Averag	e Dela	ay (se	ec/veh)	:	XXX	xxx
Optimal Cycle						Level						E
************* Street Name:			***** eteran						a Monic			
Approach:				Son	ith B	ound					est B	
Movement:			- R			- R			- R			- R
Control:	Pro			Pro		rmit				Pi	rotect	ted
Rights:		Inclu				ude		Incl			Ovl	
Min. Green:	-	0	1 0	-	0	1 0		0	1 0		0	0 1
Lanes:												0 1
Volume Module												
Base Vol:	62	284	46	123	534	59		1549	31	89	1412	8
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0
Initial Bse:	62	284	46	123	534	59		1549	31		1412	8
User Adj:		1.00	1.00		1.00	1.00		1.00			1.00	
PHF Adj:		1.00	1.00		1.00	1.00		1.00			1.00	
PHF Volume: Reduct Vol:	62	284	46 0	123	534	59 0	174	1549 0	31 0	89	1412	8
Reduct VOI:	-	284	46	123	-	59	-	1549	-	-	1412	8
PCE Adi:		1.00	1.00		1.00	1.00		1.00			1.00	
MLF Adj:		1.00	1.00		1.00	1.00		1.00	1.00		1.00	
FinalVolume:	62	284	46		534	59		1549	31		1412	8
Saturation F				1000	1000	1000	1000	1000	1000	1000	1000	100
Sat/Lane: Adiustment:		1375	1375		1375	1375		1375	1375		1375	137
Adjustment: Lanes:		0.86	0.14		0.90	0.10		3.92	0.08		3.00	1.0
Final Sat.:			192		1238	137		5392	108		4125	137
Capacity Anal	lysis	Modul	e:			'						
Vol/Sat:	0.05	0.24	0.24	0.09	0.43	0.43	0.13	0.29	0.29	0.06	0.34	0.0
Crit Volume:							174				471	
Crit Moves:	****	*****				****	****				****	

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

	UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Existing 2008 PM Peak													
************** Intersection	Level Of Service Computation Report Circular 212 Planning Method (Base Volume Alternative) ************************************													
Cycle (sec): 100 Critical Vol./Cap.(X): 0.994 Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/veh): xxxxxx Optimal Cycle: 180 Level Of Service: E														
Street Name: Approach: Movement:	Street Name: Westwood Boulevard Santa Monica Bo Approach: North Bound South Bound East Bound													
Control: Rights: Min. Green: Lanes:	Prot+ Ir 0 1 0	Permit oclude 0 0 0 1 1 0	Pro 0 1 (t+Per Inclu 0 2	mit de 0	P1 0 2 (Ovl 0 0	ed 0 0 1	0 2 (Ovl 0 0	0 0 1			
Volume Module Base Vol: Growth Adj: Initial Bse: User Adj: PHF Adj: PHF Volume: Reduced Vol: PCE Adj: MLF Adj: FinalVolume: 	106 8 1.00 1. 106 8 1.00 1. 106 8 1.00 1. 106 8 1.00 1. 106 8 1.00 1. 106 8	Date: 067 99 00 1.00 067 99 00 1.00 067 99 0 0 0 067 99 00 1.00 00 1.00 00 1.00 01 00 01 00 01 00 01 00 01 00 01 00	19 Fe 197 1.00 197 1.00 1.00 197 0 197 1.00 1.00 1.00	200 1358 1.00 1358 1.00 1.358 0 1.358 1.00 1.00 1.358 1.00 1.00 1.00 1.358 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	08 << 5 122 1.00 122 1.00 1.00 1.22 0 122 1.00 1.22 1.00 1.22	00-600 164 1.00 164 1.00 1.00 164 0 164 1.00 1.10 180	1424 1.00 1424 1.00 1.00 1424 0 1424 1.00 1.00 1424	131 1.00 131 1.00 1.00 131 0 131 1.00 1.00	195 1.00 195 1.00 1.00 1.00 195 0 195 1.00 1.10 215	1376 1.00 1376 1.00 1376 0 1376 1.00 1.00 1.376	230 1.00 230 1.00 1.00 230 0 230 1.00 230			
Adjustment: Lanes: Final Sat.:	1.00 1. 1.00 1. 1375 24	.00 1.00 .80 0.20 168 282	1.00 1.00 1375	1.00 2.00 2750	1.00 1.00 1375	1.00 2.00 2750	1.00 3.00 4125	1.00 1.00 1375	1.00 2.00 2750	1.00 3.00 4125	1.00 1.00 1375			
Capacity Ana Vol/Sat: Crit Volume: Crit Moves:	lysis Mo 0.08 0. 106 ****	dule:				0.07								

Crit Moves:

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Existing 2008 PM Peak

Level Of Service Computation Report

	ircul					Computa 1 (Bace			: :ernati	ve)		
*******											*****	*****
Intersection *******									*****	****	*****	*****
Cycle (sec): Loss Time (se Optimal Cycle	:	8:) (Y+R:			Averag Level	e Dela Of Se	ay (se	:			CXX
Street Name: Approach: Movement:	L -	th Bo	- R	Sou L -	th Bo	ound - R	L -	ast Bo	- R	We L -	est Bo	- R
Control: Rights: Min. Green: Lanes:	Sp] 0 0 (lit Pha Includ 0 1!	ase de 0	Sp] 0 0 0	it Ph Inclu 0	nase	Pro 0 0 0	Ot+Per Ovl 0	mit ' 0 0 1	Pro 0	t+Per Inclu	rmit ide 0
Volume Module Base Vol:	288	Count 0	Date:	13 Fe 0	200 0	0 << 4	45-545 0	321	102	45		0
Growth Adj: Initial Bse:	1.00 288	1.00	1.00 145	1.00	1.00	1.00	1.00	1.00 321	1.00	1.00	1.00 593	1.00
PHF Adj: PHF Volume:	1.00 1.00 288	1.00	1.00 1.00 145	1.00	1.00	1.00	1.00	1.00 1.00 321	1.00	1.00 45	593	1.00
Reduct Vol: Reduced Vol:		0	0 145	0	0	0	0	321	102	0 45	593	0
	1.00 1.00 288	1.00	1.00 1.00 145	1.00	0	1.00 1.00 0	1.00		1.00 1.00 102	1.00 45	1.00 1.00 593	1.00 1.00 0
Saturation Fl	ow Mo	odule:	'	1		'	1		1	1		- 1
Adjustment: Lanes:	1.00 0.67 948	1.00 0.00 0	1425 1.00 0.33 477	1.00 0.00 0	0		1.00 0.00 0	1425 1.00 1.00 1425	1.00	1.00 1.00 1425	1425 1.00 1.00 1425	1425 1.00 0.00 0
Capacity Anal Vol/Sat: Crit Volume:	ysis	Module	e: '	1		'	1		0.07	1		0.00

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

UC	LA NHIP	and Amen	ded LRDP	Traffic	Study
		Los A	ngeles,	CA	
		Existing	2008 PM	Peak	

Existing PM Peak

Level Of Service Computation Report 2000 HCM 4-Way Stop Method (Base Volume Alternative) ************************ Intersection #55 Roscomare Road and Stradella Road/Linda Flora Drive ************************ 10.2 Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/veh):
Optimal Cycle: 0 Level Of Service: Street Name: Roscomare Road Stradella Road/Linda Flora Drive Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R Control: Stop Sign Stop Sign Stop Sign Rights: Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 0 0 1! 0 0 0 0 1! 0 0 0 0 1! 0 0 0 0 1! 0 0 Volume Module: >> Count Date: 21 Feb 2008 << 415-515 Base Vol: 22 390 6 37 58 12 14 0 10 6 1 59 Initial Bse: 22 390 6 37 58 12 14 0 10 6 1 59 PHF Volume: 22 390 6 37 58 12 14 0 10 6 1 59 FinalVolume: 22 390 6 37 58 12 14 0 10 6 1 59 Saturation Flow Module: Lanes: 0.05 0.94 0.01 0.35 0.54 0.11 0.58 0.00 0.42 0.09 0.02 0.89 Final Sat.: 44 785 12 266 418 86 383 0 274 66 11 645 -----| Capacity Analysis Module: Vol/Sat: 0.50 0.50 0.50 0.14 0.14 0.14 0.04 xxxx 0.04 0.09 0.09 0.09 Crit Moves: **** **** **** Delay/Veh: 11.2 11.2 11.2 8.2 8.2 8.1 0.0 8.1 7.9 7.9 7.9 AdjDel/Veh: 11.2 11.2 11.2 8.2 8.2 8.1 0.0 8.1 7.9 7.9 7.9 LOS by Move: B B B A A A A \star A A A ApproachDel: 11.2 8.2
Delay Adj: 1.00 1.00
ApprAdjDel: 11.2 8.2
LOS by Appr: B 8.1 7.9 1.00 1.00 8.1 7.9 LOS by Appr: В A A AllWayAvgQ: 0.9 0.9 0.9 0.1 0.1 0.1 0.0 0.0 0.0 0.1 0.1 0.1 ****************************** Note: Oueue reported is the number of cars per lane.

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

xxxxx

Existing PM Peak

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Existing 2008 PM Peak

Level Of Service Computation Report 2000 HCM 4-Way Stop Method (Base Volume Alternative) *******************

Intersection #56 Bellagio Road and Chalon Road ******************* Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/veh): Optimal Cycle: 0 Level Of Service: 13.2 Street Name: Bellagio Road Chalon Road Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R Control: Stop Sign Stop Sign Stop Sign Stop Sign Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 0 1 0 0 0 0 0 0 1 0 0 0 1! 0 0 0 0 0 Volume Module: >> Count Date: 21 Feb 2008 << 500-600 Base Vol: 67 508 0 0 98 24 11 0 12 0 0 Initial Bse: 67 508 0 0 98 24 11 0 12 0 0 0 PHF Volume: 67 508 0 0 98 24 11 0 12 0 0 0 0 0 FinalVolume: 67 508 0 0 98 24 11 0 12 0 0 -----|----|-----||------| Saturation Flow Module: Lanes: 0.12 0.88 0.00 0.00 0.80 0.20 0.48 0.00 0.52 0.00 0.00 0.00 Final Sat.: 102 773 0 0 647 158 304 0 332 0 0 -----| Capacity Analysis Module: Vol/Sat: 0.66 0.66 xxxx xxxx 0.15 0.15 0.04 xxxx 0.04 xxxx xxxx xxxx Crit Moves: **** Delay/Veh: 14.5 14.5 0.0 0.0 8.1 8.1 8.2 0.0 8.2 0.0 0.0 0.0

Note: Queue reported is the number of cars per lane.

ApproachDel: 14.5

1.00

14.5

В

Delay Adj:

ApprAdjDel:

LOS by Appr:

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

AdjDel/Veh: 14.5 14.5 0.0 0.0 8.1 8.1 8.2 0.0 8.2 0.0 0.0 0.0

AllwayAvqO: 1.8 1.8 1.8 0.2 0.2 0.2 0.0 0.0 0.0 0.0 0.0 0.0 ******************************

1.00

A

8.1

8.2 1.00 8.2

A

Level Of Service Computation Report Circular 212 Planning Method (Base Volume Alternative)
Intersection #57 Beverly Glen Boulevard and Mulholland Drive
Cycle (sec): 100
Street Name: Beverly Glen Boulevard Mulholland Drive Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R
Control: Split Phase Split Phase Permitted Permitted
Rights: Include <t< td=""></t<>

Base Vol: 40 772 81 206 359 36 51 194 37 45 535 704

Initial Bse: 40 772 81 206 359 36 51 194 37 45 535 704

UCLA NHIP and Amended LRDP Traffic Study

Los Angeles, CA

Existing 2008 PM Peak

PHF Volume: 40 772 81 206 359 36 51 194 37 45 535 0
Reduced Vol: 40 772 81 206 359 36 51 194 37 45 535 0 FinalVolume: 40 772 81 206 359 36 51 194 37 45 535 0 -----|-----||-------| Saturation Flow Module: Lanes: 0.05 0.95 1.00 0.73 1.27 1.00 1.00 1.68 0.32 1.00 2.00 1.00 Final Sat.: 70 1355 1425 1039 1811 1425 1425 2394 456 1425 2850 1425 Capacity Analysis Module: Vol/Sat: 0.57 0.57 0.06 0.20 0.20 0.03 0.04 0.08 0.08 0.03 0.19 0.00 Crit Volume: 812 282 51 267 Crit Moves: **** **** ****

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Existing 2008 PM Peak

Level Of Service Computation Report Circular 212 Planning Method (Base Volume Alternative)											
Intersection											
Cycle (sec): Loss Time (sec) Optimal Cycle	ec):	10	0 0 (Y+R 0	=4.0 s	sec)	Critica Average	al Vol e Dela Of Se	l./Cap ay (se rvice	p.(X): ec/veh) :	0. : xxx	996 xxx E
Street Name: Approach: Movement:	No:	rth Bo - T	und - R	Sou L -	ith Bo - T	ound – R	Ea L -	ast Bo - T	ound - R	West B L - T	ound - R l
Control: Rights: Min. Green: Lanes:	0	Permit Inclu 0	ted de 0	0 0	Permit Inclu 0	tted ude 0	Sp:	lit Ph Inclu 0	nase i	Split P Incl 0 0 0 0 1!	hase ude 0
Volume Module Base Vol: Growth Adj: Initial Bse: User Adj: PHF Adj: PHF Volume: Reduct Vol: Reduced Vol: PCE Adj: MLF Adj: FinalVolume:	0 1.00 0 1.00 1.00 0 0 1.00 1.00	1084 1.00 1084 1.00 1.00 1084 0 1084 1.00 1.00	9 1.00 9 1.00 1.00 9 0 9 1.00 1.00	1.00 62 1.00 1.00 62 0 62 1.00 1.00	413 1.00 413 1.00 1.00 413 0 413 1.00 1.00 413	0 1.00 0 1.00 1.00 0 0 0 1.00 1.00	0 1.00 0 1.00 1.00 0 0 1.00 1.00	0 1.00 0 1.00 1.00 0 0 1.00 1.00	0 1.00 0 1.00 1.00 0 0 0 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 44 0 0 0 44 0 1.00 1.00 1.00 1.00 44 0	220 1.00 220 1.00 1.00 220 0 220 1.00 1.0
Saturation Fl Sat/Lane: Adjustment: Lanes: Final Sat.:	low Mo 1425 1.00 0.00	odule: 1425 1.00 0.99	1425 1.00 0.01	1425 1.00 0.13	1425 1.00 0.87	1425 1.00 0.00	1425 1.00 0.00	1425 1.00 0.00	1425 1.00 0.00	1425 1425 1.00 1.00 0.17 0.00	1425 1.00 0.83
Capacity Anal Vol/Sat: Crit Volume: Crit Moves:	lysis 0.00	Modul 0.77	e: 0.77 1093 ****	0.33 62 ****	0.33	0.00	0.00	0.00	0.00	0.19 0.00	0.19 264 ****

Future Without Project AM PMon Jul 21, 2008 18:08:57

Page 1-1

UCLA NHIP and Amended LRDP Traffic Study

Los Angeles, CA

Future 2013 Without Project- AM Peak

Scenario Report Future Without Project AM Peak

Future Without Project AM Peak Scenario:

Volume: Future AM

Command:

Geometry: Future

Impact Fee: Default Impact Fee

Trip Generation: AM Peak Trip Distribution: Project Paths: Project

Routes: Default Route

Configuration: Future

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

Future Without Project AM PMon Jul 21, 2008 18:08:57

Page 2-1

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future 2013 Without Project- AM Peak

Trip Generation Report

Forecast for AM Peak

Zone #	Subzone Amount							
1 2	#1- NA FBI 1.00 #2 1.00 Zone 2 Subtotal	FBI Office- 11 Palazzo Westwo	0.00	0.00	0 114 114	0 119 119	0 233 233	0.0 4.5 4.5
3	#3 1.00 Zone 3 Subtotal	Mixed-Use - S/						3.7 3.7
4	#4 1.00 Zone 4 Subtotal	Theater Expans	1.00	0.00	1	0	1 1	0.0
5 5	#5, 17 1.00 #5, 17 1.00 Zone 5 Subtotal							-0.0 0.5 0.4
6	#6 1.00 Zone 6 Subtotal	Apartments- 86	2.00	8.00	2 2	8	10 10	0.2
7	#7 1.00 Zone 7 Subtotal	Condos- 10804					41 41	0.8
8 8 8	#8, 25, 61 1.00 #8, 25, 61 1.00 #8, 25, 61 1.00 Zone 8 Subtotal	Condos-10763 W Condos- 10710	4.00 5.00	22.00 23.00	4 5	22 23	26 28	
9	#9 1.00 Zone 9 Subtotal	Private School	9.00	0.00	9 9	0	9 9	0.2
10	#10 1.00 Zone 10 Subtota	Fox Studio Exp					450 450	
11 11	#11, 12, 45, 1.00 #11, 12, 45, 1.00 #11, 12, 45, 1.00 #11, 12, 45, 1.00 Zone 11 Subtota	Private School Condos- 1333 S	94.00	55.00 2.00	94 0	55 2	132 149 2 4 287	2.9
12	#13 1.00 Zone 12 Subtota	Wilshire/Comst	3.00	12.00	3	12 12	15 15	0.3
13 13	#14, 15, 43 1.00 #14, 15, 43 1.00 Zone 13 Subtota	ABC Entertainm Condos- 10131	101.00 -37.00	-181.00 85.00	101 -37 64	L -181 85 -96	-80 48 -32	0.9 -0.6

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA

Future 2013 Without Project- AM Peak

Zone #	Subz			Units						
14 14	#16, #16,	35 35 Zone 14	1.00 1.00 Subtotal	Condos- 527 Mi Condos- 430 Ke	12.00 3.00	61.00 15.00	12 3 15	61 15 76	73 18 91	1.4 0.3 1.8
15	#18		1.00 Subtotal	Health/Fitness	-20.00	-28.00	-20 -20	-28 -28	-48 -48	-0.9 -0.9
16	# 19	Zone 16	1.00 Subtotal	Condos-1826 S	1.00	6.00	1	6 6	7 7	0.1
17	#20	Zone 17	1.00 Subtotal	Condos- 1417 S	1.00	6.00	1	6 6	7 7	0.1
18	#21	Zone 18	1.00 Subtotal	New Car Sales-	4.00	2.00	4 4	2 2	6 6	0.1
19 19	#22, #22,	70 70 Zone 19	1.00 1.00 Subtotal	Condos- 1625 S Mixed-Use- 115	1.00 10.00	7.00 46.00	1 10 11	7 46 53	8 56 64	0.2 1.1 1.2
20 20	#23, #23,	24 24 Zone 20	1.00 1.00 Subtotal	Condos- 1525 S Condos- 1633 S	1.00	7.00 6.00	1 1 2	7 6 13	8 7 15	0.2 0.1 0.3
21	#26		1.00 Subtotal	Condos- 2037 S	1.00	6.00	1	6 6	7 7	0.1
22 22 22	#27, #27, #27,	63, 65 63, 65 63, 65 Zone 22	1.00 1.00 1.00 Subtotal	Office- 12233 Westside Media SM Apt Project	10.00 24.00 11.00	56.00 32.00 46.00	10 24 11 45	56 32 46 134	66 56 57 179	1.3 1.1 1.1 3.5
23 23	#28, #28,	32 32 Zone 23	1.00 1.00 Subtotal	Condos- 1511 S Condos- 1517 B	1.00	6.00 8.00	1 2 3	6 8 14	7 10 17	0.1 0.2 0.3
24 24	#29, #29,	54 54 Zone 24	1.00 1.00 Subtotal	Mixed-Use- 116 Office- 11677	60.00 205.00	26.00 28.00	60 205 265	26 28 54	86 233 319	1.7 4.5 6.2
25	#30	Zone 25	1.00 Subtotal	Mausoleum Bldg	1.00	0.00	1	0	1	0.0
26	#31		1.00 Subtotal	Condos- 10617	1.00	6.00	1	6 6	7 7	0.1

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future 2013 Without Project- AM Peak

Future Without Project AM PMon Jul 21, 2008 18:08:57

Zone #			Amount	Units	Rate In	Rate Out	Trips In	Trips Out	Total Trips	% Of Total
27	#33 Zo	ne 27	1.00 Subtota	Apts- 1817 S B	2.00	6.00	2 2	6 6	8	0.2
28	#34 Zo	ne 28	1.00 Subtota	Live/Work- 115	9.00	34.00	9 9	34 34	43 43	0.8
29	#36 Zo	ne 29	1.00 Subtota	Restaurant- 10	2.00	2.00	2 2	2 2	4 4	0.1
30 30 30	#37, 56 #37, 56 #37, 56 Zo	, 57 , 57 , 57 ne 30	1.00 1.00 1.00 Subtota	Condos- 1807 S Auto Service- Office- SW Cor	1.00 4.00 55.00	6.00 2.00 7.00	1 4 55 60	6 2 7 15	7 6 62 75	0.1 0.1 1.2 1.4
	#38 Zo	ne 31	1.00 Subtota	Condos- 2263 S	1.00	6.00	1	6 6	7 7	0.1
32	#39 Zo	ne 32	1.00 Subtota	Cooking School	4.00	2.00	4 4	2 2	6 6	0.1
33	#40 Zo	ne 33	1.00 Subtota	Bank- 1762 Wes	3.00	8.00	3	8	11 11	0.2
34 35 35	#41- NA #42, 49 #42, 49 Zo	-Alre	1.00 1.00 1.00 Subtota	Westside Pavil Le Lycee Franc Mixed-Use- 106	0.00 171.00 5.00	0.00 109.00 7.00	0 171 5 176	0 109 7 116	0 280 12 292	0.0 5.4 0.2 5.6
36 36 36	#44, 60 #44, 60 #44, 60 Zo	, 67 , 67 , 67 ne 36	1.00 1.00 1.00 Subtota	Discounted Sto Olympic-Stoner Bed, Bath & Be	20.00 2.00 0.00	10.00 0.00 0.00	20 2 0 22	10 0 0 10	30 2 0 32	0.6 0.0 0.0 0.6
37	#46 Zo	ne 37	1.00 Subtota	Belmont Villag	17.00	8.00	17 17	8	25 25	0.5 0.5
38 38 38	#47, B1 #47, B1 #47, B1 Zo	2, B3 2, B3 2, B3 ne 38	1.00 1.00 1.00 Subtota	Apts- 10000 W Hotel- 150 Las Beverly Hilton	-167.00 15.00 48.00	9.00 9.00 94.00	-16' 15 48 -104	7 115 9 94 218	-52 24 142 114	2 -1. 0.5 2.7 2.2
39	#48 Zo	ne 39	1.00 Subtota	Mixed-Use- 109	9.00	18.00	9 9	18 18	27 27	0.5
40	#50 Zo	ne 40	1.00 Subtota	Regent Westwoo	140.00	47.00	140 140	47 47	187 187	3.6 3.6

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future 2013 Without Project- AM Peak

Zone #	Subzone	÷	Amount	Units	Rate In	Rate Out	Trips In	Trips Out	Total Trips	% Of Total
41	#51 Zo	one 41		Office- 1100 W			70 70	10 10	80	1.5
42	#52 Zo	one 42		Del Capri Hote				36 36	45 45	0.9
43	#53 Zo	one 43	1.00 Subtotal	Condos- 11611	2.00	7.00	2 2	7 7	9 9	0.2
44	#55 Zo	one 44		Retail- 11305			7 7	4	11 11	0.2
45	#58 Zo	one 45		Fastfood- 1086			75 75		125 125	2.4
			Subtotal	Brentwood Reta				1	3	0.1
47 47 47 47 47 47	#B1, B5 #B1, B5 #B1, B5 #B1, B5 #B1, B5 #B1, B5	5, B11 5, B11 5, B11 5, B11 5, B11 5, B11 5, B11 one 47	1.00 1.00 1.00 1.00 1.00 1.00 1.00 Subtotal	Young Israel- Retail Expansi Cultural Cente Condos- 437-44 Service Facili Mixed-Use- 421 Condos- 432 N	16.00 1.00 34.00 1.00 101.00 29.00 3.00	9.00 1.00 21.00 6.00 55.00 9.00 12.00	16 1 34 1 101 29 3 185	9 1 21 6 55 9 12 113	25 2 55 7 156 38 15 298	0.5 0.0 1.1 0.1 3.0 0.7 0.3 5.8
48 48 48 48 48 48 48 48 48 48 48 48	#B2, B3 #B2, B3 #B2, B3 #B2, B3 #B2, B3 #B2, B3 #B2, B3 #B2, B3 #B2, B3 #B2, B3 #B2, B3 #B2, B3 #B2, B3 #B2, B3 #B2, B3	B, B6, B6, B6, B6, B6, B6, B6, B6, B6, B	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	Beverly Hills Mixed-Use- 265 Condos- 125 S Medical Plaza- Commercial/Ret Mixed-Use- 131 Assisted Care Senior Congreg Screening Room Condos- 261-28 Mixed-Use- 959 Mixed-Use- 959 Hotel- 9730 Wi Condos- 140-14 Condos- 133 Sg Office/Medical Condos- 156-16 Condos- 144 Re Condos- 155 N	103.00 3.00 77.00 8.00 64.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	30.00 15.00 22.00 6.00 43.00 7.00 2.00 0.00 -1.00 23.00 27.00 44.00 4.00 2.00 6.00 1.00	866 1033 3777 864 66 33 1 00 100 11 00 144 1 00 4588	6 43 7 2 0 -1 23 27 44 4 2 4 6	1 -1 33 38 114 5 2 18	2.8 2.6 0.3 1.9 0.3 2.1 0.0 -0.0 0.6 0.7 2.2 0.1 0.0 0.3

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

UCLA NHIP and Amended LRDP Traffic Study
Los Angeles, CA
Future 2013 Without Project- AM Peak

Future Without Project AM PMon Jul 21, 2008 18:08:57

		1 404	LE ZUIJ WILLIOUL	110,000					
Zone #	Subzone	Amount	Units	Rate In	Rate Out	Trips In			
49 49	#B4, B14, B2 #B4, B14, B2	1.00	Church Expansi Synagogue/Priv	1.00	0.00 13.00	1 23	0 13	1 36	0.0
49 49	#B4, B14, B2 #B4, B14, B2 Zone 49	1.00 1.00 Subtotal	Church Expansi Synagogue/Priv Apts- 428-430 Condos- 313-31	1.00	1.00 3.00	0 1 25	1 3 17	1 4 42	0.0
	#B18, B21	1.00	Beverly Hills Robinson's May	34.00	116.00	34	116	127 150 277	2.9
51	#B27 Zone 51	1.00 Subtotal	Health Spa- 96	1.00	1.00	1 1	1 1	2 2	0.0
52 53			Whole Foods Ma New West Middl					0 230 230	
54	#66 Zone 54	1.00 Subtotal	Union Bank of	3.00	2.00	3	2 2	5 5	0. 0.
55	#68 Zone 55		Leo Baeck Temp						
56	#69 Zone 56		Convenience St					251 251	4. 4.
57	#71 Zone 57		Westwood Villa					103 103	
58	#72 Zone 58	1.00 Subtota	Office Bldg- 2	41.00	6.00	41 41	6 6	47 47	0. 0.
59	Hekmat Mixed Zone 59	1.00 Subtota	Mixed Use	52.00	36.00	52 52	36 36	88 88	1. 1.
TOTA									

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA

Future 2013 Without Project- AM Peak

Trip Distribution Report

Percent Of Trips Project

					To	Gates					
	1	2	3	4	5	6	9	10	11	12	13
Zone											
1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2	8.0	3.0	0.0	4.0	0.0	3.0	16.0	0.0	11.0	0.0	5.0
3	8.0	3.0	0.0	4.0	0.0	3.0	16.0	0.0	11.0	0.0	5.0
4	8.0	3.0	0.0	4.0	0.0	3.0	16.0	0.0	11.0	0.0	5.0
5	8.0	3.0	0.0	4.0	0.0	3.0	16.0	0.0	11.0	0.0	5.0
6	10.0	0.0	0.0	0.0	0.0	5.0	0.0	0.0	5.0	0.0	0.0
7	15.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	5.0	0.0	0.0
8	15.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	5.0	0.0	0.0
9	5.0	5.0	5.0	5.0	5.0	20.0	5.0	0.0	0.0	0.0	0.0
10	10.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0	0.0
11	10.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0	0.0
12	10.0	0.0	0.0	0.0	0.0	5.0	0.0	0.0	5.0	0.0	0.0
13	10.0	0.0	0.0	0.0	0.0	5.0	5.0		0.0	0.0	0.0
14	8.0	3.0	0.0	4.0	0.0	3.0	16.0	0.0	11.0	0.0	5.0
15	0.0	0.0	0.0	0.0	0.0	0.0	10.0	5.0	10.0	5.0	0.0
16	10.0	0.0	0.0	0.0	0.0		5.0	5.0	5.0	0.0	0.0
17	10.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0
18	10.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0
19	10.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0
20	10.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0
21	10.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0	0.0
22	10.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0
23	10.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	2.5	2.5
24	10.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0
25	15.0	0.0	0.0	0.0	0.0		5.0	5.0	5.0	0.0	0.0
26	10.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0
27	10.0	0.0	0.0	0.0	0.0		5.0	5.0	0.0	0.0	0.0
28	10.0 8.0	0.0	0.0	0.0 4.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0
29 30	10.0	0.0	0.0	0.0	0.0	3.0	16.0 10.0	0.0	11.0	0.0	5.0
31	10.0	0.0	0.0	0.0	0.0		5.0		0.0	0.0	0.0
32	10.0	0.0	0.0	0.0	0.0	0.0	5.0		0.0	0.0	0.0
33	0.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	10.0	0.0	0.0
34	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0
35	10.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0
36	10.0	0.0	0.0	0.0	0.0	0.0	5.0		0.0	0.0	0.0
37	10.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	5.0	0.0	0.0
38	10.0	0.0	0.0	0.0	0.0	5.0	0.0	0.0	5.0	0.0	0.0
39	0.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	5.0	0.0	0.0
40	8.0	3.0	0.0	4.0	0.0	3.0	16.0	0.0	11.0	0.0	5.0
41	8.0	3.0	0.0	4.0	0.0	3.0	16.0	0.0	11.0	0.0	5.0
42	10.0	0.0	0.0	0.0	0.0		5.0	5.0	5.0	0.0	0.0
43	10.0	0.0	0.0	0.0	0.0		5.0		0.0	0.0	0.0
44	10.0	0.0	0.0	0.0	0.0	0.0		5.0	0.0	0.0	0.0

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future 2013 Without Project- AM Peak

Future Without Project AM PMon Jul 21, 2008 18:08:57

	1	2	3	4	То	Gates	0	10	11	12	13
Zone							9				
45	0.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	5.0	0.0	0.0
46	10.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0
47	10.0		0.0	0.0	0.0	5.0	0.0	0.0	5.0	0.0	0.0
48			0.0	0.0	0.0	5.0	0.0 0.0 5.0	0.0	5.0	0.0	0.0
49	10.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0	0.0
50	10.0 5.0 0.0	0.0	0.0	0.0	0.0	5.0	0.0 5.0	0.0	5.0	0.0	0.0
51	5.0			5.0	5.0	20.0	5.0	0.0			
52	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
53	10.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0
54	8.0	3.0	0.0	4.0	0.0	3.0	16.0	0.0	11.0	0.0	5.0
55	0.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0	5.0
56	0.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	10.0	0.0	0.0
57	8.0	3.0	0.0	4.0	0.0	3.0	16.0	0.0	11.0	0.0	5.0
58	10.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0
59	10.0 8.0 0.0 0.0 8.0 10.0	3.0	0.0	4.0	0.0	3.0	16.0	0.0	11.0	0.0	5.0
					To	Gates					
	14	15	16	17	18	19	20	21	22	23	28
Zone											
1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2	3.0	0.0	9.0	6.0	0.0	23.0	0.0	0.0	0.0	3.0	2.0
3	3.0	0.0	9.0	6.0	0.0	23.0	0.0 0.0 0.0	0.0	0.0	3.0	2.0
4	3.0	0.0	9.0	6.0	0.0	23.0	0.0	0.0	0.0	3.0	2.0
5 6	3.0	0.0	9.0	6.0	0.0	23.0	0.0	0.0	0.0	3.0	2.0
6	5.0	0.0	5.0	5.0	5.0	10.0	0.0	0.0	0.0	0.0	
7 8	5.0		5.0	5.0	5.0	15.0	0.0	0.0	0.0	0.0	0.0
9	5.0	0.0	5.0	5.0	5.0	15.0	0.0	0.0	0.0	0.0	0.0
10	0.0	0.0	2.5	0.0	5.0	2.5	0.0	0.0	0.0	0.0	0.0
11	5.0	0.0	5.0				0.0	0.0	0.0		0.0
12							0.0				0.0
13	5.0	0.0					0.0		0.0		0.0
	3.0										2.0
15	3.0 10.0	10.0	10 0	10.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
16	5.0	0.0		5.0					0.0		0.0
17	5.0 5.0	0.0	5.0	5.0			0.0		0.0		0.0
18				5.0					0.0		0.0
19	0 0	0.0		5.0							0.0
20	0.0			5.0			0.0	0.0	0.0	0.0	0.0
21				3.0					0.0		0.0
22							0.0		0.0		0.0
23	5.0	2.5	5.0	2.5				0.0	0.0	0.0	0.0
24	0.0	0.0	0.0	5.0	0.0	10.0	0.0				0.0
25	0.0	0.0	5.0	5.0	5.0	15.0	0.0	0.0	5.0 0.0	0.0	0.0
26	5 0	0 0	5 0	5.0	0.0	10.0	0.0	0 0	0 0	0 0	0.0
27	5.0	0.0	5.0	5.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0
28	5.0	0.0	0.0	5.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future 2013 Without Project- AM Peak

					To	Gates					
	14	15	16	17		19	20	21	22	23	28
Zone											
29	3.0	0.0	9.0	6.0	0.0	23.0	0.0	0.0	0.0	3.0	2.0
30	5.0	0.0	5.0	5.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0
31	5.0	0.0	5.0	3.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0
32	5.0	0.0	5.0	5.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0
33	5.0	5.0	5.0	5.0		0.0	0.0	0.0	0.0	0.0	0.0
34	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
35	5.0	0.0		5.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0
36	0.0			5.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0
37	5.0	0.0	5.0	5.0	5.0	10.0	0.0	0.0	0.0	0.0	0.0
38	5.0	0.0	5.0	5.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0
39	5.0	5.0	5.0	5.0		0.0	0.0	0.0	0.0	0.0	0.0
40	3.0	0.0	9.0	6.0	0.0	23.0	0.0	0.0	0.0	3.0	2.0
41	3.0	0.0	9.0	6.0	0.0	23.0	0.0	0.0	0.0	3.0	2.0
42	5.0	0.0	5.0	5.0	5.0	10.0	0.0	0.0	0.0	0.0	0.0
43	5.0	0.0	5.0	0.0	0.0	10.0	0.0	0.0	5.0	0.0	0.0
44	0.0	0.0	5.0	5.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0
45	5.0	5.0	5.0	5.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
46	5.0	0.0	5.0	0.0	0.0	10.0	0.0	0.0	5.0	0.0	0.0
47	5.0	0.0	5.0	5.0	5.0	10.0	0.0	0.0	0.0	0.0	0.0
48	5.0	0.0	5.0	5.0	5.0	10.0	0.0	0.0	0.0	0.0	0.0
49	5.0	0.0	5.0	3.0	0.0	10.0	0.0	0.0		0.0	0.0
50	5.0	0.0	5.0	5.0	5.0	10.0	0.0	0.0	0.0	0.0	0.0
51	0.0	0.0	2.5	0.0		2.5	5.0	0.0	0.0	0.0	0.0
52	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
53	0.0	0.0	0.0	5.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0
54	3.0	0.0	9.0	6.0	0.0	23.0	0.0	0.0	0.0	3.0	2.0
55	0.0	0.0	5.0	0.0	0.0	10.0	10.0	0.0	0.0	0.0	0.0
56	5.0	5.0	5.0	5.0		0.0	0.0	0.0	0.0	0.0	0.0
57	3.0	0.0	9.0	6.0	0.0	23.0	0.0	0.0	0.0	3.0	2.0
58	5.0	0.0	5.0	5.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0
59	3.0	0.0	9.0	6.0	0.0	23.0	0.0	0.0	0.0	3.0	2.0

	To Gat	es 30
Zone		
1 2 3 4 5 6 7 8 9 10 11	0.0 2.0 2.0 2.0 0.0 0.0 0.0 0.0	0.0 2.0 2.0 2.0 0.0 0.0 0.0 0.0
	0.0	0.0

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA

Future Without Project AM PMon Jul 21, 2008 18:08:57

Future 2013 Without Project- AM Peak

	To Gate	
	29	
Zone		
13	0.0	
14	2.0	2.0
15		0.0
16		0.0
17	0.0	0.0
18		0.0
19	0.0	0.0
20	0.0	0.0
21	0.0	0.0
22	0.0	0.0
23	0.0	0.0
24		0.0
25		0.0
26	0.0	0.0
27		0.0
28	0.0	0.0
29		2.0
30		0.0
31		0.0
32		0.0
33	0.0	0.0
34		0.0
35		0.0
36		0.0
37		0.0
38	0.0	0.0
39		0.0
40	2.0	2.0
41		2.0
42		0.0
43		0.0
44		0.0
45	0.0	0.0
46		0.0
47		0.0
48		0.0
49		0.0
50	0.0	0.0
51		0.0
52	0.0	0.0
53		0.0
54	2.0	2.0
55	0.0	0.0
56		0.0
57	2.0	2.0
58	0.0	0.0
59	2.0	2.0

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA

Future 2013 Without Project- AM Peak

Turning Movement Report AM Peak

Volume Type		rthbou Thru R			outhbo Thru			astbou Thru		Westbound Left Thru Right			Total Volume
11									J .			3	
#1 Sepu	lveda	Boule	vard	and Ch	nurch	Ln/Ova	da Pl						
Base	13	509	76	4	1387	558	88	55	27	91	151	0	2959
Added	0	42	0	0	18	0	1	0	0	0	0	0	61
Total	13	551	76	4	1405	558	89	55	27	91	151	0	3020
#2 Chur	ch La	ne and	San	Diego	Fwy S	B On/O	ff Rar	np					
Base	0	150	333	234	689	0	0	2	1	1507	1	23	2940
Added	0	1	0	0	0	0	0	0	0	38	0	0	39
Total	0	151	333	234	689	0	0	2	1	1545	1	23	2979
#3 Chur	ch La	ne and	Suns	set Bou	ılevar	d							
Base	54	7	107	685	166	1010	104	1799	117	6	1229	454	5736
Added	0	0	0	38	0	0	1	1	0	0	0	0	40
Total	54	7	107	723	166	1010	105	1800	117	6	1229	454	5776
#4 San	Diego	Fwy N	B On,	Off Ra	amps a	nd Sun	set Bo	ouleva	ard				
Base	674	0	547	0	0	0	0	1547	996	0	1025	0	4789
Added	0	0	0	0	0	0	0	39	0	0	28	0	67
Total	674	0	547	0	0	0	0	1586	996	0	1053	0	4856
#5 Vete	ran A	venue	and S	Sunset	Boule	vard							
Base	60	0	364	0	0	0	0	1812	194	310	972	0	3713
Added	27	0	13	0	0	0	0	1	38	16	1	0	96
Total	87	0	377	0	0	0	0	1813	232	326	973	0	3809
#6 Bell	agio	Way an	d Sur	nset Bo	ouleva	rd							
Base	43	5	8	181	53	267	187	1764	237	18	969	101	3833
Added	0	0	0	4	0	15	8	7	0	0	2	4	40
Total	43	5	8	185	53	282	195	1771	237	18	971	105	3873
#7 West	wood	Boueva	rd ar	nd Suns	set Bo	ulevar	d						
Base	27	0	22	0	0	0	0	1506	395	184	1067	0	3200
Added	0	0	0	0	0	0	0	10	0	0	6	0	16
Total	27	0	22	0	0	0	0	1516	395	184	1073	0	3216
#8 Stor	e Can	yon Ro	ad ar	nd Suns	set Bo	ulevar	d						
Base	51	1	45	0	0	63	60	1333	252	93	1211	23	3133
Added	0	0	0	0	0	0	0	10	0	0	6	0	16
Total	51	1	45	0	0	63	60	1343	252	93	1217	23	3149
#9 Hilo	ard A	venue/	Copa	De Oro	Road	and S	unset	Boule	evard				
Base	149	40	112	29	77	17		1083	274	475	1120	22	3417
Added	4	0	20	0	0	0	0	7	4	38	2	0	75
Total	153	40	132	29	77	17	19	1090	278	513	1122	22	3492

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future 2013 Without Project- AM Peak

									und				
Type	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Volume
#10 Be	verly	Glen	Boule	vard ar	nd Sur	nset Bo	uleva	rd					
Base	91	97	408	53	80	9	16	1073	111	503	1472	76	3989
Added	0	0	45	0	0	0	0	27	111 0	74	39	0	185
Total									111			76	4174
#11 Be	verly	Glen	Boule	ard ar	nd Sur	nset Bo	uleva	rd (E	ast I/S)			
Base	0	0	0			852	329	1183	0	0	1179	35	3733
Added			0	0	0	24	18	53	0	0	89	2	186
Total	0	0	0	0 155	0	876	347	1236	0 0 0	0	1268	37	3919
#12 Se	pulve	da Boı	ılevar	d and S	San D:	iego Fw	y NB (Off-R	amp				
Base	0	400	0	0	1372	0	290	0	9	0	0	0	2072
Added	0	4	0	0	6	0	4	0	0	0	0	0	14
Total	0	404	0	0	1378	0	294	0	amp 9 0 9	0	0	0	2086
#13 Se	pulve	da Boı	ulevaro	and M	Montar	na Aven	iue						
Base	78	328		344			8	286	105	103	74		
Added	0	4	4	16	2	0	0	0	0 105	4		10	40
Total	78	332	291	360	1160	23	8	286	105	107	74	85	2908
#14 Le	vering	g Aver	nue and	d Monta	ana Av	venue							
Base	39	0	3	0	0	0	0	799	356	6			
Added Total			3	0	0	0	0	799	20 376	6	0 163		
						enue/Ga							
Base			22		335	20		582					
Added	0	41						0					
Total	35	271	22	176	388	20	120	582	45	12	82	50	1802
#16 Ga				rathmo	ore Pi	lace		104		100	1.0	40	1.450
Base				498	278	3 0	2	124	15				
Added			0										
Total	5	83	294	498	278	3	2	124	15	100	19	49	1470
#17 Ve	teran	Aven	ie and	Lever	ing Av	venue							
Base	20	245	29	22	406	3	2	121	213	69	24		
Added	. 5	16	3	25	28	0	0	11	213 10 223	33	9		
Total	25	261	32	47	434	3	2	132	223	102	33	54	1349
			ue and										
	217	290	9	28	618	56	17						
			9 0	28 0 28			0 17	0	0	0	0	0	65

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future 2013 Without Project- AM Peak

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

UCLA NHIP and Amended LRDP Traffic Study
Los Angeles, CA
Future 2013 Without Project- AM Peak

									AM Peak				
Volume Type									ind				
Type	Leit	inru k	ignt	Leit	Thru	Kignt	Leit	Thru	Right	Leit	Inru	Right	volume
#27 Wes													
Base	74	692	45		338	30	49			35			1420
Added		123	73	0		0	0			80			407
Int #2		0	0		0	0	0		0	0			221
Total	91	815	118	6	397	30	49	144	49	115	220	14	2048
#28 Tiv													
Base	14		7			34	27		0	0			313
Added	0	0	0			0	0		0	0			79
Int #2		0	0	0	-	0	0		0	0			221
Total	14	111	7	28	0	34	27	142	0	0	232	18	613
#29 Hi													
Base	30	484	5			41	36	28	66	7			1031
Added		1	0				16	19	0	0		0	81
#25 In		0	0	0			69			0			221
Total	30	485	5	14	265	219	121	47	66	7	45	28	1333
#30 Wes													
Base		806	26	13		38	58	32	25	5	47		1529
Added		212	50	5		0	0		15	7			489
Total	99	1018	76	18	512	38	58	36	40	12	48	63	2018
#31 Wes													
Base		836	227	21		11	30		47	98		28	1907
Added		305	2	0		0	0		0	2		0	481
Total	3	1141	229	21	504	11	30	137	47	100	138	28	2388
#32 Gle													
Base	62	230	412	8		45	38		22	165	179	41	1561
Added	0	11	6	0		0	0		0	7			30
Total	62	241	418	8	27	45	38	337	22	172	181	41	1591
#33 Sep	pulved	a Boul	.evaro	d and	Consti	tution	Aven	ıe					
Base	67	305	7	3	1177	173	88	0	20	2	0	2	1845
Added	0	4	0	0	6	0	0	0	0	0	0	0	10
Total	67	309	7	3	1183	173	88	0	20	2	0	2	1855
#34 Sar	n Vice	nte Bo	uevai	d and	Wilsh	ire Bo	uelva	rd					
Base	103	214	117	1449	305	19	69	2054	68	56	2139	973	7565
Added	28	50	10	79	53	14	3	170	8	7	170	57	649
Total	131	264	127	1528	358	33	72	2224	76	63	2309	1030	8214
#35 Ser	pulved	a Boul	.evaro	d and W	Wilshi	re Bou	levar	d					
Base	164	252	276		669	297		2874	141	116	2670	65	7891
Added	10	1	28	2	4	0	1	539	11	16	403	2	1017
Total	174	253	304	295	673	297	76	3413	152	132	3073	67	8908

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future 2013 Without Project- AM Peak

Volume
#36 Veteran Avenue and Wilshire Boulevard Base 217 404 104 116 265 386 555 3046 141 55 2412 37 7737 Added -6 1 10 0 4 29 2 570 -4 5 398 0 1003 Total 211 405 114 116 269 415 557 3616 137 60 2810 37 8746 #37 Gayley Avenue and Wilshire Boulevard Base 62 350 55 59 105 300 521 2545 160 67 2091 122 6438 Added 0 0 0 14 0 55 109 471 0 0 348 20 1017 Total 62 350 55 73 105 355 630 3016 160 67 2439 142 7452 #38 Westwood Boulevard and Wilshire Boulevard Base 142 630 123 64 286 162 448 2079 172 141 1983 98 6327 Added 9 100 43 35 63 76 149 329 6 39 284 57 1190 Total 151 730 166 99 349 238 597 2408 178 180 2267 155 7517 #39 Glendon Avenue and Wilshire Boulevard Base 9 186 23 60 116 43 334 1770 120 69 2068 180 4978 Added 0 0 0 0 2 0 7 6 401 0 0 373 11 800 Total 9 186 23 62 116 50 340 2171 120 69 2442 191 5778 #40 Malcolm Avenue and Wilshire Boulevard Base 3 0 47 3 1 42 68 1776 29 23 2293 56 4342 Added 6 0 0 21 0 0 0 396 11 0 364 20 818 Total 9 0 47 24 1 42 68 2172 40 23 2657 76 5160 #41 Westholme Avenue and Wilshire Boulevard Base 59 107 68 47 44 21 33 1882 66 30 2312 144 4813 Added 1 0 2 0 0 0 0 427 3 2 349 0 786 Total 60 107 70 47 44 21 33 1882 66 30 2312 144 4813 Added 1 0 2 0 0 0 0 427 3 2 349 0 786 Total 60 107 70 47 44 21 33 2309 69 32 2661 144 559
#36 Veteran Avenue and Wilshire Boulevard Base 217 404 104 116 265 386 555 3046 141 55 2412 37 7737 Added -6 1 10 0 4 29 2 570 -4 5 398 0 1003 Total 211 405 114 116 269 415 557 3616 137 60 2810 37 8746 #37 Gayley Avenue and Wilshire Boulevard Base 62 350 55 59 105 300 521 2545 160 67 2091 122 6438 Added 0 0 0 14 0 55 109 471 0 0 348 20 1017 Total 62 350 55 73 105 355 630 3016 160 67 2439 142 7452 #38 Westwood Boulevard and Wilshire Boulevard Base 142 630 123 64 286 162 448 2079 172 141 1983 98 6327 Added 9 100 43 35 63 76 149 329 6 39 284 57 1190 Total 151 730 166 99 349 238 597 2408 178 180 2267 155 7517 #39 Glendon Avenue and Wilshire Boulevard Base 9 186 23 60 116 43 334 1770 120 69 2068 180 4978 Added 0 0 0 0 2 0 7 6 401 0 0 373 11 800 Total 9 186 23 62 116 50 340 2171 120 69 2442 191 5778 #40 Malcolm Avenue and Wilshire Boulevard Base 3 0 47 3 1 42 68 1776 29 23 2293 56 4342 Added 6 0 0 21 0 0 0 396 11 0 364 20 818 Total 9 0 47 24 1 42 68 2172 40 23 2657 76 5160 #41 Westholme Avenue and Wilshire Boulevard Base 59 107 68 47 44 21 33 1882 66 30 2312 144 4813 Added 1 0 2 0 0 0 0 427 3 2 349 0 786 Total 60 107 70 47 44 21 33 1882 66 30 2312 144 4813 Added 1 0 2 0 0 0 0 427 3 2 349 0 786 Total 60 107 70 47 44 21 33 2309 69 32 2661 144 559
Base 217 404 104 116 265 386 555 3046 141 55 2412 37 7737 Added -6 1 10 0 4 29 2 570 -4 5 398 0 1005 Total 211 405 114 116 269 415 557 3616 137 60 2810 37 8746 41
Base 217 404 104 116 265 386 555 3046 141 55 2412 37 7737 Added -6 1 10 0 4 29 2 570 -4 5 398 0 1005 Total 211 405 114 116 269 415 557 3616 137 60 2810 37 8746 41
Added
Total 211 405 114 116 269 415 557 3616 137 60 2810 37 8746 #37 Gayley Avenue and Wilshire Boulevard Base 62 350 55 59 105 300 521 2545 160 67 2091 122 6435 Added 0 0 0 14 0 55 109 471 0 0 348 20 1017 Total 62 350 55 73 105 355 630 3016 160 67 2439 142 7452 #38 Westwood Boulevard and Wilshire Boulevard Base 142 630 123 64 286 162 448 2079 172 141 1983 98 6327 Added 9 100 43 35 63 76 149 329 6 39 284 57 1190 Total 151 730 166 99 349 238 597 2408 178 180 2267 155 7517 #39 Glendon Avenue and Wilshire Boulevard Base 9 186 23 60 116 43 334 1770 120 69 2068 180 4978 Added 0 0 0 0 2 0 7 6 401 0 0 373 11 800 Total 9 186 23 62 116 50 340 2171 120 69 2442 191 5778 #40 Malcolm Avenue and Wilshire Boulevard Base 3 0 47 3 1 42 68 1776 29 23 2293 56 4344 Added 6 0 0 0 21 0 0 0 396 11 0 364 20 818 Total 9 0 47 24 1 42 68 2172 40 23 2657 76 5160 #41 Westholme Avenue and Wilshire Boulevard Base 59 107 68 47 44 21 33 1882 66 30 2312 144 4813 Added 1 0 2 0 0 0 0 0 427 3 2 349 0 783 Total 60 107 70 47 44 21 33 1882 66 30 2312 144 4813 Added 1 0 2 0 0 0 0 0 427 3 2 349 0 783 Total 60 107 70 47 44 21 33 1882 67 30 2312 144 4813 Added 1 0 2 0 0 0 0 0 427 3 2 349 0 783 Total 60 107 70 47 44 21 33 1882 33 12 2339 81 4781 Base 78 38 22 91 63 92 70 1862 33 12 2339 81 4781 Added 0 0 0 0 0 0 0 0 0 431 0 0 338 0 765
Total 211 405 114 116 269 415 557 3616 137 60 2810 37 8746 #37 Gayley Avenue and Wilshire Boulevard Base 62 350 55 59 105 300 521 2545 160 67 2091 122 6435 Added 0 0 0 14 0 55 109 471 0 0 348 20 1017 Total 62 350 55 73 105 355 630 3016 160 67 2439 142 7452 #38 Westwood Boulevard and Wilshire Boulevard Base 142 630 123 64 286 162 448 2079 172 141 1983 98 6327 Added 9 100 43 35 63 76 149 329 6 39 284 57 1190 Total 151 730 166 99 349 238 597 2408 178 180 2267 155 7517 #39 Glendon Avenue and Wilshire Boulevard Base 9 186 23 60 116 43 334 1770 120 69 2068 180 4978 Added 0 0 0 0 2 0 7 6 401 0 0 373 11 800 Total 9 186 23 62 116 50 340 2171 120 69 2442 191 5778 #40 Malcolm Avenue and Wilshire Boulevard Base 3 0 47 3 1 42 68 1776 29 23 2293 56 4344 Added 6 0 0 0 21 0 0 0 396 11 0 364 20 818 Total 9 0 47 24 1 42 68 2172 40 23 2657 76 5160 #41 Westholme Avenue and Wilshire Boulevard Base 59 107 68 47 44 21 33 1882 66 30 2312 144 4813 Added 1 0 2 0 0 0 0 0 427 3 2 349 0 783 Total 60 107 70 47 44 21 33 1882 66 30 2312 144 4813 Added 1 0 2 0 0 0 0 0 427 3 2 349 0 783 Total 60 107 70 47 44 21 33 1882 67 30 2312 144 4813 Added 1 0 2 0 0 0 0 0 427 3 2 349 0 783 Total 60 107 70 47 44 21 33 1882 33 12 2339 81 4781 Base 78 38 22 91 63 92 70 1862 33 12 2339 81 4781 Added 0 0 0 0 0 0 0 0 0 431 0 0 338 0 765
#37 Gayley Avenue and Wilshire Boulevard Base 62 350 55 59 105 300 521 2545 160 67 2091 122 6438 Added 0 0 0 14 0 55 109 471 0 0 348 20 1017 Total 62 350 55 73 105 355 630 3016 160 67 2439 142 7452 #38 Westwood Boulevard and Wilshire Boulevard Base 142 630 123 64 286 162 448 2079 172 141 1983 98 6327 Added 9 100 43 35 63 76 149 329 6 39 284 57 1199 Total 151 730 166 99 349 238 597 2408 178 180 2267 155 7517 #39 Glendon Avenue and Wilshire Boulevard Base 9 186 23 60 116 43 334 1770 120 69 2068 180 4978 Added 0 0 0 0 2 0 0 7 6 401 0 0 373 11 800 Total 9 186 23 62 116 50 340 2171 120 69 2442 191 5778 #40 Malcolm Avenue and Wilshire Boulevard Base 3 0 47 3 1 42 68 1776 29 23 2293 56 4342 Added 6 0 0 21 0 0 0 396 11 0 364 20 816 Total 9 0 47 24 1 42 68 2172 40 23 2657 76 5160 #41 Westholme Avenue and Wilshire Boulevard Base 59 107 68 47 44 21 33 1882 66 30 2312 144 4813 Added 1 0 2 0 0 0 0 427 3 2 349 0 786 Total 60 107 70 47 44 21 33 1882 66 30 2312 144 4813 Added 1 0 2 0 0 0 0 0 427 3 2 349 0 786 Total 60 107 70 47 44 21 33 2309 69 32 2661 144 559
Base 62 350 55 59 105 300 521 2545 160 67 2091 122 6438 Added 0 0 0 14 0 55 109 471 0 0 348 20 1017 Total 62 350 55 73 105 355 630 3016 160 67 2439 142 7452 #38 Westwood Boulevard and Wilshire Boulevard Base 142 630 123 64 286 162 448 2079 172 141 1983 98 6327 Added 9 100 43 35 63 76 149 329 6 39 284 57 1190 Total 151 730 166 99 349 238 597 2408 178 180 2267 155 7517 #39 Glendon Avenue and Wilshire Boulevard Base 9 186 23 60 116 43 334 1770 120 69 2068 180 4978 Added 0 0 0 0 2 0 7 6 401 0 0 373 11 800 Total 9 186 23 62 116 50 340 2171 120 69 2442 191 5778 #40 Malcolm Avenue and Wilshire Boulevard Base 3 0 47 3 1 42 68 1776 29 23 2293 56 4344 Added 6 0 0 0 12 0 0 0 396 11 0 364 20 818 Total 9 0 47 24 1 42 68 2172 40 23 2657 76 5160 #41 Westholme Avenue and Wilshire Boulevard Base 59 107 68 47 44 21 33 1882 66 30 2312 144 4813 Added 1 0 2 0 0 0 0 0 427 3 2 349 0 786 Total 60 107 70 47 44 21 33 1882 66 30 2312 144 4813 Added 1 0 2 0 0 0 0 0 427 3 2 349 0 786 Total 60 107 70 47 44 21 33 2309 69 32 2661 144 559 170 Added 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 338 0 765
Added 0 0 0 14 0 55 109 471 0 0 348 20 1017 Total 62 350 55 73 105 355 630 3016 160 67 2439 142 7452 #38 Westwood Boulevard and Wilshire Boulevard Base 142 630 123 64 286 162 448 2079 172 141 1983 98 6327 Added 9 100 43 35 63 76 149 329 6 39 284 57 1199 Total 151 730 166 99 349 238 597 2408 178 180 2267 155 7517 #39 Glendon Avenue and Wilshire Boulevard Base 9 186 23 60 116 43 334 1770 120 69 2068 180 4978 Added 0 0 0 0 2 0 7 6 401 0 0 373 11 800 Total 9 186 23 62 116 50 340 2171 120 69 2442 191 5778 #40 Malcolm Avenue and Wilshire Boulevard Base 3 0 47 3 1 42 68 1776 29 23 2293 56 4342 Added 6 0 0 0 21 0 0 0 396 11 0 364 20 818 Total 9 0 47 24 1 42 68 1776 29 23 2293 56 4342 Added 6 0 0 0 21 0 0 0 396 11 0 364 20 818 Total 9 0 47 24 1 42 68 1776 29 23 2493 56 4342 Added 6 0 0 0 1 20 0 0 0 396 11 0 364 20 818 Total 9 0 47 24 1 42 68 1776 29 23 2493 56 4342 Added 1 0 2 0 0 0 0 0 427 3 2 349 0 786 Total 60 107 70 47 44 21 33 1882 66 30 2312 144 4813 Added 1 0 2 0 0 0 0 0 427 3 2 349 0 786 Total 60 107 70 47 44 21 33 1882 66 30 2312 144 4813 Added 1 0 2 0 0 0 0 0 427 3 2 349 0 786 Total 60 107 70 47 44 21 33 2309 69 32 2661 144 559
Total 62 350 55 73 105 355 630 3016 160 67 2439 142 7452 #38 Westwood Boulevard and Wilshire Boulevard Base 142 630 123 64 286 162 448 2079 172 141 1983 98 6327 Added 9 100 43 35 63 76 149 329 6 39 284 57 1197 Total 151 730 166 99 349 238 597 2408 178 180 2267 155 7517 #39 Glendon Avenue and Wilshire Boulevard Base 9 186 23 60 116 43 334 1770 120 69 2068 180 4978 Added 0 0 0 0 2 0 7 6 401 0 0 373 11 800 Total 9 186 23 62 116 50 340 2171 120 69 2442 191 5778 #40 Malcolm Avenue and Wilshire Boulevard Base 3 0 47 3 1 42 68 1776 29 23 2293 56 4342 Added 6 0 0 0 21 0 0 0 0 396 11 0 364 20 818 Total 9 0 47 24 1 42 68 2172 40 23 2657 76 5160 #41 Westholme Avenue and Wilshire Boulevard Base 59 107 68 47 44 21 33 1882 66 30 2312 144 4813 Added 1 0 2 0 0 0 0 0 427 3 2 349 0 786 Total 60 107 70 47 44 21 33 1882 66 30 2312 144 4813 Added 1 0 2 0 0 0 0 0 427 3 2 349 0 786 Total 60 107 70 47 44 21 33 2309 69 32 2661 144 5597 #42 Warner Avenue and Wilshire Boulevard Base 78 38 22 91 63 92 70 1862 33 12 2339 81 4788 Added 0 0 0 0 0 0 0 0 0 431 0 0 0 338 0 766
#38 Westwood Boulevard and Wilshire Boulevard Base 142 630 123 64 286 162 448 2079 172 141 1983 98 6327 Added 9 100 43 35 63 76 149 329 6 39 284 57 1190 Total 151 730 166 99 349 238 597 2408 178 180 2267 155 7517 #39 Glendon Avenue and Wilshire Boulevard Base 9 186 23 60 116 43 334 1770 120 69 2068 180 4978 Added 0 0 0 0 2 0 7 6 401 0 0 0 373 11 800 Total 9 186 23 62 116 50 340 2171 120 69 2442 191 5778 #40 Malcolm Avenue and Wilshire Boulevard Base 3 0 47 3 1 42 68 1776 29 23 2293 56 4344 Added 6 0 0 0 21 0 0 0 396 11 0 364 20 818 Total 9 0 47 24 1 42 68 2172 40 23 2657 76 5160 #41 Westholme Avenue and Wilshire Boulevard Base 59 107 68 47 44 21 33 1882 66 30 2312 144 4813 Added 1 0 2 0 0 0 0 427 3 2 349 0 786 Total 60 107 70 47 44 21 33 1882 66 30 2312 144 4813 Added 1 0 2 0 0 0 0 427 3 2 349 0 786 Total 60 107 70 47 44 21 33 2309 69 32 2661 144 5597 #42 Warner Avenue and Wilshire Boulevard Base 78 38 22 91 63 92 70 1862 33 12 2339 81 4781 Added 0 0 0 0 0 0 0 0 431 0 0 338 0 766
#38 Westwood Boulevard and Wilshire Boulevard Base 142 630 123 64 286 162 448 2079 172 141 1983 98 6327 Added 9 100 43 35 63 76 149 329 6 39 284 57 1190 Total 151 730 166 99 349 238 597 2408 178 180 2267 155 7517 #39 Glendon Avenue and Wilshire Boulevard Base 9 186 23 60 116 43 334 1770 120 69 2068 180 4978 Added 0 0 0 0 2 0 7 6 401 0 0 0 373 11 800 Total 9 186 23 62 116 50 340 2171 120 69 2442 191 5778 #40 Malcolm Avenue and Wilshire Boulevard Base 3 0 47 3 1 42 68 1776 29 23 2293 56 4344 Added 6 0 0 0 21 0 0 0 396 11 0 364 20 818 Total 9 0 47 24 1 42 68 2172 40 23 2657 76 5160 #41 Westholme Avenue and Wilshire Boulevard Base 59 107 68 47 44 21 33 1882 66 30 2312 144 4813 Added 1 0 2 0 0 0 0 427 3 2 349 0 786 Total 60 107 70 47 44 21 33 1882 66 30 2312 144 4813 Added 1 0 2 0 0 0 0 427 3 2 349 0 786 Total 60 107 70 47 44 21 33 2309 69 32 2661 144 5597 #42 Warner Avenue and Wilshire Boulevard Base 78 38 22 91 63 92 70 1862 33 12 2339 81 4781 Added 0 0 0 0 0 0 0 0 431 0 0 338 0 766
Base 142 630 123 64 286 162 448 2079 172 141 1983 98 632 Added 9 100 43 35 63 76 149 329 6 39 284 57 1190 Total 151 730 166 99 349 238 597 2408 178 180 2267 155 751 #39 Glendon Avenue and Wilshire Bouelvard Base 9 186 23 60 116 43 334 1770 120 69 2068 180 4978 Added 0 0 0 2 0 7 6 401 0 0 373 11 800 Total 9 186 23 62 116 50 340 2171 120 69 2442 191 5776 #40 Malcolm
Added 9 100 43 35 63 76 149 329 6 39 284 57 1190 Total 151 730 166 99 349 238 597 2408 178 180 2267 155 7517 #39 Glendon Avenue and Wilshire Boulevard Base 9 186 23 60 116 43 334 1770 120 69 2068 180 4978 Added 0 0 0 0 2 0 7 6 401 0 0 373 11 800 Total 9 186 23 62 116 50 340 2171 120 69 2442 191 5778 #40 Malcolm Avenue and Wilshire Boulevard Base 3 0 47 3 1 42 68 1776 29 23 2293 56 4344 Added 6 0 0 0 21 0 0 0 396 11 0 364 20 818 Total 9 0 47 24 1 42 68 2172 40 23 2657 76 5160 #41 Westholme Avenue and Wilshire Boulevard Base 59 107 68 47 44 21 33 1882 66 30 2312 144 4813 Added 1 0 2 0 0 0 0 427 3 2 349 0 788 Total 60 107 70 47 44 21 33 2309 69 32 2661 144 5597 #42 Warner Avenue and Wilshire Boulevard Base 78 38 22 91 63 92 70 1862 33 12 2339 81 4788 Added 0 0 0 0 0 0 0 431 0 0 338 0 766
Total 151 730 166 99 349 238 597 2408 178 180 2267 155 7517 #39 Glendon Avenue and Wilshire Boulevard Base 9 186 23 60 116 43 334 1770 120 69 2668 180 4976 Added 0 0 0 0 2 0 7 6 401 0 0 373 11 800 Total 9 186 23 62 116 50 340 2171 120 69 2442 191 5776 #40 Malcolm Avenue and Wilshire Boulevard Base 3 0 47 3 1 42 68 1776 29 23 2293 56 4342 Added 6 0 0 21 0 0 0 396 11 0 364 20 816 Total 9 0 47 24 1 42 68 2172 40 23 2657 76 5160 #41 Westholme Avenue and Wilshire Boulevard Base 59 107 68 47 44 21 33 1882 66 30 2312 144 4813 Added 1 0 2 0 0 0 0 427 3 2 349 0 786 Total 60 107 70 47 44 21 33 1882 66 30 2312 144 5813 Added 1 0 2 0 0 0 0 427 3 2 349 0 786 Total 60 107 70 47 44 21 33 2309 69 32 2661 144 5591 #42 Warner Avenue and Wilshire Boulevard Base 78 38 22 91 63 92 70 1862 33 12 2339 81 4781 Added 0 0 0 0 0 0 0 0 431 0 0 338 0 766
#39 Glendon Avenue and Wilshire Bouelvard Base 9 186 23 60 116 43 334 1770 120 69 2068 180 4978 Added 0 0 0 2 0 7 6 401 0 0 373 11 800 Total 9 186 23 62 116 50 340 2171 120 69 2442 191 5778 #40 Malcolm Avenue and Wilshire Boulevard Base 3 0 47 3 1 42 68 1776 29 23 2293 56 4342 Added 6 0 0 21 0 0 0 396 11 0 364 20 818 Total 9 0 47 24 1 42 68 2172 40 23 2657 76 5160 #41 Westholme Avenue and Wilshire Boulevard Base 59 107 68 47 44 21 33 1882 66 30 2312 144 4813 Added 1 0 2 0 0 0 0 427 3 2 349 0 786 Total 60 107 70 47 44 21 33 2309 69 32 2661 144 5593 #42 Warner Avenue and Wilshire Boulevard Base 78 38 22 91 63 92 70 1862 33 12 2339 81 4781 Added 0 0 0 0 0 0 0 431 0 0 338 0 766
Base 9 186 23 60 116 43 334 1770 120 69 2068 180 4978 Added 0 0 0 2 0 7 6 401 0 0 373 11 800 Total 9 186 23 62 116 50 340 2171 120 69 2442 191 5778 #40 Malcolm Avenue and Wilshire Boulevard Base 3 0 47 3 1 42 68 1776 29 23 2293 56 4344 Added 6 0 0 21 0 0 0 396 11 0 364 20 816 Total 9 0 47 24 1 42 68 2172 40 23 2657 76 5160 #41 Westholme Avenue and Wilshire Boulevard Base 59 107 68 47 44 21 33 1882 66 30 2312 144 4813 Added 1 0 2 0 0 0 0 427 3 2 349 0 784 Total 60 107 70 47 44 21 33 2309 69 32 2661 144 5593 #42 Warner Avenue and Wilshire Boulevard Base 78 38 22 91 63 92 70 1862 33 12 2339 81 4781 Added 0 0 0 0 0 0 0 431 0 0 338 0 766
Base 9 186 23 60 116 43 334 1770 120 69 2068 180 4978 Added 0 0 0 2 0 7 6 401 0 0 373 11 800 Total 9 186 23 62 116 50 340 2171 120 69 2442 191 5778 #40 Malcolm Avenue and Wilshire Boulevard Base 3 0 47 3 1 42 68 1776 29 23 2293 56 4344 Added 6 0 0 21 0 0 0 396 11 0 364 20 816 Total 9 0 47 24 1 42 68 2172 40 23 2657 76 5160 #41 Westholme Avenue and Wilshire Boulevard Base 59 107 68 47 44 21 33 1882 66 30 2312 144 4813 Added 1 0 2 0 0 0 0 427 3 2 349 0 784 Total 60 107 70 47 44 21 33 2309 69 32 2661 144 5593 #42 Warner Avenue and Wilshire Boulevard Base 78 38 22 91 63 92 70 1862 33 12 2339 81 4781 Added 0 0 0 0 0 0 0 431 0 0 338 0 766
Added 0 0 0 2 0 7 6 401 0 0 373 11 800 Total 9 186 23 62 116 50 340 2171 120 69 2442 191 5776 #40 Malcolm Avenue and Wilshire Boulevard Base 3 0 47 3 1 42 68 1776 29 23 2293 56 4342 Added 6 0 0 21 0 0 0 396 11 0 364 20 816 Total 9 0 47 24 1 42 68 2172 40 23 2657 76 5160 #41 Westholme Avenue and Wilshire Boulevard Base 59 107 68 47 44 21 33 1882 66 30 2312 144 4813 Added 1 0 2 0 0 0 0 427 3 2 349 0 786 Total 60 107 70 47 44 21 33 2309 69 32 2661 144 5593 #42 Warner Avenue and Wilshire Boulevard Base 78 38 22 91 63 92 70 1862 33 12 2339 81 4781 Added 0 0 0 0 0 0 0 431 0 0 338 0 765
Total 9 186 23 62 116 50 340 2171 120 69 2442 191 5776 #40 Malcolm Avenue and Wilshire Boulevard Base 3 0 47 3 1 42 68 1776 29 23 2293 56 4344 Added 6 0 0 21 0 0 0 396 11 0 364 20 818 Total 9 0 47 24 1 42 68 2172 40 23 2657 76 5166 #41 Westholme Avenue and Wilshire Boulevard Base 59 107 68 47 44 21 33 1882 66 30 2312 144 4813 Added 1 0 2 0 0 0 0 427 3 2 349 0 788 Total 60 107 70 47 44 21 33 2309 69 32 2661 144 5597 #42 Warner Avenue and Wilshire Boulevard Base 78 38 22 91 63 92 70 1862 33 12 2339 81 4788 Added 0 0 0 0 0 0 0 431 0 0 338 0 766
Total 9 186 23 62 116 50 340 2171 120 69 2442 191 5776 #40 Malcolm Avenue and Wilshire Boulevard Base 3 0 47 3 1 42 68 1776 29 23 2293 56 4344 Added 6 0 0 21 0 0 0 396 11 0 364 20 818 Total 9 0 47 24 1 42 68 2172 40 23 2657 76 5166 #41 Westholme Avenue and Wilshire Boulevard Base 59 107 68 47 44 21 33 1882 66 30 2312 144 4813 Added 1 0 2 0 0 0 0 427 3 2 349 0 788 Total 60 107 70 47 44 21 33 2309 69 32 2661 144 5597 #42 Warner Avenue and Wilshire Boulevard Base 78 38 22 91 63 92 70 1862 33 12 2339 81 4788 Added 0 0 0 0 0 0 0 431 0 0 338 0 766
#40 Malcolm Avenue and Wilshire Boulevard Base 3 0 47 3 1 42 68 1776 29 23 2293 56 4344 Added 6 0 0 21 0 0 0 396 11 0 364 20 818 Total 9 0 47 24 1 42 68 2172 40 23 2657 76 5160 #41 Westholme Avenue and Wilshire Boulevard Base 59 107 68 47 44 21 33 1882 66 30 2312 144 4813 Added 1 0 2 0 0 0 0 427 3 2 349 0 786 Total 60 107 70 47 44 21 33 2309 69 32 2661 144 5597 #42 Warner Avenue and Wilshire Boulevard Base 78 38 22 91 63 92 70 1862 33 12 2339 81 4781 Added 0 0 0 0 0 0 0 431 0 0 338 0 766
Base 3 0 47 3 1 42 68 1776 29 23 2293 56 4342 Added 6 0 0 21 0 0 0 396 11 0 364 20 818 Total 9 0 47 24 1 42 68 2172 40 23 2657 76 5166 #41 Westholme Avenue and Wilshire Boulevard Base 59 107 68 47 44 21 33 1882 66 30 2312 144 4813 Added 1 0 2 0 0 0 0 0 427 3 2 349 0 788 Total 60 107 70 47 44 21 33 2309 69 32 2661 144 5591 #42 Warner Avenue and Wilshire Boulevard Base 78 38 22 91 63 92 70 1862 33 12 2339 81 4781 Added 0 0 0 0 0 0 0 431 0 0 338 0 766
Added 6 0 0 21 0 0 0 396 11 0 364 20 816 Total 9 0 47 24 1 42 68 2172 40 23 2657 76 5166 #41 Westholme Avenue and Wilshire Boulevard Base 59 107 68 47 44 21 33 1882 66 30 2312 144 4813 Added 1 0 2 0 0 0 0 427 3 2 349 0 784 Total 60 107 70 47 44 21 33 2309 69 32 2661 144 5597 #42 Warner Avenue and Wilshire Boulevard Base 78 38 22 91 63 92 70 1862 33 12 2339 81 4781 Added 0 0 0 0 0 0 0 0 431 0 0 338 0 766
Added 6 0 0 21 0 0 0 396 11 0 364 20 816 Total 9 0 47 24 1 42 68 2172 40 23 2657 76 5166 #41 Westholme Avenue and Wilshire Boulevard Base 59 107 68 47 44 21 33 1882 66 30 2312 144 4813 Added 1 0 2 0 0 0 0 427 3 2 349 0 784 Total 60 107 70 47 44 21 33 2309 69 32 2661 144 5597 #42 Warner Avenue and Wilshire Boulevard Base 78 38 22 91 63 92 70 1862 33 12 2339 81 4781 Added 0 0 0 0 0 0 0 0 431 0 0 338 0 766
#41 Westholme Avenue and Wilshire Boulevard Base 59 107 68 47 44 21 33 1882 66 30 2312 144 4813 Added 1 0 2 0 0 0 0 427 3 2 349 0 788 Total 60 107 70 47 44 21 33 2309 69 32 2661 144 5591 #42 Warner Avenue and Wilshire Boulevard Base 78 38 22 91 63 92 70 1862 33 12 2339 81 4781 Added 0 0 0 0 0 0 0 0 431 0 0 338 0 766
Base 59 107 68 47 44 21 33 1882 66 30 2312 144 4813 Added 1 0 2 0 0 0 0 427 3 2 349 0 784 Total 60 107 70 47 44 21 33 2309 69 32 2661 144 559 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Base 59 107 68 47 44 21 33 1882 66 30 2312 144 4813 Added 1 0 2 0 0 0 0 427 3 2 349 0 784 Total 60 107 70 47 44 21 33 2309 69 32 2661 144 559 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Added 1 0 2 0 0 0 0 427 3 2 349 0 784 Total 60 107 70 47 44 21 33 2309 69 32 2661 144 559 #42 Warner Avenue and Wilshire Boulevard Base 78 38 22 91 63 92 70 1862 33 12 2339 81 4781 Added 0 0 0 0 0 0 0 0 431 0 0 338 0 766
Total 60 107 70 47 44 21 33 2309 69 32 2661 144 5597 #42 Warner Avenue and Wilshire Boulevard Base 78 38 22 91 63 92 70 1862 33 12 2339 81 4781 Added 0 0 0 0 0 0 0 0 431 0 0 338 0 769
#42 Warner Avenue and Wilshire Boulevard Base 78 38 22 91 63 92 70 1862 33 12 2339 81 4781 Added 0 0 0 0 0 0 0 0 431 0 0 338 0 766
Base 78 38 22 91 63 92 70 1862 33 12 2339 81 4781 Added 0 0 0 0 0 0 0 0 431 0 0 338 0 769
Base 78 38 22 91 63 92 70 1862 33 12 2339 81 4781 Added 0 0 0 0 0 0 0 0 431 0 0 338 0 769
Added 0 0 0 0 0 0 0 431 0 0 338 0 769
Total 78 38 22 91 63 92 70 2293 33 12 2677 81 5550
#43 Beverly Glen Boulevard and Wilshire Boulevard
Base 169 352 38 36 529 50 93 1674 213 104 2179 11 5447
Added 15 15 51 41 30 4 3 385 37 79 318 27 1005
Total 184 367 89 77 559 54 96 2059 250 183 2497 38 6452
#44 Sawtelle Boulevard and Ohio Avenue
Base 63 318 135 26 94 19 86 887 55 75 481 90 2330

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future 2013 Without Project- AM Peak

Volume									nd	We	estbo	und	
Type	Leit	Thru	Right	Leit	Thru	Right	Leit	Thru	Right	Leit	Thru	Right	Volume
#45 Ser	pulve	da Bou	levard	l and C	hio A	venue							
Base	101	477	132	40		86	183	730	82	78	504	75	3006
Added	3	33	1	6	24	0	0	11	4		11	7	104
Total	104	510	133	46	544	86	183	741	86	82	515	82	3110
#46 Vet													
Base	35		37	15		105		727	39	26			
Added	0		0		5		-1		1	0		0	
Total	35	350	37	15	160	102	280	746	40	26	520	43	2354
#47 Wes													
Base		1238	50		484	62	177			67			
Added		143	0	0	99	6	6	0	25	0	0	0	305
Total	156	1381	50	34	583	68	183	292	121	67	279	53	3267
#48 Sav													
Base	63		216	99		30	24	1240	22	125	1789	64	
Added			11		0				2				
Total	64	477	227	100	166	30	24	1436	24	132	1948	64	4693
#49 Sar													
Base	0			756					439	626			
Added				84	0	27 448	0	171	37	44	139	0	502
Total	0	0	0	840	295	448	0	1267	476	670	1674	0	5670
#50 Sar													
Base		403	756	0	0	0	418	1495	0	0	1384 160	340	
Added													
Total	732	408	844	0	0	0	454	1714	0	0	1544	385	6081
#51 Sep													
Base		874	142		791				379		1345		
Added			0			4	1	302	4	2	201		
Total	217	903	142	164	811	197	105	2088	383	104	1546	154	6814
#52 Vet	teran	Avenu	e and	Santa	Monic	a Boul							
Base	67	278	57	139	153	69	106	1931	25 1	66	1386	63	4341
Added	0	4	0	-1	3	4	6	304	1	0	206	-1	526
Total	67	282	57	138	156	73	112	2235	26	66	1592	62	4867
#53 Wes	stwood	d Boul	evard	and Sa	nta M	onica	Boule	vard					
Base	96			229	554	79	147	1884	102	134	1352	135	5847
Added	4	142	9 86	7	102	16	20	273	3	6	183	6	771
Total	100	1200	86	236	656	95	167	2157	105	140	1535	141	6618

Page 4-7

Future Without Project AM PMon Jul 21, 2008 18:09:03

Page 5-1

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA

Future 2013 Without Project- AM Peak

Volume	No	orthbo	ound	S	outhbo	ound	Ea	astbou	und	We	estbo	ınd	Total
Type	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Volume
						_ ,							
#54 Mu													
Base	205	0	79	0	0	0	0	749	429	193	545	0	2200
Added	12	0	0	0	0	0	0	1	18	0	0	0	31
Total	217	0	79	0	0	0	0	750	447	193	545	0	2231
#55 Ros	scomar	re Roa	ad and	Strade	ella E	Road/Li	nda F	lora I	Orive				
Base	13	78	8	94	444	17	17	1	40	9	0	34	755
Added	0	12	0	0	18	0	0	0	0	0	0	0	30
Total	13	90	8	94	462	17	17	1	40	9	0	34	785
#56 Be	llagio	Road	d and	Chalon	Road								
Base	32	125	0	0	524	21	12	0	42	0	0	0	755
Added	0	12	0	0	18	0	0	0	0	0	0	0	30
Total	32	137	0	0	542	21	12	0	42	0	0	0	785
10041	32	10,	ŭ	·	312					·		Ü	, 05
#57 Be	verlv	Glen	Boule	zard aı	nd Mu	lhollar	d Driv	ve .					
Base	62	209	74	803	784	135	44	587	40	44	319	307	3408
Added	0	16	0	0	25	0	0	0	1	1	0	0	43
Total	62	225	74	803	809	135	44	587	41	45	319	307	3451
IOCUI	02	223	, 1	005	000	133		507		13	313	507	3131
#58 Be	verlv	Glen	Boule	ard a	nd Gre	eendale	Drive	2					
Base	0	308	14	134	969	0	0	0	0	82	0	49	1556
Added	0	16	4			0	0	0	0	0	0	0	45
Total	0	324	18	135	993	0	0	0	0	82	0	49	1601
iocai	U	J24	10	133	223	U	U	U	U	0.2	U	42	1001

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future 2013 Without Project- AM Peak

Impact Analysis Report Level Of Service

Intersection	Base Del/ V/	Future Del/ V/	Change in
# 1 Sepulveda Boulevard and Church	LOS Veh C D xxxxx 0.863	LOS Veh C D xxxxx 0.870	+ 0.007 V/C
# 2 Church Lane and San Diego Fwy	D xxxxx 0.834	D xxxxx 0.849	+ 0.015 V/C
# 3 Church Lane and Sunset Bouleva	E xxxxx 0.936	E xxxxx 0.937	+ 0.000 V/C
# 4 San Diego Fwy NB On/Off Ramps	F xxxxx 1.016	F xxxxx 1.029	+ 0.014 V/C
# 5 Veteran Avenue and Sunset Boul	E xxxxx 0.963	F xxxxx 1.007	+ 0.044 V/C
# 6 Bellagio Way and Sunset Boulev	E xxxxx 0.954	E xxxxx 0.967	+ 0.013 V/C
# 7 Westwood Bouevard and Sunset B	B xxxxx 0.673	В ххххх 0.676	+ 0.004 V/C
# 8 Stone Canyon Road and Sunset B	A xxxxx 0.593	A xxxxx 0.596	+ 0.004 V/C
# 9 Hilgard Avenue/Copa De Oro Roa	F xxxxx 1.007	F xxxxx 1.045	+ 0.038 V/C
# 10 Beverly Glen Boulevard and Sun	E xxxxx 0.970	F xxxxx 1.033	+ 0.064 V/C
# 11 Beverly Glen Boulevard and Sun	F xxxxx 1.242	F xxxxx 1.303	+ 0.061 V/C
# 12 Sepulveda Boulevard and San Di	A xxxxx 0.597	B xxxxx 0.600	+ 0.004 V/C
# 13 Sepulveda Boulevard and Montan	D xxxxx 0.821	D xxxxx 0.825	+ 0.004 V/C
# 14 Levering Avenue and Montana Av	C 24.8 0.000	D 27.0 0.000	+ 2.169 D/V
# 15 Veteran Avenue and Montana Ave	D xxxxx 0.883	E xxxxx 0.918	+ 0.035 V/C
# 16 Galey Avenue and Strathmore Pl	C xxxxx 0.724	C xxxxx 0.724	+ 0.000 V/C
# 17 Veteran Avenue and Levering Av	A xxxxx 0.571	В ххххх 0.646	+ 0.075 V/C
# 18 Hilgard Avenue and Wyton Drive	A xxxxx 0.483	A xxxxx 0.496	+ 0.014 V/C
# 19 Beverly Glen Blvd and Wyton Dr	A xxxxx 0.426	A xxxxx 0.475	+ 0.049 V/C
# 20 Hilgard Avenue and Westholme A	A xxxxx 0.558	A xxxxx 0.572	+ 0.014 V/C
# 21 Hilgard Avenue and Manning Ave	A xxxxx 0.337	A xxxxx 0.345	+ 0.008 V/C
# 22 Gayley Avenue and Le Conte Ave	A xxxxx 0.592	A xxxxx 0.587	-0.005 V/C
# 23 Westwood Boulevard and Le Cont	D xxxxx 0.818	B xxxxx 0.689	-0.129 V/C

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future 2013 Without Project- AM Peak

	hout Project- Al		
Intersection	Base Del/ V/ LOS Veh C	Future Del/ V/ LOS Veh C	Change in
$\ensuremath{\text{\#}}$ 24 Tiverton Drive and Le Conte Av	A xxxxx 0.511	A xxxxx 0.419	-0.092 V/C
# 25 Hilgard Avenue and Le Conte Av	A xxxxx 0.471	B xxxxx 0.628	+ 0.157 V/C
# 26 Gayley Avenue and Weyburn Aven	A xxxxx 0.503	B xxxxx 0.670	+ 0.167 V/C
# 27 Westwood Boulevard and Weyburn	A xxxxx 0.460	C xxxxx 0.774	+ 0.314 V/C
# 28 Tiverton Drvie and Weyburn Ave	A 7.7 0.158	A 9.2 0.325	+ 0.167 V/C
# 29 Hilgard Avenue and Weyburn Ave	A xxxxx 0.463	A xxxxx 0.495	+ 0.032 V/C
# 30 Westwood Boulevard and Kinross	D xxxxx 0.876	F xxxxx 1.071	+ 0.195 V/C
# 31 Westwood Boulevard and Lindbro	A xxxxx 0.575	C xxxxx 0.712	+ 0.137 V/C
# 32 Glendon/Tiverton/Lindbrook	B xxxxx 0.638	B xxxxx 0.648	+ 0.010 V/C
# 33 Sepulveda Boulevard and Consti	A xxxxx 0.568	A xxxxx 0.570	+ 0.002 V/C
# 34 San Vicente Bouevard and Wilsh	E xxxxx 0.990	F xxxxx 1.068	+ 0.078 V/C
# 35 Sepulveda Boulevard and Wilshi	F xxxxx 1.420	F xxxxx 1.573	+ 0.154 V/C
# 36 Veteran Avenue and Wilshire Bo	F xxxxx 1.229	F xxxxx 1.323	+ 0.094 V/C
# 37 Gayley Avenue and Wilshire Bou	E xxxxx 0.942	F xxxxx 1.084	+ 0.142 V/C
# 38 Westwood Boulevard and Wilshir	F xxxxx 1.049	F xxxxx 1.291	+ 0.242 V/C
# 39 Glendon Avenue and Wilshire Bo	E xxxxx 0.958	F xxxxx 1.053	+ 0.095 V/C
# 40 Malcolm Avenue and Wilshire Bo	F OVRFL 0.000	F OVRFL 0.000	+ 1.8E+0308
# 41 Westholme Avenue and Wilshire	C xxxxx 0.795	D xxxxx 0.879	+ 0.084 V/C
# 42 Warner Avenue and Wilshire Bou	C xxxxx 0.730	D xxxxx 0.809	+ 0.079 V/C
# 43 Beverly Glen Boulevard and Wil	D xxxxx 0.900	F xxxxx 1.005	+ 0.105 V/C
# 44 Sawtelle Boulevard and Ohio Av	F xxxxx 1.040	F xxxxx 1.050	+ 0.011 V/C
# 45 Sepulveda Boulevard and Ohio A	D xxxxx 0.862	D xxxxx 0.885	+ 0.023 V/C
# 46 Veteran Avenue and Ohio Avenue	D xxxxx 0.834	D xxxxx 0.853	+ 0.019 V/C
# 47 Westwood Boulevard and Ohio Av	C xxxxx 0.775	D xxxxx 0.826	+ 0.052 V/C
# 48 Sawtelle Boulevard and Santa M	F xxxxx 1.400	F xxxxx 1.462	+ 0.062 V/C

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future 2013 Without Project- AM Peak

Future Without Project AM PMon Jul 21, 2008 18:09:03

58 Beverly Glen Boulevard and Gre D xxxxx 0.867 D xxxxx 0.884 + 0.018 V/C

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) ****************** Intersection #1 Sepulveda Boulevard and Church Ln/Ovada Pl

******************* Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/veh): xxxxxx

Optimal Cycle												
Street Name: Approach:		Sepu	lveda	Boule	vard			Churcl	n Lane/	Ovada	Place	e
Movement:	L ·	- T	- R	L ·	- Т	- R	L	- T	- R	L	- T	- R
 Control:						 :ted	Sp	lit Pl	nase			
Rights:		Inclu	de		Incl			Incl	ıde		Incl	ıde
Min. Green:	0	0	0	0	0	0			0	0	0	0
Lanes:			0 1			1 0			0 0		0 0	
Volume Module			Date:									
Base Vol:	12		72		1321	531	84		26	87	144	0
Growth Adj:				1.05		1.05		1.05			1.05	
Initial Bse:			76		1387	558	88		27			1.05
Added Vol:			, 0		18	0		0	0	0		0
PasserByVol:				0		0	0		-	0	-	0
Initial Fut:				-		558	89				-	0
User Adj:				1.00		1.00		1.00			1.00	
PHF Adj:			1.00		1.00	1.00		1.00	1.00		1.00	
PHF Volume:		551	76		1405	558	89		27	91		0
Reduct Vol:			0	0		0	0		0	0		0
Reduced Vol:				4	1405	558	89	55		91	151	
PCE Adi:	6.00			2.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.10	1.00	1.00	1.00	1.00	1.00
FinalVolume:	76	551	76	8	1405	558	98	55	27	91	151	0
Saturation Fl	ow Mo	odule:				'				'		'
Sat/Lane:	1425	1425	1425	1425	1425	1425	1425	1425	1425	1425	1425	1425
Adjustment:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Lanes:	0.52	2.48	1.00	0.01	1.43	0.56	1.09	0.61	0.30	1.00	1.00	0.00
Final Sat.:						806		864			1425	0
Capacity Anal Vol/Sat:				0 69	0 69	0 69	0 06	0 06	0 06	0 06	0.11	0.00
101,000	0.02	0.10	0.05	0.00	0.00	0.05	0.00	0.00	0.00	0.00	0.11	0.00

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

Crit Volume: 13 986 90 151
Crit Moves: **** **** ****

Crit Moves: ****

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future 2013 Without Project- AM Peak Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) ************************ Intersection #2 Church Lane and San Diego Fwy SB On/Off Ramp ************************ Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/veh): xxxxxx Optimal Cycle: 123 Level Of Service: Street Name: Church Lane San Diego Fwy SB On/Off Ramps Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - F L - T - R Control: Permitted Permitted Split Phase Split Phase Rights: Ignore Include Include Include
 Rights:
 Ignore
 Include
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 Lanes: 0 1 1 0 2 1 0 1 1 0 0 0 0 1 0 1 0 1! 0 0 Volume Module: >> Count Date: 14 Feb 2008 << 715-815 Base Vol: 0 143 317 223 656 0 0 2 1 1435 1 22 Initial Bse: 0 150 333 234 689 0 0 2 1 1507 1 23 PHF Volume: 0 151 0 234 689 0 0 2 1 1545 1 23 Reduct Vol: 0 151 0 234 689 0 0 2 1 1545 1 23 FinalVolume: 0 151 0 234 689 0 0 2 1 1699 1 23 -----| Saturation Flow Module: Lanes: 0.00 2.00 2.00 1.00 2.00 0.00 0.00 0.67 0.33 1.97 0.01 0.02 Final Sat.: 0 2850 2850 1425 2850 0 0 950 475 2810 2 38 -----| Capacity Analysis Module: Vol/Sat: 0.00 0.05 0.00 0.16 0.24 0.00 0.00 0.00 0.00 0.60 0.60 0.60 Crit Volume: 0 344 3 862 Crit Moves: **** ****

Future Without Project AM PMon Jul 21, 2008 18:09:03

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative)

******************* Intersection #3 Church Lane and Sunset Boulevard ************************* Cycle (sec): 100 Critical Vol./Cap.(X): 0.937

0 (Y+R=4.0 sec) Average Delay (sec/veh):
180 Level Of Service: Loss Time (sec): XXXXXX Ontimal Cycle:

Optimal Cycl	e: *****	18	0	++++		Level	Of Se	rvice	: 			E
Street Name: Approach: Movement:												
Approach:	No:	rth Bo	und	Sot	ith Bo	ound	E	ast Bo	ound	We	st Bo	ound
Movement:	L	- T	- R	L -	- т	- R	L	- T	- R	L -	т	- R
Control:												
Rights:		Inclu	de		Ovl			Incl	ıde		Ovl	
Rights: Min. Green:	0	0	0	0	0	0	0	0	0	0	0	0
Lanes:	1	0 1	1 0	1 :	1 0	0 2	2	0 3	1 0	1 0	2	0 1
			1	1			1		1			
Volume Modul	ė: >>	Count	Date:	19 Fe	eb 200)8 << 8	300-90	0				
Base Vol:	51	7	102	652	158	962	99	1713	111	6	1170	432
Growth Adj:	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05
Initial Bse:						1010	104	1799	117	6	1229	454
Added Vol:	0	0	0	38	0	0	1	1	0	0	0	0
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	0
Initial Fut:	54	7	107	723	166	1010						
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00		1.00				
User Adj: PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00		1.00				
PHF Volume:	54	7	107	723	166	1010		1800				
Reduct Vol:						0			0			
Reduced Vol:												
PCE Adj:									1.00			
MLF Adj:								1.00				
FinalVolume:												
Saturation F												
Sat/Lane:												
Adjustment:								1.00				
Lanes:								3.76				
Final Sat.:												
Capacity Ana				0 24	0 24	0 20	0 04	0 24	0 24	0 00	0 42	0 20
Vol/Sat:											0.43	

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

Crit Volume: 107 556 58 614
Crit Moves: **** **** ****

				Los 013 W:	s Ange ithout	l LRDP eles, C	!A ect- Al		-					
	ircul			f Serv	vice (Computa	tion 1		ternat	ive)				
*****	* * * * *	*****	*****	****	* * * * * 1	*****	****	*****	*****	****	****	*****		
Intersection											****	*****		
Cycle (sec): Loss Time (sec) Optimal Cycle	ec): e:	10 18	0 (Y+R	=4.0 s	sec)	Averag Level	e Dela Of Se	ay (se rvice:	o.(X): ec/veh)	:	1.0 xxxx	xxx F		
Street Name:									ınset B					
Approach:	Dall	DIEGO	rwy N	O11/0	JII Ko	uups aups	173	oat Pr	uiset B	oureva	ara est Bo	and		
White order	INO:	r cii BC	una - R	501	ucii Bo	- R	T E	ast BC	Juna	L -				
Movement:														
		1		1						1				
Rights: Include Include Ovl Ignore														
Min. Green: 0 0 0 0 0 0 0 0 0 0 0														
Lanes:												0 1		
Volume Module														
Base Vol:	642	-		0	-	0			949					
Growth Adj:									1.05		1.05			
Initial Bse:	674	0	547	0	0		-	1547		0	1025	-		
Added Vol:			0					39		0		-		
PasserByVol: Initial Fut:	0	0	0	0	0	0		0			0			
Initial Fut:	674	0	547	0	0	0	0	1586	996	0	1053	0		
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00		
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00		
PHF Volume:	674	0	547	0	0	0	0	1586	996	0	1053	0		
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0		
Reduced Vol:	674	0	547	0	0	0	0	1586	996	0	1053	0		
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00		
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.10	1.00	1.00	0.00		
FinalVolume:	674	0	547	0	0	0	0	1586	1096	0	1053	0		
										1				
Saturation F				1		'	1		'	1				
Sat/Lane:		1425		1425	1425	1425	1425	1425	1425	1425	1425	1425		
Adjustment:											1.00			
Lanes:			1.00			0.00					3.00			
Final Sat.:			1425				0.00			0.00				
Capacity Anal	I			1		- 1	1		- 1	1				
Vol/Sat:				0 00	0 00	0 00	0 00	0 56	0.38	0 00	0.25	0.00		
Crit Volume:		0.00	0.50	0.00	0.00	0.00	0.00	793	0.50	0.00	0.23	0.00		
Crit Moves:					U			****		****				
CIIC MOVES.														

Future Without Project AM PMon Jul 21, 2008 18:09:03

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative)

******************* Intersection #5 Veteran Avenue and Sunset Boulevard ************************

0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): xxxxxx

Optimal Cycl												
Street Name:		V	eteran	Aveni	ıe			St	unset E	Boulev	ard	
Approach: Movement:									ouna - R			
Movement.	1	- 1 	- K						- K			
Control:						nase					ot+Per	
Rights:												
Min. Green:												
Lanes:	1	0 0	0 1	0 0	0 0	0 0	0) 1	1 0	1	0 2	0 0
Volume Modul	e: >>	Count	Date:	19 Fe	eb 20	08 << 7	745-84	5				
Base Vol:				-	-	0		1726			926	
Growth Adj:											1.05	
Initial Bse:						0						0
Added Vol:			13						38	16		
PasserByVol:						-	-	-	0	-	-	-
Initial Fut:			377		-	-		1813				-
User Adj:						1.00					1.00	
PHF Adj:			1.00			1.00					1.00	1.00
PHF Volume:			377	0	-	-		1813		326		0
Reduct Vol:						0	0	-	0			-
Reduced Vol: PCE Adj:								1813		326 1.00		1.00
MLF Adj:										1.00		
FinalVolume:						1.00			232		973	1.00
Saturation F							1 1					
Sat/Lane:			1425	1425	1425	1425	1425	1425	1425	1425	1425	1425
Adjustment:						1.00				1.00		
		0.00							0.23	1.00	2.00	0.00
Final Sat.:	1425	0	1425	0	0	0	0	2526	324	1425	2850	0
Capacity Ana	İysis	Modul	e:									

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

Vol/Sat: 0.06 0.00 0.26 0.00 0.00 0.00 0.00 0.72 0.72 0.23 0.34 0.00

Crit Moves: ****

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future 2013 Without Project- AM Peak Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) ************************* Intersection #6 Bellagio Way and Sunset Boulevard ****************** Cycle (sec): 100 Critical Vol./Cap.(X): 0.967 Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/veh): xxxxxx Optimal Cycle: 180 Level Of Service: Street Name: Bellagio Way Sunset Boulevard Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - F L - T - R Control: Split Phase Split Phase Prot+Permit Permitted
 Rights:
 Include
 Include
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0 Lanes: 1 1 0 0 1 0 1 0 0 1 1 0 1 1 0 1 1 0 Volume Module: >> Count Date: 19 Feb 2008 << 745-845 Base Vol: 41 5 8 172 50 254 178 1680 226 17 923 96 Initial Bse: 43 5 8 181 53 267 187 1764 237 18 969 101 PHF Volume: 43 5 8 185 53 282 195 1771 237 18 971 105 FinalVolume: 47 5 8 185 53 282 195 1771 237 18 971 105 -----|-----||-------| Saturation Flow Module: Lanes: 1.80 0.20 1.00 0.78 0.22 1.00 1.00 1.76 0.24 1.00 1.81 0.19 Final Sat.: 2476 274 1375 1071 304 1375 1375 2425 325 1375 2482 268 -----| Capacity Analysis Module: Vol/Sat: 0.02 0.02 0.01 0.17 0.17 0.20 0.14 0.73 0.73 0.01 0.39 0.39 Crit Volume: 26 282 1004 18

Future Without Project AM PMon Jul 21, 2008 18:09:03

Crit Moves: ****

Capacity Analysis Module:

Future 2013 Without Project- AM Peak

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative)

************************* Intersection #7 Westwood Bouevard and Sunset Boulevard ************************** 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): XXXXXX Optimal Cycle: 57 Level Of Service: В Street Name: Westwood Boulevard Sunset Boulevard Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R T. - T - R Control: Split Phase Split Phase Permitted Protected Rights: Include Include Ovl Include
Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 2 0 0 0 1 0 0 0 0 0 0 0 2 0 1 1 0 2 0 0 Volume Module: >> Count Date: 14 Feb 2008 << 730-830 Base Vol: 26 0 21 0 0 0 1434 376 175 1016 0 Initial Bse: 27 0 22 0 0 0 1506 395 184 1067 0 0 Added Vol: PasserByVol: 0 Ω Initial Fut: 27 0 22 0 0 0 0 1516 395 184 1073 PHF Volume: 27 0 22 0 0 0 0 1516 395 184 1073 0 Ω Ω FinalVolume: 30 0 22 0 0 0 01516 395 184 1073 0 -----|----||-----| Saturation Flow Module: Final Sat.: 2850 0 1425 0 0 0 0 2850 1425 1425 2850 0 -----|----||-----|

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

Vol/Sat: 0.01 0.00 0.02 0.00 0.00 0.00 0.53 0.28 0.13 0.38 0.00

Crit Volume: 22 0 758 184 Crit Moyes: **** ****

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future 2013 Without Project- AM Peak Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) ************************* Intersection #8 Stone Canyon Road and Sunset Boulevard ********************* 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/ve Optimal Cycle: 56 Level Of Service: xxxxxx Street Name: Stone Canyon Sunset Boulevard Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - F T. - T - R -----|-----|------| Control: Split Phase Split Phase Protected Protected Rights: Include Ovl Toppe Technology
 Rights:
 Include
 Ovl
 Ignore
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 Lanes: 1 0 1! 0 0 0 0 0 0 1 1 0 2 0 1 1 0 1 1 0 Volume Module: >> Count Date: 26 Feb 2008 << 745-845 Base Vol: 49 1 43 0 0 60 57 1270 240 89 1153 22 Initial Bse: 51 1 45 0 0 63 60 1333 252 93 1211 23 PHF Volume: 51 1 45 0 0 63 60 1343 0 93 1217 23 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 51 1 45 0 0 63 60 1343 0 93 1217 23 PCE Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00 FinalVolume: 57 1 45 0 0 63 60 1343 0 93 1217 23 -----|----||------| Saturation Flow Module: Tanes: 1.10 0.02 0.88 0.00 0.00 1.00 1.00 2.00 1.00 1.00 1.96 0.04 Final Sat.: 1514 28 1208 0 0 1375 1375 2750 1375 1375 2699 51 -----| Capacity Analysis Module:

Future Without Project AM PMon Jul 21, 2008 18:09:03

Vol/Sat: 0.04 0.04 0.04 0.00 0.00 0.05 0.04 0.49 0.00 0.07 0.45 0.45

Crit Volume: 51 63 672 93 Crit Moves: **** **** **** Level Of Service Computation Report

Circular 212 Planning Method (Future Volume Alternative) ************************ Intersection #9 Hilgard Avenue/Copa De Oro Road and Sunset Boulevard ************************** Cycle (sec): 100 Critical Vol./Cap.(X): 1.045 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): XXXXXX Optimal Cycle: 180 Level Of Service: Street Name: Hilgard Avenue/Copa De Oro Road Sunset Boulevard Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R T. - T - R Control: Split Phase Split Phase Protected Protected Lanes: 1 0 1! 0 1 0 0 1! 0 0 1 0 1 1 0 1 1 0 Volume Module: >> Count Date: 19 Feb 2008 << 745-845 Base Vol: 142 38 107 28 73 16 18 1031 261 452 1067 21 Initial Bse: 149 40 112 29 77 17 19 1083 274 475 1120 22 Added Vol: 4 0 20 0 0 0 0 7 4 38 2 0 PasserByVol: 0 0 0 0 0 0 0 0 0 0 0 0 Initial Fut: 153 40 132 29 77 17 19 1090 278 513 1122 22 PHF Volume: 153 40 132 29 77 17 19 1090 278 513 1122 22 Ω 22 FinalVolume: 168 40 146 29 77 17 19 1090 278 513 1122 22 -----| Saturation Flow Module: Lanes: 1.43 0.34 1.23 0.24 0.62 0.14 1.00 1.59 0.41 1.00 1.96 0.04 Final Sat.: 1963 465 1697 329 858 188 1375 2191 559 1375 2697 53 -----|----|-----|------| Capacity Analysis Module:

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA. LONG BEACH. CA

Vol/Sat: 0.09 0.09 0.09 0.09 0.09 0.09 0.01 0.50 0.50 0.37 0.42 0.42

Crit Volume: 118 123 684 513

Crit Moves: ****

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future 2013 Without Project- AM Peak Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) ************************* Intersection #10 Beverly Glen Boulevard and Sunset Boulevard ****************** 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): xxxxxx Optimal Cycle: 180 Level Of Service: Street Name: Beverly Glen Boulevard Sunset Boulevard Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - F T. - T - R Control: Split Phase Split Phase Permitted Prot+Permit
 Rights:
 Ignore
 Include
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 Lanes: 1 0 1 0 1 0 0 1! 0 0 1 0 1 1 0 1 1 0 -----|----|-----| Volume Module: >> Count Date: 19 Feb 2008 << 745-845 Base Vol: 87 92 389 50 76 9 15 1022 106 479 1402 72 Initial Bse: 91 97 408 53 80 9 16 1073 111 503 1472 76 Added Vol: 0 0 45 0 0 0 27 0 74 39 PasserByVol: 0 0 0 0 0 0 0 0 0 0 Ω Ω Initial Fut: 91 97 453 53 80 9 16 1100 111 577 1511 76 PHF Volume: 91 97 0 53 80 9 16 1100 111 577 1511 76 FinalVolume: 91 97 0 53 80 9 16 1100 111 577 1511 76 -----| Saturation Flow Module: Lanes: 1.00 1.00 1.00 0.37 0.56 0.07 1.00 1.82 0.18 1.00 1.90 0.10 Final Sat.: 1375 1375 1375 509 774 92 1375 2497 253 1375 2619 131 -----| Capacity Analysis Module: Vol/Sat: 0.07 0.07 0.00 0.10 0.10 0.10 0.01 0.44 0.44 0.42 0.58 0.58 Crit Volume: 97 142 606 577 Crit Moves: **** **** ****

Future Without Project AM PMon Jul 21, 2008 18:09:03

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) ************************* Intersection #11 Beverly Glen Boulevard and Sunset Boulevard (East I/S) ******************* 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): XXXXXX Optimal Cycle: 180 Level Of Service: Street Name: Beverly Glen Boulevard Sunset Boulevard (East I/S) Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R T. - T - R Split Phase Split Phase Prot+Permit Permitted Control: Rights: Include Include Include Ignore
 Rights:
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 <t Lanes: 0 0 0 0 0 0 1 0 1 0 1 0 2 0 0 0 0 2 0 1 -----|----|-----|------| Volume Module: >> Count Date: 19 Feb 2008 << 745-845 Base Vol: 0 0 0 148 0 811 313 1127 0 0 1123 33 Initial Bse: 0 0 0 155 0 852 329 1183 0 0 1179 35 2 Added Vol: 0 0 0 0 0 24 18 53 0 0 89 PasserByVol: 0 0 0 Ω 0 Ω 0 0 Ω 0 0 Initial Fut: 0 0 0 155 0 876 347 1236 0 0 1268 37 PHF Volume: 0 0 0 155 0 876 347 1236 0 0 1268 0 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 155 0 876 347 1236 0 0 0 0 0 1268 0 Reduced Vol: 0 0 Ω FinalVolume: 0 0 0 155 0 876 347 1236 0 0 1268 0 -----|----||-----| Saturation Flow Module: Lanes: 0.00 0.00 0.00 0.30 0.70 1.00 1.00 2.00 0.00 0.00 2.00 1.00 Final Sat.: 0 0 0 430 995 1425 1425 2850 0 0 2850 1425 -----| Capacity Analysis Module: Vol/Sat: 0.00 0.00 0.00 0.36 0.00 0.61 0.24 0.43 0.00 0.00 0.44 0.00

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA. LONG BEACH. CA

Crit Volume: 0 876 347 634
Crit Moves: **** **** ****

Crit Moves:

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future 2013 Without Project- AM Peak Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) ************************* Intersection #12 Sepulveda Boulevard and San Diego Fwy NB Off-Ramp ****************** 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): xxxxxx Optimal Cycle: 47 Level Of Service: Street Name: Sepulveda Boulevard San Diego Fwy NB Off-Ramp Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - F T. - T - R Control: Permitted Permitted Split Phase Split Phase Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 0 0 2 0 0 0 0 2 0 0 1 0 1! 0 0 0 0 0 -----|----|-----| Volume Module: >> Count Date: 13 Feb 2008 << 800-900 Base Vol: 0 381 0 0 1307 0 276 0 9 0 0 Initial Bse: 0 400 0 0 1372 0 290 0 9 0 0 PHF Volume: 0 404 0 0 1378 0 294 0 9 0 0 0 0 FinalVolume: 0 404 0 0 1378 0 323 0 9 0 0 -----| Saturation Flow Module: Lanes: 0.00 2.00 0.00 0.00 2.00 0.00 1.94 0.00 0.06 0.00 0.00 0.00 Final Sat.: 0 2850 0 0 2850 0 2769 0 81 0 0

Future Without Project AM PMon Jul 21, 2008 18:09:03

Vol/Sat: 0.00 0.14 0.00 0.00 0.48 0.00 0.12 0.00 0.12 0.00 0.00 0.00

Crit Volume: 0 689 166 0 Crit Moves: **** ****

Capacity Analysis Module:

Capacity Analysis Module:

Crit Moves: ****

Future 2013 Without Project- AM Peak

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) ************************* Intersection #13 Sepulveda Boulevard and Montana Avenue ************************** 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): xxxxxx Optimal Cycle: 106 Level Of Service: D Street Name: Sepulveda Boulevard Montana Avenue Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R T. - T - R Prot+Permit Permitted Permitted Permitted Include Include Include Control: Rights: Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 1 0 2 0 1 1 0 1 1 0 0 0 1! 0 0 0 1 0 1 0 Volume Module: >> Count Date: 13 Feb 2008 << 800-900 Base Vol: 74 312 273 328 1103 22 8 272 100 98 70 71 Initial Bse: 78 328 287 344 1158 23 8 286 105 103 74 75 Added Vol: 0 4 4 16 2 0 0 0 0 4 0 1.0 PasserByVol: 0 0 0 Ω Ω Ω 0 0 Ω 0 Ω Ω Initial Fut: 78 332 291 360 1160 23 8 286 105 107 74 85 PHF Volume: 78 332 291 360 1160 23 8 286 105 107 74 85 Reduct Vol: 0 85 FinalVolume: 78 332 291 360 1160 23 8 286 105 214 74 85 -----| Saturation Flow Module: Lanes: 1.00 2.00 1.00 1.00 1.96 0.04 0.02 0.72 0.26 1.00 0.55 0.45 Final Sat.: 1425 2850 1425 1425 2794 56 30 1020 375 1425 777 648

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA. LONG BEACH. CA

Vol/Sat: 0.05 0.12 0.20 0.25 0.42 0.42 0.28 0.28 0.28 0.08 0.09 0.13 Crit Volume: 78 592 399 107

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future 2013 Without Project- AM Peak

Future Without Project AM PMon Jul 21, 2008 18:09:03

Level Of Service Computation Report 2000 HCM Unsignalized Method (Future Volume Alternative) *************************

Intersection #14 Levering Avenue and Montana Avenue ***************** Average Delay (sec/veh): 1.1 Worst Case Level Of Service: D[27.0] *********************** Street Name: Levering Avenue Montana Avenue Approach: North Bound South Bound East Bound Movement: L - T - R L - T - R East Bound West Bound L - T - R -----|-----|------|

Control: Stop Sign Stop Sign Uncontrolled Uncontrolled Rights: Include Include Include Include Lanes: 0 0 1! 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 Volume Module: >> Count Date: 7 Feb 2008 << 800-900 Base Vol: 37 0 3 0 0 0 0 761 339 6 155 Initial Bse: 39 0 3 0 0 0 0 799 356 6 163 0 Added Vol: 14 0 0 0 0 0 0 0 0 20 PasserByVol: 0 0 0 0 0 0 0 0 0 0 0 1 Initial Fut: 53 0 3 0 0 0 0 799 376 0 0 0 0 6 163 PHF Volume: 53 0 3 0 0 0 799 376 6 163 0 0 0 Ω 0 Critical Gap Module: FollowUpTim: 3.5 4.0 3.3 xxxxx xxxx xxxxx xxxxx xxxxx xxxxx 2.2 xxxx xxxxx -----|----|-----||------| Capacity Module: -----|----|-----| Level Of Service Module: LOS by Move: * * * * * * * * * * * * * * B * * * Movement: LT - LTR - RT LT - LTR - RT LT - LTR - RT SharedQueue:xxxxx 1.0 xxxxx xxxxx xxxx xxxxx xxxxx xxxxx 0.0 xxxx xxxxx

Note: Queue reported is the number of cars per lane. *****************************

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA. LONG BEACH. CA

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative)

************************ Intersection #15 Veteran Avenue and Montana Avenue/Galey Avenue ********************

Cycle (sec): Loss Time (se Optimal Cycle	ec):	10	0 (Y+R 76	=4.0 8	sec)	Critic Averag Level	al Vol e Dela Of Sei	l./Cap ay (se cvice	p.(X): ec/veh) :	:	0.9 xxxx	918 xxx E
Street Name: Approach: Movement:	No:	rth Bo - T	/eteran ound - R	Avent Sot	ie ith B - T	ound - R	Mor Ea	ntana ast Bo - T	Avenue ound - R	/Galey We L	y Aver est Bo - T	nue ound - R
Control:		Permit	ted]	ermi [°]	tted	I	Permi	tted	1	Permit	tted
Rights:		Inclu	ıde		Incl	ude		Incl	ude		Incl	ude
Rights: Min. Green:	0	0	0	0	0	0	0	0	0	0	0	0
Lanes:	0	0 1!	0 0	0 (1!	0 0	0 (1!	0 0	0 () 1!	0 0
Volume Module												
Base Vol:	33	219	21	168	319	19	114	554	43	11	78	48
Growth Adj:	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05
Initial Bse:	35	230	22	176	335	20	120	582	45	12	82	50
Added Vol:	0	41	0	0	53	0	0	0	0	0	0	0
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	0
Initial Fut:	35	271	22	176	388	20	120	582	45	12	82	50
User Adj:				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:									1.00	1.00	1.00	1.00
PHF Volume:												
Reduct Vol:												
Reduced Vol:												
PCE Adj:												
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
FinalVolume:	35	271	22	176	388	20	120	582	45	12	82	50
Saturation Fl												
Sat/Lane:												
Adjustment:									1.00			
Lanes:												
Final Sat.:	159	1240	101	453	996	51	241	1169	91	120	854	526
Capacity Anal Vol/Sat:	Lysis	Moaul	Le:									
voi/Sat:	0.22	0.22	0.22	0.39	0.39	0.39	0.50	0.50	0.50	0.10	0.10	0.10

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

Crit Volume: 35 Crit Moves: ****

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future 2013 Without Project- AM Peak Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) ************************ Intersection #16 Galey Avenue and Strathmore Place ************* Cycle (sec): 100 Critical Vol./Cap.(X): 0.724 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): xxxxxx Optimal Cycle: 67 Level Of Service: Street Name: Galey Avenue Strathmore Place Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - F L - T - R Control: Permitted Prot+Permit Permitted Permitted Ovl Rights: Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Volume Module: >> Count Date: 19 Feb 2008 << 745-845 Base Vol: 5 79 280 474 265 3 2 118 14 95 18 47 Initial Bse: 5 83 294 498 278 3 2 124 15 100 19 49 Initial Fut: 5 83 294 498 278 3 2 124 15 100 19 49 PHF Volume: 5 83 294 498 278 3 2 124 15 100 19 49 FinalVolume: 5 83 294 498 278 3 2 124 15 100 19 49 -----|----||------| Saturation Flow Module: Lanes: 1.00 1.00 1.00 1.00 1.98 0.02 0.01 0.89 0.10 1.00 1.00 1.00 Final Sat.: 1425 1425 1425 1425 2818 32 21 1255 149 1425 1425 1425 -----|----| Capacity Analysis Module: Vol/Sat: 0.00 0.06 0.21 0.35 0.10 0.10 0.10 0.10 0.10 0.07 0.01 0.03

Future Without Project AM PMon Jul 21, 2008 18:09:03

Crit Volume: 294 498 141 100 Crit Moves: **** **** ****

Los Angeles, CA Future 2013 Without Project- AM Peak

Level Of Service Computation Report

Circular 212 Planning Method (Future Volume Alternative) *************************

Intersection #17 Veteran Avenue and Levering Avenue ********************** 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): XXXXXX Optimal Cycle: 41 Level Of Service: В Street Name: Veteran Avenue Levering Avenue Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R T. - T - R Control: Permitted Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 Lanes: 0 0 1! 0 0 0 0 1! 0 0 0 0 1! 0 0 0 0 1! 0 0 Volume Module: >> Count Date: 13 Feb 2008 << 800-900 Base Vol: 19 233 28 21 387 3 2 115 203 66 23 29 Initial Bse: 20 245 29 22 406 3 2 121 213 69 24 30 Added Vol: 5 16 3 25 28 0 0 11 10 33 9 2.4 PasserByVol: 0 0 Ο Ω Ω 0 0 0 Ω 0 Ω Ω Initial Fut: 25 261 32 47 434 3 2 132 223 102 33 54

PHF Volume: 25 261 32 47 434 3 2 132 223 102 33 54 Ω 54 FinalVolume: 25 261 32 47 434 3 2 132 223 102 33 54 -----| Saturation Flow Module: Lanes: 0.08 0.82 0.10 0.10 0.89 0.01 0.01 0.37 0.62 0.54 0.17 0.29 Final Sat.: 118 1229 153 146 1345 10 9 554 938 808 262 430 -----|----|-----|------|

Capacity Analysis Module: Vol/Sat: 0.21 0.21 0.21 0.32 0.32 0.32 0.24 0.24 0.24 0.13 0.13 0.13 Crit Volume: 25 485 357 102 Crit Moves: **** ********************

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA. LONG BEACH. CA

Future 2013 Without Project- AM Peak Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) ************************* Intersection #18 Hilgard Avenue and Wyton Drive ******************* 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/ve Optimal Cycle: 29 Level Of Service: xxxxxx Street Name: Hilgard Avenue Wyton Drive Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - F T. - T - R Control: Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 1 0 1 1 0 1 0 2 0 1 1 0 1 0 1 0 0 1! 0 0 Volume Module: >> Count Date: 30 Jan 2008 << 800-900 Base Vol: 207 276 9 27 589 53 16 24 94 59 85 28 Initial Bse: 217 290 9 28 618 56 17 25 99 62 89 29 Added Vol: 0 24 0 0 41 0 0 0 0 0 0 0 0 PasserByVol: 0 0 0 0 0 0 0 0 0 0 0 0 PasserByVol: 0 0 Initial Fut: 217 314 9 28 659 56 17 25 99 62 89 29

PHF Volume: 217 314 9 28 659 56 17 25 99 62 89 29

FinalVolume: 217 314 9 28 659 56 17 25 99 62 89 29

Lanes: 1.00 1.94 0.06 1.00 2.00 1.00 1.00 1.00 0.34 0.50 0.16

Final Sat.: 1500 2912 88 1500 3000 1500 1500 1500 1500 515 741 244

Vol/Sat: 0.14 0.11 0.11 0.02 0.22 0.04 0.01 0.02 0.07 0.12 0.12 0.12

Crit Volume: 217 330 17 181
Crit Movee: **** **** ****

-----|

Saturation Flow Module:

Capacity Analysis Module:

Crit Moves: ****

UCLA NHIP and Amended LRDP Traffic Study

Los Angeles, CA

Future Without Project AM PMon Jul 21, 2008 18:09:03

Future 2013 Without Project- AM Peak

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative)

t incl.]tion #19 Beverly Glen Blvd and Wyton Dr/Comstock Ave [5-Leg Intersection Cycle (sec): 100 Critical Vol./Cap.(X): 0.475
Loss Time (sec): 0 (Y+R=15.0 sec) Average Delay (sec/yeh): xxxxxx

Loss Time (se Optimal Cycle	*****	0 (Y+R: 27 *****	=15.0	sec)	Averag Level	e Dela Of Sei	vice	ec/veh) : *****	:	XXXX	XX A *****	
Street Name:		Bever	lv Gle	n Bou	levaro	i	Wvt	on Di	rive/Co	mstock	Aver	nue
Approach:				Sot	uth Bo	ound	Εá	ast Bo	ound	W∈	est Bo	ound
Movement:						- R						
Control:												
Rights:						ıde						
Min. Green:										0		0
Lanes:												
Volume Module	e: >>	Count	Date:	12 Ma	ay 200)8 << '/	00-800)		2.0	2.2	2.0
Base Vol:			5		498		1					
Growth Adj:												
Initial Bse: Added Vol:										32		
PasserByVol: Initial Fut:												
						3			12			40
User Adj:				1.00				1.00				
PHF Adj:			1.00	1.00				1.00				
PHF Volume:				48						32		40 0
Reduct Vol: Reduced Vol:						0			12			40
PCE Adj:												
MLF Adj:			1.00									
FinalVolume:			5							32		40
Saturation Fl												
Saturation Fi				1500	1500	1500	1500	1500	1500	1500	1500	1500
Adjustment:			1.00			1.00		1.00				
Lanes:			1.00	1.00				0.65				
Final Sat.:			1500			1500					490	
Capacity Anal												
Vol/Sat:				0 03	0 40	0 00	0 02	0 02	0.02	0 07	0 07	0.07
Crit Volume:		0.21	5.00	0.05	597		1	0.02	0.02	0.07	106	0.07
Crit Moves:					****		****				****	

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

	UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future 2013 Without Project- AM Peak													
		Fu	ture 2					M Peak						
						Computa							-	
C:									ternat			+++++		
Intersection														
******									*****	****	****	*****	÷	
Cycle (sec): Loss Time (se Optimal Cycle	ec):	10	0 (Y+R	=4.0 s	sec)	Averag	e Dela	ay (se	c.(X): ec/veh)	:	0.! xxx	572 xxx A		
*********											****		ŧ	
Street Name:		Н	ilgard	Aveni	ıe			W∈	stholm	e Aver	nue			
Approach:											est B			
Movement:						- R			- R			- R		
	;													
Control: Permitted Permitted Permitted Rights: Include Include Include Include														
Min. Green: 0 0 0 0 0 0 0 0 0 0 0														
Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0														
Volume Module														
Base Vol:					531			10 1.05			194			
Growth Adj: Initial Bse:		398		1.05		1.05	21		30	42				
Added Vol:			43	0	41	138	0		0	12	204			
PasserByVol:		0	0	0	0	0	0		0	0	0	-		
Initial Fut:		422	43	16	599	138	21	11	30	42	204	51		
User Adj:		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		
PHF Adj:		1.00	1.00		1.00	1.00		1.00	1.00		1.00			
PHF Volume:		422	43	16		138	21		30	42				
Reduct Vol:	-	0	-	0	-	0	-	0	0	-	0	-		
Reduced Vol:		422	43	16		138	21		30	42				
PCE Adj: MLF Adj:		1.00	1.00		1.00	1.00		1.00	1.00		1.00			
FinalVolume:		422	43		599	138		11	30	42				
													ĺ	
Saturation F	low Mo	odule:							'			'		
Sat/Lane:		1500			1500			1500			1500			
Adjustment:			1.00		1.00			1.00			1.00			
Lanes:		1.81	0.19			0.37		0.34			0.69			
Final Sat.:		2722	278		2439	561		508	1475	212	1028	260		
Capacity Anal				1			1			1				
Vol/Sat:				0.01	0.25	0.25	0.02	0.02	0.02	0.20	0.20	0.20		
Crit Volume:						368	21			0	0	297		
Crit Moves:	****					****	****					****		

Future Without Project AM PMon Jul 21, 2008 18:09:03

Level Of Service Computation Report

Circular 212 Planning Method (Future Volume Alternative) ************************* Intersection #21 Hilgard Avenue and Manning Avenue ************************ 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): XXXXXX Optimal Cycle: 28 Level Of Service: Street Name: Hilgard Avenue Manning Avenue Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R Control: Permitted Permitted Split Phase Split Phase Rights: Include Include Include Include
 Rights:
 Include
 Include
 Include
 Include
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 Lanes: 0 0 1 1 0 1 0 2 0 0 0 0 0 0 0 0 1! 0 0 -----|----|-----|------| Volume Module: >> Count Date: 30 Jan 2008 << 800-900 Base Vol: 0 716 12 21 514 0 0 0 6 0 66 Initial Bse: 0 752 13 22 540 0 0 0 6 0 69 0 24 0 0 41 0 0 0 0 0 Added Vol: 0 PasserByVol: 0 0 0 Ω Ω 0 0 0 Ω Ω Ω Ω Initial Fut: 0 776 13 22 581 0 0 0 0 69 PHF Volume: 0 776 13 22 581 0 0 0 6 0 69 0 0 0 Reduct Vol: 0 0 0 0 0 0 Reduced Vol: 0 776 13 22 581 0 0 0 0 Λ 6 0 60 FinalVolume: 0 776 13 22 581 0 0 0 6 0 69 Saturation Flow Module:

Lanes: 0.00 1.97 0.03 1.00 2.00 0.00 0.00 0.00 0.00 0.08 0.00 0.92

Final Sat.: 0 2804 46 1425 2850 0 0 0 119 0 1306

Capacity Analysis Module:

-----|----|----||-----|

Crit Volume: 394 22 0 76
Crit Moves: **** ****

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA. LONG BEACH. CA

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future 2013 Without Project- AM Peak ______ Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) ************************* Intersection #22 Gayley Avenue and Le Conte Avenue ****************** Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/veh): xxxxxx Optimal Cycle: 35 Level Of Service: Street Name: Gayley Avenue Le Conte Avenue Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R T. - T - R Control: Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 -----|----|-----| Volume Module: >> Count Date: 30 Jan 2008 << 745-845 Base Vol: 7 635 234 124 217 15 24 119 11 157 74 127 Initial Bse: 7 667 246 130 228 16 25 125 12 165 78 133 Added Vol: 0 0 4 0 0 0 0 45 0 4 11 0 Int #25: 0 51 -23 -23 23 0 0 -23 23 -50 -51 -51 Initial Fut: 7 718 227 107 251 16 25 147 35 119 38 82 PHF Volume: 7 718 227 107 251 16 25 147 35 119 38 82 FinalVolume: 7 718 227 107 251 16 25 147 35 119 38 82 -----|-----|------| Saturation Flow Module: Lanes: 1.00 1.52 0.48 1.00 1.88 0.12 1.00 0.81 0.19 1.00 1.00 1.00 Final Sat.: 1500 2280 720 1500 2823 177 1500 1214 286 1500 1500 1500 -----|----|-----|------| Capacity Analysis Module: Vol/Sat: 0.00 0.31 0.31 0.07 0.09 0.09 0.02 0.12 0.12 0.08 0.03 0.05 Crit Volume: 472 107 182 119 Crit Moves: **** **** ****

Future Without Project AM PMon Jul 21, 2008 18:09:04

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) *************************

Intersection #23 Westwood Boulevard and Le Conte Avenue ************************ Cycle (sec): 100 Critical Vol./Cap.(X): 0.689 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): xxxxxx Optimal Cycle: 60 Level Of Service: В Street Name: Westwood Boulevard Le Conte Avenue Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R T. - T - R | Control: | Permitted | Permitted | Permitted | Prot+Permit | Rights: | Ovl | Include Volume Module: >> Count Date: 30 Jan 2008 << 745-845 Base Vol: 53 632 206 32 195 88 168 327 33 130 317 107 Initial Bse: 56 664 216 34 205 92 176 343 35 137 333 112 0 Added Vol: 122 0 1 0 0 0 0 7 59 0 14
Int #25: 0 0 0 0 0 0 0 0 -69 0 0 -152 0 -152 Ω Initial Fut: 178 664 217 34 205 92 176 281 94 137 195 112 PHF Volume: 178 664 217 34 205 92 176 281 94 137 195 112 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 178 664 217 34 205 92 176 281 94 137 195 112 FinalVolume: 178 664 217 34 205 92 176 281 94 137 195 112 ------| Saturation Flow Module: Lanes: 1.00 2.00 1.00 1.00 2.00 1.00 1.00 1.50 0.50 1.00 1.00 1.00 Final Sat.: 1069 2138 1069 1069 2138 1069 1069 1604 534 1069 1069 1069 -----|----|-----|------| Capacity Analysis Module: Vol/Sat: 0.17 0.31 0.20 0.03 0.10 0.09 0.17 0.18 0.18 0.13 0.18 0.11 Crit Volume: 332 34 176 195 Crit Moves: **** **** **** ****

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA. LONG BEACH. CA

Los Angeles, CA Future 2013 Without Project- AM Peak Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) ************************* Intersection #24 Tiverton Drive and Le Conte Avenue ************************ Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/ve Optimal Cycle: 25 Level Of Service: 0 (Y+R=4.0 sec) Average Delay (sec/veh): xxxxxx Street Name: Tiverton Drive Le Conte Avenue Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R T. - T - R Control: Permitted Permitted Permitted Rights: Include Include Include Ignore Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Volume Module: >> Count Date: 30 Jan 2008 << 730-830 Base Vol: 25 100 28 24 35 196 181 290 40 15 328 87 Initial Bse: 26 105 29 25 37 206 190 305 42 16 344 91 Added Vol: 0 0 0 0 0 0 0 7 0 0 14 0
Int #25: 0 0 0 0 0 0 0 0 -69 0 0 -152 0 0 0 Initial Fut: 26 105 29 25 37 206 190 242 42 16 206 91 PHF Volume: 26 105 29 25 37 206 190 242 42 16 206 0 FinalVolume: 26 105 29 25 37 206 190 242 42 16 206 0 -----|-----|------| Saturation Flow Module: Tanes: 0.16 0.66 0.18 0.41 0.59 1.00 1.00 1.00 1.00 1.00 1.00 Final Sat.: 245 980 275 610 890 1500 1500 1500 1500 1500 1500 1500 -----|----|-----|------|

UCLA NHIP and Amended LRDP Traffic Study

Future Without Project AM PMon Jul 21, 2008 18:09:04

Vol/Sat: 0.11 0.11 0.11 0.04 0.04 0.14 0.13 0.16 0.03 0.01 0.14 0.00

Crit Volume: 26 206 190 206
Crit Moves: **** **** ****

Capacity Analysis Module:

Crit Moves: ****

Level Of Service Computation Report

Circular 212 Planning Method (Future Volume Alternative) ************************* Intersection #25 Hilgard Avenue and Le Conte Avenue ******************* 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): xxxxxx Optimal Cycle: 50 Level Of Service: В Street Name: Hilgard Avenue Le Conte Avenue Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R Control: Permitted Permitted Split Phase Split Phase Rights: Include Include Include Include
 Rights:
 Include
 Include
 Include
 Include
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 Lanes: 1 0 0 1 0 1 0 1 0 1 2 0 0 0 1 1 0 0 0 1 Volume Module: >> Count Date: 30 Jan 2008 << 800-900 Base Vol: 22 429 26 10 217 285 272 0 32 7 0 24 Initial Bse: 23 450 27 11 228 299 286 0 34 7 0 25 Added Vol: 0 17 0 0 27 14 7 0 0 0 0 0 0 0 69 Ω Ω Ω 0 0 0 152 Tnt #25: Ω Initial Fut: 23 467 96 11 255 313 293 0 34 159 0 25

PHF Volume: 23 467 96 11 255 313 293 0 34 159 0 25 0 25 MLF Adi: 1.00 1.00 1.00 1.00 1.00 1.00 1.10 1.00 1.00 1.00 1.00 1.00 FinalVolume: 23 467 96 11 255 313 322 0 34 159 0 25 -----|----|-----|------| Saturation Flow Module: Tanes: 1.00 0.83 0.17 1.00 1.00 1.00 2.00 0.00 1.00 1.00 0.00 1.00 Final Sat.: 1425 1182 243 1425 1425 1425 2850 0 1425 1425 0 1425 -----|----|-----|------|

Capacity Analysis Module: Vol/Sat: 0.02 0.40 0.40 0.01 0.18 0.22 0.11 0.00 0.02 0.11 0.00 0.02 Crit Volume: 564 11 161 159 Crit Moves: **** **** ****

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA. LONG BEACH. CA

Los Angeles, CA Future 2013 Without Project- AM Peak ______ Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) ************************* Intersection #26 Gayley Avenue and Weyburn Avenue ***************** Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/veh): xxxxxx Optimal Cycle: 44 Level Of Service: Street Name: Gayley Avenue Weyburn Avenue Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R T. - T - R Control: Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 1 0 1 1 0 1 0 1 1 0 0 1 0 1 0 1 0 0 1 0 Volume Module: >> Count Date: 6 Feb 2008 << 745-845 Base Vol: 28 753 111 17 400 74 190 170 22 37 43 36 Initial Bse: 29 791 117 18 420 78 200 179 23 39 45 38 Added Vol: 0 10 68 16 10 0 0 32 0 24 20 16
Int #25: 0 0 23 46 0 0 0 0 50 51 51 Initial Fut: 29 801 208 80 430 78 200 211 23 113 116 105 PHF Volume: 29 801 208 80 430 78 200 211 23 113 116 105 FinalVolume: 29 801 208 80 430 78 200 211 23 113 116 105 -----|-----|------| Saturation Flow Module: Lanes: 1.00 1.59 0.41 1.00 1.69 0.31 0.92 0.97 0.11 1.00 0.53 0.47 Final Sat.: 1500 2382 618 1500 2541 459 1382 1458 160 1500 789 711

UCLA NHIP and Amended LRDP Traffic Study

Future Without Project AM PMon Jul 21, 2008 18:09:04

-----|----|-----|------|

Vol/Sat: 0.02 0.34 0.34 0.05 0.17 0.17 0.14 0.14 0.14 0.08 0.15 0.15 Crit Volume: 504 80 200 221 Crit Moyes: **** **** ****

Capacity Analysis Module:

Capacity Analysis Module:

Future 2013 Without Project- AM Peak

Level Of Service Computation Report
Circular 212 Planning Method (Future Volume Alternative)

Approach:	North	h Bound	So	uth B	ound	Ea	ast B	ound	We	est Bo	ound
Movement:	L -	T - R	L	- T	- R	L ·	- T	- R	L -	- T	- R
Control:											
Rights:											
Min. Green:	0 11	0 0	0	11101	٥	0	11101	٥	0	111010	۸
		1 1 0									
Lanes.	1 0	1 1 0		т т	0 1		L U	T 0	, 0 () I:	0 0
Volume Module	e: >> C	ount Date	: 31 J	an 20	08 << 7	30-83) 				
Base Vol:											
Growth Adj:											
Initial Bse:											14
Added Vol:											
Int #25:	0	0 0	0	0	0	0	69	0	0	152	0
Initial Fut:	91 8	815 118	6	397	30	49	144	49	115	220	14
User Adj:	1.00 1	.00 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adi:	1.00 1	.00 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Volume:	91 8	815 118	6	397	3.0	49	144	49	115	220	14
Reduct Vol:											
Reduced Vol:											
PCE Adj:										1.00	
MLF Adj:							1.00			1.00	
FinalVolume:											
Finalvolume.											
Saturation F											
		500 1500					1500			1500	
Adjustment:					0.75			0.75		0.75	
Lanes:							1.19			0.63	
Final Sat.:								452			
C	1										

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

Vol/Sat: 0.08 0.41 0.41 0.04 0.19 0.03 0.11 0.11 0.11 0.31 0.31 0.31 Crit Volume: 467 6 49 348 Crit Moyes: **** ****

	UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA													
	Future 2013 Without Project- AM Peak													
						Computa								
******	2000 I	HCM 4- *****	Way St	op Me	thod ****	(Future	* Volum	ne Alt	:ernati	ve) *******	*****			
Intersection								*****	******	******	*****			
Cycle (sec):		10	0			Critic	al Vo	l./Car	o.(X):	0.	325			
Loss Time (se	e:		0			Level	Of Ser	rvice	ec/veh)		9.2 A			

Approach:														
Movement: L - T - R L - T - R L - T - R L - T - R - T - R														
Control: Stop Sign Stop Sign Stop Sign Stop Sign Rights: Include Include Include Include														
Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0														
Lanes: 0 0 1! 0 0 0 0 1! 0 0 0 1 0 0 0 0 0 1 0														
Base Vol:	Volume Module: >> Count Date: 6 Feb 2008 << 700-800													
Growth Adj:	Base Vol: 13 106 7 27 0 32 26 36 0 0 34 17													
Initial Bse:	Growth Adj: 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05													
Added Vol:	nitial Bse: 14 111 7 28 0 34 27 38 0 0 36 18													
Int #25:	0	0	0	0	0	0	0	69	0	0 152	. 0			
Initial Fut:	14	111	7	28	0	34	27	142	0	0 232	18			
User Adj:			1.00		1.00	1.00		1.00	1.00	1.00 1.00				
PHF Adj:		1.00	1.00		1.00	1.00		1.00	1.00	1.00 1.00				
PHF Volume:		111	7	28	0	34	27		0	0 232				
Reduct Vol:	0		0	0	0	0	0	0	0	0 0	-			
Reduced Vol: PCE Adi:		111	7	28	1.00	34	27	142	0	0 232				
MLF Adj:		1.00	1.00		1.00	1.00		1.00		1.00 1.00				
FinalVolume:		111	7	28	1.00	34	27		0.00	0 232				
Saturation F	low M	odule:	,						'		,			
Adjustment:		1.00			1.00			1.00						
Lanes:		0.84				0.54								
Final Sat.:			38		0	374		618	0					
Capacity Anal														
Vol/Sat:			0.19	0.09	xxxx	0.09	0.23	0.23	xxxx	xxxx 0.33	0.33			
Crit Moves:	****			****				****		****				
Delay/Veh:		9.0	9.0	8.2		8.2	9.0		0.0	0.0 9.6				
Delay Adj:			1.00			1.00		1.00	1.00	1.00 1.00				
	AdjDel/Veh: 9.0 9.0 9.0 8.2 0.0 8.2 9.0 9.0 0.0 0.0 9.6 9.6													
LOS by Move:		A	A	A		A	A		*	* A				
ApproachDel:		9.0			8.2			9.0		9.6				
Delay Adj:		1.00 9.0			1.00			1.00		1.00				
ApprAdjDel: LOS by Appr:		9.0 A			8.2 A			9.0 A		9.6 A	1			
AllWayAvqO:			0.2	0 1		0.1	0 3	0.3	0.3		0.4			

Future Without Project AM PMon Jul 21, 2008 18:09:04

Future Without Project AM PMon Jul 21, 2008 18:09:04	Page 33-2
UCLA NHIP and Amended LRDP Traffic St	udy
Los Angeles, CA	
Future 2013 Without Project- AM Pea	k
Note: Queue reported is the number of cars per lane.	

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

Future Without Project AM PMon Jul 21, 2008 18:09:04

Page 34-1

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future 2013 Without Project- AM Peak

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative)

**********	****	*****	*****	****	*****	*****	****	****	*****	*****	****	****
Street Name: Approach:		H	ilgard	Avenu	ıe			1	Weyburn	Avenue	3	
Approach:	No:	rth Bo	und	Sot	ith Bo	und	Ea	ast Bo	ound	Wes	st Bo	und
Movement:	L	- T	– R	L -	- T	- R	L ·	- T	- R	L -	T	- R
Control:		Permit	ted	I	ermit	ted	Sp.	lit Ph	nase	Spli	t Ph	ase
Rights: Min. Green:		Inclu	.de		Incli	ıde		Incl	ıde	I	inclu	de
Min. Green:	0	0	0	0	0	0	0	0	0	0	0	0
Lanes:	1	0 0	1 0	1 () 1	0 1	1	0 0	1 0	0 0	1!	0 0
Volume Module	e: >>	Count	Date:	6 Fel	2008	<< 80	0-900					
Base Vol:	29	461	5	13	251	39	34	27	63	7		
Growth Adj:												
Initial Bse:	30	484	5	14	264	41	36	28	66	7	27	
Added Vol: #25 Int:	0	1	0	0	1	26	16	19	0	0	18	0
#25 Int:	0	0	0	0	0	152	69	0	0	0	0	0
Initial Fut:	30	485	5	14	265	219	121	47	66	7	45	28
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00 1	.00	1.00
PHF Adj:	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00 1	.00	1.00
PHF Volume:										7		28
Reduct Vol:												
Reduced Vol:						219				7		
PCE Adj:								1.00		1.00 1		
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00 1	00	1.00
FinalVolume:	30	485	5	14	265	219	121	47	66	7	45	28
Saturation Fl												
Sat/Lane:												
Adjustment:	1.00	1.00	1.00					1.00				
Lanes:						1.00		0.42				
Final Sat.:	1425	1410	15	1425	1425	1425	1425	594	831	129	797	499
Capacity Anal												
Vol/Sat:	0.02	0.34	0.34	0.01	0.19	0.15	0.08	0.08				0.06
Crit Volume: Crit Moves:		490		14			121				81	
Crit Moves:		****		****			****			*	***	

Level Of Service Computation Report

************************** Cycle (sec): 100 Critical Vol./Cap.(X): 1.071 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): xxxxxx Optimal Cycle: 180 Level Of Service: Street Name: Westwood Boulevard Kinross Avenue Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R T. - T - R Control: Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 1 0 1 0 1 0 1 1 1 0 0 1 0 1 0 1 0 0 1 0 Volume Module: >> Count Date: 31 Jan 2008 << 730-830 Base Vol: 53 768 25 12 344 36 55 30 24 5 45 59 Initial Bse: 56 806 26 13 361 38 58 32 25 5 47 62 Added Vol: 43 212 50 5 151 0 0 4 15 7 1 1 0 PasserByVol: 0 0 0 0 0 Ω 0 0 Ω Ω Initial Fut: 99 1018 76 18 512 38 58 36 40 12 48 63 PHF Volume: 99 1018 76 18 512 38 58 36 40 12 48 63 0 63 FinalVolume: 99 1018 76 70 512 38 58 36 40 12 48 63 -----| Saturation Flow Module: Lanes: 1.00 1.00 1.00 0.46 2.36 0.18 0.87 0.53 0.60 1.00 0.43 0.57 Final Sat.: 1125 1125 1125 514 2655 206 974 599 678 1125 488 637 -----| Capacity Analysis Module: Vol/Sat: 0.09 0.91 0.07 0.03 0.19 0.18 0.06 0.06 0.06 0.01 0.10 0.10

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

Crit Volume: 1018 18 58 1111
Crit Moves: **** **** ****

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future 2013 Without Project- AM Peak Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) ************************* Intersection #31 Westwood Boulevard and Lindbrook Drive ********************** 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): xxxxxx Optimal Cycle: 50 Level Of Service: Street Name: Westwood Bouelvard Lindbrook Drive Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - F T. - T - R Control: Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 -----| Volume Module: >> Count Date: 31 Jan 2008 << 800-900 Base Vol: 3 796 216 20 316 10 29 130 45 93 131 27 Initial Bse: 3 836 227 21 332 11 30 137 47 98 138 28 Added Vol: 0 305 2 0 172 0 0 0 0 2 0 PasserByVol: 0 0 0 0 0 0 0 0 0 Ω Initial Fut: 3 1141 229 21 504 11 30 137 47 100 138 28 PHF Volume: 3 1141 229 21 504 11 30 137 47 100 138 28 FinalVolume: 6 1141 229 126 504 11 30 137 47 100 138 28 -----|----|-----||------| Saturation Flow Module: Lanes: 0.01 1.99 1.00 1.00 1.95 0.05 0.28 1.28 0.44 0.75 1.04 0.21 Final Sat.: 12 2238 1125 1125 2195 55 320 1434 496 844 1165 240 -----|----|-----|------| Capacity Analysis Module: Vol/Sat: 0.25 0.51 0.20 0.02 0.23 0.19 0.10 0.10 0.10 0.12 0.12 0.12 Crit Volume: 574 21 107 100 Crit Moves: **** **** ****

Future Without Project AM PMon Jul 21, 2008 18:09:04

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative)

*******	****	*****	*****	****	*****	*****	****	****	*****	*****	****	*****
Street Name:			Avenue/								re	
			ound								est Bo	
Movement:												
Control:												
Rights:		Incl	ıde		Incl	ıde		Incl	ıde		Incl	ıde
Min. Green:												
Lanes:												
Volume Module												
Base Vol:			392			43		319		157		
Growth Adj:			1.05					1.05				
Initial Bse:			412	8				335		165		
Added Vol:	0	11		0					0			
PasserByVol:												
Initial Fut:				-		45						
User Adj:			1.00	1.00				1.00				
PHF Adj:			1.00		1.00	1.00		1.00				
PHF Volume:			418	8		45		337		172		
Reduct Vol:				0					0		0	-
Reduced Vol:						45				172		
PCE Adj:				1.00				1.00				
MLF Adj:			1.00	1.00								
FinalVolume:							. 38				181	
Saturation Fl												
Sat/Lane:				1500				1500				
Adjustment:			1.00		1.00			1.00				
	1.00		1.00		2.00	1.00		0.90		1.00		
Final Sat.:				1500								217
Capacity Anal	lysis	Modu]	le:									

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

Vol/Sat: 0.04 0.16 0.28 0.01 0.01 0.03 0.25 0.25 0.01 0.11 0.14 0.19

Crit Volume: 418 8 375 172
Crit Moves: **** **** ****

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future 2013 Without Project- AM Peak ______ Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) ************************ Intersection #33 Sepulveda Boulevard and Constitution Avenue ************************ Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/veh): Optimal Cycle: 34 Level Of Service: XXXXXX Street Name: Sepulveda Boulevard Constitution Avenue Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - F L - T - R Control: Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 1 0 1 1 0 1 0 1 1 0 0 0 1! 0 0 0 1! 0 0 Volume Module: >> Count Date: 13 Feb 2008 << 745-845 Base Vol: 64 290 7 3 1121 165 84 0 19 2 0 2 PHF Volume: 67 309 7 3 1183 173 88 0 20 2 0 2 FinalVolume: 67 309 7 3 1183 173 88 0 20 2 0 2 -----| Saturation Flow Module: Lanes: 1.00 1.95 0.05 1.00 1.74 0.26 0.82 0.00 0.18 0.50 0.00 0.50 Final Sat.: 1500 2930 70 1500 2617 383 1223 0 277 750 0 750 -----| Capacity Analysis Module: Vol/Sat: 0.04 0.11 0.11 0.00 0.45 0.45 0.07 0.00 0.07 0.00 0.00 0.00 Crit Volume: 67 678 108 2 Crit Moves: **** **** ****

Future Without Project AM PMon Jul 21, 2008 18:09:04

Level Of Service Computation Report

Circular 212 Planning Method (Future Volume Alternative) ************************ Intersection #34 San Vicente Bouevard and Wilshire Bouelvard ************************

Cycle (sec): 100 Critical Vol./Cap.(X): 1.068 0 (Y+R=4.0 sec) Average Delay (sec/veh):

Loss Time (s Optimal Cycl	ec): e:	18	0 (Y+R 0	=4.0 :	sec)	Averag Level	ge Del Of Se	ay (s rvice	ec/veh :):	xxx	F F
Street Name: Approach:		San	Vicent	e Bou	evard			Wi	lshire	Bouel	vard	
Approach:	No	rth Bo	und	So	uth Bo	ound	E	ast B	ound	W	est B	ound
Movement:	L	- T	- R	L ·	- T	- R	L	- T	- R	L	- T	- R
Control:	Sp	lit Ph	ase	Sp.	lit Pl	nase		Permi	tted	P	rotect	ted
Rights:		Ovl			Incl	ıde		Incl	ude		Igno:	re
Rights: Min. Green: Lanes:	0	0	0	0	0	0	0	0	0	0	0	0
Lanes:	1	0 2	0 1	2	1 0	1 0	1	0 2	1 0	1	0 3	0 1
Volume Modul												
Base Vol:												
Growth Adj:												
Initial Bse:				1449	305	19	69	2054	68	56	2139	973
Added Vol: PasserByVol:	28	50	10	79	53	14	3	170	8	7	170	57
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	0
Initial Fut:									76			
User Adj:						1.00		1.00			1.00	0.00
PHF Adj:			1.00		1.00		1.00					0.00
PHF Volume:			127		358				76			0
Reduct Vol:												
Reduced Vol:												
PCE Adj:												
MLF Adj:									1.00			
FinalVolume:									76			
Saturation F												
Sat/Lane:										1425		
Adjustment:												
Lanes:												
Final Sat.:						120			142		4275	
Capacity Ana	lysis	Modul	e:									

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

Vol/Sat: 0.09 0.09 0.09 0.39 0.27 0.27 0.05 0.54 0.54 0.04 0.54 0.00

Crit Volume: 132 560 767 63 Crit Moves: **** ****

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future 2013 Without Project- AM Peak Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) ************************ Intersection #35 Sepulveda Boulevard and Wilshire Boulevard ************************ Cycle (sec): 100 Critical Vol./Cap.(X): 1.573 Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/veh): xxxxxx Optimal Cycle: 180 Level Of Service: Street Name: Sepulveda Boulevard Wilshire Boulevard Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - F L - T - R Control: Protected Protected Protected Protected Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 1 0 1 1 0 1 0 1 1 0 1 0 3 1 0 2 0 4 1 0 Volume Module: >> Count Date: 21 Feb 2008 << 745-845 Initial Bse: 164 252 276 293 669 297 75 2874 141 116 2670 65 Added Vol: 10 1 28 2 4 0 1 539 11 16 403 2 PasserByVol: 0 0 0 0 0 0 0 0 0 0 0 Initial Fut: 174 253 304 295 673 297 76 3413 152 132 3073 67 PHF Volume: 174 253 304 295 673 297 76 3413 152 132 3073 67 FinalVolume: 174 253 304 295 673 297 76 3413 152 145 3073 67 Saturation Flow Module: Lanes: 1.00 1.00 1.00 1.00 1.39 0.61 1.00 3.83 0.17 2.00 4.89 0.11 Final Sat.: 1031 1031 1031 1031 1431 632 1031 3949 176 2063 5046 110 -----| Capacity Analysis Module: Vol/Sat: 0.17 0.25 0.29 0.29 0.47 0.47 0.07 0.86 0.86 0.07 0.61 0.61 Crit Volume: 174 485 891 72

Future Without Project AM PMon Jul 21, 2008 18:09:04

Crit Moves: ****

Capacity Analysis Module:

Crit Moves: ****

Future 2013 Without Project- AM Peak

Level Of Service Computation Report

Circular 212 Planning Method (Future Volume Alternative) ************************* Intersection #36 Veteran Avenue and Wilshire Boulevard ************************** Cycle (sec): 100 Critical Vol./Cap.(X): 1.323 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): xxxxxx Optimal Cycle: 180 Level Of Service: Street Name: Veteran Avenue Wilshire Boulevard Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R T. - T - R Control: Prot+Permit Permitted Protected Protected Rights: Ovl Ovl Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 1 0 2 0 1 1 0 2 0 2 2 0 3 1 0 2 0 3 1 0 Volume Module: >> Count Date: 21 Feb 2008 << 730-830 Base Vol: 207 385 99 110 252 368 529 2901 134 52 2297 35 Initial Bse: 217 404 104 116 265 386 555 3046 141 55 2412 37 0 Added Vol: -6 1 10 0 4 29 2 570 -4 5 398 PasserByVol: 0 0 0 0 0 0 0 0 0 0 Ω Initial Fut: 211 405 114 116 269 415 557 3616 137 60 2810 37 PHF Volume: 211 405 114 116 269 415 557 3616 137 60 2810 37 Reduct Vol: 0 37 FinalVolume: 211 405 114 116 269 457 613 3616 137 66 2810 37 -----| Saturation Flow Module: Lanes: 1.00 2.00 1.00 1.00 2.00 2.00 2.00 3.85 0.15 2.00 3.95 0.05 Final Sat.: 1031 2063 1031 1031 2063 2063 2063 3975 150 2063 4072 53 -----|

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA. LONG BEACH. CA

Vol/Sat: 0.20 0.20 0.11 0.11 0.13 0.22 0.30 0.91 0.91 0.03 0.69 0.69

Crit Volume: 211 134 307 712
Crit Moves: **** **** ****

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future 2013 Without Project- AM Peak ______ Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) ************************* Intersection #37 Gayley Avenue and Wilshire Boulevard ****************** Cycle (sec): 100 Critical Vol./Cap.(X): 1.084 Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/veh): xxxxxx Optimal Cycle: 180 Level Of Service: Street Name: Gayley Avenue Wilshire Boulevard Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - F T. - T - R -----|-----|------| Control: Prot+Permit Permitted Protected Permitted
Rights: Include Ovl Include Include
 Rights:
 Include
 Ovl
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 Lanes: 1 0 2 0 1 1 0 1 0 2 2 0 3 1 0 1 0 3 1 0 -----| Volume Module: >> Count Date: 13 Feb 2008 << 730-830 Base Vol: 59 333 52 56 100 286 496 2424 152 64 1991 116 Initial Bse: 62 350 55 59 105 300 521 2545 160 67 2091 122 Added Vol: 0 0 0 14 0 55 109 471 0 0 348 20 PasserByVol: 0 0 0 0 0 0 0 0 0 0 0 0 Initial Fut: 62 350 55 73 105 355 630 3016 160 67 2439 142 PHF Volume: 62 350 55 73 105 355 630 3016 160 67 2439 142 MLF Adi: 1.00 1.00 1.00 1.00 1.00 1.10 1.10 1.00 1.00 1.00 1.00 1.00 FinalVolume: 62 350 55 73 105 391 693 3016 160 67 2439 142 -----|-----||------| Saturation Flow Module: Lanes: 1.00 2.00 1.00 1.00 1.00 2.00 2.00 3.80 0.20 1.00 3.78 0.22 Final Sat.: 1069 2138 1069 1069 1069 2138 2138 4060 215 1069 4040 235 -----| Capacity Analysis Module: Vol/Sat: 0.06 0.16 0.05 0.07 0.10 0.18 0.32 0.74 0.74 0.06 0.60 0.60 Crit Volume: 62 105 346 645 Crit Moves: **** **** ****

Future Without Project AM PMon Jul 21, 2008 18:09:04

Saturation Flow Module:

Capacity Analysis Module:

Crit Moves:

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative)

************************* Intersection #38 Westwood Boulevard and Wilshire Boulevard ************************ Cycle (sec): 100 Critical Vol./Cap.(X): 1.291 0 (Y+R=4.0 sec) Average Delay (sec/veh): xxxxxx Loss Time (sec): Optimal Cycle: 180 Level Of Service: Street Name: Westwood Boulevard Wilshire Boulevard Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R T. - T - R Control: Prot+Permit Prot+Permit Protected Protected Lanes: 1 0 2 1 0 1 0 3 0 1 2 0 3 1 0 2 0 3 1 0 Volume Module: >> Count Date: 7 Feb 2008 << 730-830 Base Vol: 135 600 117 61 272 154 427 1980 164 134 1889 93 Initial Bse: 142 630 123 64 286 162 448 2079 172 141 1983 98 Added Vol: 9 100 43 35 63 76 149 329 6 39 284 PasserByVol: 0 0 0 0 0 0 0 0 0 0 57 PasserByVol: 0 0 0 0 0 Ω Initial Fut: 151 730 166 99 349 238 597 2408 178 180 2267 155 PHF Volume: 151 730 166 99 349 238 597 2408 178 180 2267 155 MLF Adi: 1.00 1.00 1.00 1.00 1.00 1.00 1.10 1.00 1.00 1.10 1.00 FinalVolume: 151 730 166 99 349 238 657 2408 178 198 2267 155 -----||-----||-----|

Lanes: 1.00 2.44 0.56 1.00 3.00 1.00 2.00 3.72 0.28 2.00 3.74 0.26

Final Sat.: 1031 2521 573 1031 3094 1031 2063 3841 284 2063 3862 263

-----|----|-----|------|

Vol/Sat: 0.15 0.29 0.29 0.10 0.11 0.23 0.32 0.63 0.63 0.10 0.59 0.59

Crit Volume: 299 99 329 606
Crit Moves: **** **** ****

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA. LONG BEACH. CA

Los Angeles, CA Future 2013 Without Project- AM Peak Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) ************************* Intersection #39 Glendon Avenue and Wilshire Bouelvard *********************** Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/veh): xxxxxx Optimal Cycle: 180 Level Of Service: Street Name: Glendon Avenue Wilshire Bouelvard Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - F T. - T - R -----|-----|------| Control: Permitted Permitted Protected Permitted Rights: Include Ovl Include Include
 Rights:
 Include
 Ovl
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 Lanes: 0 0 1! 0 0 1 0 1 0 2 2 0 3 1 0 1 0 3 1 0 -----|----|-----|------| Volume Module: >> Count Date: 7 Feb 2008 << 800-900 Base Vol: 9 177 22 57 110 41 318 1686 114 66 1970 171 Initial Bse: 9 186 23 60 116 43 334 1770 120 69 2068 180 Added Vol: 0 0 0 2 0 7 6 401 0 0 373 11 PasserByVol: 0 0 0 0 0 0 0 0 0 0 0 0 Initial Fut: 9 186 23 62 116 50 340 2171 120 69 2442 191 PHF Volume: 9 186 23 62 116 50 340 2171 120 69 2442 191 FinalVolume: 9 186 23 62 116 55 374 2171 120 69 2442 191 -----|----||------| Saturation Flow Module: Lanes: 0.04 0.85 0.11 1.00 1.00 2.00 2.00 3.79 0.21 1.00 3.71 0.29 Final Sat.: 46 909 113 1069 1069 2138 2138 4052 223 1069 3966 309

UCLA NHIP and Amended LRDP Traffic Study

Future Without Project AM PMon Jul 21, 2008 18:09:05

-----|----|-----|------|

Vol/Sat: 0.20 0.20 0.20 0.06 0.11 0.03 0.17 0.54 0.54 0.06 0.62 0.62 Crit Volume: 218 62 187 658 Crit Moves: **** **** **** ****

Capacity Analysis Module:

Level Of Service Computation Report 2000 HCM Unsignalized Method (Future Volume Alternative)

Intersection #40 Malcolm Avenue and Wilshire Boulevard ************************** Average Delay (sec/veh): OVERFLOW Worst Case Level Of Service: F[xxxxx] **************************** Street Name: Malcolm Avenue Wilshire Boulevard Approach: North Bound South Bound East Bound Movement: L - T - R L - T - REast Bound West Bound L - T - R L - T - R Stop Sign Stop Sign Uncontrolled Uncontrolled
Include Include Include Include Control: Rights: Lanes: 0 0 1! 0 0 0 0 1! 0 0 1 0 2 1 0 1 0 2 1 0 ______ Volume Module: >> Count Date: 7 Feb 2008 << 745-845 Base Vol: 3 0 45 3 1 40 65 1691 28 22 2184 53 Initial Bse: 3 0 47 3 1 42 68 1776 29 23 2293 56 0 0 0 396 0 0 0 0 Added Vol: 6 0 0 21 11 0 364 2.0 0 76 PHF Adj: PHF Volume: 9 0 47 24 1 42 68 2172 40 23 2657 76 Reduct Vol: 0 FinalVolume: 76 Critical Gap Module: Critical Gp: 7.5 6.5 6.9 7.5 6.5 6.9 4.1 xxxx xxxxx 4.1 xxxx xxxxx FollowUpTim: 3.5 4.0 3.3 3.5 4.0 3.3 2.2 xxxx xxxxx 2.2 xxxx xxxxx -----|----|------| Capacity Module: Cnflict Vol: 3261 5107 744 3602 5090 924 2733 xxxx xxxxx 2212 xxxx xxxxx Potent Cap.: 4 1 362 2 1 275 150 xxxx xxxxx 240 xxxx xxxxx Move Cap.: 0 0 362 1 0 275 150 xxxx xxxxx 240 xxxx xxxxx Volume/Cap: xxxx 0.00 0.13 22.62 4.09 0.15 0.46 xxxx xxxx 0.10 xxxx xxxx Level Of Service Module: LOS by Move: * * * * * * * E * * C * * Movement: LT - LTR - RT LT - LTR - RT LT - LTR - RT LT - LTR - RT

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

ApproachLOS:

F

Note: Queue reported is the number of cars per lane.

Los Angeles, CA Future 2013 Without Project- AM Peak Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) ************************* Intersection #41 Westholme Avenue and Wilshire Boulevard *********************** 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): xxxxxx Optimal Cycle: 153 Level Of Service: Street Name: Westholme Avenue Wilshire Boulevard Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - F T. - T - R Control: Permitted Permitted Protected Protected Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 0 0 1! 0 0 0 0 1! 0 0 1 0 3 0 1 1 0 2 1 0 Volume Module: >> Count Date: 21 Feb 2008 << 800-900 Base Vol: 56 102 65 45 42 20 31 1792 63 29 2202 137 Initial Bse: 59 107 68 47 44 21 33 1882 66 30 2312 144 Added Vol: 1 0 2 0 0 0 0 427 3 2 349 0 PasserByVol: 0 0 0 0 0 0 0 0 0 0 0 0 Initial Fut: 60 107 70 47 44 21 33 2309 69 32 2661 144 PHF Volume: 60 107 70 47 44 21 33 2309 69 32 2661 144 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 60 107 70 47 44 21 33 2309 69 32 2661 144 FinalVolume: 60 107 70 47 44 21 33 2309 69 32 2661 144 -----|-----||-------| Saturation Flow Module: Lanes: 0.25 0.45 0.30 0.42 0.39 0.19 1.00 3.00 1.00 1.00 2.85 0.15

UCLA NHIP and Amended LRDP Traffic Study

Future Without Project AM PMon Jul 21, 2008 18:09:05

Final Sat.: 359 644 422 599 559 266 1425 4275 1425 1425 4056 219

Vol/Sat: 0.17 0.17 0.17 0.08 0.08 0.08 0.02 0.54 0.05 0.02 0.66 0.66 Crit Volume: 237 47 33 935 Crit Moves: **** **** ****

Capacity Analysis Module:

-----|----|-----|------|

Saturation Flow Module:

Future 2013 Without Project- AM Peak

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative)

************************* Intersection #42 Warner Avenue and Wilshire Boulevard ************************ 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): xxxxxx Optimal Cycle: 180 Level Of Service: D Street Name: Warner Avenue Wilshire Boulevard Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R T. - T - R Permitted Permitted Protected Include Include Include Control: Rights: Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 1 0 1 0 1 1 0 0 1 0 1 0 2 1 0 1 0 2 1 0 Volume Module: >> Count Date: 21 Feb 2008 << 800-900 Base Vol: 74 36 21 87 60 88 67 1773 31 11 2228 77 Initial Bse: 78 38 22 91 63 92 70 1862 33 12 2339 81 0 Added Vol: PasserByVol: Ω Initial Fut: 78 38 22 91 63 92 70 2293 33 12 2677 81 PHF Volume: 78 38 22 91 63 92 70 2293 33 12 2677 81 0 81

Final Sat.: 1425 1425 1425 1425 578 847 1425 4215 60 1425 4150 125 -----| Capacity Analysis Module: Vol/Sat: 0.05 0.03 0.02 0.06 0.11 0.11 0.05 0.54 0.54 0.01 0.65 0.65 Crit Volume: 78 155 775 919 Crit Moves: ****

FinalVolume: 78 38 22 91 63 92 70 2293 33 12 2677 81 -----|

Lanes: 1.00 1.00 1.00 1.00 0.41 0.59 1.00 2.96 0.04 1.00 2.91 0.09

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA. LONG BEACH. CA

Los Angeles, CA Future 2013 Without Project- AM Peak ______ Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) ************************* Intersection #43 Beverly Glen Boulevard and Wilshire Boulevard ****************** 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): xxxxxx Optimal Cycle: 180 Level Of Service: Street Name: Beverly Glen Boulevard Wilshire Boulevard Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - F T. - T - R Control: Prot+Permit Permitted Protected Protected Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 1 0 1 1 0 1 0 1 1 0 1 0 3 0 1 1 0 2 1 0 Volume Module: >> Count Date: 12 Feb 2008 << 800-900 Base Vol: 161 335 36 34 504 48 89 1594 203 99 2075 10 Initial Bse: 169 352 38 36 529 50 93 1674 213 104 2179 11 Added Vol: 15 15 51 41 30 4 3 385 37 79 318 27 PasserBvVol: 0 0 0 0 0 0 0 0 0 0 0 0 PasserByVol: 0 0 0 Initial Fut: 184 367 89 77 559 54 96 2059 250 183 2497 38 PHF Volume: 184 367 89 77 559 54 96 2059 250 183 2497 38

FinalVolume: 184 367 89 77 559 54 96 2059 250 183 2497 38

-----|----|-----|------|

Lanes: 1.00 1.61 0.39 1.00 1.82 0.18 1.00 3.00 1.00 1.00 2.96 0.04

Final Sat.: 1425 2294 556 1425 2597 253 1425 4275 1425 1425 4212 63

Vol/Sat: 0.13 0.16 0.16 0.05 0.22 0.22 0.07 0.48 0.18 0.13 0.59 0.59

Crit Volume: 184 307 96 845

-----|

Saturation Flow Module:

Capacity Analysis Module:

Crit Moves: ****

UCLA NHIP and Amended LRDP Traffic Study

Future Without Project AM PMon Jul 21, 2008 18:09:05

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) *************************

Intersection #44 Sawtelle Boulevard and Ohio Avenue ************************ Cycle (sec): 100 Critical Vol./Cap.(X): 1.050 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): xxxxxx Optimal Cycle: 180 Level Of Service: Street Name: Sawtelle Boulevard Ohio Avenue Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R

Permitted Permitted Permitted Permitted

Rights:		Inclu	de		Incl	ıde		Incl	ıde		Incl	ude
Min. Green:	0	0	0	0	0	0	0	0	0	0	0	0
Lanes:	0	0 1!	0 0	0	0 1!			0 0	1 0	1 (0 0	1 0
Volume Module	e: >>	Count	Date:	13 F	eb 200	08 << '	730-83	0				
Base Vol:	60	303	129	25	90	18	82	845	52	71	458	86
Growth Adj:	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05
Initial Bse:	63	318	135	26	94	19	86	887	55	75	481	90
Added Vol:	0	0	0	0	0	0	0	15	1	0	15	0
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	0
Initial Fut:	63	318	135	26	94	19	86	902	56	75	496	90
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Volume:	63	318	135	26	94	19	86	902	56	75	496	90
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:	63	318	135	26	94	19	86	902	56	75	496	90
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
FinalVolume:	63	318	135	26	94	19	86	902	56	75	496	90
Saturation Fl	low M	odule:										
Sat/Lane:	1500	1500	1500	1500	1500	1500	1500	1500	1500	1500	1500	1500
Adjustment:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

Lanes: 0.12 0.62 0.26 0.19 0.68 0.13 1.00 0.94 0.06 1.00 0.85 0.15

Final Sat.: 183 924 393 282 1015 203 1500 1413 87 1500 1269 231

-----|----|-----|------|

Vol/Sat: 0.34 0.34 0.34 0.09 0.09 0.09 0.06 0.64 0.64 0.05 0.39 0.39

Crit Volume: 517 26 958 75
Crit Movee: **** ****

Capacity Analysis Module:

Crit Moves:

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

Los Angeles, CA Future 2013 Without Project- AM Peak Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) ************************ Intersection #45 Sepulveda Boulevard and Ohio Avenue *********************** Cycle (sec): 100 Critical Vol./Cap.(X): 0.885 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): xxxxxx Optimal Cycle: 125 Level Of Service: Street Name: Sepulveda Boulevard Ohio Avenue Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R Control: Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 1 0 1 1 0 1 0 1 1 0 1 0 0 1 0 1 0 0 1 0 Volume Module: >> Count Date: 13 Feb 2008 << 745-845 Base Vol: 96 454 126 38 495 82 174 695 78 74 480 71 Initial Bse: 101 477 132 40 520 86 183 730 82 78 504 75 Added Vol: 3 33 1 6 24 0 0 11 4 4 11 PasserByVol: 0 0 0 0 0 0 0 0 0 Initial Fut: 104 510 133 46 544 86 183 741 86 82 515 82 PHF Volume: 104 510 133 46 544 86 183 741 86 82 515 82 FinalVolume: 104 510 133 46 544 86 183 741 86 82 515 82 -----|-----||-------| Saturation Flow Module: Lanes: 1.00 1.59 0.41 1.00 1.73 0.27 1.00 0.90 0.10 1.00 0.86 0.14

UCLA NHIP and Amended LRDP Traffic Study

Future Without Project AM PMon Jul 21, 2008 18:09:05

Final Sat.: 1500 2378 622 1500 2590 410 1500 1344 156 1500 1295 205

-----|----|-----|------|

Vol/Sat: 0.07 0.21 0.21 0.03 0.21 0.21 0.12 0.55 0.55 0.05 0.40 0.40

Crit Volume: 104 315 827 82
Crit Moves: **** **** ****

Capacity Analysis Module:

Crit Moves: ****

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative)

************************* Intersection #46 Veteran Avenue and Ohio Avenue ************************ 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): xxxxxx Optimal Cycle: 98 Level Of Service: D Street Name: Veteran Avenue Ohio Avenue Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R T. - T - R Control: Permitted Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 0 0 1! 0 0 0 0 1! 0 0 1 0 0 1 0 1 0 0 1 0 Volume Module: >> Count Date: 13 Feb 2008 << 745-845 Base Vol: 33 325 35 14 148 100 268 692 37 25 476 41 Initial Bse: 35 341 37 15 155 105 281 727 39 26 500 43 Added Vol: Λ PasserByVol: Ω Initial Fut: 35 350 37 15 160 102 280 746 40 26 520 43 PHF Volume: 35 350 37 15 160 102 280 746 40 26 520 43 0 43 FinalVolume: 35 350 37 15 160 102 280 746 40 26 520 43 -----||-----||-----||------| Saturation Flow Module: Lanes: 0.08 0.83 0.09 0.05 0.58 0.37 1.00 0.95 0.05 1.00 0.92 0.08 Final Sat.: 123 1246 131 80 868 552 1500 1424 76 1500 1385 115 -----| Capacity Analysis Module: Vol/Sat: 0.28 0.28 0.28 0.18 0.18 0.18 0.19 0.52 0.52 0.02 0.38 0.38 Crit Volume: 422 15 280 563
Crit Moves: **** **** ****

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA. LONG BEACH. CA

Crit Moves:

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future 2013 Without Project- AM Peak ______ Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) ************************* Intersection #47 Westwood Boulevard and Ohio Avenue *********************** 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): xxxxxx Optimal Cycle: 83 Level Of Service: Street Name: Westwood Boulevard Ohio Avenue Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R T. - T - R Control: Permitted Permitted Permitted Permitted Rights: Include Include Include Include Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 1 0 2 0 1 1 0 2 0 1 1 0 0 1 0 1 0 0 1 0 -----| Volume Module: >> Count Date: 7 Feb 2008 << 745-845 Base Vol: 124 1179 48 32 461 59 169 278 91 64 266 50 Initial Bse: 130 1238 50 34 484 62 177 292 96 67 279 53 Added Vol: 26 143 0 0 99 6 6 0 25 0 0 PasserByVol: 0 0 0 0 0 0 0 0 0 0 Ω Initial Fut: 156 1381 50 34 583 68 183 292 121 67 279 53 PHF Volume: 156 1381 50 34 583 68 183 292 121 67 279 53 FinalVolume: 156 1381 50 34 583 68 183 292 121 67 279 53 -----|----||------| Saturation Flow Module: Lanes: 1.00 2.00 1.00 1.00 2.00 1.00 1.00 0.71 0.29 1.00 0.84 0.16 Final Sat.: 1500 3000 1500 1500 3000 1500 1500 1062 438 1500 1263 237

Future Without Project AM PMon Jul 21, 2008 18:09:05

-----|----|-----|------|

Vol/Sat: 0.10 0.46 0.03 0.02 0.19 0.05 0.12 0.27 0.27 0.04 0.22 0.22 Crit Volume: 690 34 183 332
Crit Moyes: **** **** ****

Capacity Analysis Module:

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative)

******************* Intersection #48 Sawtelle Boulevard and Santa Monica Boulevard ************************

Loss Time (se Optimal Cycle	ec):	18	0 (Y+R 80	=4.0 s	sec)	Averag Level	e Dela Of Sei	y (s	ec/veh)	:	XXX	KXX F
Street Name:		Sav	telle	Boulev	/ard			Sant	a Monic	a Boul	levaro	£
Approach:	No:	rth Bo	und	Sou	ith Bo	ound	Εa	ast B	ound	We	est Bo	ound
Movement:												
Control:		Permit	ted	·	ermit	ted	. I	ermi	tted	Pro	ot+Per	rmit
Rights:		Inclu	ıde		Incl	ıde		Incl	ude		Incl	ude
Control: Rights: Min. Green:	0	0	0	0	0	0	0	0	0	0	0	0
Lanes:	0	0 1!	0 0	0 (1!	0 0	1 () 2	1 0	1 () 2	1 0
Volume Module	: >>	Count	Date:	14 Fe	eb 200)8 << 7	30-830)	,			
Base Vol:	60	454	206	94	158	29	23	1181	21	119	1704	61
Growth Adj:	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05
Initial Bse:	63	477	216	99	166	30	24	1240	22	125	1789	64
Added Vol:	1	0	11	1	0	0	0	196	2	7	159	0
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	0
Initial Fut:						30		1436				64
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Volume: Reduct Vol:	64	477	227	100	166	30	24	1436	24	132	1948	64
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:	64	477	227	100	166	30	24	1436	24	132	1948	64
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
FinalVolume:	64	477	227	100	166	30	24	1436	24	132	1948	64
Saturation F	low M	odule:							,			'
Sat/Lane:	1425	1425	1425	1425	1425	1425	1425	1425	1425	1425	1425	1425
Adjustment:	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75
Lanes:	0.08	0.62	0.30	0.34					0.05			
Final Sat.:	89	663	316	360	599	110	1069	3153	53	1069	3104	102
Final Sat.:												
Capacity Ana						'			'			'
Vol/Sat:	0.72	0.72	0.72	0.28	0.28	0.28	0.02	0.46	0.46	0.12	0.63	0.63

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

Crit Volume: 768 100 24 671
Crit Moves: *** *** *** ***

Crit Moves:

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future 2013 Without Project- AM Peak ______ Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) ******************* Intersection #49 San Diego Fwy SB Ramps and Santa Monica Boulevard ************************** Cycle (sec): 100 Critical Vol./Cap.(X): 1.222 Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/veh): xxxxxx Optimal Cycle: 180 Level Of Service: Street Name: San Diego Fwy SB Ramps Santa Monica Boulevard Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - F L - T - R Control: Split Phase Split Phase Permitted Protected
 Rights:
 Include
 Include
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0 Lanes: 0 0 0 0 0 1 1 0 1 1 0 0 3 1 0 2 0 3 0 0 Volume Module: >> Count Date: 14 Feb 2008 << 730-830 Base Vol: 0 0 0 720 281 401 0 1044 418 596 1462 0 Initial Bse: 0 0 0 756 295 421 0 1096 439 626 1535 0 Added Vol: 0 0 0 84 0 27 0 171 37 44 139 PasserByVol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1nitial Fut: 0 0 0 840 295 448 0 1267 476 670 1674 Ω PHF Volume: 0 0 0 840 295 448 0 1267 476 670 1674 0 FinalVolume: 0 0 0 924 295 493 0 1267 476 737 1674 0 -----|----|-----||------| Saturation Flow Module: Lanes: 0.00 0.00 0.00 2.00 0.75 1.25 0.00 3.00 1.00 2.00 3.00 0.00 Final Sat.: 0 0 0 2138 800 1337 0 3206 1069 2138 3206 0 -----|----|-----||------| Capacity Analysis Module: Vol/Sat: 0.00 0.00 0.00 0.43 0.37 0.37 0.00 0.40 0.45 0.34 0.52 0.00

Future Without Project AM PMon Jul 21, 2008 18:09:05

Crit Volume: 0 462 476 368

Crit Moves:

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) *******************

Intersection #50 San Diego Fwy NB Ramps and Santa Monica Boulevard *******************

Cycle (sec): 100 Critical Vol./Cap.(X): 1.029

Loss Time (se Optimal Cycle	ec):	18	0 (Y+R:	=4.0 s	sec)	Averag	e Dela Of Se	ay (s	ec/veh)	:	XXX	KXX F
Street Name:												
Approach:	No	rth Bo	und	SOI	ıth Bo	nind	F:	et R	ound	We Down	et R	nind
Movement:	Τ	- Т	- R	T	- Т	- R	т	- Т	- R	т	- Т	- R
Control:												
Rights:	Op.	Inclu	de	Op.	Incli	ıde		Incl	ude	-	Incli	ıde
Rights: Min. Green:	0	0	0	0	0	0	0	0	0	0	0	0
Lanes:	1 .	1 1	1 1	0 0	າ ດັ	0 0	2 (ารั	0 0	0 0	າ 4ັ	0 1
							1			1		
Volume Module	: >>	Count	Date:	14 F∈	eb 200	08 << 7	45-84	5	'	1		'
Base Vol:	675	384	720	0	0	0	398	1424	0	0	1318	324
Growth Adj:	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05
Initial Bse:	709	403	756	0	0	0	418	1495	0	0	1384	340
Added Vol:	23	5	88	0	0	0	36	219	0	0	160	45
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	0
Initial Fut:	732	408	844	0	0	0	454	1714	0	0	1544	385
User Adj:												
PHF Adj:												
PHF Volume:												
Reduct Vol:												
Reduced Vol:	732	408	844	0	0	0	454	1714	0	0	1544	385
PCE Adj:												
MLF Adj:												
FinalVolume:												
Saturation Fl												
Sat/Lane:												
Adjustment:												
Lanes:	1.99	1.01	2.00	0.00	0.00	0.00	2.00	3.00	0.00	0.00	4.00	1.00
Final Sat.:	2127	1079	2138	. 0	0	0	2138	3206	0	. 0	4275	1069
Capacity Anal												
Vol/Sat:								0.53	0.00			0.36
Crit Volume:			464		0		250				386	

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

Crit Moves:

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future 2013 Without Project- AM Peak Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) ******************* Intersection #51 Sepulveda Boulevard and Santa Monica Boulevard *********************** Cycle (sec): 100 Critical Vol./Cap.(X): 1.379 Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/veh): xxxxxx Optimal Cycle: 180 Level Of Service: Street Name: Sepulveda Boulevard Santa Monica Boulevard Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - F L - T - R -----|-----|------| Control: Protected Protected Protected Protected Lanes: 1 0 2 0 1 1 0 2 0 1 1 0 3 0 1 1 0 3 0 1 ------Volume Module: >> Count Date: 19 Feb 2008 << 800-900 Initial Bse: 216 874 142 156 791 193 104 1786 379 102 1345 147 Added Vol: 1 29 0 8 20 4 1 302 4 2 201 7 PasserByVol: 0 0 0 0 0 0 0 0 0 0 0 Initial Fut: 217 903 142 164 811 197 105 2088 383 104 1546 154 PHF Volume: 217 903 142 164 811 197 105 2088 383 104 1546 154 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 Ω Reduced Vol: 217 903 142 164 811 197 105 2088 383 104 1546 154 FinalVolume: 217 903 142 164 811 197 105 2088 383 104 1546 154 -----|----|-----||------| Saturation Flow Module: Lanes: 1.00 2.00 1.00 1.00 2.00 1.00 1.00 3.00 1.00 1.00 3.00 1.00 Final Sat.: 1031 2063 1031 1031 2063 1031 1031 3094 1031 1031 3094 1031 -----| Capacity Analysis Module: Vol/Sat: 0.21 0.44 0.14 0.16 0.39 0.19 0.10 0.67 0.37 0.10 0.50 0.15 Crit Volume: 217 405 696 104

Future Without Project AM PMon Jul 21, 2008 18:09:05

Crit Moves: ****

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) *************************

Intersection #52 Veteran Avenue and Santa Monica Boulevard ************************ Cycle (sec): 100 Critical Vol./Cap.(X): 0.814 0 (Y+R=4.0 sec) Average Delay (sec/veh): xxxxxx Loss Time (sec): Optimal Cycle: 123 Level Of Service: D Street Name: Veteran Avenue Santa Monica Boulevard

Control:	Pr	ot+Per	rmit	Pro	ot+Pe:	rmit	Pi	rotec	ted	Pro	tect	.ed
Rights:		Incl	ıde		Incl	ude		Incl	ude		Ovl	
Min. Green:	0	0	0	0	0	0	0	0	0	0	0	0
Lanes:	1	0 0	1 0	1 (0 0	1 0	1 (3	1 0	1 0	3	0 1
Volume Module	: : >>	Count	Date:	14 Fe	eb 20	08 << 7	45-84	5				
Base Vol:	64	265	54	132	146	66	101	1839	24	63 1	320	60
Growth Adj:	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05 1	.05	1.05
Initial Bse:	67	278	57	139	153	69	106	1931	25	66 1	386	63
Added Vol:	0	4	0	-1	3	4	6	304	1	0	206	-1
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	0
Initial Fut:	67	282	57	138	156	73	112	2235	26	66 1	592	62
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00 1	.00	1.00
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00 1	.00	1.00
PHF Volume:	67	282	57	138	156	73	112	2235	26	66 1	592	62
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:	67	282	57	138	156	73	112	2235	26	66 1	592	62
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00 1	.00	1.00
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00 1	.00	1.00
FinalVolume:	67	282	57	138	156	73	112	2235	26	66 1	592	62
Saturation Fl	low M	odule:		•								
Sat/Lane:	1375	1375	1375	1375	1375	1375	1375	1375	1375	1375 1	375	1375

Lanes: 1.00 0.83 0.17 1.00 0.68 0.32 1.00 3.95 0.05 1.00 3.00 1.00

Final Sat.: 1375 1145 230 1375 936 439 1375 5436 64 1375 4125 1375

Vol/Sat: 0.05 0.25 0.25 0.10 0.17 0.17 0.08 0.41 0.41 0.05 0.39 0.05

Crit Volume: 339 138 112 531
Crit Moves: **** **** **** ****

Capacity Analysis Module:

Crit Moves:

-----|----|-----|------|

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future 2013 Without Project- AM Peak Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) ************************* Intersection #53 Westwood Boulevard and Santa Monica Boulevard *********************** 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): xxxxxx Optimal Cycle: 180 Level Of Service: Street Name: Westwood Boulevard Santa Monica Boulevard Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - F L - T - R Control: Prot+Permit Prot+Permit Protected Protected Lanes: 1 0 1 1 0 1 0 2 0 1 2 0 3 0 1 2 0 3 0 1 Volume Module: >> Count Date: 19 Feb 2008 << 745-845 Base Vol: 91 1008 73 218 528 75 140 1794 97 128 1288 129 Initial Bse: 96 1058 77 229 554 79 147 1884 102 134 1352 135 Added Vol: 4 142 9 7 102 16 20 273 3 6 183 6 PasserByVol: 0 0 0 0 0 0 0 0 0 0 0 0 Initial Fut: 100 1200 86 236 656 95 167 2157 105 140 1535 141 PHF Volume: 100 1200 86 236 656 95 167 2157 105 140 1535 141 MLF Adi: 1.00 1.00 1.00 1.00 1.00 1.00 1.10 1.00 1.00 1.10 1.00 1.00 FinalVolume: 100 1200 86 236 656 95 184 2157 105 154 1535 141 -----|----|-----||------| Saturation Flow Module: Lanes: 1.00 1.87 0.13 1.00 2.00 1.00 2.00 3.00 1.00 2.00 3.00 1.00 Final Sat.: 1375 2567 183 1375 2750 1375 2750 4125 1375 2750 4125 1375 -----|----|-----|------| Capacity Analysis Module: Vol/Sat: 0.07 0.47 0.47 0.17 0.24 0.07 0.07 0.52 0.08 0.06 0.37 0.10 Crit Volume: 643 236 719 77
Crit Moves: **** **** **** ****

Future Without Project AM PMon Jul 21, 2008 18:09:05

Level Of Service Computation Report

Cycle (sec): 100 Critical Vol./Cap.(X): 0.869 Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/veh): xxxxxx Optimal Cycle: 174 Level Of Service: D ************************************
Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R L - T - R
Control: Split Phase Split Phase Prot+Permit Prot+Permit Rights: Include Include Ovl Include
Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0
Lanes: 0 0 1! 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 0
Base Vol: 195 0 75 0 0 0 0 713 409 184 519 0
Growth Adj: 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05
Initial Bse: 205 0 79 0 0 0 0 749 429 193 545 0
Added Vol: 12 0 0 0 0 0 1 18 0 0 0
PasserByVol: 0 0 0 0 0 0 0 0 0 0 0 0
Initial Fut: 217 0 79 0 0 0 0 750 447 193 545 0
User Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
PHF Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
PHF Volume: 217 0 79 0 0 0 750 447 193 545 0
Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0
Reduced Vol: 217 0 79 0 0 0 0 750 447 193 545 0
PCE Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
MLF Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
FinalVolume: 217 0 79 0 0 0 0 750 447 193 545 0
Sat/Lane: 1425 1425 1425 1425 1425 1425 1425 1425

Lanes: 0.73 0.00 0.27 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00

Final Sat.: 1045 0 380 0 0 0 0 1425 1425 1425 1425 0

Vol/Sat: 0.21 0.00 0.21 0.00 0.00 0.00 0.53 0.31 0.14 0.38 0.00

Crit Volume: 296 0 750 193

Capacity Analysis Module:

Crit Moves:

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future 2013 Without Project- AM Peak Level Of Service Computation Report

Future Without Project AM PMon Jul 21, 2008 18:09:05

2000 HCM 4-Way Stop Method (Future Volume Alternative) ****************** Intersection #55 Roscomare Road and Stradella Road/Linda Flora Drive *********************** Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/veh):
Optimal Cycle: 0 Level Of Service: 14.0 Street Name: Roscomare Road Stradella Road/Linda Flora Drive Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Control: Stop Sign Stop Sign Stop Sign Stop Sign Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 0 0 1! 0 0 0 0 1! 0 0 0 0 1! 0 0 0 0 1! 0 0 -----|----|-----|------| Volume Module: >> Count Date: 21 Feb 2008 << 800-900 Base Vol: 12 74 8 90 423 16 16 1 38 9 0 32 Initial Bse: 13 78 8 94 444 17 17 1 40 9 0 34 Added Vol: 0 12 0 0 18 0 0 0 0 0 0 0 0 0 0 0 0 0 PasserByVol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 Initial Fut: 13 90 8 94 462 17 17 1 40 9 0 34 PHF Volume: 13 90 8 94 462 17 17 1 40 9 0 34 0 0 0 9 0 34

FinalVolume: 13 90 8 94 462 17 17 1 40 9 0 34 -----| Saturation Flow Module: Lanes: 0.11 0.81 0.08 0.16 0.81 0.03 0.29 0.02 0.69 0.22 xxxx 0.78 Final Sat.: 84 596 56 137 670 24 184 11 437 139 -0 494 -----| Capacity Analysis Module: Vol/Sat: 0.15 0.15 0.15 0.69 0.69 0.69 0.09 0.09 0.09 0.07 0.00 0.07 **** Crit Moves: **** **** Delay/Veh: 8.5 8.5 8.5 16.1 16.1 16.1 8.5 8.5 8.5 8.3 8.3 8.3 AdjDel/Veh: 8.5 8.5 8.5 16.1 16.1 16.1 8.5 8.5 8.5 8.3 8.3 LOS by Move: A A A C C C A A A A A ApproachDel: 8.5 16.1
Delay Adj: 1.00 1.00
ApprAdjDel: 8.5 16.1 8.5 8.3 1.00 1.00 8.5 8.3 LOS by Appr: A C AllWayAygO: 0.2 0.2 0.2 2.0 2.0 2.0 0.1 0.1 0.1 0.1 0.1

Future Without Project AM PMon Jul 21, 2008 18:09:05	Page 60-2
UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future 2013 Without Project- AM Peak	
Note: Queue reported is the number of cars per lane.	

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

Future Without Project AM PMon Jul 21, 2008 18:09:05

Page 61-1

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future 2013 Without Project- AM Peak

*******	******	******	******	*****	*****	*****	******	*****			
Street Name:		Bellagi	o Road		Chalon Road						
Approach:	North	Bound	South Bo	und	East Bo	ound	West Bo	und			
Movement:	L - T	- R	L - T	- R	L - T	- R	L - T				
Control:							Stop Si				
Rights:		lude	Inclu		Include Include						
Min. Green:	0		0 0		0 0		0 0	0			
Lanes:		0 0									
Volume Module						4.0					
Base Vol:	30 11			20	11 0			0			
Growth Adj:							1.05 1.05				
Initial Bse:			0 524	21	12 0		0 0	0			
Added Vol:	0 1		0 18	0	0 0	0	0 0	0			
PasserByVol:			0 0	0	0 0	0	0 0	0			
Initial Fut:				21	12 0		0 0	0			
User Adj:	1.00 1.0	0 1.00	1.00 1.00	1.00	1.00 1.00	1.00	1.00 1.00	1.00			
PHF Adj:	1.00 1.0	0 1.00	1.00 1.00	1.00	1.00 1.00	1.00	1.00 1.00	1.00			
PHF Volume:		7 0	0 542	21	12 0	42	0 0	0			
Reduct Vol:	0	0 0	0 0	0	0 0	0	0 0	0			
Reduced Vol:		7 0	0 542	21	12 0	42	0 0	0			
PCE Adj:			1.00 1.00	1 00	1.00 1.00	1 00	1.00 1.00	1.00			
MLF Adj:	1 00 1 0		1.00 1.00		1.00 1.00			1.00			
FinalVolume:			0 542		12 0		0 0	1.00			
		, I	1								
Saturation F			1		1						
Adjustment:			1 00 1 00	1 00	1 00 1 00	1.00	1.00 1.00	1.00			
Lanes:			0.00 0.96		0.22 0.00			0.00			
Final Sat.:			0.00 0.96	32			0.00 0.00	0.00			
Capacity Ana											
Vol/Sat:				0.66		0.08	xxxx xxxx	XXXX			
Crit Moves:	***		****		****						
Delay/Veh:			0.0 14.8	14.8	8.3 0.0	8.3		0.0			
Delay Adj:				1.00	1.00 1.00		1.00 1.00	1.00			
AdjDel/Veh:	8.9 8.		0.0 14.8	14.8	8.3 0.0	8.3	0.0 0.0	0.0			
LOS by Move:	A A	*	* B	В	A *	A	* *	*			
ApproachDel:	8.	9	14.8		8.3		xxxxxx				
Delay Adj:	1.0	0	1.00		1.00		xxxxx				
ApprAdjDel:	8.	9	14.8		8.3		xxxxxx				
LOS by Appr:			В		A		*				
AllWayAvgO:			1.8 1.8	1.8	0.1 0.1	0.1	0.0 0.0	0.0			

Future Without Project AM PMon Jul 21, 2008 18:09:05	Page 61-2
UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA	
Future 2013 Without Project- AM Peak	
Note: Queue reported is the number of cars per lane.	****

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

Future Without Project AM PMon Jul 21, 2008 18:09:05

Page 62-1

UCLA NHIP and Amended LRDP Traffic Study
Los Angeles, CA
Future 2013 Without Project- AM Peak

Street Name: Beverly Glen Boulevard Mulholland Drive Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - F L - T - R Split Phase Split Phase Permitted Permitted Control:
 Rights:
 Include
 Include
 Include
 Include
 Ignore

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0< Lanes: 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 1 0 2 0 1 -----|----|-----|------| Volume Module: >> Count Date: 26 Feb 2008 << 730-830 Base Vol: 59 199 70 765 747 129 42 559 38 42 304 292 Initial Bse: 62 209 74 803 784 135 44 587 40 44 319 307 Added Vol: 0 16 0 0 25 0 0 0 1 1 0 0 PasserByVol: 0 0 0 0 0 0 0 0 0 0 0 Initial Fut: 62 225 74 803 809 135 44 587 41 45 319 307 PHF Volume: 62 225 74 803 809 135 44 587 41 45 319 0 Ω Ω FinalVolume: 62 225 74 803 809 135 44 587 41 45 319 0 -----|----||------| Saturation Flow Module: Lanes: 0.22 0.78 1.00 1.00 1.00 1.00 1.87 0.13 1.00 2.00 1.00 Final Sat.: 308 1117 1425 1420 1430 1425 1425 2664 186 1425 2850 1425 -----| Capacity Analysis Module: Vol/Sat: 0.20 0.20 0.05 0.57 0.57 0.10 0.03 0.22 0.22 0.03 0.11 0.00

Crit Volume: 287 806 314 45 Crit Moves: **** **** **** Page 63-1

UCLA NHIP and Amended LRDP Traffic Study
Los Angeles, CA

C	ircula	ar 212	Plann	ing Me	ethod	Computa (Futur	e Vol	ıme Al	ternat	ive)		
******	****	*****	*****	****	*****	*****	****	*****	*****	****	****	****
Intersection										*****	****	****
Cycle (sec):		10				Critic						
Loss Time (se				=4.0 s	sec)					:	XXX	
Optimal Cycle						Level						D
************ Street Name:	****		ly Gle				****		eendal			****
Approach:	No					ound	E				est Bo	nund
Movement:			- R			- R			- R			- R
Control:						ted	Spi			Sp]	lit Pl	nase
Rights:		Inclu			Inclu			Inclu			Incl	
Min. Green:		0	1 0		0	0 0			0	0		0 0
Lanes:		0 0		0 :					0 0			
Jolume Module												
Base Vol:	0		13	128	923	0	0	0	0	78	0	4
Growth Adj:	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.0
Initial Bse:			14	134		0	0	0	0	82	0	4
Added Vol:	0	16	4	1	24	0	0	0	0	0	0	
PasserByVol: Initial Fut:			0 18	0 135	993	0	0	0	0	0 82	0	4
Jser Adj:		1.00	1.00		1.00	1.00		1.00	1.00	1.00		1.0
PHF Adj:		1.00	1.00		1.00	1.00		1.00	1.00	1.00		1.0
PHF Volume:	0	324	18	135	993	0	0	0	0	82	0	4
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	
Reduced Vol:	-	324	18	135	993	0	0	0	0	82	0	4
PCE Adj:		1.00	1.00		1.00	1.00		1.00	1.00	1.00		1.0
MLF Adj:		1.00	1.00		1.00	1.00		1.00	1.00	1.00	1.00	1.0
FinalVolume:									I			4
Saturation Fl												
Sat/Lane:		1425	1425	1425	1425	1425	1425	1425	1425	1425	1425	142
Adjustment:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0
Lanes:		0.95	0.05		0.88	0.00		0.00	0.00	0.62		0.3
Final Sat.:		1351	74		1254	0	. 0	0	0	889	0	53
Capacity Anal Vol/Sat:			e: 0.24	0.70	0.79	0.00	0 00	0 00	0.00	0 00	0.00	0.0
Voi/Sat: Crit Volume:	0.00	0.24	0.24	0.79	1129	0.00	0.00	0.00	0.00	0.09	0.00	13
Crit Moves:	****				****			U				***

Future Without Project PM PMon Jul 21, 2008 18:48:36

Page 1-1

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA

Future 2013 Without Project- PM Peak

Scenario Report Future Without Project PM Peak

Future Without Project PM Peak Scenario:

Volume: Future PM

Command:

Geometry: Future

Impact Fee: Default Impact Fee

Trip Generation: PM Peak Trip Distribution: Project

Paths: Project Routes: Default Route

Configuration: Future

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

Future Without Project PM PMon Jul 21, 2008 18:48:36

Page 2-1

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future 2013 Without Project- PM Peak

Trip Generation Report

Forecast for PM Peak

	Subzone Amount							
	#1- NA FBI 1.0 #2 1.0 Zone 2 Subtota	O FBI Office- 11 O Palazzo Westwo	0.00	0.00 237.00	0 266	0 237	0 503	0.0
3	#3 1.0 Zone 3 Subtota	0 Mixed-Use - S/	195.00	271.00	195 195	271 271	466 466	7.7 7.7
4	#4 1.0 Zone 4 Subtota	O Theater Expans	8.00	8.00	8	8	16 16	0.3
5 5	#5, 17 1.0 #5, 17 1.0 Zone 5 Subtota	0 Mixed-Use- 108 0 Residential Ho 1	17.00	15.00	17	1.5	32	0.5
6	#6 1.0 Zone 6 Subtota	0 Apartments- 86	6.00	3.00	6 6	3	9 9	0.1
7	#7 1.0 Zone 7 Subtota	0 Condos- 10804 1	34.00	17.00	34 34	17 17	51 51	0.8
8 8 8	#8, 25, 61 1.0 #8, 25, 61 1.0 #8, 25, 61 1.0 Zone 8 Subtota	0 Condos- 10776 0 Condos-10763 W 0 Condos- 10710 1	22.00 23.00	11.00 12.00	18 22 23 63	11 12	33 35	0.2 0.5 0.6 1.4
9	#9 1.0 Zone 9 Subtota	0 Private School	0.00	9.00	0	9 9	9 9	0.1
10	#10 1.0 Zone 10 Subtot	0 Fox Studio Exp	54.00	226.00	54 54	226 226	280 280	4.7 4.7
11 11 11 11	#11, 12, 45, 1.0 #11, 12, 45, 1.0 #11, 12, 45, 1.0 #11, 12, 45, 1.0 Zone 11 Subtot	O High School Ex O Private School O Condos- 1333 S O Condos- 552-55 al	65.00 2.00 3.00	166.00 1.00 2.00	65 2 3	166 1 2	231 3 5	3.8 0.0 0.1
12	#13 1.0 Zone 12 Subtot	0 Wilshire/Comst	13.00	6.00	13 13	6 6	19 19	0.3
13 13	#14, 15, 43 1.0 #14, 15, 43 1.0 Zone 13 Subtot	0 ABC Entertainm 0 Condos- 10131 al	-683.00 -49.00	0 -216.00 -105.00	-68 -49 -732	33 -21 9 -105 -321	6 -89 -154 -1053	99 -14 4 -2. -17.5

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future 2013 Without Project- PM Peak

Rate Rate Trips Trips Total % Of In Out In Out Trips Total Zone # Subzone Amount Units 37 0.6 15 #18 37 0.6 16 # 19 1.00 Condos-1826 S 6.00 3.00 6 3 9 0 1 Zone 16 Subtotal 6 3 9 0.1 1.00 Condos- 1417 S 6.00 3.00 6 3 9 0.1 Zone 17 Subtotal 6 9 0.1 18 #21 1.00 New Car Sales- 3.00 4.00 3 4 7 0 1 Zone 18 Subtotal 3 7 0.1 10 0.2 1.00 Condos- 1625 S 7.00 3.00 7 3 1.00 Mixed-Use- 115 43.00 21.00 43 21 19 #22 70 19 #22, 70 64 1.1 Zone 19 Subtotal 50 24 74 1.2 20 #23, 24 1.00 Condos- 1525 S 7.00 3.00 10 0.2 20 #23, 24 1.00 Condos- 1633 S 6.00 3.00 6 3 9 0.1 19 0 3 1.00 Condos- 2037 S 6.00 3.00 6 3 9 0.1 Zone 21 Subtotal 6 3 9 0.1 1.00 Office- 12233 140.00 36.00 140 36 176 2.9 31 0.5 70 1 2 Zone 22 Subtotal 201 76 277 4.6 23 #28, 32 1.00 Condos- 1511 S 6.00 3.00 9 0.1 23 #28, 32 1.00 Condos- 1517 B 8.00 4.00 8 12 0.2 21 0.3
 54
 1.00 Mixed-Use- 116
 37.00 71.00
 37
 71

 54
 1.00 Office- 11677
 29.00 144.00
 29
 144

 Zone 24 Subtotal
 66
 215
 24 #29, 54 108 1.8 24 #29, 54 173 2.9 281 4.7 3 0.0 3 0.0

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

1.00 Condos- 10617 6.00 3.00

Zone 26 Subtotal 6 3

26 #31

6

9 0.1

9 0.1

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future 2013 Without Project- PM Peak

Future Without Project PM PMon Jul 21, 2008 18:48:36

Zone #	Subzon	e	Amount	Units	Rate In	Rate Out	Trips In	Trips Out	Total Trips	% Of Total
27	#33 Z	one 27	1.00 Subtotal	Apts- 1817 S B	5.00	2.00	5 5	2 2	7 7	0.1
28	#34 Z	one 28	1.00 Subtota	Live/Work- 115	27.00	14.00	27 27	14 14	41 41	0.7 0.7
29	#36 Z	one 29	1.00 Subtota	Restaurant- 10	23.00	11.00	23 23	11 11	34 34	0.6
30 30 30	#37, 5 #37, 5 #37, 5	6, 57 6, 57 6, 57 one 30	1.00 1.00 1.00 Subtotal	Condos- 1807 S Auto Service- Office- SW Cor	6.00 4.00 18.00	3.00 3.00 89.00	6 4 18 28	3 3 89 95	9 7 107 123	0.1 0.1 1.8 2.0
31	#38 Z	one 31	1.00 Subtota	Condos- 2263 S	5.00	3.00	5 5	3	8 8	0.1
32	#39 Z	one 32	1.00 Subtota	Cooking School	3.00	2.00	3	2 2	5 5	0.1
33	#40 Z	one 33	1.00 Subtota	Bank- 1762 Wes	73.00	67.00	73 73	67 67	140 140	2.3
34 35 35	#41- N. #42, 4 #42, 4	A-Alre 9 9 one 35	1.00 1.00 1.00 Subtotal	Westside Pavil Le Lycee Franc Mixed-Use- 106	0.00 46.00 15.00	0.00 62.00 15.00	0 46 15 61	0 62 15 77	0 108 30 138	0.0 1.8 0.5 2.3
36 36 36	#44, 6 #44, 6 #44, 6	0, 67 0, 67 0, 67 one 36	1.00 1.00 1.00 Subtota	Discounted Sto Olympic-Stoner Bed, Bath & Be	152.00 47.00 0.00	152.00 59.00 0.00	152 47 0 199	152 59 0 211	304 106 0 410	5.1 1.8 0.0 6.8
37	#46 Z	one 37		Belmont Villag						
38 38 38	#47, B #47, B #47, B	12, B3 12, B3 12, B3 one 38	1.00 1.00 1.00 Subtotal	Apts- 10000 W Hotel- 150 Las Beverly Hilton	102.00 13.00 100.00	-115.00 12.00 61.00	102 13 100 215	2 -115 12 61 -42	-13 25 161 173	-0. 0.4 2.7 2.9
39	#48 Z	one 39	1.00 Subtota	Mixed-Use- 109	29.00	25.00	29 29	25 25	54 54	0.9
40	#50 Z	one 40	1.00 Subtota	Regent Westwoo	238.00	134.00	238 238	134 134	372 372	6.2 6.2

Page 2-5

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA

Future 2013 Without Project- PM Peak

Zone #	Subz	one	Amount	Units	Rate In	Rate Out	Trips In	Trips Out	Total Trips	% Of Total
41	#51	Zone 41		Office- 1100 W					110 110	
42	#52	Zone 42		Del Capri Hote					54 54	
43	#53	Zone 43		Condos- 11611			7 7	3	10 10	0.2
44	#55	Zone 44	1.00 Subtotal	Retail- 11305	16.00	17.00	16 16	17 17	33 33	
45	#58	Zone 45		Fastfood- 1086					83 83	1.4
46	#59	Zone 46		Brentwood Reta			46 46		98 98	1.6
47 47 47 47 47 47	#B1, #B1, #B1, #B1, #B1, #B1,	B5, B11 B5, B11 B5, B11 B5, B11 B5, B11 B5, B11 Zone 47	1.00 1.00 1.00 1.00 1.00 1.00 1.00 Subtotal	Young Israel- Retail Expansi Cultural Cente Condos- 437-44 Service Facili Mixed-Use- 421 Condos- 432 N	4.00 2.00 16.00 5.00 90.00 31.00 12.00	4.00 3.00 40.00 3.00 89.00 47.00 6.00	4 2 16 5 90 31 12 160	4 3 40 3 89 47 6	8 56 8 179 78 18 352	0.1 0.9 0.1 3.0 1.3 0.3 5.8
48	#B2,	B3, B6,	1.00	Beverly Hills Mixed-Use- 265 Condos- 125 S Medical Plaza- Commercial/Ret Mixed-Use- 131 Assisted Care Senior Congreg Screening Room Mixed-Use- 950 Mixed-Use- 959 Hotel- 9730 Wi Condos- 140-14 Condos- 133 Sp Office/Medical Condos- 156-16 Condos- 156-16 Condos- 155 N	44.00	119.00	44	97 119 7 116 18 69 7 6 1 31 33 56 2 1 21 3	238 163 21 168 32 115 15 15 120 6 6 2 28 8 8 2	2.7
10	,	Zone 48	Subtotal	L			507	589	1096	18.2

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future 2013 Without Project- PM Peak

Future Without Project PM PMon Jul 21, 2008 18:48:36

one #		ne		Amount	Units	Rate In	Rate Out	Trips In	Trips Out	Total Trips	% Of Tota
49	#B4,	в14,	В2	1.00	Church Expansi Synagogue/Priv Apts- 428-430 Condos- 313-31	1.00	0.00	1	0	1	0.
49	#B4,	В14,	В2	1.00	Synagogue/Priv	7.00	8.00	7	8	15	0.
49	#B4,	В14,	В2	1.00	Apts- 428-430	1.00	0.00	1	0	1	0.
49	#B4,	В14,	В2	1.00	Condos- 313-31	3.00	2.00	3	2	5	0.
		Zone	49	Subtotal	l			12	10	22	0.
50	#B18,	B21		1.00	Beverly Hills Robinson's May	21.00	140.00	21	140	161	
50	#B18,	B21		1.00	Robinson's May	20.00	-19.00	20	-19	1	
		Zone	50	Subtotal	١			41	121	162	2.
51	#B27			1.00	Health Spa- 96	4.00	4.00	4	4	8	0.
		Zone	51	Subtotal	Health Spa- 96			4	4	8	0.
52	#62-N	A Who	ole	1.00	Whole Foods Ma New West Middl	0.00	0.00	0	0	0	0.
53	#64			1.00	New West Middl	51.00	47.00	51	47	98	1.
		Zone	53	Subtota	١			51	47	98	1.
54	#66			1.00	Union Bank of	32.00	32.00	32	32	64	1.
		Zone	54	Subtotal	١			32	32	64	1.
55	#68				Leo Baeck Temp				199	364	
		Zone	55	Subtotal	١			165	199	364	6.
56	#69			1.00	Convenience St	50.00	48.00	50	48	98	1.
		Zone	56	Subtotal	٠	• • • • • • •		50	48	98	1.
57	#71			1.00	Westwood Villa	42.00	40.00	42	40	82	1.
		Zone	57	Subtotal	١			42	40	82	1.
58	#72			1.00	Office Bldg- 2	9.00	41.00	9	41	50	0.
		Zone	58	Subtotal	٠			9	41	50	0.
59					Mixed Use			60	55 55	115	1.
		Zone	59	Subtotal	٠			60	55	115	1.

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA

Future 2013 Without Project- PM Peak

Trip Distribution Report

Percent Of Trips Project

					To	Gates					
	1	2	3	4	5	6	9	10	11	12	13
Zone											
1 2 3	0.0	0.0	0.0	0.0 4.0 4.0	0.0	0.0 3.0 3.0	0.0	0.0	0.0 11.0 11.0	0.0	0.0 5.0 5.0
4	8.0	3.0	0.0	4.0	0.0	3.0	16.0 16.0	0.0	11.0	0.0	5.0
5	8.0	3.0	0.0	4.0	0.0	3.0	16.0	0.0	11.0	0.0	5.0
6	10.0	0.0	0.0	0.0	0.0	5.0	0.0	0.0	5.0	0.0	0.0
7	15.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	5.0	0.0	0.0
8	15.0	0.0	0.0	0.0		0.0	5.0	5.0	5.0	0.0	0.0
9	5.0	5.0	5.0	5.0	5.0	20.0	5.0	0.0	0.0	0.0	0.0
10	10.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0	0.0
11	10.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0	0.0
12	10.0	0.0	0.0	0.0	0.0	5.0	0.0	0.0	5.0	0.0	0.0
13	10.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0	0.0
14 15	8.0	3.0	0.0	4.0	0.0	3.0	16.0 10.0	0.0 5.0	11.0	0.0	5.0
16	10.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	10.0	0.0	0.0
17	10.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0
18	10.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0
19	10.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0
20	10.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0
21	10.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0	0.0
22	10.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0
23	10.0	0.0	0.0	0.0	0.0		5.0	5.0	0.0	2.5	2.5
24	10.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0
25	15.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	5.0	0.0	0.0
26 27	10.0 10.0	0.0	0.0	0.0	0.0	0.0	10.0	0.0 5.0	0.0	0.0	0.0
28	10.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0
29	8.0	3.0	0.0	4.0	0.0	3.0	16.0	0.0	11.0	0.0	5.0
30	10.0	0.0	0.0	0.0	0.0	0.0	10.0	0.0	0.0	0.0	0.0
31	10.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0	0.0
32	10.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0
33	0.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	10.0	0.0	0.0
34	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
35	10.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0
36	10.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0
37	10.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	5.0	0.0	0.0
38	10.0	0.0	0.0	0.0	0.0	5.0	0.0	0.0	5.0	0.0	0.0
39	0.0 8.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	5.0	0.0	0.0
40 41	8.0	3.0	0.0	4.0	0.0	3.0	16.0 16.0	0.0	11.0 11.0	0.0	5.0
41	10.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	5.0	0.0	0.0
43	10.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0
44	10.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

UCLA NHIP and Amended LRDP Traffic Study
Los Angeles, CA
Future 2013 Without Project- PM Peak

Future Without Project PM PMon Jul 21, 2008 18:48:36

					To	Gates					
	1	2	3	4	5	6	9	10	11	12	13
Zone											
45	0.0 10.0 10.0 10.0 10.0 10.0 5.0 0.0	0 0	0 0	0 0	0 0	0 0	E 0	E 0	E 0	0 0	0 0
46	10.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0
47	10.0	0.0	0.0	0.0	0.0	5.0	0.0	0.0	5.0	0.0	0.0
48	10.0	0.0	0.0	0.0	0.0	5.0	0.0	0.0	5.0	0.0	0.0
49	10.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0	0.0
50	10.0	0.0	0.0	0.0	0.0	5.0	0.0	0.0	5.0	0.0	0.0
51	5.0	5.0	5.0	5.0	5.0	20.0	5.0	0.0	0.0	0.0	0.0
52	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
53	10.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0
54	10.0 8.0 0.0	3.0	0.0	4.0	0.0	3.0	16.0	0.0	11.0	0.0	5.0
55	0.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0	5.0
56	0.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	10.0	0.0	0.0
57	8.0	3.0	0.0	4.0	0.0	3.0	16.0	0.0	11.0	0.0	5.0
58	0.0 0.0 8.0 10.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0
59	8.0	3.0	0.0	4.0	0.0	3.0	16.0	0.0	11.0	0.0	5.0
					ТО	Gates					
	14	15	16	17	18	19	20	21	22	23	28
Zone											
1	0.0 3.0 3.0 3.0 5.0 5.0 5.0 5.0 5.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2	3.0	0.0	9.0	6.0	0.0	23.0	0.0	0.0	0.0	3.0	2.0
3	3.0	0.0	9.0	6.0	0.0	23.0	0.0	0.0	0.0	3.0	2.0
4	3.0	0.0	9.0	6.0	0.0	23.0	0.0	0.0	0.0	3.0	2.0
5 6	3.0	0.0	9.0	6.0	0.0	23.0	0.0	0.0	0.0	3.0	2.0
6 7	5.0	0.0	5.0	5.0	5.0	10.0	0.0	0.0	0.0	0.0	0.0
8	5.0	0.0	5.0	5.0	5.0	15.0	0.0	0.0	0.0	0.0	0.0
9	0.0	0.0	2.5	0.0	5.0	2.5	5.0	0.0	0.0	0.0	0.0
10	5.0	0.0	5 0	3.0	0.0	10 0	0.0	0.0	0.0	0.0	0.0
11	5.0	0.0	5.0	3.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0
12	5.0	0.0	5.0	5.0	5.0	10.0	0.0	0.0	0.0	0.0	0.0
13	5.0	0.0	5.0	3.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0
14	3.0 10.0 5.0 5.0	0.0	9.0	6.0	0.0	23.0	0.0	0.0	0.0	3.0	2.0
15	10.0	10.0	10.0	10.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
16	5.0	0.0	5.0	5.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0
17	5.0	0.0	5.0	5.0	0.0	10.0	0.0	3.0	0.0	0.0	0.0
18	5.0	0.0	5.0	5.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0
19											
20 21	0.0	0.0	0.0	5.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0
22	0.0	0.0	0.0	5.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0
2.2	0.0	2.5	5 0	2.5	0.0	10.0	0.0	0.0	0.0	0.0	0.0
24	0.0	0.0	0.0	5.0	0.0	10.0	0.0	0.0	5.0	0.0	0.0
25	5.0	0.0	5.0	5.0	5.0	15.0	0.0	0.0	0.0	0.0	0.0
26	5.0	0.0	5.0	5.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0
27	5.0	0.0	5.0	5.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0
28	5.0 5.0 5.0 5.0	0.0	0.0	5.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0

Page 3-4

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future 2013 Without Project- PM Peak

To Gates											
	14	15	16	17		19	20	21	22	23	28
Zone											
29	3.0	0.0	9.0	6.0	0.0	23.0	0.0	0.0	0.0	3.0	2.0
30	5.0	0.0	5.0	5.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0
31	5.0	0.0	5.0	3.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0
32	5.0	0.0	5.0	5.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0
33	5.0	5.0	5.0	5.0		0.0	0.0	0.0	0.0	0.0	0.0
34	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
35	5.0	0.0		5.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0
36	0.0			5.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0
37	5.0	0.0	5.0	5.0	5.0	10.0	0.0	0.0	0.0	0.0	0.0
38	5.0	0.0	5.0	5.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0
39	5.0	5.0	5.0	5.0		0.0	0.0	0.0	0.0	0.0	0.0
40	3.0	0.0	9.0	6.0	0.0	23.0	0.0	0.0	0.0	3.0	2.0
41	3.0	0.0	9.0	6.0	0.0	23.0	0.0	0.0	0.0	3.0	2.0
42	5.0	0.0	5.0	5.0	5.0	10.0	0.0	0.0	0.0	0.0	0.0
43	5.0	0.0	5.0	0.0	0.0	10.0	0.0	0.0	5.0	0.0	0.0
44	0.0	0.0	5.0	5.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0
45	5.0	5.0	5.0	5.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
46	5.0	0.0	5.0	0.0	0.0	10.0	0.0	0.0	5.0	0.0	0.0
47	5.0	0.0	5.0	5.0	5.0	10.0	0.0	0.0	0.0	0.0	0.0
48	5.0	0.0	5.0	5.0	5.0	10.0	0.0	0.0	0.0	0.0	0.0
49	5.0	0.0	5.0	3.0	0.0	10.0	0.0	0.0		0.0	0.0
50	5.0	0.0	5.0	5.0	5.0	10.0	0.0	0.0	0.0	0.0	0.0
51	0.0	0.0	2.5	0.0		2.5	5.0	0.0	0.0	0.0	0.0
52	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
53	0.0	0.0	0.0	5.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0
54	3.0	0.0	9.0	6.0	0.0	23.0	0.0	0.0	0.0	3.0	2.0
55	0.0	0.0	5.0	0.0	0.0	10.0	10.0	0.0	0.0	0.0	0.0
56	5.0	5.0	5.0	5.0		0.0	0.0	0.0	0.0	0.0	0.0
57	3.0	0.0	9.0	6.0	0.0	23.0	0.0	0.0	0.0	3.0	2.0
58	5.0	0.0	5.0	5.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0
59	3.0	0.0	9.0	6.0	0.0	23.0	0.0	0.0	0.0	3.0	2.0

Zone	To Gat	30
Zone		
1 2 3 4 5 6 7 8 9	0.0 2.0 2.0 2.0 2.0 0.0 0.0 0.0	0.0 2.0 2.0 2.0 0.0 0.0 0.0
12	0.0	0.0

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future 2013 Without Project- PM Peak

Future Without Project PM PMon Jul 21, 2008 18:48:36

	To Gate	es
	29	
Zone		
	0.0	0.0
14	2.0	
15		0.0
16	0.0	0.0
17	0.0	0.0
18	0.0	0.0
19	0.0	0.0
20	0.0	0.0
21	0.0	0.0
22	0.0	0.0
23	0.0	0.0
24	0.0	0.0
25	0.0	0.0
26	0.0	0.0
27	0.0	0.0
28	0.0	0.0
29	0.0 0.0 0.0 2.0	2.0
30	0.0	0.0
31	0.0	0.0
32	0.0	0.0
33		0.0
34	0.0	0.0
35	0.0	0.0
36	0.0 0.0 0.0	0.0
37	0.0	0.0
38	0.0	0.0
39	0.0	0.0
40	2.0	2.0
41	2.0	2.0
42	0.0	0.0
43	0.0	0.0
43	0.0	0.0
45	0.0	
	0.0	0.0
46	0.0	0.0
47	0.0	0.0
48	0.0	0.0
49	0.0	0.0
50	0.0	0.0
51	0.0	0.0
52	0.0	0.0
53	0.0	0.0
54	2.0	2.0
55	0.0	0.0
56		0.0
57	2.0	2.0
58	0.0	0.0
59	2.0	2.0

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA

Future 2013 Without Project- PM Peak

Turning Movement Report PM Peak

				_			_						
Volume		orthbo			uthbo			astbo			estbo		Total Volume
Type	Leit	Thru	Right	Leit	inru .	Right	Leit	Thru	Right	Leit	Thru	Right	volume
#1 Sept	ıl veda	a Boul	evard	and Ch	nırch	I.n /Ova	da Pl						
Base		1702	237	3	923	383	586	107	19	68	101	7	4141
Added	0		0	0	59	50	17	0	0	0	0	0	262
Total		1838	237	3	982	433	603	107	19	68	101	7	4403
#2 Chui	rch La	ane an	d San	Diego	Fwy S	B On/C	off Rar	mp					
Base	6	668	261	101	479	0	5	3	9	945	1	27	2506
Added	0	17	0	20	30	0	0	0	0	68	0	0	135
Total	6	685	261	121	509	0	5	3	9	1013	1	27	2641
#3 Chui													
Base	132	41	81	559	97	753		1280	35	29	904	443	4781
Added	0	0	0	78	0	20	17	0	0	0	. 1	0	116
Total	132	41	81	637	97	773	444	1280	35	29	905	443	4897
II.4. C	D		NTD 0	1055 D-			D	7	4				
#4 San	102	orwy.	NB On, 87	OII Ra	umps a: 0	na sur O		1046	ara 914	0	1281	0	3429
Base Added	102	0	0	0	0	0	0	78	914	0	69	0	147
Total	102	0	87	0	0	0	-	1124	914	-	1350	0	3576
IOCAI	102	U	07	U	U	U	U	1127	211	U	1330	U	3370
#5 Vete	eran i	Avenue	and s	Sunset	Boule	vard							
Base	392	0	416	0	0	0	0	902	159	288	1414	0	3570
Added	59	0	23	0	0	0	0	10	68	26	10	0	196
Total	451	0	439	0	0	0	0	912	227	314	1424	0	3766
#6 Bell	lagio	Way a	nd Sui	nset Bo	uleva	rd							
Base	274	101	32	58	6	143	350	899	86	16	1295	118	3376
Added	0	0	0	8	0	21	20	13	0	0	15	7	84
Total	274	101	32	66	6	164	370	912	86	16	1310	125	3460
#7 West													
Base	205	0	201	0	0	0	0	914	99		1266	0	2732
Added	0	0	0	0	0	0	0	21	0	0	22	0	43
Total	205	0	201	0	0	0	0	935	99	48	1288	0	2775
#8 Stor		D		. d	D.	. 1							
#6 Stor	146	0	0au ai 137	10 Suns	0	106		1274	130	166	1027	23	3198
Added	140	0	137	0	0	0	123	21	130	100	22	0	43
Total	146	0	137	65	0	106		1295	130		1049	23	3241
iocai	140	U	13/	0.5	U	100	123	1223	100	100	1017	23	2441
#9 Hile	gard a	Avenue	/Copa	De Oro	Road	and S	Sunset	Boule	evard				
Base	273	35	382	37	72	21		1202	126	166	915	7	3239
Added	7	0	55	0	0	0	0	13	8	56	15	0	154
Total	280	35	437	37	72	21	3	1215	134	222	930	7	3393

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future 2013 Without Project- PM Peak

						ound							Total
Type	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Volume
#10 Bes	verlv	Glen	Boulev	vard ar	nd Sui	nset Bo	uleva	rd					
Base	233		610	109	71	20		1350	63	408	1008	83	4149
Added	0	0	57	0	0	0	0	68	0	28	71	0	
Total	233	175	667	109	71	20	17	1418	63	436	1079	83	4373
						nset Bo							
Base	0		0	121	0			1287	0		953		3781
Added	0		0	3			36		0	0		1	
Total	0	0	0	124	0	423	941	1376	0	0	1011	133	4009
						iego Fw							
Base		1681	0		898		97		26	0		-	
Added		31		0			34		0	0		0	99
Total	0	1712	0	0	932	0	131	0	26	0	0	0	2801
						na Aven							
Base		1474		59		16	3		120	169		267	
Added	122			26	33	0		0	0	2		25	151
Total	133	1518	144	85	693	16	3	96	120	171	198	292	3469
#14 Lev										_			
Base	266		8			-			111	1		0	1256
Added	27					-		0	47	0		0	74
Total	293	0	8	0	0	0	0	338	158	1	531	0	1330
						enue/Ga							
Base	57		27	61			121		55	23		298	2082
Added	0	82	0	0	94	0	0		0	0		0	176
Total	57	557	27	61	403	51	121	166	55	23	440	298	2258
#16 Ga													
Base	23		180	127	164	14	8		19	335	160	353	1870
Added	0		0	0	0	0	0		0	0	-	0	-
Total	23	381	180	127	164	14	8	107	19	335	160	353	1870
#17 Vet													
Base	183		42	23		5			87	55			
Added	14		15	41	53		0		16	16	13	42	281
Total	197	614	57	64	422	5	0	74	103	71	114	113	1834
#18 Hi													
Base	123		45	35	393	24	53		336	21	27		1839
Added	0						0		0	0	0	0	125
Total	123	715	45	35	457	24	53	116	336	21	27	13	1964

Page 4-4

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future 2013 Without Project- PM Peak

Volume	No	orthbo	und	Sc	outhbo	ound	Εá	astbo	and	We	estbou	nd	Total
Type													
1700	пстс	IIII a	KIGIIC	DCIC	IIII a	KIGHC	пстс	IIII u	Kigiic	пстс	IIII a	ici giic	VOLUME
1110 D	7	a1	D11	3 . 17	D	/	1- 3-		T T			7.7t	0-14-
#19 Bev													
Base	26		15		481			33		48			1653
Added	0	57	0	0	28			0	0				85
Total	26	820	15	29	509	12	20	33	27	48	69	129	1738
#20 Hi	lgard	Avenu	e and	Westh	olme i	Avenue							
Base	102	589	33				205	243	158	28	54	49	2140
Added		61	0		64		0		0	0		0	125
Total	102		33				205	243	158	28		49	2265
IULAI	102	050	33	70	020	41	203	243	130	20	34	4.7	2203
#21 Hi	laard	Δwen:	e and	Mannir	ησ Δτη	enije							
Base		659	8		895	0	0	0	0	11	0	24	1664
			0				0	0	0	0			125
Added	0				64	-						0	
Total	0	720	8	6.7	959	0	0	0	0	11	0	24	1789
					_								
#22 Gay													
Base		420	214		1089		15	133	13	210	315	165	2874
Added		0			0	0	0	40	0	3	63	0	109
#25 In	0	34	-72	-73	73	0	0	-73	73	-34	-34	-34	-140
Total	64	454	145	127	1162				86	179	344	131	2843
#23 Wes	st.wood	d Boul	evard	and Le	e Cont	te Aver	nue						
Base	105	345	161			223		429	107	170	416	65	2694
Added	178						0			6	18	0	457
	0	0	0	0	0	0		-218		0	-102	0	-320
	283	345	167				94	234		176		65	2831
Total	283	345	167	108	4/0	223	94	234	333	1/6	332	65	2831
#24 Tiv	rowto	n Drain	o and	To Cor	n+ o 7	roniio							
Base	37	71	43		84		134	508	137	23	476	41	1854
							0	506					
Added	0	U	U	U	U	0	U	22	U	0	1/	0	39
#25 In								-218				0	-320
Total	37	71	43	97	84	204	134	312	137	23	391	41	1573
#0F #**	1	7		T = 0									
#25 Hi							222	_	0-		_	0.0	1000
Base		300	11	26			338		85	11		29	1739
Added	0	39	0	0	46	17	22	0	0	0	-	0	124
#25 In	0	0	218	0	0	0	0	0	0	102	0	0	320
Total	59	339	229	26	539	403	360	0	85	113	0	29	2183
#26 Gay	yley A	Avenue	and I	Weyburi	n Ave	nue							
Base	62	520	215	66	991	295	92	174	34	116	174	92	2832
Added	0	8	125	12	8	0	0	66	0	70	46	13	348
#25 In				146		0	0		0		34	34	320
Total	62		412	224			92	240	34	220	254	139	3500
iocai	02	526	412	224	フフラ	495	54	240	54	220	254	139	3300

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

UCLA NHIP and Amended LRDP Traffic Study
Los Angeles, CA
Future 2013 Without Project- PM Peak

			r.	icure .	2013 W	TUIOUL							
Volume	No	rthbou	nd	So	outhbo					We	estbo	ınd	Total
Type	Left	Thru R	ight	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Volume
#27 Wes													
Base	153		116		699	105	83	151	144	101	230		
Added	20	184	174	0	232	0	0	39	16	151	44	0	860
#25 In	0	0	0	0	0	0	0	218	0	0	102	0	320
Added #25 In Total	173	862	290	42	931	105	83	408	160	252	376	50	3733
#28 Ti	verton	Drvie	and	Weybu	rn Ave	nue							
Base	23	64	47	104	0	170	70	177	1	1	100	33	793
Added	0	0	0	0	0	0	0	78	0	0	89	0	16'
#25 In	0	0	0	0	0	0	0	218	0	0	102	0	320
Base Added #25 In Total	23	64	47	104	0	170	70	473	1	1	291	33	127
#29 Hi	lgard	Avenue	and	Weybu	rn Ave	nue							
Dese	E 1	260	2.2	- 27	E 6 1	E 2	58	104			38		1484
Added	0	-1	0	0	0	46	40	38	0	0	43	0	160
Added #25 In Total	0	0	0	0	0	102	218	0	0	0	0 81	0	
Total	51	359	22	27	561	201	316	142	175	14	81	21	197
#30 We:							.e						
Base			36	39	781	124	101		99		134		
Added		372	14	1	397	0	0	1		64	5	6	
Total	156	1148	50	40	1178	124	101	227	141	81	139	48	3432
#31 Wes	stwood	Boule	vard	and L	indbro	ok Dri	ve						
Base	1	747	182	29	856	16	32	137	57	93	254	44	244
Added	0	460	0	0	502	0	0	0	0	-2	0	0	96
Base Added Total	1	1207	182	29	1358	16	32	137	57	91	254	44	340
#32 Gle	endon/	Tivert	on/Li	indbro	ok								
Base	32	131	193	38	130	161	33	235	19	415	270	56	171
Added	0	3	1	0	14	0	0	0	-0	-6	-2	0	
Base Added Total	32	134	194	38	144	161	33	235	19	409	268	0 56	172
#33 Ser	pulved	a Boul	evaro	d and (Consti	tution	Aven	ue					
Base				4	865	105	558	2.	80 0 80	11	5	5	274
Added			0	n	34	100	0	0	0		0	0	6
Total				4	899	105	558	2	80	11	5	5	281
10041	20		-	-	0,5,5	105	330	-	00		3	3	201
#34 Sar		nte Bo	uevai	rd and	Wilsh	ire Bo	uelva:	rd	0.1	120	1004	005	
Base		390	242	1119	337	49	11	T033	21 23 44	132	1804	827	606
Added		50	5	117	4'/	- 6	13	208	23		204	119	809
Total	110	440	247	1236	384	55	24	1241	44	139	2008	946	687
#35 Sej	pulved	a Boul	evaro	d and W	Wilshi	re Bou	levar	d					
Base	129	583	272	113	457	137	147	1929	41	305	2395	177	668
Added	6	12	45	13	12	10	8	650	41 7 48	43	703	11	152
Total	135	595	317	126	469	147	155	2579	48	348	3098	188	820

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future 2013 Without Project- PM Peak

Volume	No	orthbo	und	S	outhbo	ound	E	astbo	und	W	estbo	und	Total
Type	Left	Thru 1	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Volume
#36 Ve	teran	Avenu	e and	Wilsh	ire B	oulevar	ď						
Base	233	677	147	82	1073	1604	422	2176	48	44	2542	3.0	9079
Added													
Total	237	681	169	83	1075	1618	433	2869	52	60	3281	31	1511 10590
IOCUI	23,	001	100	05	1075	1010	155	2005	52	00	3201	31	10370
#37 Ga	vlev i	Avenue	and I	Wilchi:	re Boi	ulevard							
Base	223	305	107	137	472	679 110 789	349	1932	97	40	1723	85	6148
Added	223	0	107	21	1,2	110	160	547	0	10	646	33	1516
Total	222	205	107	150	472	700	E10	2470	07	40	2260	100	7664
IULAI	223	303	107	130	4/2	109	310	2413	51	40	2309	100	7004
#20 Wa	~+	3 Da1		a m al 1/1	: 1 ~b : .	Da1							
#30 We	5 L W O O O	1 BOUL	evaru	and w.	LISIII.	re Bour	evaru	1760	0.40	170	1611	100	6023 1795
Base	128	499	18/	1/2	031	248	219	1/69	249	1/2	TOTI	108	6023
Added	17	155	44	80	153	268	212	331	17	49	376	93	1795
Total	175	654	231	252	784	516	431	2100	266	221	1987	201	7818
		_											
#39 G1	endon	Avenu	e and	Wilsh:	ire B	ouelvar	d						
Base	60	215	48	137	285	114	123	2014	38	19	1557	85	4695
Added	1	0	0	14	0	-6	1	454	1	0	523	3	991
Total	61	215	48	151	285	108	124	2468	39	19	2080	88	4695 991 5686
#40 Ma	lcolm	Avenu	e and	Wilsh	ire B	oulevar	d						
Base Added Total	3	1	42	12	1	53	27	2083	60	17	1670	33	4001
Added	6	0	0	36	0	0	0	453	4	0	520	43	1062
Total	9	1	42	48	1	53	27	2536	64	17	2189	76	5063
#41 We	sthol	ne Ave	nue ai	nd Wil:	shire	Boulev	ard						
Base	46	78	57	98	228	12	39	1974	66	55	1644	126	4422
Added	5	0	3	0	0	0	0	463	2	3	558	0	1034
Total	51	78	60	98	228	12	39	2437	68	58	2202	126	5456
#42 Wa	rner A	Avenue	and I	Wilshi	re Bo	ulevard							
Base	38	24	34	89	68	44	35	2059	28	11	1812		4293
Added	0	0	0	0	0	0	0	455	0	0	558	0	1013
Total	38	24	34	89	68	0 44	35	2514	28	11	558 2370	51	5306
#43 Be	verlv	Glen	Bouler	vard a	nd Wi	lshire	Boule	vard					
Base	163	482	57	57	412	56	120	1768	274	106	1678	49	5221
Added	13	5	53	37	-16	56 7	6	455	-13	22	534	46	
Total	176	487	110	94	396	63	126	2223	261	128	2212	95	6370
10041	1,0	10,	110	71	370	0.5	120	2223	201	120	2212	23	03,0
#44 Sa	wtella	Boul.	evard	and Ol	hio A	zenije							
#44 Sa Base Added Total	50	93	99	72	450	126	56	450	33	90	550	53	2160
Added	1	0	0	0	733	120	0	1Ω	1	0	17	7.5	37
Total	٤n	93	00	70	450	126	56	176	31	9.0	567	53	2197
iucal	00	23	20	10	409	170	20	4/0	54	29	207	د د	Z17/

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future 2013 Without Project- PM Peak

									und Right				
#45 Sej					Ohio A	venue		41.5	4.5		F 0.1	20	226
Base		692	133		890	207	99	41/	45 4	/1	50I	38	336
Added Total			4 137		58 948	207	0	15	49	72	L4	41	16 353
Total	155	/53	13/	123	948	207	99	432	49	/ 3	515	41	353
#46 Vet							150		4.0	150	F 0 4	4.5	0.41
Base			47	18	386	164	152	527	48	152	504		
Added		27	0	0	19	3 167	_ 2	15	1 49	0	14 518	0	
Total	28	371	47	18	405	167	154	542	49	152	518	45	249
#47 Wes													
Base		902	43	46	1284	122	93	244	83	89			
Added		216	0	0	218	3	2	0		0			
Total	113	1118	43	46	1502	125	95	244	100	89	258	43	377
#48 Sav	wtelle	Boul	evard	and Sa	anta M	onica 1	Boule	vard					
Base	78	377	413	126	558	33	15	1352	33 1	177	1262	71	449
Added			8	0			0	200	1	9	248	1	46
Total	80	377	421	126	558	33	15	1552	34	186	1510	72	496
#49 Sai	n Diea	o Fwv	SB Ra	mps an	nd San	ta Mon	ica B	ouleva	ard				
Base	0	0	0	396	557	203	0	1656	260	588	1238	0	489
Total	0	0	0	375	557	260	0	1820	44 304	617	1439	0	537
#50 Sai	n Diea	o Fwv	NB Ra	mps an	nd San	ta Mon	ica B	ouleva	ard				
Base	470	529	431	0	0	0	523	1436	0	0	1420	498	530
Added	57	21	-21	0	0	0	40	103	0	0	173	34	40
Total	527	550	410	0	0	0	563	1539	0 0 0	0	1593	532	571
#51 Ser	oulved	a Bou	levard	and s	Santa	Monica	Boul	evard					
Base		836	213	153	1179	210	152	1474	319	200	1418	170	649
Added		57	2	7	54	3	4	78	1		199		
Total			215			213					1617		
#52 Vet	teran	Διεριι	e and	Santa	Monio	a Boul	evard						
#32 ve	65	298	4.8	120	561	62	182	1626	33 1	0.3	1483	9.0	467
Added		11	10	1	7	11	16	70	1	0	195	20	31
Total			48	130	568	73	199	1696	34	93	1678	92	498
450 W-		Dav. ³			**		Da 1						
		Boul	evard	ana Sa	uita M	Ionica I	BOULE	vara	138	205	1445	242	CFC
Base		AT0	104	207	1426	178	1/2	1495	138	205	1445	242	658
Added	4	203	8	6	∠00	27	24	39	3 141	10	T 6 3	6	69 727
Total													

Page 4-7

Future Without Project PM PMon Jul 21, 2008 18:48:42

Page 5-1

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA

Future 2013 Without Project- PM Peak

Volume	No	orthbo	ound	So	outhbo	ound	Ea	astbo	und	We	estbo	ınd	Total
Type	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Volume
#54 Mu	lholl-	and Da	cirro ar	d Boa		Bood							
Base	302	0		ia kosi	0	. Road	0	337	107	47	623	0	1569
Added		-		0	0	0	0		29	- 0	1	0	57
Total		0	152	0	0	0	0	337	136	47	624	0	1626
10041	323		152	· ·	Ü	· ·	0	337	150	1,	021	· ·	1020
#55 Ro	scomaı	re Roa	ad and	Strade	ella E	Road/Li	nda F	lora 1	Orive				
Base	23	410	6	39	61	13	15	0	11	6	1	62	646
Added	0	27	0	0	29	0	0	0	0	0	0	0	56
Total	23	437	6	39	90	13	15	0	11	6	1	62	702
#56 Be													
Base	70		_	0		25	12	0	13	0	0	0	756
Added		27	0		29	0	0	0	0	0	0	0	56
Total	70	560	0	0	132	25	12	0	13	0	0	0	812
#57 Po	werly	Clen	Pouler	rard ar	nd Muil	hollan	d Dri	70					
Base		811	85			38	54		39	47	562	739	3213
Added		37		0		0	0	0	0	0	0	, 55	78
Total					416	38	54	-	39	47	562	-	3291
10041	15	010	00	210	110	30	51	201	3,5	1,	302	, 55	3231
#58 Be	verly	Glen	Boulev	ard ar	nd Gre	endale	Drive	9					
Base	0	1138	9	65	434	0	0	0	0	46	0	231	1924
Added	0	37	0		39	0	0	0	0	4	0	1	81
Total	0	1175	9	65	473	0	0	0	0	50	0	232	2005

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future 2013 Without Project- PM Peak

Impact Analysis Report Level Of Service

Intersection	Base Del/ V/	Future Del/ V/	Change in
# 1 Sepulveda Boulevard and Church	LOS Veh C D xxxxx 0.814	LOS Veh C D xxxxx 0.859	+ 0.045 V/C
# 2 Church Lane and San Diego Fwy	B xxxxx 0.697	C xxxxx 0.743	+ 0.046 V/C
# 3 Church Lane and Sunset Bouleva	D xxxxx 0.866	D xxxxx 0.880	+ 0.015 V/C
# 4 San Diego Fwy NB On/Off Ramps	A xxxxx 0.438	A xxxxx 0.466	+ 0.027 V/C
# 5 Veteran Avenue and Sunset Boul	D xxxxx 0.849	E xxxxx 0.936	+ 0.087 V/C
# 6 Bellagio Way and Sunset Boulev	F xxxxx 1.018	F xxxxx 1.056	+ 0.038 V/C
# 7 Westwood Bouevard and Sunset B	A xxxxx 0.585	A xxxxx 0.593	+ 0.008 V/C
# 8 Stone Canyon Road and Sunset B	D xxxxx 0.816	D xxxxx 0.824	+ 0.008 V/C
# 9 Hilgard Avenue/Copa De Oro Roa	D xxxxx 0.881	E xxxxx 0.946	+ 0.065 V/C
# 10 Beverly Glen Boulevard and Sun	F xxxxx 1.126	F xxxxx 1.171	+ 0.045 V/C
# 11 Beverly Glen Boulevard and Sun	F xxxxx 1.238	F xxxxx 1.312	+ 0.074 V/C
# 12 Sepulveda Boulevard and San Di	B xxxxx 0.636	B xxxxx 0.660	+ 0.024 V/C
# 13 Sepulveda Boulevard and Montan	C xxxxx 0.789	D xxxxx 0.806	+ 0.017 V/C
# 14 Levering Avenue and Montana Av	F 66.6 0.000	F 96.7 0.000	+30.114 D/V
# 15 Veteran Avenue and Montana Ave	F xxxxx 1.001	F xxxxx 1.056	+ 0.055 V/C
# 16 Galey Avenue and Strathmore Pl	B xxxxx 0.686	B xxxxx 0.686	+ 0.000 V/C
# 17 Veteran Avenue and Levering Av	В ххххх 0.699	D xxxxx 0.820	+ 0.121 V/C
# 18 Hilgard Avenue and Wyton Drive	A xxxxx 0.494	A xxxxx 0.515	+ 0.020 V/C
# 19 Beverly Glen Blvd and Wyton Dr	C xxxxx 0.706	C xxxxx 0.744	+ 0.038 V/C
# 20 Hilgard Avenue and Westholme A	A xxxxx 0.494	A xxxxx 0.515	+ 0.021 V/C
# 21 Hilgard Avenue and Manning Ave	A xxxxx 0.338	A xxxxx 0.361	+ 0.022 V/C
# 22 Gayley Avenue and Le Conte Ave	B xxxxx 0.655	B xxxxx 0.681	+ 0.026 V/C
# 23 Westwood Boulevard and Le Cont	C xxxxx 0.796	E xxxxx 0.961	+ 0.166 V/C

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future 2013 Without Project- PM Peak

Intersection Base Future Change Del/ V/ Del/ V/
LOS Veh C LOS Veh C # 24 Tiverton Drive and Le Conte Av A xxxxx 0.572 A xxxxx 0.515 -0.057 V/C # 25 Hilgard Avenue and Le Conte Av A xxxxx 0.539 B xxxxx 0.635 + 0.096 V/C # 26 Gayley Avenue and Weyburn Aven C xxxxx 0.709 C xxxxx 0.797 + 0.087 V/C # 27 Westwood Boulevard and Weyburn E xxxxx 0.976 F xxxxx 1.347 + 0.371 V/C # 28 Tiverton Drvie and Weyburn Ave B 10.2 0.382 C 24.2 0.890 + 0.508 V/C # 29 Hilgard Avenue and Weyburn Ave B xxxxx 0.676 C xxxxx 0.733 + 0.057 V/C # 30 Westwood Boulevard and Kinross E xxxxx 0.971 F xxxxx 1.336 + 0.365 V/C # 31 Westwood Boulevard and Lindbro A xxxxx 0.562 C xxxxx 0.766 + 0.204 V/C # 32 Glendon/Tiverton/Lindbrook B xxxxx 0.609 B xxxxx 0.606 -0.003 V/C # 33 Sepulveda Boulevard and Consti D xxxxx 0.800 D xxxxx 0.811 + 0.010 V/C # 34 San Vicente Bouevard and Wilsh D xxxxx 0.879 E xxxxx 0.961 + 0.081 V/C # 35 Sepulveda Boulevard and Wilshi F xxxxx 1.164 F xxxxx 1.387 + 0.222 V/C # 36 Veteran Avenue and Wilshire Bo F xxxxx 1.646 F xxxxx 1.830 + 0.184 V/C # 37 Gayley Avenue and Wilshire Bou F xxxxx 1.253 F xxxxx 1.496 + 0.243 V/C # 38 Westwood Boulevard and Wilshir E xxxxx 0.970 F xxxxx 1.291 + 0.321 V/C # 39 Glendon Avenue and Wilshire Bo E xxxxx 0.910 F xxxxx 1.031 + 0.120 V/C # 40 Malcolm Avenue and Wilshire Bo F 579.4 0.000 F OVRFL 0.000 + 1.8E+0308 # 41 Westholme Avenue and Wilshire C xxxxx 0.769 D xxxxx 0.883 + 0.114 V/C # 42 Warner Avenue and Wilshire Bou B xxxxx 0.601 C xxxxx 0.707 + 0.106 V/C # 43 Beverly Glen Boulevard and Wil C xxxxx 0.766 E xxxxx 0.912 + 0.146 V/C # 44 Sawtelle Boulevard and Ohio Av $\,$ E xxxxx 0.920 $\,$ E xxxxx 0.932 $\,$ + 0.012 $\,$ V/C # 45 Sepulveda Boulevard and Ohio A D xxxxx 0.892 E xxxxx 0.925 + 0.033 V/C # 46 Veteran Avenue and Ohio Avenue D xxxxx 0.882 E xxxxx 0.908 + 0.026 V/C # 47 Westwood Boulevard and Ohio Av C xxxxx 0.769 D xxxxx 0.864 + 0.095 V/C # 48 Sawtelle Boulevard and Santa M F xxxxx 1.527 F xxxxx 1.608 + 0.080 V/C

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future 2013 Without Project- PM Peak

Future Without Project PM PMon Jul 21, 2008 18:48:42

Intersection		Future Del/ V/ LOS Veh C	Change in
# 49 San Diego Fwy SB Ramps and San	F xxxxx 1.083	F xxxxx 1.123	+ 0.040 V/C
# 50 San Diego Fwy NB Ramps and San	F xxxxx 1.061	F xxxxx 1.140	+ 0.079 V/C
# 51 Sepulveda Boulevard and Santa	F xxxxx 1.411	F xxxxx 1.466	+ 0.055 V/C
# 52 Veteran Avenue and Santa Monic	E xxxxx 0.992	F xxxxx 1.064	+ 0.072 V/C
# 53 Westwood Boulevard and Santa M	F xxxxx 1.044	F xxxxx 1.143	+ 0.100 V/C
# 54 Mulholland Drive and Roscomare	C xxxxx 0.756	C xxxxx 0.776	+ 0.020 V/C
# 55 Roscomare Road and Stradella R	B 10.6 0.525	B 11.1 0.561	+ 0.037 V/C
# 56 Bellagio Road and Chalon Road	B 14.2 0.691	C 15.3 0.729	+ 0.038 V/C
# 57 Beverly Glen Boulevard and Mul	F xxxxx 1.041	F xxxxx 1.082	+ 0.040 V/C
# 58 Beverly Glen Boulevard and Gre	F xxxxx 1.046	F xxxxx 1.075	+ 0.029 V/C

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative)

Street Name: Sepulveda Boulevard Church Lane/Ovada Place Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R T. - T - R Control: Permitted Permitted Split Phase Split Phase Rights: Include Include Include Include
 Rights:
 Include
 Include
 Include
 Include
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 Lanes: 0 1 2 0 1 0 1 0 1 0 1 0 1! 0 0 1 0 0 1 0 Volume Module: >> Count Date: 14 Feb 2008 << 445-545 Base Vol: 4 1621 226 3 879 365 558 102 18 65 96 7 Initial Bse: 4 1702 237 3 923 383 586 107 19 68 101 7 Added Vol: Λ PasserByVol: 0 0 0 0 0 Ω 0 0 Ω Ω Ω Ω Initial Fut: 4 1838 237 3 982 433 603 107 19 68 101

Capacity Analysis Module:
Vol/Sat: 0.07 0.44 0.17 0.49 0.50 0.50 0.28 0.28 0.28 0.05 0.08 0.08
Crit Volume: 4 717 395 108
Crit Moves: **** **** ****

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

Los Angeles, CA Future 2013 Without Project- PM Peak ______ Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) ************************* Intersection #2 Church Lane and San Diego Fwy SB On/Off Ramp ************************ Cycle (sec): 100 Critical Vol./Cap.(X): 0.743 Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/veh): xxxxxx Optimal Cycle: 72 Level Of Service: Street Name: Church Lane San Diego Fwy SB On/Off Ramps Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - F T. - T - R Control: Permitted Permitted Split Phase Split Phase Rights: Ignore Include Include Include
 Rights:
 Ignore
 Include
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 Lanes: 0 1 1 0 2 1 0 1 1 0 0 0 1! 0 0 1 0 1! 0 0 Volume Module: >> Count Date: 14 Feb 2008 << 500-600 Base Vol: 6 636 249 96 456 0 5 3 9 900 1 26 Initial Bse: 6 668 261 101 479 0 5 3 9 945 1 27 Added Vol: 0 17 0 20 30 0 0 0 0 68 0 0 PasserByVol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 Initial Fut: 6 685 261 121 509 0 5 3 9 1013 1 27 PHF Volume: 6 685 0 121 509 0 5 3 9 1013 1 27 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 6 685 0 121 509 0 5 3 9 1013 1 27

FinalVolume: 13 685 0 121 509 0 5 3 9 1114 1 27

Lanes: 0.04 1.96 2.00 1.00 2.00 0.00 0.29 0.18 0.53 1.95 0.01 0.04

Final Sat.: 52 2798 2850 1425 2850 0 419 251 754 2779 3 68

Vol/Sat: 0.12 0.24 0.00 0.08 0.18 0.00 0.01 0.01 0.01 0.40 0.40 0.40

Crit Volume: 349 121 18 571
Crit Moves: **** **** ****

-----|----|-----|------|

Saturation Flow Module:

Capacity Analysis Module:

-----|

UCLA NHIP and Amended LRDP Traffic Study

Future Without Project PM PMon Jul 21, 2008 18:48:42

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future 2013 Without Project- PM Peak

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative)

************************* Intersection #3 Church Lane and Sunset Boulevard Cycle (sec): 100 Critical Vol./Cap.(X): 0.880 Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/veh): XXXXXX Optimal Cycle: 155 Level Of Service: D Street Name: Church Lane Sunset Boulevard

Approach: North Bound South Bound East Bound West Bound

Movement:	L ·				- T				- R	_	- Т	- R
Control: Rights:		lit Ph Inclu	ase '			nase		rotect		II		tted
Min. Green:	0	0	0	0	0	0	0	0	0	0	0	0
Lanes:	1 (1	1 0	1 1	1 0	0 2	2 (3	1 0	1 (2	0 1
Volume Module	: >>	Count	Date:	19 F€	eb 200)8 << 5	00-600)				
Base Vol:	126	39	77	532	92	717	407	1219	33	28	861	422
Growth Adj:	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05
Initial Bse:	132	41	81	559		753	427	1280	35	29	904	443
Added Vol:	0	0	0	78	0	20	17	0	0	0	1	0
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	0
Initial Fut:	132	41	81	637	97	773	444	1280	35	29	905	443
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Volume:	132	41	81	637	97	773	444	1280	35	29	905	443
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:	132	41	81	637	97	773	444	1280	35	29	905	443
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MLF Adj:	1.00	1.00	1.00	1.10	1.00	1.10	1.10	1.00	1.00	1.00	1.00	1.00
FinalVolume:	132	41	81	700	97	850	489	1280	35	29	905	443
Saturation Fl	Low Mo	odule:										
Sat/Lane:	1425	1425	1425	1425	1425	1425	1425	1425	1425	1425	1425	1425
Adjustment:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Lanes:	1.00	1.00	1.00	1.76	0.24	2.00	2.00	3.89	0.11	1.00	2.00	1.00

Final Sat.: 1425 1425 1425 2505 345 2850 2850 5550 150 1425 2850 1425

Capacity Analysis Module:

Crit Moves: ****

-----|----|-----||------|

Vol/Sat: 0.09 0.03 0.06 0.28 0.28 0.30 0.17 0.23 0.23 0.02 0.32 0.31

Crit Volume: 132 425 244 453
Crit Moyee: **** **** ****

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future 2013 Without Project- PM Peak ______ Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) ************************* Intersection #4 San Diego Fwy NB On/Off Ramps and Sunset Boulevard ************************** Cycle (sec): 100 Critical Vol./Cap.(X): 0.466 Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/veh): Optimal Cycle: 35 Level Of Service: xxxxxx Street Name: San Diego Fwy NB On/Off Ramps Sunset Boulevard Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R Control: Split Phase Split Phase Permitted Permitted
 Rights:
 Include
 Include
 Ovl
 Ignore

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 Lanes: 1 0 0 0 1 0 0 0 0 0 0 0 2 0 2 0 0 3 0 1 -----|----|-----|------| Volume Module: >> Count Date: 14 Feb 2008 << 500-600 Base Vol: 97 0 83 0 0 0 996 870 0 1220 0 Initial Bse: 102 0 87 0 0 0 1046 914 0 1281 0 Added Vol: 0 0 0 0 0 0 0 78 0 0 69 PasserByVol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1114 914 0 1350 Ω Ω PHF Volume: 102 0 87 0 0 0 1124 914 0 1350 0 Ω 0 1350 Ω MLF Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.10 1.00 1.00 0.00 FinalVolume: 102 0 87 0 0 0 1124 1005 0 1350 0 -----| Saturation Flow Module: Final Sat.: 1425 0 1425 0 0 0 0 2850 2850 0 4275 1425 -----| Capacity Analysis Module: Vol/Sat: 0.07 0.00 0.06 0.00 0.00 0.00 0.09 0.35 0.00 0.32 0.00 Crit Volume: 102 0 562 0

Future Without Project PM PMon Jul 21, 2008 18:48:42

Crit Moves: ****

Level Of Service Computation Report

Circular 212 Planning Method (Future Volume Alternative)

Intersection #5 Veteran Avenue and Sunset Boulevard									
Cvcle (sec):	100	Critic	cal Vol./Cap.(X):	0.936					
Loss Time (sec):	0 (Y+F	2=4 0 sec) Averag	ge Delay (sec/veh)	: xxxxxx					
Optimal Cycle:	180	Level	Of Service:	F.					
********	*******	*********	Of Service:	******					
Street Name:				oulevard					
			East Bound						
Movement: I	- T - R	I. = T = R	L - T - R	I T - R					
			Permitted						
Rights:	Ovl	Include	Include	Include					
Min Green:	0 0 0	0 0 0	Include 0 0 0	0 0 0					
Lanes: 1	0 0 0 1	0 0 0 0 0	0 0 1 1 0	1 0 2 0 0					
				1					
Volume Module: >	> Count Date:	19 Feb 2008 << !	500-600	1					
Base Vol: 37		0 0 0	0 859 151	274 1347 0					
		1.05 1.05 1.05							
Initial Bse: 39		0 0 0		288 1414 0					
		0 0 0		26 10 0					
Initial Fut: 45	1 0 439	0 0 0	0 0 0 0 912 227	314 1424 0					
User Adi: 1.0	0 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00						
PHF Adj: 1.0		1.00 1.00 1.00		1.00 1.00 1.00					
PHF Volume: 45		0 0 0		314 1424 0					
Reduct Vol:	0 0 0	0 0 0	0 0 0	0 0 0					
Reduced Vol: 45	1 0 439	0 0 0	0 912 227	314 1424 0					
PCE Adi: 1.0		1.00 1.00 1.00		1.00 1.00 1.00					
MLF Adj: 1.0		1.00 1.00 1.00							
			0 912 227						
Saturation Flow		1	' '						
Sat/Lane: 142	5 1425 1425	1425 1425 1425	1425 1425 1425	1425 1425 1425					
Adjustment: 1.0	0 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00					
Lanes: 1.0	0 0.00 1.00	0.00 0.00 0.00	0.00 1.60 0.40	1.00 2.00 0.00					
Final Sat.: 142	5 0 1425	0 0 0	0 2283 567	1425 2850 0					
		1							
Capacity Analysi	s Module:	1	1	1					
		0.00 0.00 0.00	0.00 0.40 0.40	0.22 0.50 0.00					
Crit Volume: 45		0		314					
Crit Moves: ***		•	***						
CIIC MOVED.									

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

Los Angeles, CA Future 2013 Without Project- PM Peak Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) ******************* Intersection #6 Bellagio Way and Sunset Boulevard ***************** Cycle (sec): 100 Critical Vol./Cap.(X): 1.056 Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/veh): xxxxxx Optimal Cycle: 180 Level Of Service: Street Name: Bellagio Way Sunset Boulevard Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R Control: Split Phase Split Phase Prot+Permit Permitted
 Rights:
 Include
 Include
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0 Lanes: 1 1 0 0 1 0 1 0 0 1 1 0 1 1 0 1 1 0 -----|----|-----|------| Volume Module: >> Count Date: 19 Feb 2008 << 500-600 Base Vol: 261 96 30 55 6 136 333 856 82 15 1233 112 Initial Bse: 274 101 32 58 6 143 350 899 86 16 1295 118 Added Vol: 0 0 0 8 0 21 20 13 0 0 15 7 PasserByVol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 17 Initial Fut: 274 101 32 66 6 164 370 912 86 16 1310 125 PHF Volume: 274 101 32 66 6 164 370 912 86 16 1310 125 FinalVolume: 301 101 32 66 6 164 370 912 86 16 1310 125 -----|-----||-------| Saturation Flow Module: Lanes: 1.50 0.50 1.00 0.91 0.09 1.00 1.00 1.83 0.17 1.00 1.83 0.17 Final Sat.: 2061 689 1375 1255 120 1375 1375 2513 237 1375 2511 239 -----| Capacity Analysis Module: Vol/Sat: 0.15 0.15 0.02 0.05 0.05 0.12 0.27 0.36 0.36 0.01 0.52 0.52 Crit Volume: 201 164 370 717
Crit Moyes: **** **** **** ****

UCLA NHIP and Amended LRDP Traffic Study

Future Without Project PM PMon Jul 21, 2008 18:48:42

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative)

************************* Intersection #7 Westwood Bouevard and Sunset Boulevard ************************** 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): xxxxxx Optimal Cycle: 180 Level Of Service: Street Name: Westwood Boulevard Sunset Boulevard Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R T. - T - R Control: Split Phase Split Phase Permitted Protected Rights: Include Include Ovl Include
Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: Volume Module: >> Count Date: 14 Feb 2008 << 500-600 Base Vol: 195 0 191 0 0 0 0 870 94 46 1206 0 Added Vol: 0 0 0 0 0 0 0 21 0 0 22 0 PasserByVol: 0 0 Ο Ω Ω 0 0 0 Ω 0 0 Ω Initial Fut: 205 0 201 0 0 0 935 99 48 1288 0 PHF Volume: 205 0 201 0 0 0 935 99 48 1288 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 935 99 48 1288 0 0 0 Ω Reduced Vol: 205 0 201 Ω FinalVolume: 225 0 201 0 0 0 0 935 99 48 1288 0 -----|----||-----| Saturation Flow Module: Final Sat.: 2850 0 1425 0 0 0 0 2850 1425 1425 2850 0 -----|----||-----| Capacity Analysis Module: Vol/Sat: 0.08 0.00 0.14 0.00 0.00 0.00 0.03 0.07 0.03 0.45 0.00

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA. LONG BEACH. CA

Crit Volume: 201 0 467 644
Crit Moyes: ****

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future 2013 Without Project- PM Peak Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) ************************* Intersection #8 Stone Canyon Road and Sunset Boulevard ********************** Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/veh): xxxxxx Optimal Cycle: 129 Level Of Service: Street Name: Stone Canyon Sunset Boulevard Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - F T. - T - R -----|-----|------| Control: Split Phase Split Phase Protected Protected Rights: Include Ovl Toppe Technology
 Rights:
 Include
 Ovl
 Ignore
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 Lanes: 1 0 1! 0 0 0 0 1! 0 0 1 0 2 0 1 1 0 1 1 0 Volume Module: >> Count Date: 26 Feb 2008 << 400-500 Base Vol: 139 0 130 62 0 101 119 1213 124 158 978 22 Initial Bse: 146 0 137 65 0 106 125 1274 130 166 1027 23 PHF Volume: 146 0 137 65 0 106 125 1295 0 166 1049 23 PCE Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00 FinalVolume: 161 0 137 65 0 106 125 1295 0 166 1049 23 Saturation Flow Module: Lanes: 1.08 xxxx 0.92 0.38 0.00 0.62 1.00 2.00 1.00 1.00 1.96 0.04 Final Sat.: 1486 0 1264 523 0 852 1375 2750 1375 1375 2691 59 -----|----|-----|------| Capacity Analysis Module: Vol/Sat: 0.11 0.00 0.11 0.12 0.00 0.12 0.09 0.47 0.00 0.12 0.39 0.39 Crit Volume: 149 171 647 166 Crit Moves: **** **** ****

Future Without Project PM PMon Jul 21, 2008 18:48:42

Saturation Flow Module:

Capacity Analysis Module:

Crit Moves: ****

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) *******************

Intersection #9 Hilgard Avenue/Copa De Oro Road and Sunset Boulevard ************************* Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/veh): xxxxxx Optimal Cycle: 180 Level Of Service: ************************ Street Name: Hilgard Avenue/Copa De Oro Road Sunset Boulevard Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R Control: Split Phase Split Phase Protected Protected Rights: Ovl Include Include Include
Min. Green: 0 0 0 0 0 0 0 0 0 0 0 Lanes: 1 0 1! 0 1 0 0 1! 0 0 1 0 1 1 0 1 1 0 Volume Module: >> Count Date: 19 Feb 2008 << 415-515 Base Vol: 260 33 364 35 69 20 3 1145 120 158 871 7 Initial Bse: 273 35 382 37 72 21 3 1202 126 166 915 7 Added Vol: 7 0 55 0 0 0 0 13 8 56 15 PasserByVol: 0 0 0 0 0 0 0 0 0 0 0 0 Initial Fut: 280 35 437 37 72 21 3 1215 134 222 930 PHF Volume: 280 35 437 37 72 21 3 1215 134 222 930 0 FinalVolume: 308 35 481 37 72 21 3 1215 134 222 930 7 ------|

Lanes: 1.12 0.13 1.75 0.28 0.56 0.16 1.00 1.80 0.20 1.00 1.98 0.02 Final Sat.: 1543 174 2409 388 765 222 1375 2477 273 1375 2728 22 -----|

Vol/Sat: 0.20 0.20 0.20 0.09 0.09 0.09 0.00 0.49 0.49 0.16 0.34 0.34 Crit Volume: 275 130 675 222

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

				Los	s Ange	l LRDP eles, C Proje	'A		•			
			evel 0	f Ser	vice (Computa	tion I	 Report	 :	. ,		
*********									ternat		****	******
Intersection	#10	Beverl	y Glen	Boule	evard	and Su	ınset I	Boulev	ard			
Cycle (sec): Loss Time (sec) Optimal Cycle	ec):	18	0		sec)	Averag Level	e Dela Of Sei	ay (se		:		F
Street Name:			ly Gle						ınset B			
Approach:	No	rth Bo	und	Son	ath Bo	ound	Ea	ast Bo	ound	We	est B	ound
Movement:	L	- T	- R	L ·	- T	- R	. L -	- T	- R	L -	- Т	- R
Control:		lit Dh			lit Di				ted:	Dr.		
Rights:			e e	Sp.	Incl	idse ide			ide	PIC	Incl	
Min. Green:	0	191101	0	0	0	.αe Λ	0		0	0		
Lanes:	1	0 1	0 1	0 (0 1!	0 0	1 () 1	1 0	1 () 1	1 0
Volume Module	e: >>	Count	Date:	19 F	eb 200	08 << 5	00-600)				
Base Vol:				104		19			60			
Growth Adj:								1.05		1.05		
Initial Bse:							0	1350	63 0	408 28		
Added Vol: PasserByVol:	0	0	0	0	0	0		0			71	-
Initial Fut:					71	20		1418		-	1079	-
User Adi:						1.00		1.00			1.00	
PHF Adj:				1.00		1.00		1.00			1.00	
PHF Volume:		175	0	109		20		1418	63		1079	
Reduct Vol:	0	0	0	0	0	0	0	0	0	0		
Reduced Vol:	233	175	0	109	71	20	17	1418	63	436	1079	83
PCE Adj:	1.00	1.00	0.00			1.00	1.00	1.00	1.00	1.00	1.00	1.00
MLF Adj:		1.00			1.00	1.00		1.00			1.00	
FinalVolume:					71		. 17				1079	
Saturation F		oau1e: 1375		1 2 7 5	1375	1075	1 275	1375	1375	1 275	1375	1375
Sat/Lane: Adjustment:									1.00		1.00	
Lanes:			1.00			0.10		1.00			1.86	
Final Sat.:						137		2633			2554	
Capacity Ana	lysis	Modul	e: '						'			'
Vol/Sat:		0.13	0.00	0.15	0.15				0.54		0.42	0.42
Crit Volume:						201		741		436		
Crit Moves:	****					****		****		****		

Future Without Project PM PMon Jul 21, 2008 18:48:42

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative)

************************ Intersection #11 Beverly Glen Boulevard and Sunset Boulevard (East I/S) *******************

Cycle (sec): 100 Critical Vol./Cap.(X): 1.312

Cycle (sec).		10	U			CLICIC	ar vo.	./caj	9.(A).		1	512	
Loss Time (se	ec):		0 (Y+R	=4.0 s	sec)	Averag	re Dela	ay (se	ec/veh)	:	XXXX	XXX	
Loss Time (se Optimal Cycle	≘:	18	0			Level	Of Sea	rvice	:			F	
******	****	*****	*****	*****	*****	*****	****	****	*****	****	*****	*****	
Street Name: Approach: Movement:		Bever	ly Gle	n Boul	levard	ì	Sur	nset 1	Bouleva	rd (Ea	ast I	/S)	
Approach:	No	rth Bo	und	Sou	ith Bo	ound	Εá	ast B	ound	We	est Bo	ound	
Movement:	L ·	- T	- R	L -	- T	- R	L -	- Т	- R	L -	- T	- R	
Control:	Sp.	lit Ph	ase	Sp.	Lit Ph	ıase	Pro	ot+Pe:	rmit	1	Permit	tted	
Rights:		Inclu	de		Inclu	ıde		Incl	ude		Ignor	re	
Min. Green:	0	0	0	0	0	0	0	0	0	0	0	0	
Rights: Min. Green: Lanes:	0 (0 0	0 0	0 1	L 0	1 0	1 (2	0 0	0 (2	0 1	
Volume Module	: >>	Count	Date:	19 Fe	eb 200)8 << 4	15-519	5					
Base Vol:	0	0	0	115	0	364	862	1226	0				
Growth Adj:	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	
Initial Bse:	0	0	0	121	0	382	905	1287	0	0	953	132	
Added Vol:	0	0	0	3	0	41	36	89	0				
PasserByVol:	0	0	0	0	0	0	0	0	0			0	
Initial Fut:	0	0	0	124	0	423	941	1376	0	0	1011	133	
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	
PHF Volume:									0				
Reduct Vol:													
Reduced Vol:	0	0	0	124	0	423	941	1376	0	0	1011	0	
PCE Adj:													
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	
FinalVolume:													
Saturation Fl	low Mo	odule:											
Sat/Lane:	1425	1425	1425	1425	1425	1425	1425	1425	1425	1425	1425	1425	
Adjustment:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Lanes:								2.00	0.00	0.00	2.00	1.00	
Final Sat.:	0	0	0	645	780	1425	1425	2850	0	0	2850	1425	
Capacity Anal									'				
Vol/Sat:	0.00	0.00	0.00	0.19	0.00	0.30	0.66	0.48	0.00	0.00	0.35	0.00	
Crit Volume:							941				506		
						de de de de	also also also also				also also also also		

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

Crit Moves:

**** ****

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future 2013 Without Project- PM Peak Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) ******************* Intersection #12 Sepulveda Boulevard and San Diego Fwy NB Off-Ramp **************** Cycle (sec): 100 Critical Vol./Cap.(X): 0.660 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): xxxxxx Optimal Cycle: 55 Level Of Service: Street Name: Sepulveda Boulevard San Diego Fwy NB Off-Ramp Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Permitted Permitted Split Phase Split Phase Include Include Include Include Control: Rights: Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 0 0 2 0 0 0 0 2 0 0 1 0 1! 0 0 0 0 0 Volume Module: >> Count Date: 13 Feb 2008 << 415-515 Base Vol: 0 1601 0 0 855 0 92 0 25 0 0 0 Initial Bse: 0 1681 0 0 898 0 97 0 26 0 0 0 Ω PHF Volume: 0 1712 0 0 932 0 131 0 26 0 0 0 0 FinalVolume: 0 1712 0 0 932 0 144 0 26 0 0 0 -----| Saturation Flow Module: Lanes: 0.00 2.00 0.00 0.00 2.00 0.00 1.69 0.00 0.31 0.00 0.00 0.00 Final Sat.: 0 2850 0 0 2850 0 2410 0 440 0 0 -----| Capacity Analysis Module:

Future Without Project PM PMon Jul 21, 2008 18:48:42

Crit Volume: 856 0 85 0 Crit Moves: **** ****

Level Of Service Computation Report														
### The process of th														
Intersection #13 Sepulveda Boulevard and Montana Avenue **********************************														
Cycle (sec): 100										*****	****	*****		
Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/veh): xxxxxx Optimal Cycle: 180										*****	****	*****	*****	
Optimal Cycle:														
Street Name: Sepulveda Boulevard South Bound East Bound West Bound Movement: L - T - R					=4.0	sec)					:	XXXX		
Street Name: Approach: North Bound South Bound East Bound West Bound Movement: L - T - R														
Approach: North Bound		****						****					:****	
Movement: L - T - R R L - T - R L - T - R L - T - R L - T - R L - T - R R L - T - R L		No						F:					nund	
Control: Prot+Permit														
Rights:														
Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Control:	Pro	ot+Per	mit .	. 1	Permi	tted	. 1	Permi	tted	. 1	ermit?	ted	
Lanes: 1 0 2 0 1 1 0 1 1 0 0 0 0 1! 0 0 0 1 0 1 0 1	3													
Volume Module: >> Count Date: 13 Feb 2008 < 430-530 Base Vol: 127 1404 117 56 629 15 3 91 114 161 189 254 Growth Adj: 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05		-		-	-	-		-	-	-	-	-		
Volume Module: >> Count Date: 13 Feb 2008 << 430-530														
Base Vol: 127 1404 117 56 629 15 3 91 114 161 189 254 Growth Adj: 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05														
Growth Adj: 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05										114	161	189	254	
Initial Bse: 133 1474 123 59 660 16 3 96 120 169 198 267 Added Vol: 0 44 21 26 33 0 0 0 0 0 0 2 0 25 PasserByVol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0														
PasserByVol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0											169	198	267	
Initial Fut: 133 1518 144 85 693 16 3 96 120 171 198 292 User Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Added Vol:	0	44	21	26	33	0	0	0	0	2	0	25	
User Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	0	
PHF Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Initial Fut:	133	1518	144	85	693	16	3	96	120	171	198	292	
PHF Volume: 133 1518 144 85 693 16 3 96 120 171 198 292 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 133 1518 144 85 693 16 3 96 120 171 198 292 PCE Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0														
Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0														
Reduced Vol: 133 1518 144 85 693 16 3 96 120 171 198 292 PCE Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0														
PCE Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0				-	-	-		-	-	-	-	-	-	
MLF Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0								-						
FinalVolume: 133 1518 144 85 693 16 3 96 120 171 198 292														
Saturation Flow Module: Sat/Lane: 1425 1425 1425 1425 1425 1425 1425 1425														
Saturation Flow Module: Sat/Lane: 1425 1425 1425 1425 1425 1425 1425 1425														
Adjustment: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0					1		1	1		1	1		'	
Lanes: 1.00 2.00 1.00 1.00 1.96 0.04 0.01 0.44 0.55 0.52 0.60 0.88 Final Sat.: 1425 2850 1425 1425 2787 63 21 623 781 737 855 1257	Sat/Lane:	1425	1425	1425	1425	1425	1425	1425	1425	1425	1425	1425	1425	
Final Sat.: 1425 2850 1425 1425 2787 63 21 623 781 737 855 1257	Adjustment:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Capacity Analysis Module: Vol/Sat: 0.09 0.53 0.10 0.06 0.25 0.25 0.15 0.15 0.15 0.23 0.23 0.23	Lanes:	1.00	2.00	1.00	1.00	1.96	0.04	0.01	0.44	0.55	0.52	0.60	0.88	
Capacity Analysis Module: Vol/Sat: 0.09 0.53 0.10 0.06 0.25 0.25 0.15 0.15 0.15 0.23 0.23 0.23											737	855	1257	
Vol/Sat: 0.09 0.53 0.10 0.06 0.25 0.25 0.15 0.15 0.15 0.23 0.23 0.23		ı												
					0 06	0 05	0.05	0 15	0 15	0.15	0 22	0 22	0 22	
		0.09		0.10	0.06		0.∠5	0.15		0.15		∪.∠3	∪.∠3	
Crit Moves: **** ****						202								

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future 2013 Without Project- PM Peak

Future Without Project PM PMon Jul 21, 2008 18:48:42

Level Of Service Computation Report 2000 HCM Unsignalized Method (Future Volume Alternative) ************************* Intersection #14 Levering Avenue and Montana Avenue ********************** Average Delay (sec/veh): 21.9 Worst Case Level Of Service: F[96.7] **************************** Street Name: Levering Avenue Montana Avenue East Bound Approach: North Bound South Bound East Bound Movement: L - T - R L - T - R West Bound L - T - R -----|-----|------| Control: Stop Sign Stop Sign Uncontrolled Uncontrolled Include Include Include Include Rights: Volume Module: >> Count Date: 7 Feb 2008 << 500-600 Base Vol: 253 0 8 0 0 0 0 322 106 1 506 Initial Bse: 266 0 8 0 0 0 0 338 111 1 531 0 Added Vol: 27 0 0 0 0 0 0 0 47 PasserByVol: 0 0 0 0 0 0 0 0 0 0 0 0 1 Initial Fut: 293 0 8 0 0 0 0 338 158 0 0 0 0 0 1 531 Ω PHF Volume: 293 0 8 0 0 0 0 338 158 1 531 0 Ω 0 Critical Gap Module: FollowUpTim: 3.5 4.0 3.3 xxxxx xxxx xxxxx xxxxx xxxxx xxxxx 2.2 xxxx xxxxx -----|----|------| Capacity Module: Potent Cap.: 291 262 640 xxxx xxxx xxxxx xxxxx xxxxx xxxxx 1078 xxxx xxxxx Move Cap.: 291 262 640 xxxx xxxx xxxxx xxxx xxxx xxxxx 1078 xxxx xxxxx -----|----|-----| Level Of Service Module: SharedQueue:xxxxx 11.0 xxxxx xxxxx xxxx xxxxx xxxxx xxxxx 0.0 xxxx xxxxx 8.3 xxxx xxxxx Shared LOS: * F * * * * * * * * * * * * * * ApproachDel: 96.7 xxxxxx xxxxxx A * xxxxxx ApproachLOS: F ____

Note: Queue reported is the number of cars per lane. *****************************

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) *************************

Intersection #15 Veteran Avenue and Montana Avenue/Galey Avenue ********************* Cycle (sec): 100 Critical Vol./Cap.(X): 1.056

Loss Time (se Optimal Cycle	ec):	18	0 (Y+R: 0 *****	=4.0 s	sec)	Average Level	e Dela Of Sei	ay (se	ec/veh) : *****	:	XXXX	CXX F
Street Name: Approach: Movement:	No:	V rth Bo - T	eteran und - R 	Avent Sot L	ie ith Bo - T	ound - R	Mor Ea L	ntana ast Bo - T	Avenue ound - R	/Galey We L -	Aver est Bo T	nue ound - R
Control: Rights: Min. Green: Lanes:	1	Permit	ted	1	Permit	ted	1	Permit	ted	ı E	ermit	ted
Rights:		Inclu	de		Incl	ıde		Incl	ıde		Inclu	ıde
Min. Green:	0	0	0	0	0	0	0	0	0	0	0	0
Lanes:	0	0 1!	0 0	0 (1!	0 0	0 (1!	0 0	0 0) 1!	0 0
Volume Module	e: >>	Count	Date:	13 Fe	eb 200	08 << 5	00-600)				
Base Vol:	54	452	26	58	294	49	115	158	52	22	419	284
Growth Adj:	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05
Initial Bse:	57	475	27	61	309	51	121	166	55	23	440	298
Added Vol:	0	82	0	0	94	0	0	0	0	0	0	0
PasserByVol:						0	0				0	0
Initial Fut:	57	557	27	61	403	51	121	166	55	23	440	298
User Adj:			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	1.00		1.00		1.00	1.00		1.00			1.00	
PHF Volume:	57	557			403	51			55	23	440	298
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:	57	557	27	61	403	51	121	166	55	23	440	298
PCE Adj:	1.00	1.00	1.00			1.00						
MLF Adj:	1.00	1.00	1.00									
FinalVolume:												
Saturation F												
Sat/Lane:				1500	1500	1500	1 5 0 0	1500	1500	1500	1500	1500
Adjustment:						1.00						
Lanes:						0.10						
Final Sat.:												
Capacity Anal	ysis	Modul	e:			·						
Vol/Sat:	0.43	0.43	0.43	0.34	0.34	0.34	0.23					0.51
Crit Volume: Crit Moves:		641		61			121				761	
Crit Moves:		****		****			****					

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future 2013 Without Project- PM Peak Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) ************************* Intersection #16 Galey Avenue and Strathmore Place ****************** Cycle (sec): 100 Critical Vol./Cap.(X): 0.686 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/Optimal Cycle: 59 Level Of Service: xxxxxx Street Name: Galey Avenue Strathmore Place Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R Control: Permitted Prot+Permit Permitted Permitted Rights: Include Include Include Ovl Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Volume Module: >> Count Date: 19 Feb 2008 << 445-545 Base Vol: 22 363 171 121 156 13 8 102 18 319 152 336 Initial Bse: 23 381 180 127 164 14 8 107 19 335 160 353 Initial Fut: 23 381 180 127 164 14 8 107 19 335 160 353 PHF Volume: 23 381 180 127 164 14 8 107 19 335 160 353 FinalVolume: 23 381 180 127 164 14 8 107 19 335 160 353 -----|----|-----||------| Saturation Flow Module: Lanes: 1.00 1.00 1.00 1.00 1.85 0.15 0.06 0.80 0.14 1.00 1.00 1.00 Final Sat.: 1425 1425 1425 1425 2631 219 89 1136 200 1425 1425 1425 -----| Capacity Analysis Module: Vol/Sat: 0.02 0.27 0.13 0.09 0.06 0.06 0.09 0.09 0.09 0.24 0.11 0.25

Future Without Project PM PMon Jul 21, 2008 18:48:42

Crit Volume: 381 127 134 335 Crit Moves: **** **** ****

rucure 2013 Wichout Floject- FM Feak

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative)

************************* Intersection #17 Veteran Avenue and Levering Avenue ************************ 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): XXXXXX Optimal Cycle: 80 Level Of Service: D Street Name: Veteran Avenue Levering Avenue Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R T. - T - R Control: Permitted Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 Lanes: 0 0 1! 0 0 0 0 1! 0 0 0 0 1 0 0 0 1! 0 0 Volume Module: >> Count Date: 13 Feb 2008 << 500-600 Base Vol: 174 547 40 22 351 5 0 41 83 52 96 68 Initial Bse: 183 574 42 23 369 5 0 43 87 55 101 71 Added Vol: 14 40 15 41 53 0 0 31 16 16 13 42 PasserByVol: 0 0 0 Ω Ω 0 0 0 Ω Ω Ω Ω Initial Fut: 197 614 57 64 422 5 0 74 103 71 114 113 PHF Volume: 197 614 57 64 422 5 0 74 103 71 114 113 Reduct Vol: 0 0 0 0 0 0 Reduced Vol: 197 614 57 64 422 0 0 0 0 0 0 0 0 5 0 74 103 71 114 113 FinalVolume: 197 614 57 64 422 5 0 74 103 71 114 113 -----|-----| Saturation Flow Module: Lanes: 0.23 0.71 0.06 0.13 0.86 0.01 0.00 0.42 0.58 0.24 0.38 0.38 Final Sat.: 340 1062 98 196 1288 16 0 627 873 356 573 571 -----|----|----| Capacity Analysis Module: Vol/Sat: 0.58 0.58 0.58 0.33 0.33 0.33 0.00 0.12 0.12 0.20 0.20 0.20

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

Crit Volume: 868 64 0 298
Crit Moves: **** **** ****

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future 2013 Without Project- PM Peak Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) ************************* Intersection #18 Hilgard Avenue and Wyton Drive ************************** Cycle (sec): 100 Critical Vol./Cap.(X): 0.515 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/ve Optimal Cycle: 30 Level Of Service: xxxxxx Street Name: Hilgard Avenue Wyton Drive Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - F T. - T - R Control: Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 1 0 1 1 0 1 0 2 0 1 1 0 1 0 1 0 0 1! 0 0 Volume Module: >> Count Date: 30 Jan 2008 << 430-530 Base Vol: 117 623 43 33 374 23 50 110 320 20 26 12 Initial Bse: 123 654 45 35 393 24 53 116 336 21 27 13 Added Vol: 0 61 0 0 64 0 0 0 0 0 0 0 0 0 0 0 PasserByVol: 0 0 0 0 0 0 0 0 0 0 0 0 0 Initial Fut: 123 715 45 35 457 24 53 116 336 21 27 13 PHF Volume: 123 715 45 35 457 24 53 116 336 21 27 13 FinalVolume: 123 715 45 35 457 24 53 116 336 21 27 13 -----|-----||-------| Saturation Flow Module: Lanes: 1.00 1.88 0.12 1.00 2.00 1.00 1.00 1.00 0.34 0.45 0.21 Final Sat.: 1500 2822 178 1500 3000 1500 1500 1500 517 672 310 -----|----|-----|------| Capacity Analysis Module: Vol/Sat: 0.08 0.25 0.25 0.02 0.15 0.02 0.04 0.08 0.22 0.04 0.04 0.04

Future Without Project PM PMon Jul 21, 2008 18:48:42

Crit Volume: 380 35 336 21 Crit Moves: **** **** **** UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future 2013 Without Project- PM Peak

> Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative)

t incl.]tion #19 Beverly Glen Blvd and Wyton Dr/Comstock Ave [5-Leg Intersection ************************** Cycle (sec): 100 Critical Vol./Cap.(X): 0.744 C

Street Name: Approach:										Aver	
Movement: I	- T	- R	L -	- T	- R	L ·	- T	- R	L -	- T	- R
Control:	Permi	tted	·	Permi	tted	. 1	Permi	tted	·	Permit	ted
Rights:											ıde
Min. Green:					0			0			0
Lanes: 1	0 1										
Volume Module:											
Base Vol:	25 727	14	28	458	11	19	31	26	46	66	123
Growth Adj: 1.	05 1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05
Initial Bse:	26 763	15	29	481	12	20	33	27	48	69	129
Added Vol:	0 57	0	0	28	0	0	0	0	0	0	0
PasserByVol:	0 0	0	0	0	0	0	0	0	0	0	0
Initial Fut:	26 820	15	29	509	12	20	33	27	48	69	129
User Adj: 1.	00 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj: 1.	00 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Volume:	26 820	15	29	509	12	20	33	27	48	69	129
Reduct Vol:	0 0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:			29	509	12	20	33	27	48	69	129
PCE Adj: 1.	00 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MLF Adj: 1.	00 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
FinalVolume:			29			20		27	48		129
Saturation Flow											
			1500				1500			1500	
Adjustment: 1.				1.00	1.00		1.00			1.00	
Lanes: 1.				1.00			0.41			0.28	0.52
Final Sat.: 15				1500		375				421	785
Capacity Analys			0 00	0 24	0 07	0 0-	0 0-	0 0-	0 10	0 10	0.16
Vol/Sat: 0.							0.05	0.05	0.16	0.16	
Crit Volume:	82U ****		29			20					247
Crit Moves:	***		***			***					***

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future 2013 Without Project- PM Peak Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) ************************* Intersection #20 Hilgard Avenue and Westholme Avenue ******************* Cycle (sec): 100 Critical Vol./Cap.(X): 0.515 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/vOptimal Cycle: 30 Level Of Service: xxxxxx Street Name: Hilgard Avenue Westholme Avenue Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R Control: Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 1 0 1 1 0 1 0 1 1 0 0 1 0 1 0 0 1! 0 0 Volume Module: >> Count Date: 30 Jan 2008 << 500-600 Base Vol: 97 561 31 72 537 39 195 231 150 27 51 47 Initial Bse: 102 589 33 76 564 41 205 243 158 28 54 49 Added Vol: 0 61 0 0 64 0 0 0 0 0 0 0 0 0 0 0 PasserByVol: 0 0 0 0 0 0 0 0 0 0 0 0 0 Initial Fut: 102 650 33 76 628 41 205 243 158 28 54 49 PHF Volume: 102 650 33 76 628 41 205 243 158 28 54 49 FinalVolume: 102 650 33 76 628 41 205 243 158 28 54 49 -----|-----||-------| Saturation Flow Module: Lanes: 1.00 1.90 0.10 1.00 1.88 0.12 0.68 0.80 0.52 0.21 0.41 0.38 Final Sat.: 1500 2857 143 1500 2816 184 1016 1203 781 324 612 564 -----| Capacity Analysis Module:

Future Without Project PM PMon Jul 21, 2008 18:48:42

Crit Volume: 102 334 205 131
Crit Moyee: **** **** ****

Crit Moves: ****

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative)

************************* Intersection #21 Hilgard Avenue and Manning Avenue ************************ Cycle (sec): 100 Critical Vol./Cap.(X): 0.361 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): xxxxxx Optimal Cycle: 29 Level Of Service: Street Name: Hilgard Avenue Manning Avenue Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R -----| Permitted Permitted Split Phase

Control:		Permit	tea		Permi	ttea	Sp.	IIC P.	nase	Sp.	LIC PI	nase
Rights:		Incl	ıde		Incl	ıde		Incl	ude		Incl	ude
Min. Green:	0	0	0	0	0	0	0	0	0	0	0	0
Lanes:	0	0 1	1 0	1 (0 2	0 0	0	0 0	0 0	0 (1!	0 0
Volume Modul	e: >>	Count	Date:	30 Ja	an 200	08 << 4	145-54	5				
Base Vol:	0	628	8	64	852	0	0	0	0	10	0	23
Growth Adj:	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05
Initial Bse:	0	659	8	67	895	0	0	0	0	11	0	24
Added Vol:	0	61	0	0	64	0	0	0	0	0	0	0
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	0
Initial Fut:	0	720	8	67	959	0	0	0	0	11	0	24
Jser Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Volume:	0	720	8	67	959	0	0	0	0	11	0	24
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:	0	720	8	67	959	0	0	0	0	11	0	24
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
FinalVolume:	0	720	8	67	959	0	0	0	0	11	0	24
Saturation F	low M	odule:										
Sat/Lane:	1425	1425	1425	1425	1425	1425	1425	1425	1425	1425	1425	1425

Lanes: 0.00 1.98 0.02 1.00 2.00 0.00 0.00 0.00 0.00 0.30 0.00 0.70 Final Sat.: 0 2817 33 1425 2850 0 0 0 432 0 993 -----|----|----||------|

Vol/Sat: 0.00 0.26 0.26 0.05 0.34 0.00 0.00 0.00 0.00 0.02 0.00 0.02

Crit Volume: 0 479 0 35
Crit Moves: **** ****

Capacity Analysis Module:

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future 2013 Without Project- PM Peak Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) ************************* Intersection #22 Gayley Avenue and Le Conte Avenue ****************** Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/veh): xxxxxx Optimal Cycle: 45 Level Of Service: Street Name: Gayley Avenue Le Conte Avenue Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R Control: Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Volume Module: >> Count Date: 30 Jan 2008 << 500-600 Base Vol: 61 400 204 190 1037 35 14 127 12 200 300 157 Initial Bse: 64 420 214 200 1089 37 15 133 13 210 315 165 Added Vol: 0 0 3 0 0 0 0 40 0 3 63 0 #25 Int: 0 34 -72 -73 73 0 0 -73 73 -34 -34 -34 Initial Fut: 64 454 145 127 1162 37 15 100 86 179 344 131 PHF Volume: 64 454 145 127 1162 37 15 100 86 179 344 131 FinalVolume: 64 454 145 127 1162 37 15 100 86 179 344 131 -----|-----|------| Saturation Flow Module: Lanes: 1.00 1.52 0.48 1.00 1.94 0.06 1.00 0.54 0.46 1.00 1.00 1.00 Final Sat.: 1500 2273 727 1500 2908 92 1500 809 691 1500 1500 1500 -----| Capacity Analysis Module: Vol/Sat: 0.04 0.20 0.20 0.08 0.40 0.40 0.01 0.12 0.12 0.12 0.23 0.09

Future Without Project PM PMon Jul 21, 2008 18:48:43

Crit Volume: 64 599 15 344

Crit Moves: ****

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative)

************************* Intersection #23 Westwood Boulevard and Le Conte Avenue ************************ Cycle (sec): 100 Critical Vol./Cap.(X): 0.961 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): xxxxxx Optimal Cycle: 180 Level Of Service: Street Name: Westwood Boulevard Le Conte Avenue Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R

Control:	' I	Permit	ted	· 1	ermi	tted		Permi	tted '	Pro	t+Per	rmit '
Rights:		Ovl			Incl	ıde		Incl	ude		Incl	ıde
Min. Green:	0	0	0	0	0	0	0	0	0	0	0	0
Lanes:	1	0 2	0 1	1	2	0 1	1 (0 1	1 0	1 () 1	0 1
Volume Module	: : >>	Count	Date:	30 Ja	an 20	08 << 5	00-60)				
Base Vol:	100	329	153	103	448	212	90	409	102	162	396	62
Growth Adj:	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05
Initial Bse:	105	345	161	108	470	223	94	429	107	170	416	65
Added Vol:	178	0	6	0	0	0	0	23	226	6	18	0
#25:	0	0	0	0	0	0	0	-218	0	0	-102	0
Initial Fut:	283	345	167	108	470	223	94	234	333	176	332	65
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Volume:	283	345	167	108	470	223	94	234	333	176	332	65
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:	283	345	167	108	470	223	94	234	333	176	332	65
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
FinalVolume:	283	345	167	108	470	223	94	234	333	176	332	65
Saturation Fl	Low Mo	odule:										
Sat/Lane:	1425	1425	1425	1425	1425	1425	1425	1425	1425	1425	1425	1425

Final Sat.: 1069 2138 1069 1069 2138 1069 1069 1069 1069 1069 1069 1069

Vol/Sat: 0.26 0.16 0.16 0.10 0.22 0.21 0.09 0.22 0.31 0.16 0.31 0.06

Crit Volume: 283 235 333 176

Capacity Analysis Module:

Crit Moves: ****

-----|

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future 2013 Without Project- PM Peak Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) ************************* Intersection #24 Tiverton Drive and Le Conte Avenue ************************ Cycle (sec): 100 Critical Vol./Cap.(X): 0.515 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/vOptimal Cycle: 30 Level Of Service: xxxxxx Street Name: Tiverton Drive Le Conte Avenue Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R Control: Permitted Permitted Permitted Rights: Include Include Include Ignore Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Volume Module: >> Count Date: 30 Jan 2008 << 445-545 Base Vol: 35 68 41 92 80 194 128 484 130 22 453 39 Initial Bse: 37 71 43 97 84 204 134 508 137 23 476 41 Added Vol: 0 0 0 0 0 0 0 0 22 0 0 17 #25 Int: 0 0 0 0 0 0 0 0 -218 0 0 -102 Ω Initial Fut: 37 71 43 97 84 204 134 312 137 23 391 41 PHF Volume: 37 71 43 97 84 204 134 312 137 23 391 0 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 37 71 43 97 84 204 134 312 137 23 391 FinalVolume: 37 71 43 97 84 204 134 312 137 23 391 0 -----|----||------| Saturation Flow Module: Lanes: 0.24 0.48 0.28 0.53 0.47 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Final Sat.: 365 708 427 802 698 1500 1500 1500 1500 1500 1500 1500

Future Without Project PM PMon Jul 21, 2008 18:48:43

-----|----|-----|------|

Vol/Sat: 0.10 0.10 0.10 0.12 0.12 0.14 0.09 0.21 0.09 0.02 0.26 0.00 Crit Volume: 151 97 134 391
Crit Moves: **** **** ****

Capacity Analysis Module:

Saturation Flow Module:

Capacity Analysis Module:

Future 2013 Without Project- PM Peak

Level Of Service Computation Report

Circular 212 Planning Method (Future Volume Alternative) ************************ Intersection #25 Hilgard Avenue and Le Conte Avenue ************************ Cycle (sec): 100 Critical Vol./Cap.(X): 0.635 Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/veh): xxxxxx Optimal Cycle: 51 Level Of Service: Street Name: Hilgard Avenue Le Conte Avenue Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R Control: Permitted Permitted Split Phase Split Phase Rights: Include Include Include Include
 Rights:
 Include
 Include
 Include
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0 Lanes: 1 0 0 1 0 1 0 1 0 1 2 0 0 0 1 1 0 0 0 1 Volume Module: >> Count Date: 30 Jan 2008 << 445-545 Base Vol: 56 286 10 25 470 368 322 0 81 10 0 28 Initial Bse: 59 300 11 26 493 386 338 0 85 11 0 29 Initial Fut: 59 339 229 26 539 403 360 0 85 113 0 29 PHF Volume: 59 339 229 26 539 403 360 0 85 113 0 29 FinalVolume: 59 339 229 26 539 403 396 0 85 113 0 29 -----||-----||-----|

Lanes: 1.00 0.60 0.40 1.00 1.00 1.00 2.00 0.00 1.00 1.00 0.00 1.00 Final Sat.: 1425 852 573 1425 1425 1425 2850 0 1425 1425 0 1425 -----|----|-----|------|

Vol/Sat: 0.04 0.40 0.40 0.02 0.38 0.28 0.14 0.00 0.06 0.08 0.00 0.02 Crit Volume: 568 26 198 113 Crit Moves: *** *** *** ***

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

			ture 2	Lo: 013 W:	s Ange ithout	l LRDP eles, C Proje	A ct- P	M Peak	-					
a	· · · · · · · · · · · · · · · · · · ·		evel 0	f Ser	vice 0	Computa	tion	Report	ternat	:>				
********											****	*****		
Intersection	#26 (Gayley	Avenu	e and	Weybu	ırn Ave	nue							
Cycle (sec): Loss Time (sec) Optimal Cycle	ec): e:	10 7 *****	0 (Y+R 1	=4.0	sec)	Averag Level	e Del Of Se	ay (se rvice:	o.(X): ec/veh)	:	XXX	xxx C		
Street Name:			ayley						Veyburn					
Approach:	No	rth Bo	und	Soi	ith Bo	und	E	ast Bo	ound	We	est B	ound		
Approach: Movement:	L ·	- T	- R	L	- T	- R	L	- T	- R	L -	- T	- R		
Control:	. 1	Permit	ted	. 1	Permit	ted		Permit	ted	·	ermi	tted		
Rights:	ts: Include Include Include Include													
Min. Green:				0		0	0	0	0	0	0	0		
Lanes:			1 0			1 0	0	1 0	1 0	1 (0 (1 0		
Volume Module														
Base Vol:	E. 22	40E	Date.	62	044	281	000	166	2.2	110	166	88		
Growth Adj:								1.05		1.05				
Initial Bse:								174						
Added Vol:							0		0					
#25 Int:	0	0	72	146	0			0				34		
Initial Fut:	62	528	412	224	999	295	92	240	34	220	254	139		
User Adj:				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		
PHF Volume:			412	224	999	295	92	240	34	220	254	139		
Reduct Vol:				0		0		0	0		0			
Reduced Vol:						295	92			220				
PCE Adj:			1.00			1.00		1.00						
MLF Adj:			1.00		1.00			1.00		1.00				
FinalVolume:			412		999	295		240	34		254			
Saturation F	1													
Sat/Lane:				1500	1500	1500	1500	1500	1500	1500	1500	1500		
Adjustment:														
Lanes:			0.88			0.46		1.18						
Final Sat.:	1500	1684	1316	1500		684			220		969	531		
Capacity Ana														
Vol/Sat:		0.31	0.31	0.15	0.43				0.15	0.15	0.26			
Crit Volume:						647	92 ****					394		
Crit Moves:						****	****					****		

Future Without Project PM PMon Jul 21, 2008 18:48:43

16.2

1.00

16.2

Future 2013 Without Project- PM Peak

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) *************************

Intersection #27 Westwood Boulevard and Weyburn Avenue ************************* Cycle (sec): 100 Critical Vol./Cap.(X): 1.347 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): xxxxxx Optimal Cycle: 180 Level Of Service: Street Name: Westwood Boulevard Weyburn Avenue Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R T. - T - R Control: Permitted Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 Lanes: 1 0 1 1 0 0 1 1 0 1 0 1 0 1 0 0 1! 0 0 Volume Module: >> Count Date: 31 Jan 2008 << 500-600 Base Vol: 146 646 110 40 666 100 79 144 137 96 219 48 Initial Bse: 153 678 116 42 699 105 83 151 144 101 230 50 0 Added Vol: 20 184 174 0 232 0 0 39 16 151 44 #25 Int: 0 0 0 0 0 0 0 218 0 0 102 Ω Initial Fut: 173 862 290 42 931 105 83 408 160 252 376 5.0 PHF Volume: 173 862 290 42 931 105 83 408 160 252 376 50 Ω 5.0 PCE Adj: 1.00 1.00 1.00 4.00 1.00 1.00 2.00 1.00 1.00 1.00 1.00 FinalVolume: 173 862 290 168 931 105 166 408 160 252 376 50 Saturation Flow Module: Tapes: 1.00 1.50 0.50 0.40 1.60 1.00 0.29 1.27 0.44 0.37 0.56 0.07 Final Sat.: 1125 1684 566 446 1804 1125 329 1431 490 418 624 84 -----| Capacity Analysis Module: Vol/Sat: 0.15 0.51 0.51 0.09 0.52 0.09 0.25 0.29 0.33 0.60 0.60 0.60 Crit Volume: 173 581 83 678
Crit Moves: **** **** **** Crit Moves: ****

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA. LONG BEACH. CA

Future 2013 Without Project- PM Peak Level Of Service Computation Report 2000 HCM 4-Way Stop Method (Future Volume Alternative) ************************ Intersection #28 Tiverton Drvie and Weyburn Avenue ************************ Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/veh): Optimal Cycle: 0 Level Of Service: 24.2 Street Name: Tiverton Drive Weyburn Avenue Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - F T. - T - R Control: Stop Sign Stop Sign Stop Sign Rights: Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 0 0 1! 0 0 0 0 1! 0 0 0 0 1! 0 0 0 0 1! 0 0 -----|----|-----|------| Volume Module: >> Count Date: 6 Feb 2008 << 500-600 Base Vol: 22 61 45 99 0 162 67 169 1 1 95 31 Initial Bse: 23 64 47 104 0 170 70 177 1 1 100 33 Added Vol: 0 0 0 0 0 0 78 0 0 89 #25 Int: 0 0 0 0 0 0 0 218 0 0 102 Ω #25 Int: Initial Fut: 23 64 47 104 0 170 70 473 1 1 291 33 PHF Volume: 23 64 47 104 0 170 70 473 1 1 291 33 Ω 1 291 33

FinalVolume: 23 64 47 104 0 170 70 473 1 1 291 33 -----|----||------|

Lanes: 0.17 0.48 0.35 0.37 0.01 0.62 0.13 0.86 0.01 0.01 0.89 0.10

Final Sat.: 81 225 166 201 0 330 79 532 1 2 499 56 -----|-----|-----|

Vol/Sat: 0.28 0.28 0.28 0.52 0.00 0.52 0.89 0.89 0.89 0.58 0.58 0.58

Delay/Veh: 12.1 12.1 12.1 15.0 15.0 15.0 36.6 36.6 36.6 16.2 16.2 16.2

AdjDel/Veh: 12.1 12.1 12.1 15.0 15.0 15.0 36.6 36.6 36.6 16.2 16.2 16.2 LOS by Move: B B B B B E E C C

1.00

36.6

Saturation Flow Module:

Capacity Analysis Module:

Crit Moves:

Delay Adj:

ApprAdjDel:

LOS by Appr:

UCLA NHIP and Amended LRDP Traffic Study

Los Angeles, CA

Future Without Project PM PMon Jul 21, 2008 18:48:43

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

1.00

В AllwayAvg0: 0.3 0.3 0.3 0.8 0.8 0.8 4.7 4.7 4.7 1.1 1.1 1.1

ApproachDel: 12.1 15.0 36.6
Pelay Adi: 1.00 1.00 1.00

12.1 15.0

1.00

В

Future Without Project PM PMor	Jul 21, 2008 18:48:43	Page 33-2
	and Amended LRDP Traffic Los Angeles, CA	-
Future 2	013 Without Project- PM P	eak
Note: Queue reported is the no		

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

Future Without Project PM PMon Jul 21, 2008 18:48:43

Page 34-1

UCLA NHIP and Amended LRDP Traffic Study
Los Angeles, CA
Future 2013 Without Project- PM Peak

Level Of Service Computation Report
Circular 212 Planning Method (Future Volume Alternative)

Approach:	No:	rth Bo	und	Sot	uth Bo	und	Ea	ast Bo	ound	We	st B	ound
Approach: Movement:	L ·	- T	- R	L -	- T	- R	L ·	- T	- R	L -	Т	- R
Control:		Dormit			Dormit	+				[i+ D	
Diahta:		Tnalu	do	,	Tral	do	ap.	Inal.	ido	SPI	Inal	ido
Min Green	0	IIICIU	ue ^	0	111010	iue ^	0	THET	aue o	0	THET	aue ^
Rights: Min. Green: Lanes:	1 0	2 0	1 0	1 (n 1	0 1	1 /	٠ ،	1 0	0 0	1 1	0 0
Lanes.	, + '	J 0	1 0	1 ,	J I	0 1	1 1	J U	1 0	1 0 0	1:	0 0
Volume Module	1	Count	Date:	6 Fel	2008		1					
Base Vol:	10	2/12	21	0 161	5 Z000	. \\ 50	-000	0.0	167	1 2	26	20
Growth Adj:												
Initial Bse:												21
Added Vol:	21	_1	1	۰,	201	46	40	30	1/5	T-4	43	
#25 Int:	0	0	0	0	0	102	218	0	0	0	42	0
Initial Fut:	5.1	350	22	27	561	201	316	142	175	1.4	Ω1	21
User Adj:	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1.00
PHF Adj:	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1.00	1 00	1 00	1.00
PHF Volume:												
Reduct Vol:												
Reduced Vol:												
PCE Adj:												
MLF Adj:												
FinalVolume:												
Saturation F				'						'		,
Sat/Lane:												
Adjustment:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Lanes:												
Final Sat.:												
Capacity Anal	lysis	Modul	e:									
Vol/Sat:												
Crit Volume:					561			317			115	
Crit Moves:	****				****			****			****	

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative)

Control:	I	Permit	ted	I	Permit	tted	I	Permit	ted	I	ermit	ted
Rights:		Inclu	de		Incl	ıde		Incli	ıde		Incl	ıde
Min. Green:	0	0	0	0	0	0	0	0	0	0	0	0
Lanes:	1 (1	0 1	0 1	1 1	1 0	0 1	L 0	1 0	1 (0 (1 0
-												
Volume Module:	: >>	Count	Date:	31 Ja	an 200	08 << 5	00-600)				
Base Vol:	78	739	34	37	744	118	96	215	94	16	128	40
Growth Adj: 1	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05
Initial Bse:	82	776	36	39	781	124	101	226	99	17	134	42
Added Vol:	74	372	14	1	397	0	0	1	42	64	5	6
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	0
Initial Fut:	156	1148	50	40	1178	124	101	227	141	81	139	48
User Adj: 1	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj: 1	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Volume:	156	1148	50	40	1178	124	101	227	141	81	139	48
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:	156	1148	50	40	1178	124	101	227	141	81	139	48
PCE Adj: 1	1.00	1.00	1.00	6.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MLF Adj: 1	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
FinalVolume:	156	1148	50	239	1178	124	101	227	141	81	139	48
-												
Saturation Flo	ow Mo	odule:										
Sat/Lane: 1	1500	1500	1500	1500	1500	1500	1500	1500	1500	1500	1500	1500

Lanes: 1.00 1.00 1.00 0.76 2.00 0.24 0.43 0.97 0.60 1.00 0.74 0.26

Final Sat.: 1125 1125 1125 855 2248 271 484 1090 676 1125 837 288

Capacity Analysis Module:

-----|----|-----|------|

Vol/Sat: 0.14 1.02 0.04 0.05 0.52 0.46 0.21 0.21 0.21 0.07 0.17 0.17

Crit Volume: 1148 40 234 81 Crit Moves: **** ****

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future 2013 Without Project- PM Peak Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) ************************* Intersection #31 Westwood Boulevard and Lindbrook Drive ******************** Cycle (sec): 100 Critical Vol./Cap.(X): 0.766 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): xxxxxx Optimal Cycle: 62 Level Of Service: Street Name: Westwood Bouelvard Lindbrook Drive Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - F L - T - R Control: Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Volume Module: >> Count Date: 31 Jan 2008 << 500-600 Base Vol: 1 711 173 28 815 15 30 130 54 89 242 42 Initial Bse: 1 747 182 29 856 16 32 137 57 93 254 44 Added Vol: 0 460 0 0 502 0 0 0 0 -2 0 0 PasserByVol: 0 0 0 0 0 0 0 0 0 0 Initial Fut: 1 1207 182 29 1358 16 32 137 57 91 254 44 PHF Volume: 1 1207 182 29 1358 16 32 137 57 91 254 44 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 1 1207 182 29 1358 16 32 137 57 91 254 44 FinalVolume: 6 1207 182 176 1358 16 32 137 57 91 254 44 -----|-----||-------| Saturation Flow Module: Lanes: 0.01 1.99 1.00 0.48 2.49 0.03 0.28 1.22 0.50 0.47 1.30 0.23 Final Sat.: 12 2238 1125 537 2804 34 315 1367 568 528 1467 255 -----|----|-----|------| Capacity Analysis Module: Vol/Sat: 0.09 0.54 0.16 0.05 0.48 0.46 0.10 0.10 0.10 0.17 0.17 0.17

Future Without Project PM PMon Jul 21, 2008 18:48:43

Crit Volume: 606 29 32 195 Crit Moyes: **** **** **** *************************

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative)

Intersection #32 Glendon/Tiverton/Lindbrook *******************

Capacity Analysis Module:

Crit Moves:

0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec):

XXXXXX Optimal Cycle: 37 Level Of Service: В Street Name: Glendon Avenue/Tiverton Avenue Lindbrook Drive Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R Control: Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Volume Module: >> Count Date: 6 Feb 2008 << 445-545 Base Vol: 30 125 184 36 124 153 31 224 18 395 257 53 Initial Bse: 32 131 193 38 130 161 33 235 19 415 270 56 0 Added Vol: 0 3 1 0 14 0 0 0 0 -6 -2 PasserBvVol: 0 0 0 0 0 0 0 0 0 0 PasserByVol: Ω Initial Fut: 32 134 194 38 144 161 33 235 19 409 268 56 PHF Volume: 32 134 194 38 144 161 33 235 19 409 268 56 Ω 56 FinalVolume: 32 134 194 38 144 161 65 235 19 409 268 56 -----| Saturation Flow Module: Lanes: 1.00 1.00 1.00 1.00 2.00 1.00 0.12 0.88 1.00 1.00 0.85 0.15

Final Sat.: 1500 1500 1500 1500 3000 1500 182 1318 1500 1500 1272 228 -----|----|-----|------|

Vol/Sat: 0.02 0.09 0.13 0.03 0.05 0.11 0.18 0.18 0.01 0.27 0.21 0.24

Crit Volume: 194 38 268 409
Crit Moves: **** **** ****

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA. LONG BEACH. CA

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future 2013 Without Project- PM Peak ______ Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) ************************* Intersection #33 Sepulveda Boulevard and Constitution Avenue *********************** 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): xxxxxx Optimal Cycle: 76 Level Of Service: Street Name: Sepulveda Boulevard Constitution Avenue Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - F T. - T - R Control: Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 1 0 1 1 0 1 0 1 1 0 0 0 1! 0 0 0 1! 0 0 Volume Module: >> Count Date: 13 Feb 2008 << 415-515 Base Vol: 19 1039 2 4 824 100 531 2 76 10 5 5 Initial Bse: 20 1091 2 4 865 105 558 2 80 11 5 5 PHF Volume: 20 1122 2 4 899 105 558 2 80 11 5 5 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 20 1122 2 4 899 105 558 2 80 11 5 FinalVolume: 20 1122 2 4 899 105 558 2 80 11 5 5 -----|-----| Saturation Flow Module: Lanes: 1.00 1.99 0.01 1.00 1.79 0.21 0.87 0.01 0.12 0.50 0.25 0.25 Final Sat.: 1500 2994 6 1500 2686 314 1308 5 187 750 375 375

Future Without Project PM PMon Jul 21, 2008 18:48:43

-----|

Vol/Sat: 0.01 0.37 0.37 0.00 0.33 0.33 0.43 0.43 0.43 0.01 0.01 0.01

Crit Volume: 562 4 639 11
Crit Moves: **** **** ****

Capacity Analysis Module:

Approach:

Capacity Analysis Module:

Crit Moves:

West Bound

Future 2013 Without Project- PM Peak

North Bound South Bound

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative)

************************* Intersection #34 San Vicente Bouevard and Wilshire Bouelvard ************************ Cycle (sec): 100 Critical Vol./Cap.(X): 0.961

0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): XXXXXX Optimal Cycle: 180 Level Of Service: Street Name: San Vicente Bouevard Wilshire Bouelvard

East Bound

Movement: L	- T	- R	L ·	- Т	- R	L ·	- T	- R	L ·	- T	- R
Control: S	plit Ph	nase	Sp.	lit Ph	nase]	Permi	tted	P	rotect	ed
Rights:	Ovl			Incl	ıde		Incl	ude		Ignor	re
Min. Green:	0 0	0	0	0	0	0	0	0	0	0	0
Lanes: 1	0 2	0 1	2	1 0	1 0	1 (2	1 0	1 (3	0 1
Volume Module: >							5				
	5 371	230	1066	321	47	10	984		126	1718	788
Growth Adj: 1.0		1.05	1.05	1.05	1.05		1.05	1.05		1.05	1.05
Initial Bse: 10		242	1119	337	49	11	1033	21	132	1804	827
	0 50	5	117	47	6	13	208		7	204	119
PasserByVol:	0 0	0	0	0	0	0	0	0	0	0	0
Initial Fut: 11		247	1236	384	55		1241	44		2008	946
	0 1.00	1.00	1.00		1.00		1.00			1.00	0.00
	0 1.00	1.00	1.00		1.00		1.00	1.00		1.00	0.00
PHF Volume: 11	0 440	247	1236	384	55	24	1241	44	139	2008	0
Reduct Vol:	0 0	0	0	0	0	0	0	0	0	0	0
Reduced Vol: 11		247	1236	384	55		1241			2008	0
	0 1.00	1.00		1.00	1.00		1.00			1.00	0.00
	0 1.00	1.00		1.00	1.00		1.00	1.00		1.00	0.00
FinalVolume: 11	0 440	247	1360	384	55	24	1241	44	139	2008	0
Saturation Flow											
	5 1425	1425		1425	1425		1425	1425		1425	1425
Adjustment: 1.0	0 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

Lanes: 1.00 2.00 1.00 3.00 0.87 0.13 1.00 2.90 0.10 1.00 3.00 1.00 Final Sat.: 1425 2850 1425 4275 1245 180 1425 4129 146 1425 4275 1425

Vol/Sat: 0.08 0.15 0.17 0.32 0.31 0.31 0.02 0.30 0.30 0.10 0.47 0.00

Crit Volume: 247 453 428 669
Crit Moves: **** ****

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future 2013 Without Project- PM Peak Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) ************************* Intersection #35 Sepulveda Boulevard and Wilshire Boulevard ******************** 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): xxxxxx Optimal Cycle: 180 Level Of Service: Street Name: Sepulveda Boulevard Wilshire Boulevard Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - F T. - T - R Control: Protected Protected Protected Protected Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 1 0 1 1 0 1 0 1 1 0 1 0 3 1 0 2 0 4 1 0 Volume Module: >> Count Date: 21 Feb 2008 << 500-600 Initial Bse: 129 583 272 113 457 137 147 1929 41 305 2395 177 Added Vol: 6 12 45 13 12 10 8 650 7 43 703 11 PasserByVol: 0 0 0 0 0 0 0 0 0 0 0 0 Initial Fut: 135 595 317 126 469 147 155 2579 48 348 3098 188 PHF Volume: 135 595 317 126 469 147 155 2579 48 348 3098 188 FinalVolume: 135 595 317 126 469 147 155 2579 48 382 3098 188 -----|----|-----||------| Saturation Flow Module: Lanes: 1.00 1.30 0.70 1.00 1.52 0.48 1.00 3.93 0.07 2.00 4.71 0.29 Final Sat.: 1031 1345 717 1031 1571 491 1031 4050 75 2063 4861 296 -----|----|-----|------| Capacity Analysis Module: Vol/Sat: 0.13 0.44 0.44 0.12 0.30 0.30 0.15 0.64 0.64 0.19 0.64 0.64 Crit Volume: 456 126 657 191 Crit Moves: **** **** ****

Future Without Project PM PMon Jul 21, 2008 18:48:43

Saturation Flow Module:

Capacity Analysis Module:

Crit Moves: ****

Level Of Service Computation Report

Circular 212 Planning Method (Future Volume Alternative) ************************* Intersection #36 Veteran Avenue and Wilshire Boulevard ************************** 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): xxxxxx Optimal Cycle: 180 Level Of Service: Street Name: Veteran Avenue Wilshire Boulevard Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R T. - T - R Control: Prot+Permit Permitted Protected Protected Rights: Ovl Ovl Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 1 0 2 0 1 1 0 2 0 2 2 0 3 1 0 2 0 3 1 0 Volume Module: >> Count Date: 21 Feb 2008 << 500-600 Base Vol: 222 645 140 78 1022 1528 402 2072 46 42 2421 29 Initial Bse: 233 677 147 82 1073 1604 422 2176 48 44 2542 30 1 Added Vol: 4 4 22 1 2 14 11 693 4 16 739 PasserByVol: 0 0 0 0 0 0 0 0 0 0 Initial Fut: 237 681 169 83 1075 1618 433 2869 52 60 3281 31 PHF Volume: 237 681 169 83 1075 1618 433 2869 52 60 3281 31 0 3.1 FinalVolume: 237 681 169 83 1075 1780 476 2869 52 66 3281 31 -----|----|----||------|

Tages: 1.00 2.00 1.00 1.00 2.00 2.00 2.00 3.93 0.07 2.00 3.96 0.04

Final Sat.: 1069 2138 1069 1069 2138 2138 2138 4198 77 2138 4234 41

-----|----|-----|------|

Vol/Sat: 0.22 0.32 0.16 0.08 0.50 0.83 0.22 0.68 0.68 0.03 0.77 0.77

Crit Volume: 237 890 0 828

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA. LONG BEACH. CA

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future 2013 Without Project- PM Peak Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) ************************* Intersection #37 Gayley Avenue and Wilshire Boulevard ****************** Cycle (sec): 100 Critical Vol./Cap.(X): 1.496 Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/veh): xxxxxx Optimal Cycle: 180 Level Of Service: Street Name: Gayley Avenue Wilshire Boulevard Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - F T. - T - R -----|-----|------| Control: Prot+Permit Permitted Protected Permitted
Rights: Include Ovl Include Include
 Rights:
 Include
 Ovl
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 Lanes: 1 0 2 0 1 1 0 1 0 2 2 0 3 1 0 1 0 3 1 0 Volume Module: >> Count Date: 13 Feb 2008 << 500-600 Base Vol: 212 290 102 130 450 647 332 1840 92 38 1641 81 Initial Bse: 223 305 107 137 472 679 349 1932 97 40 1723 85 Added Vol: 0 0 0 21 0 110 169 547 0 0 646 23 PasserByVol: 0 0 0 0 0 0 0 0 0 0 0 Initial Fut: 223 305 107 158 472 789 518 2479 97 40 2369 108 PHF Volume: 223 305 107 158 472 789 518 2479 97 40 2369 108 MLF Adi: 1.00 1.00 1.00 1.00 1.00 1.10 1.10 1.00 1.00 1.00 1.00 1.00 FinalVolume: 223 305 107 158 472 868 569 2479 97 40 2369 108 -----|----||------| Saturation Flow Module: Lanes: 1.00 2.00 1.00 1.00 1.00 2.00 2.00 3.85 0.15 1.00 3.83 0.17 Final Sat.: 1069 2138 1069 1069 1069 2138 2138 4115 160 1069 4089 186 -----| Capacity Analysis Module: Vol/Sat: 0.21 0.14 0.10 0.15 0.44 0.41 0.27 0.60 0.60 0.04 0.58 0.58 Crit Volume: 223 472 285 619
Crit Moves: **** **** ****

Future Without Project PM PMon Jul 21, 2008 18:48:43

Crit Moves: ****

Level Of Service Computation Report
Circular 212 Planning Method (Future Volume Alternative)

Loss Time (sec): U (Y+R Optimal Cycle: 180													

Street Name:	reet Name: Westwood Boulevard Wilshire Boulevard												
Approach:	No	rth Bo	und	South Bound			Ea	ast B	ound	We	West Bound		
Movement:	L -	- T	- R	L -	- T	- R	L ·	- т	- R	L ·	- т	- R	
Control:	Prot+Permit			Prot+Permit			P	cotec	ted	Protected			
Rights:	Include 0 0 0			Ovl				Incl	ude	Include			
Min. Green:	0	0	0	0	0	0	0	0	0	0	0	0	
Lanes:	1 (1 0				
 Volume Module: >> Count Date: 7 Feb 2008 << 400-500													
Base Vol:	150	475	178	164	601	236	209	1685	237	164	1534	103	
Growth Adj:	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	
Initial Bse:	158	499	187	172	631	248	219	1769	249	172	1611	108	
Added Vol:	17	155	44	80	153	268	212	331	17	49	376	93	
PasserByVol:	0		0	0			0	0		0	0	0	
Initial Fut:			231	252	784	516	431	2100	266	221	1987	201	
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
PHF Volume:	175	654	231	252	784	516	431	2100	266	221	1987	201	
Reduct Vol:			0	0	0	0	0	0	0	0	0	0	
Reduced Vol:	175	654	231	252	784	516	431	2100	266	221	1987	201	
PCE Adj:	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.10	1.00	1.00	1.10	1.00	1.00	
FinalVolume:			231	252	784	516	475	2100	266	243	1987	201	
Saturation Flow Module:													
Sat/Lane:	1375	1375	1375	1375	1375	1375	1375	1375	1375	1375	1375	1375	
Adjustment:	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	
Lanes:	1.00	2.22	0.78	1.00	3.00	1.00	2.00	3.55	0.45	2.00	3.63	0.37	
Final Sat.:	1031	2286	807	1031	3094	1031	2063	3662	463	2063	3746	379	
Capacity Analysis Module:													
Vol/Sat:				0.24	0.25	0.50	0.23	0.57	0.57	0.12	0.53	0.53	

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

Crit Volume: 295 252 237 547 Crit Moves: **** **** ****

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future 2013 Without Project- PM Peak ______ Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) ************************* Intersection #39 Glendon Avenue and Wilshire Bouelvard ********************** Cycle (sec): 100 Critical Vol./Cap.(X): 1.031 Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/veh): xxxxxx Optimal Cycle: 180 Level Of Service: Street Name: Glendon Avenue Wilshire Bouelvard Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - F L - T - R Control: Permitted Permitted Protected Permitted Rights: Include Ovl Include Include
 Rights:
 Include
 Ovl
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 Lanes: 0 0 1! 0 0 1 0 1 0 2 2 0 3 1 0 1 0 3 1 0 Volume Module: >> Count Date: 7 Feb 2008 << 430-530 Base Vol: 57 205 46 130 271 109 117 1918 36 18 1483 81 Initial Bse: 60 215 48 137 285 114 123 2014 38 19 1557 85 Added Vol: 1 0 0 14 0 -6 1 454 1 0 523 3 PasserByVol: 0 0 0 0 0 0 0 0 0 0 0 0 Initial Fut: 61 215 48 151 285 108 124 2468 39 19 2080 88 PHF Volume: 61 215 48 151 285 108 124 2468 39 19 2080 88 MLF Adi: 1.00 1.00 1.00 1.00 1.00 1.10 1.10 1.00 1.00 1.00 1.00 1.00 FinalVolume: 61 215 48 151 285 119 136 2468 39 19 2080 88 -----|----||------| Saturation Flow Module: Lanes: 0.19 0.66 0.15 1.00 1.00 2.00 2.00 3.94 0.06 1.00 3.84 0.16 Final Sat.: 200 709 159 1069 1069 2138 2138 4209 66 1069 4101 174 -----|----|-----|------| Capacity Analysis Module: Vol/Sat: 0.30 0.30 0.30 0.14 0.27 0.06 0.06 0.59 0.59 0.02 0.51 0.51 Crit Volume: 324 151 627 542
Crit Moves: **** ****

Future Without Project PM PMon Jul 21, 2008 18:48:44

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA

Future 2013 Without Project- PM Peak

Level Of Service Computation Report 2000 HCM Unsignalized Method (Future Volume Alternative)

************************* Intersection #40 Malcolm Avenue and Wilshire Boulevard **************************

Average Delay (sec/veh): OVERFLOW Worst Case Level Of Service: F[xxxxx] ************************* Street Name: Malcolm Avenue Wilshire Boulevard Approach: North Bound South Bound East Bound Movement: L - T - R L - T - REast Bound West Bound L - T - R L - T - R Stop Sign Stop Sign Uncontrolled Uncontrolled
Include Include Include Include Control: Rights: Lanes: 0 0 1! 0 0 0 0 1! 0 0 1 0 2 1 0 1 0 2 1 0 ______ Volume Module: >> Count Date: 7 Feb 2008 << 415-515 Base Vol: 3 1 40 11 1 50 26 1984 57 16 1590 31 Initial Bse: 3 1 42 12 1 53 27 2083 60 17 1670 33 0 0 0 453 0 0 0 0 4 0 520 0 0 0 Added Vol: 6 0 0 36 43 0 76 PHF Adj: PHF Volume: 9 1 42 48 1 53 27 2536 64 17 2189 76 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 1 42 48 1 53 27 2536 64 17 2189 0 FinalVolume: 76 Critical Gap Module: Critical Gp: 7.5 6.5 6.9 7.5 6.5 6.9 4.1 xxxx xxxxx 4.1 xxxx xxxxx FollowUpTim: 3.5 4.0 3.3 3.5 4.0 3.3 2.2 xxxx xxxxx 2.2 xxxx xxxxx -----|----|------| Capacity Module: Cnflict Vol: 3387 4921 877 3161 4916 768 2265 xxxx xxxxx 2600 xxxx xxxxx Potent Cap.: 3 1 295 5 1 349 229 xxxx xxxxx 169 xxxx xxxxx Move Cap.: 0 1 295 0 1 349 229 xxxx xxxxx 169 xxxx xxxxx Volume/Cap: xxxx 1.94 0.14 xxxx 1.92 0.15 0.12 xxxx xxxx 0.10 xxxx xxxx Level Of Service Module: LOS by Move: * * * * * * * C * * D * * Movement: LT - LTR - RT LT - LTR - RT LT - LTR - RT LT - LTR - RT

Note: Queue reported is the number of cars per lane. *****************************

F

ApproachLOS:

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

F

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future 2013 Without Project- PM Peak Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) ************************ Intersection #41 Westholme Avenue and Wilshire Boulevard ******************** 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): xxxxxx Optimal Cycle: 159 Level Of Service: Street Name: Westholme Avenue Wilshire Boulevard Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - F T. - T - R Control: Permitted Permitted Protected Protected Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 0 0 1! 0 0 0 0 1! 0 0 1 0 3 0 1 1 0 2 1 0 Volume Module: >> Count Date: 21 Feb 2008 << 430-530 Base Vol: 44 74 54 93 217 11 37 1880 63 52 1566 120 Initial Bse: 46 78 57 98 228 12 39 1974 66 55 1644 126 Added Vol: 5 0 3 0 0 0 0 463 2 3 558 0 PasserByVol: 0 0 0 0 0 0 0 0 0 0 0 0 Initial Fut: 51 78 60 98 228 12 39 2437 68 58 2202 126 PHF Volume: 51 78 60 98 228 12 39 2437 68 58 2202 126 FinalVolume: 51 78 60 98 228 12 39 2437 68 58 2202 126 -----|-----||-------| Saturation Flow Module: Lanes: 0.27 0.41 0.32 0.29 0.68 0.03 1.00 3.00 1.00 1.00 2.84 0.16 Final Sat.: 387 587 451 413 963 49 1425 4275 1425 1425 4044 231 -----| Capacity Analysis Module: Vol/Sat: 0.13 0.13 0.13 0.24 0.24 0.24 0.03 0.57 0.05 0.04 0.54 0.54

Future Without Project PM PMon Jul 21, 2008 18:48:44

Crit Volume: 51 337 812 58
Crit Moves: **** **** ****

0 51

Future 2013 Without Project- PM Peak

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative)

************************* Intersection #42 Warner Avenue and Wilshire Boulevard ************************ 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): xxxxxx Optimal Cycle: 64 Level Of Service: Street Name: Warner Avenue Wilshire Boulevard Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R T. - T - R Control: Permitted Permitted Permitted Protected Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 1 0 1 0 1 1 0 0 1 0 1 0 2 1 0 1 0 2 1 0 Volume Module: >> Count Date: 21 Feb 2008 << 415-515 Base Vol: 36 23 32 85 65 42 33 1961 27 10 1726 49 Initial Bse: 38 24 34 89 68 44 35 2059 28 11 1812 51 0 Added Vol: PasserByVol: Ω Initial Fut: 38 24 34 89 68 44 35 2514 28 11 2370 51

FinalVolume: 38 24 34 89 68 44 35 2514 28 11 2370 51 -----| Saturation Flow Module: Lanes: 1.00 1.00 1.00 1.00 0.61 0.39 1.00 2.97 0.03 1.00 2.94 0.06 Final Sat.: 1425 1425 1425 1425 866 559 1425 4227 48 1425 4184 91 -----|----|-----|------| Capacity Analysis Module: Vol/Sat: 0.03 0.02 0.02 0.06 0.08 0.08 0.02 0.59 0.59 0.01 0.57 0.57 Crit Volume: 38 112 847 11
Crit Moves: **** **** **** Crit Moves: ****

PHF Volume: 38 24 34 89 68 44 35 2514 28 11 2370 51

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA. LONG BEACH. CA

Los Angeles, CA Future 2013 Without Project- PM Peak ______ Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) ************************ Intersection #43 Beverly Glen Boulevard and Wilshire Boulevard ****************** 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): xxxxxx Optimal Cycle: 180 Level Of Service: Street Name: Beverly Glen Boulevard Wilshire Boulevard Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - F T. - T - R Control: Prot+Permit Permitted Protected Protected Rights: Include Include Include Include Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 1 0 1 1 0 1 0 1 1 0 1 0 3 0 1 1 0 2 1 0 Volume Module: >> Count Date: 12 Feb 2008 << 430-530 Base Vol: 155 459 54 54 392 53 114 1684 261 101 1598 47 Initial Bse: 163 482 57 57 412 56 120 1768 274 106 1678 49 Added Vol: 13 5 53 37 -16 7 6 455 -13 22 534 46 PasserByVol: 0 0 0 0 0 0 0 0 0 0 0 Initial Fut: 176 487 110 94 396 63 126 2223 261 128 2212 95 PHF Volume: 176 487 110 94 396 63 126 2223 261 128 2212 95 FinalVolume: 176 487 110 94 396 63 126 2223 261 128 2212 95 -----|----|-----||------| Saturation Flow Module: Lanes: 1.00 1.63 0.37 1.00 1.73 0.27 1.00 3.00 1.00 1.00 2.88 0.12

UCLA NHIP and Amended LRDP Traffic Study

Future Without Project PM PMon Jul 21, 2008 18:48:44

Final Sat.: 1425 2326 524 1425 2460 390 1425 4275 1425 1425 4098 177

Vol/Sat: 0.12 0.21 0.21 0.07 0.16 0.16 0.09 0.52 0.18 0.09 0.54 0.54 Crit Volume: 176 229 126 769

Capacity Analysis Module:

Crit Moves: ****

-----|

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative)

************************* Intersection #44 Sawtelle Boulevard and Ohio Avenue ************************ 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): xxxxxx Optimal Cycle: 180 Level Of Service: E Street Name: Sawtelle Boulevard Ohio Avenue Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R Control: Permitted Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 Lanes: 0 0 1! 0 0 0 0 1! 0 0 1 0 0 1 0 0 1 0 Volume Module: >> Count Date: 13 Feb 2008 << 400-500 Base Vol: 56 89 93 74 437 120 53 436 31 94 524 50

Initial Fut:	60	93	98	78	459	126	56	476	34	99	567	53
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Volume:	60	93	98	78	459	126	56	476	34	99	567	53
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:	60	93	98	78	459	126	56	476	34	99	567	53
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
FinalVolume:	60	93	98	78	459	126	56	476	34	99	567	53
Saturation Flow Module:												
Sat/Lane:	1500	1500	1500	1500	1500	1500	1500	1500	1500	1500	1500	1500
Adjustment:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Lanes:	0.24	0.37	0.39	0.12	0.69	0.19	1.00	0.93	0.07	1.00	0.92	0.08
Final Sat.:	358	559	584	176	1039	285	1500	1401	99	1500	1373	127
Capacity Analysis Module:												

Vol/Sat: 0.17 0.17 0.17 0.44 0.44 0.44 0.04 0.34 0.34 0.07 0.41 0.41 Crit Volume: 60 663 56 620
Crit Moyee: **** **** ****

Crit Moves: ****

Initial Bse: 59 93 98 78 459 126 56 458 33 99 550 53

Added Vol: 1 0 0 0 0 0 0 18 1 0 17 0 PasserByVol: 0 0 0 0 0 0 0 0 0 0 0 0

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA. LONG BEACH. CA

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future 2013 Without Project- PM Peak ______ Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) ************************* Intersection #45 Sepulveda Boulevard and Ohio Avenue ******************** 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): xxxxxx Optimal Cycle: 180 Level Of Service: Street Name: Sepulveda Boulevard Ohio Avenue Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R Control: Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 1 0 1 1 0 1 0 1 1 0 1 0 0 1 0 1 0 0 1 0 Volume Module: >> Count Date: 13 Feb 2008 << 500-600 Base Vol: 145 659 127 114 848 197 94 397 43 68 477 36 Initial Bse: 152 692 133 120 890 207 99 417 45 71 501 38 Added Vol: 3 61 4 3 58 0 0 15 4 2 14 3 PasserByVol: 0 0 0 0 0 0 0 0 0 0 0 Initial Fut: 155 753 137 123 948 207 99 432 49 73 515 41 PHF Volume: 155 753 137 123 948 207 99 432 49 73 515 41 FinalVolume: 155 753 137 123 948 207 99 432 49 73 515 41 -----|----||------| Saturation Flow Module: Lanes: 1.00 1.69 0.31 1.00 1.64 0.36 1.00 0.90 0.10 1.00 0.93 0.07 Final Sat.: 1500 2537 463 1500 2463 537 1500 1347 153 1500 1390 110 -----| Capacity Analysis Module:

Future Without Project PM PMon Jul 21, 2008 18:48:44

Crit Volume: 155 578 99 556
Crit Moves: **** **** ****

Crit Moves: ****

Saturation Flow Module:

Future 2013 Without Project- PM Peak

Level Of Service Computation Report

Cir	cular	212	Plann	ing Me	thod	(Futur	e Volu	ıme Al	ternat	ive)		
******	****	*****	****	*****	*****	*****	****	*****	*****	*****	*****	*****
Intersection #								*****	*****	****	*****	*****
Cycle (sec): Loss Time (sec	: (:	() (Y+R	=4.0 s	sec)	Averag	ge Dela	ay (se	c/veh)	:	XXXX	cxx
Optimal Cycle:	****	157	7 *****	****	*****	Level	Of Ser	rvice:	*****	*****	*****	E *****
Street Name: Approach:		Ve	eteran	Avenu	ıe				Ohio A	venue		
Approach:	Nort	th Bou	ınd	Sou	ith Bo	ound	Ea	ast Bo	und	We	est Bo	ound
Movement:	L -	Т -	- R	L -	- T	R	L -	- T	- R	L -	- T	– R
-												
Control:												
Rights:	1	Includ	le		Inclu	ıde		Incl	ıde		Incl	ıde
Min. Green: Lanes:	0	0	0	0	0	0	0	0	0	0	0	0
Lanes:	0 0	1! (0.	. 0 () 1!	0 0	. 1 (0	1 0	. 1 (0 0	1 0
Volume Module:												
Base Vol:												
Growth Adj: 1												
Initial Bse: Added Vol:												
PasserByVol:												
Initial Fut:						167				152		
User Adj: 1									1.00			
PHF Adj: 1							1.00		1.00			
PHF Volume:									49			45
Reduct Vol:										102		0
Reduced Vol:							154		49	-	-	45

Final Sat.: 95 1246 159 45 1031 424 1500 1375 125 1500 1380 120 -----| Capacity Analysis Module: Vol/Sat: 0.30 0.30 0.30 0.39 0.39 0.39 0.10 0.39 0.39 0.10 0.38 0.38 Crit Volume: 28 590 591 152
Crit Moves: **** **** **** Crit Moves: ****

FinalVolume: 28 371 47 18 405 167 154 542 49 152 518 45

-----|-----|------|

Lanes: 0.06 0.83 0.11 0.03 0.69 0.28 1.00 0.92 0.08 1.00 0.92 0.08

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future 2013 Without Project- PM Peak Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) ************************ Intersection #47 Westwood Boulevard and Ohio Avenue ************************* Cycle (sec): 100 Critical Vol./Cap.(X): 0.864 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): xxxxxx Optimal Cycle: 106 Level Of Service: Street Name: Westwood Boulevard Ohio Avenue Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R Control: Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 1 0 2 0 1 1 0 2 0 1 1 0 0 1 0 1 0 0 1 0 -----| Volume Module: >> Count Date: 7 Feb 2008 << 445-545 Base Vol: 91 859 41 44 1223 116 89 232 79 85 246 41 Initial Bse: 96 902 43 46 1284 122 93 244 83 89 258 43 Added Vol: 17 216 0 0 218 3 2 0 17 0 0 0 PasserByVol: 0 0 0 0 0 0 0 0 0 0 0 0 Initial Fut: 113 1118 43 46 1502 125 95 244 100 89 258 43 PHF Volume: 113 1118 43 46 1502 125 95 244 100 89 258 43 FinalVolume: 113 1118 43 46 1502 125 95 244 100 89 258 43 -----|-----||-------| Saturation Flow Module: Lanes: 1.00 2.00 1.00 1.00 2.00 1.00 1.00 0.71 0.29 1.00 0.86 0.14 Final Sat.: 1500 3000 1500 1500 3000 1500 1500 1064 436 1500 1286 214 -----|

Future Without Project PM PMon Jul 21, 2008 18:48:44

Vol/Sat: 0.08 0.37 0.03 0.03 0.50 0.08 0.06 0.23 0.23 0.06 0.20 0.20

Crit Volume: 113 751 344 89
Crit Moves: **** **** ****

Capacity Analysis Module:

Crit Moves: ****

0 72

Circular 212 Planning Method (Future Volume Alternative) ************************* Intersection #48 Sawtelle Boulevard and Santa Monica Boulevard ************************ Loss Time (sec):

Level Of Service Computation Report

0 (Y+R=4.0 sec) Average Delay (sec/veh): xxxxxx Optimal Cycle: 180 Level Of Service: Street Name: Sawtelle Boulevard Santa Monica Boulevard Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R T. - T - R Permitted Permitted Permitted Prot+Permit
Include Include Include Include Control: Rights:
 Rights:
 Include
 Include
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0 Lanes: 0 0 1! 0 0 0 0 1! 0 0 1 0 2 1 0 1 0 2 1 0 Volume Module: >> Count Date: 14 Feb 2008 << 400-500 Base Vol: 74 359 393 120 531 31 14 1288 31 169 1202 68 Initial Bse: 78 377 413 126 558 33 15 1352 33 177 1262 71 1 Added Vol: 2 0 8 0 0 0 0 200 1 9 248 PasserByVol: 0 0 0 0 0 0 0 0 0 0 Initial Fut: 80 377 421 126 558 33 15 1552 34 186 1510 72

FinalVolume: 80 377 421 126 558 33 15 1552 34 186 1510 72 -----| Saturation Flow Module: Lanes: 0.09 0.43 0.48 0.18 0.78 0.04 1.00 2.94 0.06 1.00 2.86 0.14 Final Sat.: 97 459 512 188 832 49 1069 3138 68 1069 3060 147 -----| Capacity Analysis Module:

PHF Volume: 80 377 421 126 558 33 15 1552 34 186 1510 72

Vol/Sat: 0.82 0.82 0.82 0.67 0.67 0.67 0.01 0.49 0.49 0.17 0.49 0.49 Crit Volume: 877 126 529 186 Crit Moves: **** **** ****

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA. LONG BEACH. CA

Los Angeles, CA Future 2013 Without Project- PM Peak Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) ************************ Intersection #49 San Diego Fwy SB Ramps and Santa Monica Boulevard ************************* Cycle (sec): 100 Critical Vol./Cap.(X): 1.123 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): xxxxxx Optimal Cycle: 180 Level Of Service: Street Name: San Diego Fwy SB Ramps Santa Monica Boulevard Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - F T. - T - R Control: Split Phase Split Phase Permitted Protected Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 0 0 0 0 0 1 1 0 1 1 0 0 3 1 0 2 0 3 0 0 -----|----|-----|------| Volume Module: >> Count Date: 14 Feb 2008 << 445-545 Base Vol: 0 0 0 377 530 193 0 1577 248 560 1179 0 Initial Bse: 0 0 0 396 557 203 0 1656 260 588 1238 0 Added Vol: 0 0 0 -21 0 57 0 164 44 29 201 PasserByVol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 Initial Fut: 0 0 0 375 557 260 0 1820 304 617 1439 PHF Volume: 0 0 0 375 557 260 0 1820 304 617 1439 0 FinalVolume: 0 0 0 412 557 286 0 1820 304 679 1439 0 -----|----|-----||------| Saturation Flow Module:

UCLA NHIP and Amended LRDP Traffic Study

Future Without Project PM PMon Jul 21, 2008 18:48:44

Lanes: 0.00 0.00 0.00 1.31 1.69 1.00 0.00 3.43 0.57 2.00 3.00 0.00

Final Sat.: 0 0 1400 1806 1069 0 3662 613 2138 3206 0

Vol/Sat: 0.00 0.00 0.00 0.29 0.31 0.27 0.00 0.50 0.50 0.32 0.45 0.00

Crit Volume: 0 329 531 339
Crit Moves: **** ****

Capacity Analysis Module:

Crit Moves:

-----|----|-----|------|

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) *************************

Intersection #50 San Diego Fwy NB Ramps and Santa Monica Boulevard ******************

0 (Y+R=4.0 sec) Average Delay (sec/veh):

Loss Time (se	ec):	1.8	0 (Y+R	=4.0 s	sec)	Averag	e Dela	ay (s	ec/veh) :	:	XXX	XXX
******	****	*****	*****	****	****	*****	****	****	- ******	****	****	*****
Street Name:		San D	ieao F	wv NR	Ramps	3		Sant	a Monic	a Bou	levaro	4
Street Name: Approach:	No	rth Bo	und	SOI	1th Bo	nind	E	ast B	nind	W.	est R	nind
Movement:	т	- Т	- R	т	- Т	- R	т	- Т	- R	т	- Т	- R
	ı		1	1		1	1		1	1		1
Control: Rights: Min. Green: Lanes:	Sp.	lit Ph	ıase	Sp.	lit Ph	nase	P	rotec	ted	' 1	Permi	tted
Rights:		Inclu	ıde		Incl	ıde		Incl	ude		Incl	ude
Min. Green:	0	0	0	0	0	0	0	0	0	0	0	0
Lanes:	. 1	1 1	1 1	. 0 (0 0	0 0	. 2 (3	0 0	. 0	0 4	0 1
Volume Module	e: >>	Count	Date:	14 F	20 ZU	J8 << 4	:T2-2T;)				
Base Vol:									0			
Growth Adj:	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05
Initial Bse: Added Vol: PasserByVol: Initial Fut:	470	529	431	0	0	0	523	1436	0	0	1420	498
Added Vol:	57	21	-21	0	0	0	40	103	0	0	173	34
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	0
Initial Fut:	527	550	410	0	0	0	563	1539	0	0	1593	532
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	1.00		1.00			1.00					1.00	
PHF Volume:	527		410	0	0	0	563	1539	0	0	1593	532
Reduct Vol:		0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:	527	550	410	0	0	0	563	1539	0	0	1593	532
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MLF Adj:												
FinalVolume:												
Saturation F				1.405	1 405	1.405	1 405	1 405	1.405	1.405	1 405	1 405
Sat/Lane:												
Adjustment:												
Lanes:									0.00			
Final Sat.:												
Capacity Anal					0 00	0.00	0 0-		0 0 0		0 0-	0 50
Vol/Sat:			0.31	0.00				U.48	0.00	0.00	0.37	
Crit Volume:	377				0		310					532

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

Crit Moves: ****

Los Angeles, CA Future 2013 Without Project- PM Peak ______ Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) ************************* Intersection #51 Sepulveda Boulevard and Santa Monica Boulevard *********************** Cycle (sec): 100 Critical Vol./Cap.(X): 1.466 Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/veh): xxxxxx Optimal Cycle: 180 Level Of Service: Street Name: Sepulveda Boulevard Santa Monica Boulevard Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - F L - T - R -----|-----|------| Control: Protected Protected Protected Protected Lanes: 1 0 2 0 1 1 0 2 0 1 1 0 3 0 1 1 0 3 0 1 ------Volume Module: >> Count Date: 19 Feb 2008 << 430-530 Base Vol: 166 796 203 146 1123 200 145 1404 304 190 1350 162 Initial Bse: 174 836 213 153 1179 210 152 1474 319 200 1418 170 Added Vol: 4 57 2 7 54 3 4 78 1 0 199 7 PasserByVol: 0 0 0 0 0 0 0 0 0 0 0 0 Initial Fut: 178 893 215 160 1233 213 156 1552 320 200 1617 177 PHF Volume: 178 893 215 160 1233 213 156 1552 320 200 1617 177 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 Ω Reduced Vol: 178 893 215 160 1233 213 156 1552 320 200 1617 177 FinalVolume: 178 893 215 160 1233 213 156 1552 320 200 1617 177 -----|----|-----||------| Saturation Flow Module: Lanes: 1.00 2.00 1.00 1.00 2.00 1.00 1.00 3.00 1.00 1.00 3.00 1.00 Final Sat.: 1031 2063 1031 1031 2063 1031 1031 3094 1031 1031 3094 1031 -----| Capacity Analysis Module: Vol/Sat: 0.17 0.43 0.21 0.16 0.60 0.21 0.15 0.50 0.31 0.19 0.52 0.17 Crit Volume: 178 617 517 200
Crit Moves: **** **** **** Crit Moves: ****

UCLA NHIP and Amended LRDP Traffic Study

Future Without Project PM PMon Jul 21, 2008 18:48:44

Future 2013 Without Project- PM Peak

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative)

Intersection #52 Veteran Avenue and Santa Monica Boulevard ************************

Cycle (sec): Loss Time (sec) Optimal Cycle	ec):	10 18	00 0 (Y+R: 30	=4.0 s	sec)	Critic Averag Level	al Vol e Dela Of Sei	l./Cap ay (se cvice	p.(X): ec/veh) :	:	1.0 xxxx	064 xxx F
Street Name: Approach: Movement:	No L	rth Bo - T	Veteran ound - R	Avent Sot L	ie ith Bo - T	ound - R	Eá	Santa ast Bo - T	a Monic ound - R	a Boul We L -	levaro est Bo - T	d ound – R
	Pr		rmit '	Pro		rmit '	Pi		ted		rotect Ovl	
Min. Green:			0	0	0	0	0	0	0	0	0	0
Lanes:			1 0			1 0			1 0	1 (3	0 1
Volume Module	e: >>	Count	t Date:	14 Fe	eb 20	08 << 4	45-545	5				
Base Vol:	62	284	46	123	534	59	174	1549	31	89	1412	86
Growth Adj:	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05
Initial Bse:	65	298	48	129	561	62	183	1626	33	93	1483	90
Added Vol:	0	11	0	1	7	11	16	70	1	0	195	2
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	0
Initial Fut:	65	309	48	130	568	73	199	1696	34	93	1678	92
User Adi:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Volume:			48	130	568	73	199	1696	34	93	1678	92
			0		0	0						0
Reduced Vol:											1678	92
FinalVolume:												
Saturation Fl	low M	odule	: '	1		'	'		'			
Sat/Lane:				1375	1375	1375	1375	1375	1375	1375	1375	1375
	The series of th											
				1		'	'		'	1		'
				0.09	0.47	0.47	0.14	0.31	0.31	0.07	0.41	0.07
Crit Volume:												
Crit Moves:												

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future 2013 Without Project- PM Peak ______ Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) ************************ Intersection #53 Westwood Boulevard and Santa Monica Boulevard *********************** Cycle (sec): 100 Critical Vol./Cap.(X): 1.143 Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/veh): XXXXXX Optimal Cycle: 180 Level Of Service: Street Name: Westwood Boulevard Santa Monica Boulevard Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - F L - T - R -----|-----|------| Control: Prot+Permit Prot+Permit Protected Protected Lanes: 1 0 1 1 0 1 0 2 0 1 2 0 3 0 1 2 0 3 0 1 Volume Module: >> Count Date: 19 Feb 2008 << 500-600 Initial Bse: 111 910 104 207 1426 128 172 1495 138 205 1445 242 Added Vol: 4 203 8 6 200 27 24 39 3 10 163 6 PasserByVol: 0 0 0 0 0 0 0 0 0 0 0 0 Initial Fut: 115 1113 112 213 1626 155 196 1534 141 215 1608 248 PHF Volume: 115 1113 112 213 1626 155 196 1534 141 215 1608 248 Reduct Vol: 0 0 0 0 0 0 Ω 0 0 Ω Reduced Vol: 115 1113 112 213 1626 155 196 1534 141 215 1608 248 FinalVolume: 115 1113 112 213 1626 155 216 1534 141 236 1608 248 -----|----|-----||------| Saturation Flow Module: Lanes: 1.00 1.82 0.18 1.00 2.00 1.00 2.00 3.00 1.00 2.00 3.00 1.00 Final Sat.: 1375 2499 251 1375 2750 1375 2750 4125 1375 2750 4125 1375 -----| Capacity Analysis Module: Vol/Sat: 0.08 0.45 0.45 0.15 0.59 0.11 0.08 0.37 0.10 0.09 0.39 0.18 Crit Volume: 115 813 108 536
Crit Moves: **** **** ****

Future Without Project PM PMon Jul 21, 2008 18:48:44

Crit Moves: ****

Future 2013 Without Project- PM Peak

Circular 212 Planning Method (Future Volume Alternative) ******************** Intersection #54 Mulholland Drive and Roscomare Road ************************

Level Of Service Computation Report

Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/veh): xxxxxx

Optimal Cycle	e:	10	2			Level	Of Ser	vice	:			C
Street Name:			lholla									*****
			und	Soi	ıth Bo	nınd	Ea	ast Bo	Roscoma ound	We	est Bo	nund
Movement:			- R								- T	
Control:												
Rights:		Inclu	de		Incl	ıde		Ovl			Incl	ude
Min. Green:	0	0	0	0	0	0	0	0	0	0	0	0
Lanes:		0 1!				0 0			0 1			
Volume Module												
Base Vol:	288	0	145	0	0	0		321			593	0
Growth Adj:			1.05			1.05		1.05			1.05	1.05
Initial Bse:			152	0	0	0	0	337	107	47	623	0
Added Vol:	27		0	0	0	0	0	0	29	0	1	0
PasserByVol:			0	0	0	0	0	0	0	0	0	0
Initial Fut:	329	0	152	0	0	0	0	337	136	47	624	0
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Volume:	329	0	152	0	0	0	0	337	136	47	624	0
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:	329	0	152	0	0	0	0	337	136	47	624	0
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
FinalVolume:				. 0					136			
	I											
Saturation Fl												
Sat/Lane:		1425	1425		1425			1425				
		1.00	1.00		1.00	1.00		1.00				
	0.68		0.32		0.00	0.00		1.00				
Final Sat.:				. 0			0					0
Capacity Anal												
Vol/Sat:	0.34	0.00	0.34	0.00	0.00	0.00	0.00	0.24	0.10	0.03	0.44	0.00

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

Crit Volume: 482 0 0 624
Crit Moyes: **** ****

Future 2013 Without Project- PM Peak ______ Level Of Service Computation Report 2000 HCM 4-Way Stop Method (Future Volume Alternative) ************************ Intersection #55 Roscomare Road and Stradella Road/Linda Flora Drive ************************** 11.1 Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/veh):
Optimal Cycle: 0 Level Of Service: Street Name: Roscomare Road Stradella Road/Linda Flora Drive Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R Control: Stop Sign Stop Sign Stop Sign Rights: Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 0 0 1! 0 0 0 0 1! 0 0 0 0 1! 0 0 0 0 1! 0 0 -----|----|-----|------| Volume Module: >> Count Date: 21 Feb 2008 << 415-515 Base Vol: 22 390 6 37 58 12 14 0 10 6 1 59 Initial Bse: 23 410 6 39 61 13 15 0 11 6 1 62 PHF Volume: 23 437 6 39 90 13 15 0 11 6 1 62 FinalVolume: 23 437 6 39 90 13 15 0 11 6 1 62 Saturation Flow Module: Lanes: 0.05 0.94 0.01 0.27 0.64 0.09 0.58 0.00 0.42 0.09 0.02 0.89

Final Sat.: 41 778 11 208 482 68 365 0 261 63 10 615

Vol/Sat: 0.56 0.56 0.56 0.19 0.19 0.19 0.04 xxxx 0.04 0.10 0.10 0.10

Delay/Veh: 12.5 12.5 12.5 8.6 8.6 8.6 8.3 0.0 8.3 8.2 8.2 8.2

AdjDel/Veh: 12.5 12.5 12.5 8.6 8.6 8.6 8.3 0.0 8.3 8.2 8.2 8.2 LOS by Move: B B B A A A A A A A A

8.3

1.00

8.3

8.2

1.00

8.2

ApproachDel: 12.5 8.6
Delay Adj: 1.00 1.00
ApprAdjbel: 12.5 8.6
LOS by Appr. B

В

Capacity Analysis Module:

Crit Moves:

LOS by Appr:

UCLA NHIP and Amended LRDP Traffic Study

Los Angeles, CA

Future Without Project PM PMon Jul 21, 2008 18:48:44

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

A AllwayAvg0: 1.2 1.2 1.2 0.2 0.2 0.0 0.0 0.0 0.1 0.1 0.1

Future Without Project PM PM	on Jul 21, 2008 18:48:44	Page 60-2
UCLA NHIP	and Amended LRDP Traffic	Study
Future 2	1013 Without Project- PM I	Peak
Note: Queue reported is the n		

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

Future Without Project PM PMon Jul 21, 2008 18:48:44

Page 61-1

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future 2013 Without Project- PM Peak

********	******	*****	******	*****	******	*****	******	*****
Street Name:	E	Bellagi	o Road			Chalon	Road	
Approach:	North Bo	ound	South B	ound	East B	ound	West Bo	und
Movement:	L - T	- R	L - T	- R	L - T	- R	L - T	- R
Control:	Stop Si	an '	Stop S	ian '	Stop S	ian '	Stop Si	.an
Rights:	Inclu		Incl		Incl		Inclu	
Min. Green:	0 0	0	0 0	0	0 0	0	0 0	0
Lanes:	0 1 0	0 0	0 0 0	1 0	0 0 1!	0 0	0 0 0	0 0
					1		1	1
Volume Module						'	1	'
Base Vol:	67 508	0	0 98	24	11 0	12	0 0	0
Growth Adi:	1.05 1.05	1.05	1.05 1.05		1.05 1.05		1.05 1.05	1.05
Initial Bse:	70 533	0	0 103	25	12 0		0 0	0
Added Vol:	0 27	0	0 29	0	0 0		0 0	0
PasserByVol:	0 0	0	0 0	0	0 0	-	0 0	0
Initial Fut:	70 560	0	0 132	25	12 0	-	0 0	0
User Adj:	1.00 1.00	1.00	1.00 1.00	1.00	1.00 1.00		1.00 1.00	1.00
PHF Adi:	1.00 1.00	1.00	1.00 1.00	1.00	1.00 1.00		1.00 1.00	1.00
PHF Volume:	70 560	0	0 132	25	12 0		0 0	0
Reduct Vol:	0 0	0	0 0	0	0 0		0 0	0
Reduced Vol:	70 560	0	0 132	25	12 0	-	0 0	0
PCE Adj:	1.00 1.00	1.00	1.00 1.00		1.00 1.00		1.00 1.00	1.00
MLF Adj:	1.00 1.00	1.00	1.00 1.00		1.00 1.00		1.00 1.00	1.00
FinalVolume:		0	0 132		12 0		0 0	1.00
								I
Saturation Fl			1	- 1	ı	ı	ı	1
Adjustment:	1.00 1.00	1.00	1.00 1.00	1.00	1.00 1.00	1.00	1.00 1.00	1.00
Lanes:	0.11 0.89	0.00	0.00 0.84				0.00 0.00	0.00
Final Sat.:	96 769	0.00	0 663				0 0	0.00
Capacity Anal			1	- 1	ı	ı	ı	1
Vol/Sat:	0.73 0.73		xxxx 0.20	0.20	0.04 xxxx	0 04	xxxx xxxx	xxxx
Crit Moves:	****	AAAA	****	0.20	****	0.01	AAAA AAAA	AAAA
Delay/Veh:	17.3 17.3	0.0	0.0 8.5	8.5	8.4 0.0	8.4	0.0 0.0	0.0
	1.00 1.00	1.00	1.00 1.00	1.00	1.00 1.00		1.00 1.00	1.00
	17.3 17.3	0.0	0.0 8.5	8.5	8.4 0.0		0.0 0.0	0.0
LOS by Move:	C C	*	* A	A	A *		* *	*
ApproachDel:	17.3		8.5	71	8.4	**	xxxxxx	
Delay Adj:	1.00		1.00		1.00		XXXXX	
ApprAdjDel:			8.5		8.4		XXXXXX	
LOS by Appr:			A.		A A		*	
AllWayAvgO:	2.4 2.4	2.4	0.2 0.2	0.2	0.0 0.0	0.0	0.0 0.0	0.0

Future Without Project PM PMon Jul 21, 2008 18:48	3:44	Page 61-2
UCLA NHIP and Amended LRDP Tra Los Angeles, CA	affic Study	
Future 2013 Without Project-	- PM Peak	
Note: Queue reported is the number of cars per la		

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

Future Without Project PM PMon Jul 21, 2008 18:48:44

Page 62-1

UCLA NHIP and Amended LRDP Traffic Study
Los Angeles, CA
Future 2013 Without Project- PM Peak

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative)

Optimal Cycle: 180 Level Of Service: Street Name: Beverly Glen Boulevard Mulholland Drive Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - F L - T - R Split Phase Split Phase Permitted Permitted Control:
 Rights:
 Include
 Include
 Include
 Include
 Ignore

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0< Lanes: 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 1 0 2 0 1 -----|----|-----|------| Volume Module: >> Count Date: 26 Feb 2008 << 500-600 Base Vol: 40 772 81 206 359 36 51 194 37 45 535 704 Initial Bse: 42 811 85 216 377 38 54 204 39 47 562 739 Added Vol: 1 37 1 0 39 0 0 0 0 0 0 0 0 PasserByVol: 0 0 0 0 0 0 0 0 0 0 0 Initial Fut: 43 848 86 216 416 38 54 204 39 47 562 739 PHF Volume: 43 848 86 216 416 38 54 204 39 47 562 0 Ω Ω FinalVolume: 43 848 86 216 416 38 54 204 39 47 562 0 -----|-----||-------| Saturation Flow Module: Lanes: 0.05 0.95 1.00 0.68 1.32 1.00 1.00 1.68 0.32 1.00 2.00 1.00 Final Sat.: 69 1356 1425 975 1875 1425 1425 2394 456 1425 2850 1425 -----|----|-----|------| Capacity Analysis Module: Vol/Sat: 0.62 0.62 0.06 0.22 0.22 0.03 0.04 0.09 0.09 0.03 0.20 0.00 Crit Volume: 891 316 54 281 Crit Moves: **** **** ****

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA

Future 2013 Without Project- PM Peak

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) Intersection #58 Beverly Glen Boulevard and Greendale Drive

Cycle (sec): Loss Time (sec) Optimal Cycle	e: *****	18	0 (Y+R:	****	****	Level	e Dela Of Sei	y (se	ec/veh) : *****	: ****	XXXX	CXX F
Street Name: Approach: Movement:	No:	rth Bo	ound - R	Sou L -	ith Bo - T	ound - R	Ea L -	ast Bo	ound - R	We L -	est Bo - T	- R
Control: Rights:			ted . ide			ted . ide						
Min. Green:	0	0	0	0	0	0	0	0	0	0	0	0
Lanes:	0 (0 0	1 0	0 1	L 0	0 0	0 (0 0	0 0	0 (1!	0 0
Volume Module	e: >>	Count	Date:			3 << 41	5-515					
Base Vol:					413	0	0		0	44	0	220
Growth Adj:	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05
Initial Bse:	0		9		434	0	0	0	0	46	0	231
Added Vol:		37	0	0		0	0	0	0	4	0	1
PasserByVol:			0	0	0	0	0	0	0	0	0	0
Initial Fut:	0	1175	9	65	473	0	0	0	0	50	0	232
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Volume:	0	1175	9	65	473	0	0	0	0	50	0	232
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:	0	1175	9	65	473	0	0	0	0	50	0	232
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
FinalVolume:	0	1175	9	65	473	0	0	0	0	50	0	232
Saturation Fl	low Mo	odule:	:			·						
Sat/Lane:	1425	1425	1425	1425	1425	1425	1425	1425	1425	1425	1425	1425
Adjustment:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Lanes:	0.00	0.99	0.01	0.12	0.88	0.00	0.00	0.00	0.00	0.18	0.00	0.82
Final Sat.:	0	1414	11	173	1252	0	0	0	0	253	0	1172
Capacity Anal	ysis	Modul	Le:									
Vol/Sat:	0.00	0.83	0.83	0.38	0.38	0.00	0.00	0.00	0.00	0.20	0.00	0.20
Crit Volume:			1185	65				0				282
Crit Moves:			****	****								****

Future With Project AM PeakTue Jul 22, 2008 18:09:18

Page 1-1

Future With Project AM PeakTue Jul 22, 2008 18:09:19

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future With Project- AM Peak

Page 2-1

Trip Generation Report

Forecast for AM Peak

Zone #				Units						
				FBI Office- 11 Palazzo Westwo				0 119 119	0 233 233	
3	#3 Zor	ie 3	1.00 Subtotal	Mixed-Use - S/	149.00	45.00	149 149	45 45	194 194	3.4 3.4
4	#4 Zor	ie 4	1.00 Subtotal	Theater Expans	1.00	0.00	1	0	1 1	0.0
5 5	#5, 17 #5, 17 Zor	ie 5	1.00 1.00 Subtotal	Mixed-Use- 108 Residential Ho	-5.00 15.00	3.00 9.00	-5 15 10	3 9 12	-2 24 22	-0.0 0.4 0.4
6	#6 Zor	ie 6	1.00 Subtotal	Apartments- 86	2.00	8.00	2 2	8	10 10	0.2
7	#7 Zor	ie 7	1.00 Subtotal	Condos- 10804	7.00	34.00	7 7	34 34	41 41	0.7 0.7
	#8, 25, #8, 25,	61 61	1.00	Condos-10776 Condos-10763 W Condos-10710	4.00 5.00	22.00 23.00	4 5	22 23	26 28	0.5
9	#9 Zor	ie 9	1.00 Subtotal	Private School	9.00	0.00	9 9	0	9 9	0.2
			Subtotal	Fox Studio Exp			420	30	450	8.0
11 11 11 11	#11, 12,	45,	1.00	High School Ex Private School Condos- 1333 S Condos- 552-55	1.00	3.00	1	3	4	0.1
12	#13 Zor	e 12		Wilshire/Comst						
13 13	#14, 15, #14, 15, Zor	43 43 ie 13	1.00 1.00 Subtotal	ABC Entertainm Condos- 10131	101.00 -37.00	-181.00 85.00	103 -37 64	L -181 85 -96	-80 48 -32	0.9 -0.6

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA

Future With Project- AM Peak

Scenario Report

Future With Project AM Peak Scenario:

Command: Future With Project AM Peak Volume: Future AM Geometry: Future

Impact Fee: Default Impact Fee

Trip Generation: AM Peak Trip Distribution: Project Paths: Project Routes: Default Route

Configuration: Future

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA

Future With Project- AM Peak

Zone #	Subz	one	Amount	Units	Rate In	Rate Out	Trips In	Trips Out	Total Trips	% Of Total
14 14	#16, #16,	35 35 Zone 14	1.00 1.00 Subtotal	Condos- 527 Mi Condos- 430 Ke	12.00	61.00 15.00	12 3 15	61 15 76	73 18 91	1.3 0.3 1.6
15	#18			Health/Fitness						
16	# 19	Zone 16	1.00 Subtotal	Condos-1826 S	1.00	6.00	1	6 6	7 7	0.1
17	#20	Zone 17	1.00 Subtotal	Condos- 1417 S	1.00	6.00	1 1	6 6	7 7	0.1
18	#21	Zone 18	1.00 Subtotal	New Car Sales-	4.00	2.00	4 4	2 2	6 6	0.1
19 19	#22, #22,	70 70 Zone 19	1.00 1.00 Subtotal	Condos- 1625 S Mixed-Use- 115	1.00	7.00 46.00	1 10 11	7 46 53	8 56 64	0.1 1.0 1.1
20 20	#23, #23,	24 24 Zone 20	1.00 1.00 Subtotal	Condos- 1525 S Condos- 1633 S	1.00	7.00 6.00	1 1 2	7 6 13	8 7 15	0.1 0.1 0.3
21	#26		1.00 Subtotal	Condos- 2037 S	1.00	6.00	1	6 6	7 7	0.1
22 22 22	#27, #27, #27,	63, 65 63, 65 63, 65 Zone 22	1.00 1.00 1.00 Subtotal	Office- 12233 Westside Media SM Apt Project	10.00 24.00 11.00	56.00 32.00 46.00	10 24 11 45	56 32 46 134	66 56 57 179	1.2 1.0 1.0 3.2
23 23	#28, #28,	32 32 Zone 23	1.00 1.00 Subtotal	Condos- 1511 S Condos- 1517 B	1.00	6.00 8.00	1 2 3	6 8 14	7 10 17	0.1 0.2 0.3
24 24	#29, #29,	54 54 Zone 24	1.00 1.00 Subtotal	Mixed-Use- 116 Office- 11677	60.00	26.00 28.00	60 205 265	26 28 54	86 233 319	1.5 4.1 5.7
25	#30	Zone 25	1.00 Subtotal	Mausoleum Bldg	1.00	0.00	1	0	1	0.0
26	#31	Zone 26	1.00 Subtotal	Condos- 10617	1.00	6.00	1	6 6	7 7	0.1

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA

Future With Project AM PeakTue Jul 22, 2008 18:09:19

Future With Project- AM Peak

Zone	G - 1		3	Units	Rate	Rate	Trips	Trips	Total	% Of
Ħ	Subzo	one	Amount	Units	ın	Out	ın	out	Trips	Total
27	#33		1.00	Apts- 1817 S B	2.00	6.00	2	6	8	0.1
		Zone 27	Subtota.	L			2	6	8	0.1
28	#34		1.00	Live/Work- 115	9.00	34.00	9	34	43	0.8
		Zone 28	Subtota	Live/Work- 115			9	34	43	0.8
29	#36	aa	1.00	Restaurant- 10	2.00	2.00	2	2	4	0.1
		Zone 29	Subtota.	L			2	2	4	0.1
3.0	#37.	56. 57	1.00	Condos- 1807 S	1.00	6.00	1	6	7	0.1
30	#37.	56, 57	1.00	Auto Service-	4.00	2.00	4	2	6	0.1
30	#37,	56, 57	1.00	Office- SW Cor	55.00	7.00	55	7	62	1.1
		Zone 30	Subtotal	Condos- 1807 S Auto Service- Office- SW Cor			60	15	75	1.3
	#38	- 21	1.00	Condos- 2263 S	1.00	6.00	1	6	7	0.1
		Zone 31	Subtota.	L			1	6	7	0.1
32	#39		1.00	Cooking School	4.00	2.00	4	2	6	0.1
		Zone 32	Subtotal	Cooking School			4	2	6	0.1
33	#40		1.00	Bank- 1762 Wes	3.00	8.00	3	8	11	0.2
		Zone 33	Subtota.	L			3	8	11	0.2
34	#41-	NA-Alre	1.00	Westside Pavil	0.00	0.00	0	0	0	0.0
35	#42,	49	1.00	Le Lycee Franc	171.00	109.00	171	109	280	5.0
35	#42,	49	1.00	Mixed-Use- 106	5.00	7.00	5	7	12	0.2
		Zone 35	Subtotal	Westside Pavil Le Lycee Franc Mixed-Use- 106			176	116	292	5.2
36	#44,	60, 67	1.00	Discounted Sto	20.00	10.00	20	10	30	0.5
36	#44,	60, 67	1.00	Dod Path C Po	0.00	0.00		0		0.0
30	#44,	Zone 36	Subtota	Olympic-Stoner Bed, Bath & Be	0.00	0.00	22	10	32	0.0
		HOIIC 50	Dubcoca.				22	10	32	0.0
37	#46		1.00	Belmont Villag	17.00	8.00	17	8	25	0.4
		Zone 37	Subtotal	1			17	8	25	0.4
20	11.47	D10 D2	1 00	7	167 0	0 115 00	1.0			
38	#4/, #47	B12, B3	1.00	Apts- 10000 W	-16/.00	0 00	-16	/ 115	-52	2 -0.
20	#47,	B12, B3	1.00	Powerly Wilton	15.00	9.00	10	0.4	1/12	0.4
30	#4/,	Zone 38	Subtota	Apts- 10000 W Hotel- 150 Las Beverly Hilton	40.00	34.00	-104	218	114	2.5
		Done 50								
39	#48		1.00	Mixed-Use- 109	9.00	18.00	9	18	27	0.5
		Zone 39	Subtotal	1			9	18	27	0.5
40	#50		1 00	Desemb West	140.00	47.00	140	45	107	2 2
40	#50		L.UU Subtota	Regent Westwoo	140.00	4/.00	140	4/	187	3.3
		20116 40	Judicola.				140	7/	10/	٠.٥

1

1 0.0

751 13.3

0

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future With Project- AM Peak

Rate Rate Trips Trips Total % Of In Out In Out Trips Total Zone # Subzone Amount Units 41 #51 1.00 Office- 1100 W 70.00 10.00 70 10 Zone 41 Subtotal 70 80 1.4 1.00 Del Capri Hote 9.00 36.00 9 45 0.8 42 #52 36 Zone 42 Subtotal 9 36 45 0.8 1.00 Condos- 11611 2.00 7.00 2 7 Zone 43 Subtotal 2 7 43 #53 9 0.2 9 0.2 44 #55 1.00 Retail- 11305 7.00 4.00 7 4 11 0 2 Zone 44 Subtotal 7 4 11 0.2 1.00 Fastfood- 1086 75.00 50.00 75 50 125 2.2 Zone 45 Subtotal 75 50 125 2.2 45 #58 46 #59 1.00 Brentwood Reta 2.00 1.00 2 3 0.1 3 0.1 47 #B1, B5, B11 1.00 Young Israel- 16.00 9.00 16 25 0.4 47 #B1, B5, B11 1.00 Retail Expansi 1.00 1.00 1 1 2 0.0 1.00 Cultural Cente 34.00 21.00 34 21 47 #B1, B5, B11 55 1.0 47 #B1, B5, B11 1.00 Condos- 437-44 1.00 6.00 1 6 7 0 1 47 #B1, B5, B11 1.00 Service Facili 101.00 55.00 55 156 2.8 38 0 7 15 0 3 48 #B2, B3, B6, 1.00 Beverly Hills 86.00 57.00 143 2 5 48 #B2, B3, B6, 1.00 Mixed-Use- 265 103.00 30.00 103 133 2.4 48 #B2, B3, B6, 1.00 Condos- 125 S 3.00 15.00 18 0.3 3 15 1.00 Medical Plaza- 77.00 22.00 48 #B2, B3, B6, 77 22 99 1 8 48 #B2, B3, B6, 1.00 Commercial/Ret 8.00 6.00 14 0.2 48 #B2, B3, B6, 1.00 Mixed-Use- 131 64.00 43.00 64 43 107 1.9 48 #B2, B3, B6, 1.00 Assisted Care 6.00 7.00 6 13 0.2 48 #B2, B3, B6, 1.00 Senior Congreg 3.00 2.00 5 0.1 48 #B2, B3, B6, 1.00 Screening Room 1.00 0.00 1 1 0.0 0 48 #B2, B3, B6, 1.00 Condos- 261-28 0.00 -1.00 -1 -0.0 33 0.6 48 #B2, B3, B6, 1.00 Mixed-Use- 920 10.00 23.00 11 48 #B2, B3, B6, 1.00 Mixed-Use- 959 11.00 27.00 38 0.7 1.00 Hotel- 9730 Wi 70.00 44.00 114 2.0 48 #B2, B3, B6, 5 0.1 48 #B2, B3, B6, 1.00 Condos- 140-14 1.00 4.00 48 #B2, B3, B6, 1.00 Condos- 133 Sp 0.00 2.00 0 2 0.0 14 18 0.3 48 #B2, B3, B6, 1.00 Office/Medical 14.00 4.00 7 0.1 48 #B2, B3, B6, 1.00 Condos- 156-16 1.00 6.00 1 6 1.00 Condos- 144 Re 0.00 1.00 48 #B2, B3, B6, 0 0.0

1.00 Condos- 155 N 0.00 1.00

48 #B2. B3. B6.

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future With Project- AM Peak

Future With Project AM PeakTue Jul 22, 2008 18:09:19

one #	Subzo	ne		Amount	Units	Rate In	Rate Out	Trips In	Trips Out	Total Trips	% Of Total
49 49 49 49	#B4, #B4, #B4, #B4,	B14, B14, B14, B14, Zone	B2 B2 B2 B2 49	1.00 1.00 1.00 1.00 Subtotal	Church Expansi Synagogue/Priv Apts- 428-430 Condos- 313-31	1.00 23.00 0.00 1.00	0.00 13.00 1.00 3.00	1 23 0 1 25	0 13 1 3 17	1 36 1 4	0.0 0.6 0.0
50 50	#B18, #B18,	B21 B21 Zone	50	1.00 1.00 Subtotal	Beverly Hills Robinson's May	131.00 34.00	-4.00 116.00	131 34 165	-4 116 112	127 150 277	
51		Zone		1.00 Subtotal	Health Spa- 96	1.00	1.00	1	1 1	2 2	0.0
52 53	#62-N #64				Whole Foods Ma New West Middl				0 104 104	0 230 230	0.0 4.3 4.3
54	#66	Zone	54	1.00 Subtotal	Union Bank of	3.00	2.00	3	2 2	5 5	0.3
55	#68	Zone	55	1.00 Subtotal	Leo Baeck Temp	10.00	0.00	10 10	0	10 10	0.2
56	#69	Zone	56		Convenience St						4.5
57	#71	Zone	57	1.00 Subtotal	Westwood Villa	52.00	51.00	52 52	51 51	103 103	
58	#72		58	1.00 Subtotal	Office Bldg- 2	41.00	6.00	41 41	6 6	47 47	0.8
59	Hekma	at Mix Zone	ed 59	1.00 Subtotal	Mixed Use	52.00	36.00	52 52	36 36	88 88	1.0
60	UCLA				UCLA PARKING L			358 358	89 89	447 447	7.9

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA

Future With Project- AM Peak

Trip Distribution Report

Percent Of Trips Project

					To	Gates					
	1	2	3	4	5	6	9	10	11	12	13
Zone											
1	0.0	0.0	0.0	0.0	0 0	0.0	0.0	0.0	0.0	0.0	0.0
2	8.0	3.0	0.0	4.0	0.0	3.0	16.0	0.0	11.0	0.0	5.0
3	8.0	3.0	0.0	4.0	0.0	3.0	16.0	0.0	11.0	0.0	5.0
4	8.0	3.0	0.0	4.0	0.0	3.0	16.0	0.0	11.0	0.0	5.0
5	8.0	3.0	0.0	4.0	0.0	3.0	16.0	0.0	11.0	0.0	5.0
6	10.0		0.0	0.0		5.0					
7	15.0	0.0	0.0	0.0	0.0		0.0 5.0	0.0 5.0	5.0 5.0	0.0	0.0
8	15.0	0.0	0.0	0.0	0.0	0.0			5.0	0.0	
	5.0	5.0	5.0	5.0	5.0		5.0	5.0			0.0
9						20.0	5.0	0.0	0.0	0.0	0.0
10	10.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0	0.0
11	10.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0	0.0
12 13	10.0 10.0	0.0	0.0	0.0	0.0	5.0 5.0	0.0 5.0	0.0	5.0	0.0	0.0
		0.0									
14	8.0	3.0	0.0	4.0	0.0	3.0	16.0	0.0	11.0	0.0 5.0	5.0
15 16	10.0	0.0	0.0	0.0	0.0	0.0	10.0	5.0 5.0	10.0 5.0	0.0	0.0
17	10.0	0.0	0.0	0.0	0.0	0.0	5.0 5.0	5.0	0.0	0.0	0.0
18	10.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0
19	10.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0
20	10.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0
21	10.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0	0.0
22	10.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0
23	10.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	2.5	2.5
24	10.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0
25	15.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	5.0	0.0	0.0
26	10.0	0.0	0.0	0.0	0.0	0.0	10.0	0.0	0.0	0.0	0.0
27	10.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0
28	10.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0
29	8.0	3.0	0.0	4.0	0.0	3.0	16.0	0.0	11.0	0.0	5.0
30	10.0	0.0	0.0	0.0	0.0	0.0	10.0		0.0	0.0	0.0
31	10.0	0.0	0.0	0.0	0.0	5.0	5.0		0.0	0.0	0.0
32	10.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0
33	0.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	10.0	0.0	0.0
34	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
35	10.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0
36	10.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0
37	10.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	5.0	0.0	0.0
38	10.0	0.0	0.0	0.0	0.0	5.0	0.0	0.0	5.0	0.0	0.0
39	0.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	5.0	0.0	0.0
40	8.0	3.0	0.0	4.0	0.0	3.0		0.0	11.0	0.0	5.0
41	8.0	3.0	0.0	4.0	0.0	3.0	16.0	0.0	11.0	0.0	5.0
42	10.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	5.0	0.0	0.0
43	10.0	0.0	0.0	0.0	0.0		5.0	5.0	0.0	0.0	0.0
44	10.0	0.0	0.0	0.0	0.0		5.0	5.0		0.0	0.0
-											

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future With Project- AM Peak

			ruc	ure wi	CII Pro	ject-	AM Pear	~			
					To	Gates					
	1	2	3	4	5	6	9	10	11	12	13
Zone											
45	0.0	0.0	0.0	0.0	0.0	0.0	5.0 5.0 0.0 0.0	5.0	5.0	0.0	0.0
46	0.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0
47	10.0	0.0	0.0	0.0	0.0	5.0	0.0	0.0	5.0	0.0	0.0
48	10.0 10.0	0.0	0.0	0.0	0.0	5.0	0.0	0.0	5.0	0.0	0.0
49	10.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0	0.0
50		0.0	0.0 0.0 5.0	0.0	0.0	5.0	5.0 0.0 5.0	0.0	5.0	0.0	0.0
51	5.0	5.0	5.0	5.0	5.0	20.0	5.0	0.0	0.0	0.0	0.0
52 53		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
5 <i>3</i>	8.0		0.0				16.0				
55	0.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0	5.0
56	0.0	0.0	0.0	0.0	0.0	0.0	5.0 5.0	5.0	10.0	0.0	0.0
57	8 0	3 0	0.0	4.0	0.0	3.0	16.0	0.0	11.0	0.0	5.0
58	10.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0
59	8.0	3.0	0.0	4.0	0.0	3.0	16.0 5.0 16.0 3.0	0.0	11.0	0.0	5.0
60	28.0	0.5	0.0	0.5	0.0	3.0	3.0	3.0	2.0	2.0	2.0
					To	Gates					
	14	15	16	17	18		20	21	22	23	28
Zone											
					0 0		0 0		0 0	0 0	
1 2	0.0	0.0	0.0	6.0	0.0	22.0	0.0	0.0	0.0	0.0	0.0
3		0.0	9.0	6.0	0.0	23.0	0.0	0.0	0.0	3.0	2.0
4		0.0	9.0 9.0 9.0	6.0 6.0	0.0	23.0	0.0	0.0	0.0	3.0	2.0
5		0.0	9.0	6.0	0.0	23.0	0.0	0.0	0.0	3.0	2.0
6	5.0	0.0	9.0 5.0	5.0	5.0	10.0	0.0	0.0	0.0		0.0
7	5.0	0.0	5.0	5.0	5.0	15.0			0.0		
8	5.0	0.0	5.0	5.0	5.0	15.0	0.0		0.0		
9 10		0.0	2.5	3.0	0.0	10 0	5.0		0.0		0.0
11		0.0	5.0	3.0	0.0	10.0		0.0	0.0		0.0
12	5.0	0.0	5.0 5.0 5.0	3.0 5.0	5.0	10.0	0.0	0.0	0.0		
13		0.0	5.0	3.0	0.0	10.0			0.0	0.0	0.0
14	3.0	0.0	9.0	3.0 6.0	0.0	23.0			0.0		2.0
	10.0	10.0	10.0	10.0	0.0	0.0	0.0		0.0		
16	5.0 5.0		5.0	5.0 5.0	0.0	10.0	0.0		0.0		0.0
17 18		0.0	5.0 5.0	5.0			0.0		0.0		0.0
19	0.0	0.0	0.0	5.0			0.0		0.0		0.0
20	0.0	0.0	0.0	5.0	0.0	10.0	0.0		0.0		0.0
21	5.0	0.0	0.0 5.0 0.0	3.0 5.0	0.0	10.0	0.0	0.0	0.0		0.0
22	0 0	0.0	0.0	5.0	0.0	10.0	0 0	0.0	0.0		0.0
23	5.0	2.5	5.0	2.5	0.0	10.0	0.0	0.0	0.0		
24	0.0	0.0	0.0	5.0	0.0	10.0	0.0	0.0	5.0		0.0
25	5.0	0.0	5.0	5.0	5.0	15.0	0.0	0.0	0.0		
26 27	5.0 0.0 5.0 5.0	0.0	5.0	5.0	0.0	10.0	0.0	0.0	0.0		0.0
۷ /	5.0	0.0	5.0	5.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future With Project- AM Peak

	14	15	16	17	To 18	Gates	20	21	22	23	28
Zone -											
28	0.0	0.0	0.0	5.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0
29	3.0	0.0	9.0	6.0	0.0	23.0	0.0	0.0	0.0	3.0	2.0
30	5.0	0.0	5.0	5.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0
31	5.0	0.0	5.0	3.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0
32	5.0	0.0	5.0	5.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0
33	5.0	5.0	5.0	5.0		0.0	0.0	0.0	0.0	0.0	0.0
34	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
35	5.0	0.0	5.0	5.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0
36	0.0	0.0	0.0	5.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0
37	5.0	0.0	5.0	5.0	5.0	10.0	0.0	0.0	0.0	0.0	0.0
38	5.0	0.0	5.0	5.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0
39	5.0	5.0	5.0	5.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
40	3.0	0.0	9.0	6.0	0.0	23.0	0.0	0.0	0.0	3.0	2.0
41	3.0	0.0	9.0	6.0	0.0	23.0	0.0	0.0	0.0	3.0	2.0
42	5.0	0.0	5.0	5.0	5.0	10.0	0.0	0.0	0.0	0.0	0.0
43	5.0	0.0	5.0	0.0	0.0	10.0	0.0	0.0	5.0	0.0	0.0
44	0.0	0.0	5.0	5.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0
45	5.0	5.0	5.0	5.0		0.0	0.0	0.0	0.0	0.0	0.0
46	5.0	0.0	5.0	0.0	0.0	10.0	0.0	0.0	5.0	0.0	0.0
47	5.0	0.0	5.0	5.0	5.0	10.0	0.0	0.0	0.0	0.0	0.0
48	5.0	0.0	5.0	5.0	5.0	10.0	0.0	0.0	0.0	0.0	0.0
49	5.0	0.0	5.0	3.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0
50	5.0	0.0	5.0	5.0	5.0	10.0	0.0	0.0	0.0	0.0	0.0
51	0.0	0.0	2.5	0.0		2.5	5.0	0.0	0.0	0.0	0.0
52	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
53	0.0	0.0	0.0	5.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0
54	3.0	0.0	9.0	6.0	0.0	23.0	0.0	0.0	0.0	3.0	2.0
55	0.0	0.0	5.0	0.0	0.0	10.0	10.0	0.0	0.0	0.0	0.0
56	5.0	5.0	5.0	5.0			0.0	0.0	0.0	0.0	0.0
57 58	3.0	0.0	9.0	6.0	0.0		0.0	0.0	0.0	3.0	2.0
	5.0	0.0	5.0	5.0 6.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0
59 60	3.0	0.0	9.0	3.0	0.0	23.0	0.0	0.0	0.0	3.0	2.0
00	3.0	3.0	3.0	3.0	1.0	39.0	3.0	1.0	0.0	0.0	0.0

	To Gate	
	29	30
Zone		
1	0.0	0.0
2	2.0	2.0
3	2.0	2.0
4	2.0	2.0
5	2.0	2.0
6	0.0	0.0
7	0.0	0.0
8	0.0	0.0
9	0.0	0.0
10	0.0	0.0

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future With Project- AM Peak

Future With Project AM PeakTue Jul 22, 2008 18:09:19

To Gates 29 30 -----Zone 0.0 0.0 11 12 0.0 0.0 0.0 0.0 1.3 14 2.0 2.0 15 0.0 0.0 0.0 0.0 16 17 0.0 0.0 18 0.0 0.0 19 0.0 0.0 20 0.0 0.0 21 0.0 0.0 22 0.0 0.0 23 0.0 0.0 24 0.0 0.0 25 0.0 0.0 0.0 0.0 26 27 0.0 0.0 0.0 0.0 28 29 2.0 2.0 30 0.0 0.0 0.0 0.0 31 32 0.0 0.0 33 0.0 0.0 34 0.0 0.0 0.0 0.0 35 36 0.0 0.0 37 0.0 0.0 38 0.0 0.0 0.0 0.0 39 40 2.0 2.0 41 2.0 2.0 0.0 0.0 42 43 0.0 0.0 44 0.0 0.0 45 0.0 0.0 46 0.0 0.0 47 0.0 0.0 48 0.0 0.0 49 0.0 0.0 50 0.0 0.0 0.0 0.0 51 52 0.0 0.0 53 0.0 0.0 2.0 2.0 54 55 0.0 0.0 56 0.0 0.0 2.0 2.0 57 58 0.0 0.0

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA

Future With Project- AM Peak

	To Gate	es
	29	30
Zone		
59	2.0	2.0
60	0.0	0.0

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future With Project- AM Peak

Turning Movement Report AM Peak

Volume Type		rthbo Thru			outhbo Thru			astbo Thru			estbou Thru		Total Volume
-	ulveda												
Base	13	509	76		1387		88	55	27	91	151	0	2959
Added	0	42	0	0	18	0	1	0	0	0	0	0	61
Total	13	551	76	4	1405	558	89	55	27	91	151	0	3020
#2 Chu	rch Lai	ne an	d San	Diego	Fwy :	SB On/C	off Ran	np					
Base	0	150	333	234	689	0	0	2	1	1507	1	23	2940
Added	0	1	0	0	0	0	0	0	0	38	0	0	39
Total	0	151	333	234	689	0	0	2	1	1545	1	23	2979
#3 Chu	rch La	ne an	d Suns	et Bo	ıl eva	rd							
Base	54	7	107	685	166	1010	104	1799	117	6	1229	454	5736
Added	0	ó	107	38	100	1010	1	11	117	0	3	121	5750
Total	54	7	107	723	166	1010	_	1810	117	-	1232	454	5789
10041	31	,	107	, 23	100	1010	105	1010	11,	0	1232	151	3703
#4 San	Diego	Fwy	NB On	Off R	amps a	and Sur	nset B	ouleva	ard				
Base	674	0	547	0	0	0	0	1547	996	0	1025	0	4789
Added	0	0	0	0	0	0	0	50	0	0	30	0	80
Total	674	0	547	0	0	0	0	1597	996	0	1055	0	4869
#E 170+	eran A		and (unact	Poul.	arrawd							
Base	60 60	0	364	0	0	evaru O	0	1812	194	310	972	0	3713
Added	30	0	14	0	0	0	0	1012	49	17	1	0	112
Total	90	0	378	0	0	0	-	1813	243	327	973	0	3825
IOCAI	50	Ü	370	U	U	O	0	1013	243	327	213	O	3023
#6 Bel	lagio V	Way a	nd Sur		ouleva	ard							
Base	43	5	8	181	53	267	187	1764	237	18	969	101	3833
Added	0	0	0	4	0	16	9	7	0	0	2	4	42
Total	43	5	8	185	53	283	196	1771	237	18	971	105	3875
#7 Wes	twood I	Somev	ard ar	nd Sun	set Bo	nulevar	-d						
Base	27	0	22	0	0	0		1506	395	184	1067	0	3200
Added	0	0	0	0	0	0	0	10	0	0	6	0	16
Total	27	0	22	0	0	0	-	1516	395	-	1073	0	3216
#8 Sto													
Base	51	1	45	0	0	63		1333	252		1211	23	3133
Added	0	0	1	0	0	0	0	10	0	3	6	0	20
Total	51	1	46	0	0	63	60	1343	252	96	1217	23	3153
#9 Hil	gard Av	zenue	/Copa	De Ore	o Road	d and S	Sunset	Boule	evard				
Base	149	40	112	29	77	17		1083	274	475	1120	22	3417
Added	4	0	22	0	0	0	0	7	4	45	4	0	86
Total	153	40	134	29	77	17		1090	278		1124	22	3503
		-				•	-		-		_	_	

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

UCLA NHIP and Amended LRDP Traffic Study
Los Angeles, CA
Future With Project- AM Peak

				rucc	ite wi	LUII PIC	Jecc-	AM PE	an.				
Volume	No	orthbo	und	Sc	uthbo	ound	Ea	stbou	nd	We	estbou	nd	Total
Type													Volume
-21-			5										
#19 Bev	verlv	Glen	Blvd a	and Wyt	on Dr	/Comst	ock Av	re [5-	Leg In	tersec	ction-	Wytor	n Split
Base	8	315	5	48	523	3	1	23	12	32	35	40	1045
Added	0	46	0	0	77	0	0	0	0	0	0	0	123
Total	8	361	5	48	600	3	1	23	12	32	35	40	1168
#20 Hil	lgard	Avenu	e and	Westho	olme A	Avenue							
Base	171	398	43	16	558	138	21	11	30	42	204	51	1682
Added	0	26	0	0	49	0	0	0	0	0	0	0	75
Total	171	424	43	16	607	138	21	11	30	42	204	51	1757
#21 Hil	lgard	Avenu	e and	Mannir	ng Ave	enue							
Base	0	752	13	22	540	0	0	0	0	6	0	69	1402
Added	0	26	0	0	49	0	0	0	0	0	0	0	75
Total	0	778	13	22	589	0	0	0	0	6	0	69	1477
#22 Gay	yley A	Avenue	and I	Le Cont	e Ave	enue							
Base	7	667	246	130	228	16	25	125	12	165	78	133	1831
Added	0	1	4	0	6	0	0	45	0	6	11	0	73
Int #2	0	51	-23	-23	23	0	0	-23	23	-50	-51	-51	-124
Total	7	719	227	107	257	16	25	147	35	121	38	82	1780
#23 Wes	stwood			and Le		e Aven	iue						
Base	56	664	216	34	205	92	176	343	35	137	333	112	2402
Added	122	0	1	0	0	0	0	8	59	1	17	0	208
Int #2	0	0	0	0	0	0	0	-69	0	0	-152	0	-221
Total	178	664	217	34	205	92	176	282	94	138	198	112	2389
#24 Tiv													
Base	26	105	29	25	37	206	190	305	42	16	344	91	1416
Added	0	1	0	0	3	0	0	8	0	0	17	0	29
Int #2	0	0	0	0	0	0	0	-69	0		-152	0	-221
Total	26	106	29	25	40	206	190	244	42	16	209	91	1224
#25 Hil	lgard	Avenu		Le Cor	ite Av	renue							
Base	23	450	27	11	228	299	286	0	34	7	0	25	1390
Added	0	18	0	0	31	17	8	0	0	0	0	0	74
Int #2	0	0	69	0	0	0	0	0	0	152	0	0	221
Total	23	468	96	11	259	316	294	0	34	159	0	25	1685
#26 Gay	yley A		and V	Veyburr									
Base	29	791	117	18	420	78	200	179	23	39	45	38	1975
Added	0	13	69	16	19	0	0	32	0	26	20	16	211
Int #2	0	0	23	46	0	0	0	0	0	50	51	51	221
Total	29	804	209	80	439	78	200	211	23	115	116	105	2407

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

UCLA NHIP and Amended LRDP Traffic Study

Los Angeles, CA

Future With Project- AM Peak

						ith Pro							
Volume	N	orthbo	und	S	outhbo	ound	E	astbo	und	We	estbo	und	Total
Type	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Volume
#36 Ve	teran	Avenu	e and	Wilsh	ire B	oulevar	d						
Base	217	404	104	116	265	386	555	3046	141	55	2412	37	7737
Added	-6	17	14	4	8	63	138	704	-4	6	431	15	1390
Total	211	421	118	120	273	449	693	3750	137	61	2843	52	9127
						ulevard							
Base	62		55	59	105	300		2545			2091		6435
Added	0		0					475		0			
Total	62	350	55	77	105	389	768	3020	160	67	2454	159	7664
						re Boul							
Base		630	123	64				2079			1983		6327
Added	13		43	35	66	76	149			39	311		1244
Total	155	743	166	99	352	238	597	2414	179	180	2294	155	7571
						ouelvar							
Base	9		23	60	116	43		1770			2068		4978
Added	0	-	0	2		7		408			401		835
Total	9	186	23	62	116	50	340	2178	120	69	2470	191	5813
						oulevar		1000		0.0			42.40
Base	3		47	3				1776			2293		4342
Added	6		0	21		0		403		0			853
Total	9	0	47	24	1	42	68	2179	40	23	2685	76	5195
						Boulev							
Base	59		68					1882			2312		
Added	1		2					434		2			
Total	60	107	70	47	44	21	33	2316	69	32	2689	144	5632
						ulevard							
Base	78		22	91				1862			2339		4781
Added	0		0	0				438		0			804
Total	78	38	22	91	63	92	70	2300	33	12	2705	81	5585
						lshire							
Base	169		38	36		50		1674			2179		5447
Added	19		51	41		7		390		79			
Total	188	367	89	77	559	57	97	2064	251	183	2519	38	6488
#44 Sa													
Base	63		135	26	94		86			75			2330
Added	0		4	0		0	0			1		0	49
Total	63	318	139	26	94	19	86	913	56	76	498	90	2379

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future With Project- AM Peak

Volume			und			ound			und		estbo		Total
Type	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Volume
#54 Mu	lholla	nd Dr	ive ar	nd Rosc	comare	e Road							
Base	205	0	79	0	0	0	0	749	429	193	545	0	2200
Added	12	0	0	0	0	0	0	1	20	0	0	0	33
Total	217	0	79	0	0	0	0	750	449	193	545	0	2233
#55 Ro	scomar	e Roa	d and	Strade	ella E	Road/Li	nda F	lora 1	Drive				
Base	13	78	8		444	17	17	1	40	9	0	34	755
Added	0	12	0	0	20	0	0	0		0	0	0	32
Total	13	90	8	94	464	17	17	1	40	9	0	34	787
#56 Be	llagio	Road	and (Chalon	Road								
Base	32	125	0	0	524	21	12	0	42	0	0	0	755
Added	0	12	0	0	20	0	0	0	0	0	0	0	32
Total	32	137	0	0	544	21	12	0	42	0	0	0	787
#57 Be	verly	Glen	Boulev	vard ar	nd Mu	lhollan	d Dri	<i>r</i> e					
Base	62	209	74	803	784	135	44	587	40	44	319	307	3408
Added	0	16	0	0	27	0	0	0	1	1	0	0	45
Total	62	225	74	803	811	135	44	587	41	45	319	307	3453
#58 Be	verly	Glen	Boulev	vard ar	nd Gre	eendale	Drive	9					
Base	0	308	14	134	969	0	0	0	0	82	0	49	1556
Added	0	17	4	1	26	0	0	0	0	0	0	0	48
Total	0	325	18	135	995	0	0	0	0	82	0	49	1604

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA

Future With Project- AM Peak

Impact Analysis Report Level Of Service

Inte	ersection	Base Del/ V/	Future Del/ V/	Change in
# 3	Sepulveda Boulevard and Church	LOS Veh C D xxxxx 0.863	LOS Veh C D xxxxx 0.870	+ 0.007 V/C
# 2	Church Lane and San Diego Fwy	D xxxxx 0.834	D xxxxx 0.849	+ 0.015 V/C
# 3	3 Church Lane and Sunset Bouleva	E xxxxx 0.936	E xxxxx 0.938	+ 0.001 V/C
# 4	A San Diego Fwy NB On/Off Ramps	F xxxxx 1.016	F xxxxx 1.033	+ 0.018 V/C
# 5	5 Veteran Avenue and Sunset Boul	E xxxxx 0.963	F xxxxx 1.014	+ 0.051 V/C
# 6	5 Bellagio Way and Sunset Boulev	E xxxxx 0.954	E xxxxx 0.968	+ 0.014 V/C
# '	Westwood Bouevard and Sunset B	B xxxxx 0.673	B xxxxx 0.676	+ 0.004 V/C
# 8	3 Stone Canyon Road and Sunset B	A xxxxx 0.593	A xxxxx 0.599	+ 0.006 V/C
# 9	Hilgard Avenue/Copa De Oro Roa	F xxxxx 1.007	F xxxxx 1.051	+ 0.044 V/C
# 10	Beverly Glen Boulevard and Sun	E xxxxx 0.970	F xxxxx 1.036	+ 0.067 V/C
# 13	Beverly Glen Boulevard and Sun	F xxxxx 1.242	F xxxxx 1.309	+ 0.067 V/C
# 12	2 Sepulveda Boulevard and San Di	A xxxxx 0.597	в ххххх 0.600	+ 0.004 V/C
# 13	3 Sepulveda Boulevard and Montan	D xxxxx 0.821	D xxxxx 0.825	+ 0.004 V/C
# 14	1 Levering Avenue and Montana Av	C 24.8 0.000	D 27.0 0.000	+ 2.169 D/V
# 19	Veteran Avenue and Montana Ave	D xxxxx 0.883	E xxxxx 0.927	+ 0.044 V/C
# 16	Galey Avenue and Strathmore Pl	C xxxxx 0.724	C xxxxx 0.724	+ 0.000 V/C
# 1	7 Veteran Avenue and Levering Av	A xxxxx 0.571	B xxxxx 0.651	+ 0.079 V/C
# 18	B Hilgard Avenue and Wyton Drive	A xxxxx 0.483	A xxxxx 0.499	+ 0.016 V/C
# 19	Beverly Glen Blvd and Wyton Dr	A xxxxx 0.426	A xxxxx 0.477	+ 0.051 V/C
# 20	Hilgard Avenue and Westholme A	A xxxxx 0.558	A xxxxx 0.574	+ 0.016 V/C
# 23	Hilgard Avenue and Manning Ave	A xxxxx 0.337	A xxxxx 0.346	+ 0.009 V/C
# 22	2 Gayley Avenue and Le Conte Ave	A xxxxx 0.592	A xxxxx 0.588	-0.004 V/C
# 23	B Westwood Boulevard and Le Cont	D xxxxx 0.818	B xxxxx 0.692	-0.126 V/C

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future With Project- AM Peak

Future With Project AM PeakTue Jul 22, 2008 18:09:26

Intersection	Base Del/ V/	Future Del/ V/	Change in
# 24 Tiverton Drive and Le Conte Av	LOS Veh C A xxxxx 0.511	LOS Veh C A xxxxx 0.421	-0.090 V/C
# 25 Hilgard Avenue and Le Conte Av	A xxxxx 0.471	B xxxxx 0.629	+ 0.158 V/C
# 26 Gayley Avenue and Weyburn Aven	A xxxxx 0.503	B xxxxx 0.671	+ 0.168 V/C
# 27 Westwood Boulevard and Weyburn	A xxxxx 0.460	C xxxxx 0.777	+ 0.316 V/C
# 28 Tiverton Drvie and Weyburn Ave	A 7.7 0.158	A 9.2 0.327	+ 0.169 V/C
# 29 Hilgard Avenue and Weyburn Ave	A xxxxx 0.463	A xxxxx 0.496	+ 0.032 V/C
# 30 Westwood Boulevard and Kinross	D xxxxx 0.876	F xxxxx 1.071	+ 0.195 V/C
# 31 Westwood Boulevard and Lindbro	A xxxxx 0.575	C xxxxx 0.719	+ 0.144 V/C
# 32 Glendon/Tiverton/Lindbrook	B xxxxx 0.638	B xxxxx 0.648	+ 0.010 V/C
# 33 Sepulveda Boulevard and Consti	A xxxxx 0.568	A xxxxx 0.570	+ 0.002 V/C
# 34 San Vicente Bouevard and Wilsh	E xxxxx 0.990	F xxxxx 1.073	+ 0.083 V/C
# 35 Sepulveda Boulevard and Wilshi	F xxxxx 1.420	F xxxxx 1.637	+ 0.218 V/C
# 36 Veteran Avenue and Wilshire Bo	F xxxxx 1.186	F xxxxx 1.359	+ 0.173 V/C
# 37 Gayley Avenue and Wilshire Bou	E xxxxx 0.942	F xxxxx 1.162	+ 0.221 V/C
# 38 Westwood Boulevard and Wilshir	F xxxxx 1.049	F xxxxx 1.302	+ 0.253 V/C
# 39 Glendon Avenue and Wilshire Bo	E xxxxx 0.958	F xxxxx 1.059	+ 0.101 V/C
# 40 Malcolm Avenue and Wilshire Bo	F OVRFL 0.000	F OVRFL 0.000	+ 1.8E+0308
# 41 Westholme Avenue and Wilshire	C xxxxx 0.795	D xxxxx 0.885	+ 0.090 V/C
# 42 Warner Avenue and Wilshire Bou	C xxxxx 0.730	D xxxxx 0.815	+ 0.086 V/C
# 43 Beverly Glen Boulevard and Wil	D xxxxx 0.900	F xxxxx 1.015	+ 0.115 V/C
# 44 Sawtelle Boulevard and Ohio Av	F xxxxx 1.040	F xxxxx 1.061	+ 0.021 V/C
# 45 Sepulveda Boulevard and Ohio A	D xxxxx 0.862	D xxxxx 0.894	+ 0.032 V/C
# 46 Veteran Avenue and Ohio Avenue	D xxxxx 0.834	D xxxxx 0.867	+ 0.033 V/C
# 47 Westwood Boulevard and Ohio Av	C xxxxx 0.775	D xxxxx 0.835	+ 0.060 V/C
# 48 Sawtelle Boulevard and Santa M	F xxxxx 1.400	F xxxxx 1.466	+ 0.066 V/C
Traffix 7.8.0115 (c) 2007 Dowling	Assoc. Licensed	to MMA, LONG BE	ACH, CA

58 Beverly Glen Boulevard and Gre D xxxxx 0.867 D xxxxx 0.885 + 0.019 V/C

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

UCLA NHIP and Amended LRDP Traffic Study
Los Angeles, CA
Future With Project- AM Peak
Level Of Service Computation Report

Future With Project AM PeakTue Jul 22, 2008 18:09:26

C.	ircul	ar 212	Level O 2 Plann	ing M	ethod	(Futur	re Vol	ume A	lternat	ive)		
Intersection	#1 S	epulve	eda Bou	levar	d and	Church	n Ln/O	vada :	P1			
Cycle (sec): Loss Time (sec) Optimal Cycle	ec):	10	00 0 (Y+R	=4.0	sec)	Critic	cal Vo	l./Caj ay (s	p.(X): ec/veh)	:	0.8 xxx	870 xxx
Street Name: Approach: Movement:	No:	rth Bo - T	– R	So	uth B - T	ound - R	L E	ast B	ound - R	W.	est Bo - T	ound – R
Control: Rights: Min. Green:	0	Permit Inclu 0	ted ide 0	0	Permi Incl 0	tted ude 0	Sp 0	lit Pl Incl 0	nase ude 0	Sp:	lit Ph Inclu 0	hase ude 0
Lanes:									0 0 			
Volume Modul- Base Vol: Growth Adj: Initial Bse: Added Vol: PasserByVol: Initial Fut: User Adj: PHF Adj: PHF Volume: Reduct Vol: Reduced Vol: PCE Adj: MLF Adj: FinalVolume:	12 1.05 13 0 0 13 1.00 1.00 13 6.00 1.00 76	485 1.05 509 42 0 551 1.00 1.00 551 1.00 1.00 551	72 1.05 76 0 0 76 1.00 76 0 76 1.00 1.00 76	1.05 4 0 0 4 1.00 1.00 4 2.00 1.00 8	1321 1.05 1387 18 0 1405 1.00 1405 0 1405 1.00 1.00 1.00	531 1.05 558 0 0 558 1.00 1.00 558 1.00 1.00	84 1.05 88 1 0 89 1.00 1.00 89 0 9 1.00 1.10	52 1.05 55 0 0 55 1.00 1.00 55 1.00 1.00 55	1.05 27 0 27 1.00 1.00 27 0 27 1.00 1.00	1.05 91 0 91 1.00 1.00 91 1.00 91 1.00	1.05 151 0 0 151 1.00 1.00 151 0 151	1.05 0 0 0 1.00 1.00 0 0 1.00 1.00
Saturation F Sat/Lane: Adjustment: Lanes: Final Sat.:	1425 1.00 0.52 738	1425 1.00 2.48 3537	1425 1.00 1.00 1425	1.00 0.01 6	1.43 2038	1.00 0.56 806	1.09 1553	1.00 0.61 864	1.00 0.30 432	1.00 1425	1.00	1.00 0.00 0
Capacity Ana Vol/Sat: Crit Volume: Crit Moves:	lysis 0.02 13 ****	Modul 0.16	le: 0.05	0.69	0.69	0.69 986 ****	0.06 90 ****	0.06	0.06			

	Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative)											
C	ircul	ar 212	Plann	ing Me	ethod	(Futur	re Vol	ume A	lternat	ive)		
*****										****	****	******
Intersection										****	****	*****
Cycle (sec):		10				Critic	cal Vo	l./Cap).(X):		0.	349
Loss Time (se	/		0 (Y+R	=4.0 s	sec)				ec/veh)	:	XXX	
Optimal Cycl		12				Level						D
******	****	*****			****	******						
Street Name:	37 -	D -	Church		. + 1- D				Fwy S			
Approach: Movement:		rth Bo - T				ound - R		ast Bo - T			est Bo - T	
Movement:									- K 			
Control:		Permit			Permit			lit Pl			lit Pl	
Rights:		Ignor			Incl		10	Incl		DP.	Incl	
Min. Green:	0	0	0	0		0	(0	0		0
Lanes:	0	1 1	0 2	1 () 1	1 0	0	0 0	1 0	1	0 1!	0 0
Volume Module												
Base Vol:	0	143	317	223	656	0	(_	1	1435	1	22
Growth Adj:		1.05	1.05		1.05	1.05		1.05	1.05		1.05	1.05
Initial Bse:	0	150	333	234	689	0	(_	1	1507	1	23
Added Vol:	0	1	0	0	0	0	(-	0	38 0	0	0
PasserByVol: Initial Fut:	0	151	333	234	689	0	(-	1	1545	1	23
User Adi:		1.00	0.00		1.00	1.00	-	1.00	1.00		1.00	1.00
PHF Adj:		1.00	0.00		1.00	1.00		1.00	1.00		1.00	1.00
PHF Volume:	0	151	0	234	689	0	1.00		1	1545	1	23
Reduct Vol:	0	0	0	0	0	0	(0	0	0	0	0
Reduced Vol:	0	151	0	234	689	0	(2	1	1545	1	23
PCE Adj:		1.00	0.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00
MLF Adj:		1.00	0.00		1.00	1.00		1.00	1.00		1.00	1.00
FinalVolume:	. 0	151	0	234	689	0		2	1	1699	1	23
C	1											
Saturation Fi Sat/Lane:		oau1e: 1425	1425	1405	1425	1425	1 4 2 5	1425	1425	1 4 0 5	1425	1425
Adjustment:		1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00
Lanes:		2.00	2.00		2.00	0.00		0.67	0.33		0.01	0.02
Final Sat.:		2850	2850		2850	0.00	0.00		475	2810	2	38
Capacity Ana	İysis	Modul	.e: '			'			'	'		'
Vol/Sat:	0.00	0.05	0.00	0.16	0.24	0.00	0.00	0.00	0.00	0.60	0.60	0.60
Crit Volume:	0				344			3		862		
Crit Moves:	****				****			****	n an an an an a	****		

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

UCLA NHIP and Amended LRDP Traffic Study
Los Angeles, CA
Future With Project- AM Peak

Level Of Service Computation Report
Circular 212 Planning Method (Future Volume Alternative)

Future With Project AM PeakTue Jul 22, 2008 18:09:26

Intersection #3 Church Lane and Sunset Boulevard ************************ Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/veh): xxxxxx Optimal Cycle: 180 Level Of Service: Street Name: Church Lane Sunset Boulevard Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R Control: Split Phase Split Phase Protected Permitted Rights: Include Out To 2 Rights: Include Ovl Include Ovl Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 1 0 1 1 0 1 1 0 0 2 2 0 3 1 0 1 0 2 0 1 Volume Module: >> Count Date: 19 Feb 2008 << 800-900 Base Vol: 51 7 102 652 158 962 99 1713 111 6 1170 432 Initial Bse: 54 7 107 685 166 1010 104 1799 117 6 1229 454 Added Vol: 0 0 0 38 0 0 1 11 0 0 3 0 PasserByVol: 0 0 0 0 0 0 0 0 0 0 0 0 Initial Fut: 54 7 107 723 166 1010 105 1810 117 6 1232 454 PHF Volume: 54 7 107 723 166 1010 105 1810 117 6 1232 454 Ω 6 1232 454 FinalVolume: 54 7 107 795 166 1111 115 1810 117 6 1232 454 -----|----||------| Saturation Flow Module: Lanes: 1.00 1.00 1.00 1.65 0.35 2.00 2.00 3.76 0.24 1.00 2.00 1.00 Final Sat.: 1425 1425 1425 2358 492 2850 2850 5355 345 1425 2850 1425 -----| Capacity Analysis Module: Vol/Sat: 0.04 0.01 0.08 0.34 0.34 0.39 0.04 0.34 0.34 0.00 0.43 0.32 Crit Volume: 107 556 58 616 Crit Moves: **** **** ****

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) *************************

Intersection #4 San Diego Fwy NB On/Off Ramps and Sunset Boulevard *****************

0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): xxxxxx Optimal Cycle: 180 Level Of Service:

Street Name: San Diego Fwy NB On/Off Ramps Sunset Boulevard Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R T, - T - R Control: Split Phase Split Phase Permitted Permitted Rights: Include Include Ovl Ignore
Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 1 0 0 0 1 0 0 0 0 0 0 0 2 0 2 0 0 3 0 1 -----|----|-----|------| Volume Module: >> Count Date: 14 Feb 2008 << 800-900 Base Vol: 642 0 521 0 0 0 1473 949 0 976 0 Initial Bse: 674 0 547 0 0 0 0 1547 996 0 1025 0 Added Vol: 0 0 0 0 0 0 0 50 0 0 30 PasserBvVol: 0 0 0 0 0 0 0 0 0 0 0 Ω PasserByVol: 0 Ω Initial Fut: 674 0 547 0 0 0 0 1597 996 0 1055 Ω PHF Volume: 674 0 547 0 0 0 0 1597 996 0 1055 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 1597 996 0 0 0 996 0 1055 Ω Reduced Vol: 674 0 547 Ω FinalVolume: 674 0 547 0 0 0 0 1597 1096 0 1055 0 -----|----||-----| Saturation Flow Module:

Final Sat.: 1425 0 1425 0 0 0 0 2850 2850 0 4275 1425

Capacity Analysis Module:

Crit Moves: ****

-----|----|----|-----|

Vol/Sat: 0.47 0.00 0.38 0.00 0.00 0.00 0.56 0.38 0.00 0.25 0.00

Crit Volume: 674 0 798 0
Crit Moves: **** ****

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA. LONG BEACH. CA

Circular 212 Planning Method (Future Volume Alternative) ************************* Intersection #5 Veteran Avenue and Sunset Boulevard ************************ Cycle (sec): 100 Critical Vol./Cap.(X): 1.014 Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/veh): xxxxxx Optimal Cycle: 180 Level Of Service: Street Name: Veteran Avenue Sunset Boulevard Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - F T. - T - R Control: Split Phase Split Phase Permitted Prot+Permit Rights: Ovl Include Include Include Include
 Rights:
 Ovl
 Include
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 Lanes: 1 0 0 0 1 0 0 0 0 0 0 1 1 0 1 0 2 0 0 Volume Module: >> Count Date: 19 Feb 2008 << 745-845

UCLA NHIP and Amended LRDP Traffic Study

Los Angeles, CA

Level Of Service Computation Report

Future With Project- AM Peak

Future With Project AM PeakTue Jul 22, 2008 18:09:26

-----|----|-----|------| Base Vol: 57 0 347 0 0 0 0 1726 185 295 926 0 Initial Bse: 60 0 364 0 0 0 1812 194 310 972 0 Added Vol: 30 0 14 0 0 0 0 1 49 17 1
PasserByVol: 0 0 0 0 0 0 0 0 0 0 0
Initial Fut: 90 0 378 0 0 0 1813 243 327 973 PHF Volume: 90 0 378 0 0 0 1813 243 327 973 0 Reduct Vol: Reduced Vol: 90 0 378 FinalVolume: 90 0 378 0 0 0 1813 243 327 973 0 -----|-----|------| Saturation Flow Module: Lanes: 1.00 0.00 1.00 0.00 0.00 0.00 1.76 0.24 1.00 2.00 0.00 Final Sat.: 1425 0 1425 0 0 0 0 2513 337 1425 2850 0 -----| Capacity Analysis Module:

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA. LONG BEACH. CA

Crit Volume: 90 0 1028 327

Crit Moves: ****

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative)

************************* Intersection #6 Bellagio Way and Sunset Boulevard

************************ 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): xxxxxx

Loss IIMe (se Optimal Cvcle	: :	18	0 (1+R: 0	=4.0 8	sec)	Level	Of Ser	y (service	:	•	XXXX	E
Optimal Cycle	- ****	*****	*****	*****	*****	*****	****	****	*****	*****	****	*****
Street Name:			Bellag	io Way	7			Sı	ınset B	ouleva	ard	
Street Name: Approach:	No	rth Bo	und	Soi	ith Bo	ound	Eá	ast Bo	ound	We	est Bo	ound
Movement:	L ·	- T	- R	L -	- Т	- R	L -	- Т	- R	L -	- T	- R
	l			l		I	1			1		l
Control: Rights: Min. Green: Lanes:	'arS	lit Ph	ase	ˈ Sp]	lit Ph	nase	Pro	nt.+Per	rmit. '	' 1	Permit	tted
Rights:		Inclu	de		Incl	ıde		Incl	ıde		Incl	ude
Min. Green:	0	0	0	0	0	0	0	0	0	0	0	0
Lanes:	1 :	1 0	0 1	0 1	1 0	0 1	1 () 1	1 0	1 () 1	1 0
Volume Module	: >>	Count	Date:	19 F∈	eb 200)8 << 7	45-845	5	'	'		,
Base Vol:	41	5	8	172	50	254	178	1680	226	17	923	96
Growth Adj:	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05
Initial Bse:	43	5	8	181	53	267	187	1764	237	18	969	101
Added Vol:	0	0	0	4	0	16	9	7	0	0	2	4
Initial Bse: Added Vol: PasserByVol: Initial Fut:	0	0	0	0	0	0	0	0	0	0	0	0
Initial Fut:	43	5	8	185	53	283	196	1771	237	18	971	105
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Volume:	43	5	8	185	53	283	196	1771	237	18	971	105
Reduct Vol: Reduced Vol:	0	0	0	0	0	0	0	0	0	0	0	0
PCE Adj:												
MLF Adj:									1.00			
FinalVolume:												
Saturation Fl												
Sat/Lane:												
Adjustment:												
Lanes:	1.80	0.20	1.00	0.78	0.22	1.00	1.00	1.76	0.24	1.00	1.81	0.19

Final Sat.: 2476 274 1375 1071 304 1375 1375 2425 325 1375 2482 268

Vol/Sat: 0.02 0.02 0.01 0.17 0.17 0.21 0.14 0.73 0.73 0.01 0.39 0.39

Crit Volume: 26 283 1004 18

Capacity Analysis Module:

Crit Moves: ****

-----|-----|------|

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future With Project- AM Peak

Future With Project AM PeakTue Jul 22, 2008 18:09:26

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) ************************ Intersection #7 Westwood Bouevard and Sunset Boulevard ********************** Cycle (sec): 100 Critical Vol./Cap.(X): 0.676 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): xxxxxx Optimal Cycle: 57 Level Of Service: Street Name: Westwood Boulevard Sunset Boulevard Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - F L - T - R Control: Split Phase Split Phase Permitted Protected Rights: Include Include Ov1 Include
Min. Green: 0 0 0 0 0 0 0 0 0 0 0 Lanes: 2 0 0 0 1 0 0 0 0 0 0 2 0 1 1 0 2 0 0

Volume Module: >> Count Date: 14 Feb 2008 << 730-830 Base Vol: 26 0 21 0 0 0 1434 376 175 1016 0 Initial Bse: 27 0 22 0 0 0 1506 395 184 1067 0 Added Vol: 0 0 0 0 0 0 0 0 10 0 0 6
PasserByVol: 0 0 0 0 0 0 0 0 0 0 0 0
Initial Fut: 27 0 22 0 0 0 0 1516 395 184 1073 Ω PHF Volume: 27 0 22 0 0 0 1516 395 184 1073 0 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 27 0 22 0 0 0 0 1516 395 184 1073 0 FinalVolume: 30 0 22 0 0 0 1516 395 184 1073 0 -----| Saturation Flow Module: Final Sat.: 2850 0 1425 0 0 0 0 2850 1425 1425 2850 0 -----|----|----|

Capacity Analysis Module: Vol/Sat: 0.01 0.00 0.02 0.00 0.00 0.00 0.53 0.28 0.13 0.38 0.00 Crit Volume: 22 0 758 184 Crit Moves: **** ****

Los Angeles, CA Future With Project- AM Peak

Level Of Service Computation Report

Circular 212 Planning Method (Future Volume Alternative) ************************* Intersection #8 Stone Canyon Road and Sunset Boulevard ************************ 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): xxxxxx Optimal Cycle: 57 Level Of Service: Street Name: Stone Canyon Sunset Boulevard Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R T. - T - R Control: Split Phase Split Phase Protected Protected Rights: Include Ovl Ignore Include
Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 1 0 1! 0 0 0 0 0 0 1 1 0 2 0 1 1 0 1 1 0 Volume Module: >> Count Date: 26 Feb 2008 << 745-845 Base Vol: 49 1 43 0 0 60 57 1270 240 89 1153 22 Initial Bse: 51 1 45 0 0 63 60 1333 252 93 1211 23 0 Added Vol: PasserByVol: 0 0 Ω Initial Fut: 51 1 46 0 0 63 60 1343 252 96 1217 23 PHF Volume: 51 1 46 0 0 63 60 1343 0 96 1217 23 0 23 PCE Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00 FinalVolume: 57 1 46 0 0 63 60 1343 0 96 1217 23 -----|----||-----| Saturation Flow Module:

Tanes: 1.09 0.02 0.89 0.00 0.00 1.00 1.00 2.00 1.00 1.00 1.96 0.04

Final Sat.: 1499 28 1223 0 0 1375 1375 2750 1375 1375 2699 51

Capacity Analysis Module:

-----|----|-----|------|

Vol/Sat: 0.04 0.04 0.04 0.00 0.00 0.05 0.04 0.49 0.00 0.07 0.45 0.45

Crit Volume: 52 63 672 96
Crit Moyes: **** **** ****

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA. LONG BEACH. CA

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future With Project- AM Peak

Future With Project AM PeakTue Jul 22, 2008 18:09:26

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) ************************* Intersection #9 Hilgard Avenue/Copa De Oro Road and Sunset Boulevard ************************** Cycle (sec): 100 Critical Vol./Cap.(X): 1.051 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): xxxxxx Optimal Cycle: 180 Level Of Service: Street Name: Hilgard Avenue/Copa De Oro Road Sunset Boulevard Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - F T. - T - R Control: Split Phase Split Phase Protected Protected Rights: Ovl Include Inclu
 Rights:
 Ovl
 Include
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 Lanes: 1 0 1! 0 1 0 0 1! 0 0 1 0 1 1 0 1 1 0 -----|----|-----|------| Volume Module: >> Count Date: 19 Feb 2008 << 745-845 Base Vol: 142 38 107 28 73 16 18 1031 261 452 1067 21 Initial Bse: 149 40 112 29 77 17 19 1083 274 475 1120 22 Added Vol: 4 0 22 0 0 0 0 7 4 45 4 0 PasserByVol: 0 0 0 0 0 0 0 0 0 0 0 0 Initial Fut: 153 40 134 29 77 17 19 1090 278 520 1124 22 PHF Volume: 153 40 134 29 77 17 19 1090 278 520 1124 22 FinalVolume: 168 40 148 29 77 17 19 1090 278 520 1124 22 -----|-----|------| Saturation Flow Module: Tanes: 1.42 0.34 1.24 0.24 0.62 0.14 1.00 1.59 0.41 1.00 1.96 0.04 Final Sat.: 1951 462 1712 329 858 188 1375 2191 559 1375 2697 53 -----| Capacity Analysis Module: Vol/Sat: 0.09 0.09 0.09 0.09 0.09 0.01 0.50 0.50 0.38 0.42 0.42 Crit Volume: 119 123 684 520 Crit Moves: ****

Los Angeles, CA Future With Project- AM Peak

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative)

******************** Intersection #10 Beverly Glen Boulevard and Sunset Boulevard ***********************

Loss Time (sec). Loss Time (se Optimal Cycle	ec): e:	18	0 (Y+R:	=4.0 s	sec)	Averag Level	e Dela Of Sei	ay (se	ec/veh) : *****	****	XXX	KXX F	***
Street Name: Approach: Movement:	No:	Bever rth Bo - T	ly Gle ound - R	n Bou Sou L	levaro uth Bo - T	d ound - R	Ea L -	St ast Bo - T	unset B ound - R	ouleva We L -	ard est Bo - T	ound -	d R
Control: Rights: Min. Green: Lanes:	Sp	lit Ph Ignor	ase e	Sp	lit Pl Incl	nase ude	I	Permi	tted ude	Pro	t+Per Incl	rmi ude	t .
Min. Green: Lanes:	1 1	0	0 1	0 0	0	0 0	1 (0	1 0	1 (0	1	0
 Volume Module Base Vol:	: : >>	Count		19 F	eb 20		45-845	5	106				 72
Growth Adj: Initial Bse:	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05		1.05	1.05	1	
Added Vol: PasserByVol:	0	0	0	0	0	0	0	0	0	0	0		0
Initial Fut: User Adj:									111 1.00				76 .00
PHF Adj: PHF Volume:	1.00 91	1.00 97	0.00	1.00 53	80	9	16	1102	111	580	1521		.00 76
Reduct Vol: Reduced Vol:	91	97	0		80	9	16	1102	0 111	580	1521		76
PCE Adj: MLF Adj: FinalVolume:	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1	.00 .00 76
 Saturation Fl													
Sat/Lane: Adjustment:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1	.00
Lanes: Final Sat.: 	1375	1375	1375	509	774	92	1375	2498	0.18 252	1375			.09 130
Capacity Anal				1									

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

Vol/Sat: 0.07 0.07 0.00 0.10 0.10 0.10 0.01 0.44 0.44 0.42 0.58 0.58

Crit Volume: 97 142 607 580
Crit Moyee: **** **** ****

Crit Moves:

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA

Future With Project- AM Peak

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) *************************

Future With Project AM PeakTue Jul 22, 2008 18:09:26

Intersection #11 Beverly Glen Boulevard and Sunset Boulevard (East I/S) *****************

Cycle (sec): 100 Critical Vol./Cap.(X): 1.309 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): xxxxxx

Optimal Cycle: 180 Level Of Service: Street Name: Beverly Glen Boulevard Sunset Boulevard (East I/S) Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - F L - T - R Control: Split Phase Split Phase Prot+Permit Permitted
 Rights:
 Include
 Include
 Include
 Include
 Ignore

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0< Lanes: 0 0 0 0 0 0 1 0 1 0 2 0 0 0 0 2 0 1 Volume Module: >> Count Date: 19 Feb 2008 << 745-845 Base Vol: 0 0 0 148 0 811 313 1127 0 0 1123 33 Initial Bse: 0 0 0 155 0 852 329 1183 0 0 1179 35 PHF Volume: 0 0 0 155 0 878 348 1239 0 0 1279 0 Ω FinalVolume: 0 0 0 155 0 878 348 1239 0 0 1279 0 -----|----||------| Saturation Flow Module: Lanes: 0.00 0.00 0.00 0.30 0.70 1.00 1.00 2.00 0.00 0.00 2.00 1.00 Final Sat.: 0 0 0 429 996 1425 1425 2850 0 0 2850 1425

-----|----|-----|------| Capacity Analysis Module: Vol/Sat: 0.00 0.00 0.00 0.36 0.00 0.62 0.24 0.43 0.00 0.00 0.45 0.00 Crit Volume: 0 878 348 640
Crit Moves: **** **** Crit Moves: ************************

Level Of Service Computation Report

Circular 212 Planning Method (Future Volume Alternative)

Intersection #12 Sepulveda Boulevard and San Diego Fwy NB Off-Ramp

 Cycle (sec):
 100
 Critical Vol./Cap.(X):
 0.600

 Loss Time (sec):
 0 (Y+R=4.0 sec)
 Average Delay (sec/veh):
 xxxxxx

 Optimal Cycle:
 47
 Level Of Service:
 B

Street Name: Sepulveda Boulevard San Diego Fwy NB Off-Ramp Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R T. - T - R Control: Permitted Permitted Split Phase Split Phase Rights: Include Include Include Include
 Rights:
 Include
 Include
 Include
 Include
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 Lanes: 0 0 2 0 0 0 0 2 0 0 1 0 1! 0 0 0 0 0 0 -----|----|-----|------| Volume Module: >> Count Date: 13 Feb 2008 << 800-900 Base Vol: 0 381 0 0 1307 0 276 0 9 0 0 Initial Bse: 0 400 0 0 1372 0 290 0 9 0 0 Added Vol: 0 PasserByVol: Ω Initial Fut: 0 404 0 0 1378 0 294 0 9 0 PHF Volume: 0 404 0 0 1378 0 294 0 9 0 0 0 0 0 Reduct Vol: 0 0 0 0 0 0 Reduced Vol: 0 404 0 0 1378 0 0 0 0 0 294 0 a 0 0 Ω MLF Adi: 1.00 1.00 1.00 1.00 1.00 1.00 1.10 1.00 1.00 1.00 1.00 1.00 FinalVolume: 0 404 0 0 1378 0 323 0 9 0 0 -----|----||-----| Saturation Flow Module: Lanes: 0.00 2.00 0.00 0.00 2.00 0.00 1.94 0.00 0.06 0.00 0.00 0.00

Final Sat.: 0 2850 0 0 2850 0 2769 0 81 0 0

Vol/Sat: 0.00 0.14 0.00 0.00 0.48 0.00 0.12 0.00 0.12 0.00 0.00 0.00

Crit Volume: 0 689 166 0
Crit Moyes: **** ****

Capacity Analysis Module:

-----||-----||-----|

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

Future With Project- AM Peak Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) ************************* Intersection #13 Sepulveda Boulevard and Montana Avenue ************************ 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): xxxxxx Optimal Cycle: 106 Level Of Service: Street Name: Sepulveda Boulevard Montana Avenue Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R T. - T - R Control: Prot+Permit Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 1 0 2 0 1 1 0 1 1 0 0 0 1! 0 0 0 1 0 1 0 -----|----|-----|------| Volume Module: >> Count Date: 13 Feb 2008 << 800-900 Base Vol: 74 312 273 328 1103 22 8 272 100 98 70 71 Initial Bse: 78 328 287 344 1158 23 8 286 105 103 74 75 Added Vol: 0 4 4 16 2 0 0 0 0 4 0 10 PasserByVol: 0 0 0 0 0 0 0 0 0 0 0 Initial Fut: 78 332 291 360 1160 23 8 286 105 107 74 85 PHF Volume: 78 332 291 360 1160 23 8 286 105 107 74 85 FinalVolume: 78 332 291 360 1160 23 8 286 105 214 74 85 -----|-----|------|

Lanes: 1.00 2.00 1.00 1.00 1.96 0.04 0.02 0.72 0.26 1.00 0.55 0.45

Final Sat.: 1425 2850 1425 1425 2794 56 30 1020 375 1425 777 648

Vol/Sat: 0.05 0.12 0.20 0.25 0.42 0.42 0.28 0.28 0.28 0.08 0.09 0.13 Crit Volume: 78 592 399 107 Crit Moves: **** ****

-----|

UCLA NHIP and Amended LRDP Traffic Study

Los Angeles, CA

Future With Project AM PeakTue Jul 22, 2008 18:09:27

Saturation Flow Module:

Capacity Analysis Module:

Level Of Service Computation Report 2000 HCM Unsignalized Method (Future Volume Alternative) ******************* Intersection #14 Levering Avenue and Montana Avenue

*********************** Average Delay (sec/veh): 1.1 Worst Case Level Of Service: D[27.0] Street Name: Levering Avenue Montana Avenue Approach: North Bound South Bound East Bound Movement: L - T - R L - T - REast Bound West Bound L - T - R L - T - R -----|-----|------| Stop Sign Stop Sign Uncontrolled Uncontrolled
Include Include Include Include Control: Rights: Lanes: 0 0 1! 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 Volume Module: >> Count Date: 7 Feb 2008 << 800-900 Base Vol: 37 0 3 0 0 0 761 339 6 155 0 Initial Bse: 39 0 3 0 0 0 799 356 6 163 0 0 0 20 0 Added Vol: 14 0 0 0 0 0 0 Ω PasserByVol: 0 0 0 0 0 0 0 0 0 0 0 0 0 Initial Fut: 53 0 3 0 0 0 0 799 376 0 0 6 163 0 Ω PHF Adj: PHF Volume: 53 0 3 0 0 0 0 799 376 6 163 0 Reduct Vol: 0 0 0 0 0 0 0 0 3 0 0 0 0 799 376 0 0 6 163 0 0 0 FinalVolume: 53 0 Critical Gap Module: FollowUpTim: 3.5 4.0 3.3 xxxxx xxxx xxxxx xxxxx xxxxx xxxxx 2.2 xxxx xxxxx -----|----|------| Capacity Module: Level Of Service Module:

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA. LONG BEACH, CA

ApproachTOS:

D

Note: Queue reported is the number of cars per lane.

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future With Project- AM Peak

Future With Project AM PeakTue Jul 22, 2008 18:09:27

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) ************************* Intersection #15 Veteran Avenue and Montana Avenue/Galey Avenue ******************** 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): xxxxxx Optimal Cycle: 180 Level Of Service: Street Name: Veteran Avenue Montana Avenue/Galey Avenue Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - F T. - T - R Control: Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 0 0 1! 0 0 0 0 1! 0 0 0 0 1! 0 0 0 0 1! 0 0 -----|----|-----|------| Volume Module: >> Count Date: 13 Feb 2008 << 800-900 Base Vol: 33 219 21 168 319 19 114 554 43 11 78 48 Initial Bse: 35 230 22 176 335 20 120 582 45 12 82 50 Added Vol: 0 42 0 6 60 0 0 0 0 0 0 1 PasserByVol: 0 0 0 0 0 0 0 0 0 0 0 Initial Fut: 35 272 22 182 395 20 120 582 45 12 82 51 PHF Volume: 35 272 22 182 395 20 120 582 45 12 82 51 FinalVolume: 35 272 22 182 395 20 120 582 45 12 82 51 -----|-----||-------| Saturation Flow Module: Lanes: 0.10 0.83 0.07 0.31 0.66 0.03 0.16 0.78 0.06 0.08 0.57 0.35 Final Sat.: 158 1241 101 458 992 50 241 1169 91 120 848 532 -----| Capacity Analysis Module: Vol/Sat: 0.22 0.22 0.22 0.40 0.40 0.40 0.50 0.50 0.50 0.10 0.10 0.10 Crit Volume: 35 597 747 12 Crit Moves: ****

Capacity Analysis Module:

Crit Moves:

Levering Avenue

Los Angeles, CA Future With Project- AM Peak

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) *************************

Intersection #16 Galey Avenue and Strathmore Place ****************** 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): xxxxxx Optimal Cycle: 67 Level Of Service: C Street Name: Galey Avenue Strathmore Place

Street Name.			Galey				_		LIACIIIIC				
Approach:		rth_Bo			uth_B			ast_Bo			est_Bo		
Movement:	L ·	- T	- R		- T		. L -	_		. L .	- T	- R	
				1			1						
Control:		Permit		Pro	ot+Pe:]	Permit]	Permit	ted	
Rights:		Incl			Incl	ıde		Incl			Ovl		
Min. Green:	0	0	0	0	0	0	0	0	0	0	0	0	
Lanes:	1	0 1	0 1	1) 1	1 0	0 (1!	0 0	1 (0 1	0 1	
Volume Module	e: >>	Count	Date:	19 F	eb 20	08 << 7	45-84	5					
Base Vol:	5	79	280	474	265	3	2	118	14	95	18	47	
Growth Adj:	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	
Initial Bse:	5	83	294	498	278	3	2	124	15	100	19	49	
Added Vol:	0	1	0	0	6	0	0	0	0	0	0	0	
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	0	
Initial Fut:	5	84	294	498	284	3	2	124	15	100	19	49	
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
PHF Volume:	5	84	294	498	284	3	2	124	15	100	19	49	
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0	
Reduced Vol:	5	84	294	498	284	3	2	124	15	100	19	49	
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
FinalVolume:	5	84	294	498	284	3	2	124	15	100	19	49	
Saturation F	low M	odule:											
Sat/Lane:	1425	1425	1425	1425	1425	1425	1425	1425	1425	1425	1425	1425	
Adjustment:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Lanes:	1.00	1.00	1.00	1.00	1.98	0.02	0.01	0.89	0.10	1.00	1.00	1.00	

Final Sat.: 1425 1425 1425 1425 2819 31 21 1255 149 1425 1425 1425 -----|----|-----||------|

Vol/Sat: 0.00 0.06 0.21 0.35 0.10 0.10 0.10 0.10 0.10 0.07 0.01 0.03

Crit Volume: 294 498 141 100
Crit Moyee: **** **** ****

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

UCLA NHIP and Amended LRDP Traffic Study

Los Angeles, CA Future With Project- AM Peak

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) ************************

Intersection #17 Veteran Avenue and Levering Avenue

Street Name: Veteran Avenue

Future With Project AM PeakTue Jul 22, 2008 18:09:27

Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/veh):
Optimal Cycle: 41 Level Of Service: xxxxxx

Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R Control: Permitted Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 0 0 1! 0 0 0 0 1! 0 0 0 0 1! 0 0 0 0 1! 0 0 Volume Module: >> Count Date: 13 Feb 2008 << 800-900 Base Vol: 19 233 28 21 387 3 2 115 203 66 23 29 Initial Bse: 20 245 29 22 406 3 2 121 213 69 24 30 Added Vol: 5 18 3 26 34 0 0 11 10 33 9 24 PasserByVol: 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 10 0 33 9 24 Initial Fut: 25 263 32 48 440 3 2 132 223 102 33 54

PHF Volume: 25 263 32 48 440 3 2 132 223 102 33 54 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 25 263 32 48 440 3 2 132 223 102 33 54 FinalVolume: 25 263 32 48 440 3 2 132 223 102 33 54 -----|-----||-------| Saturation Flow Module:

Final Sat.: 117 1231 152 147 1344 10 9 554 938 808 262 430

-----| Capacity Analysis Module: Vol/Sat: 0.21 0.21 0.21 0.33 0.33 0.34 0.24 0.24 0.13 0.13 0.13 Crit Volume: 25 492 357 102 Crit Moves: ****

Lanes: 0.08 0.82 0.10 0.10 0.89 0.01 0.01 0.37 0.62 0.54 0.17 0.29

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative)

******************* Intersection #18 Hilgard Avenue and Wyton Drive ******************* Cycle (sec): 100 Critical Vol./Cap.(X): 0.499 Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/veh): xxxxxx Optimal Cycle: 29 Level Of Service: Street Name: Hilgard Avenue Wyton Drive Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R Permitted Permitted Permitted Permitted Control: Rights: Include Include Include Include

Kightes.		THUT	iae		TIICT	uue		TIICT	uue		TILCIC	iue
Min. Green:	0	0	0	0	0	0	0	0	0	0	0	0
Lanes:	1 (0 1	1 0	1 (2	0 1	1 () 1	0 1	0 0	1!	0 0
Volume Module	e: >>	Count		30 Ja	an 20	3 >> 80	800-900)				
Base Vol:	207	276	9	27	589	53	16	24	94	59	85	28
Growth Adj:	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05
Initial Bse:	217	290	9	28	618	56	17	25	99	62	89	29
Added Vol:	0	26	0	0	49	0	0	0	0	0	0	0
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	0
Initial Fut:	217	316	9	28	667	56	17	25	99	62	89	29
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Volume:	217	316	9	28	667	56	17	25	99	62	89	29
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:	217	316	9	28	667	56	17	25	99	62	89	29
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
FinalVolume:	217	316	9	28	667	56	17	25	99	62	89	29
Saturation Fl	low Mo	odule:										
Sat/Lane:	1500	1500	1500	1500	1500	1500	1500	1500	1500	1500	1500	1500

Lanes: 1.00 1.94 0.06 1.00 2.00 1.00 1.00 1.00 0.34 0.50 0.16 Final Sat.: 1500 2913 87 1500 3000 1500 1500 1500 1500 515 741 244 -----|----|----|

Vol/Sat: 0.14 0.11 0.11 0.02 0.22 0.04 0.01 0.02 0.07 0.12 0.12 0.12 Crit Volume: 217 334 17 181
Crit Movee: **** **** ****

Capacity Analysis Module:

Crit Moves: ****

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA

Future With Project AM PeakTue Jul 22, 2008 18:09:27

Future With Project- AM Peak

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative)

****************** t incl.]tion #19 Beverly Glen Blvd and Wyton Dr/Comstock Ave [5-Leg Intersection ************************** Cycle (sec): 100 Critical Vol./Cap.(X): 0.477

Loss Time (so	ec): e:	2	0 (Y+R 28	=15.0	sec)	Averag Level	e Dela Of Ser	y (se vice:	ec/veh) :	: xx	A A
Street Name:		Bever	cly Gle	n Boul	levar	d	Wyt	on Dr	rive/Co	mstock Av	renue
Approach:	No	rth Bo	ound	Sot	ıth B	ound	Ea	st Bo	ound	West	Bound
Movement:	L ·	- T	- R	L -	- T	- R	_ L -	Т	- R	L - T	' - R
Control:		Dermit			Dermi	 tted		ermit	 -+ed	Derm	itted
Rights:		Incl	ide	-	Incl	nde	-	Incli	ide	Inc	lude
Rights: Min. Green:	Λ	111010	n	Λ	0	n	0	111010	n	0	n n
Lanes:	1 1	າ 1	0 1	1 (າ 1	0 1	0 0	1 !	0 0	0 0 1	1 0 0
				1							
Volume Modul	e: >>	Count	Date:	12 Ma	av 20	08 << 7	00-800		'	1	1
Base Vol:	8	300	5	46	498	3	1	22	11	30 3	3 38
Growth Adi:	1 05	1 05	1 05	1 05	1 05	1 05	1 05	1 05	1 05	1 05 1 0	15 1 05
Initial Bse:	8	315	5	48	523	3	1	23	12	32 3	5 40
Added Vol:	0	46	0	0	77	0	0	0	0	0	0 0
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0 0
Initial Bse: Added Vol: PasserByVol: Initial Fut:	8	361	5	48	600	3	1	23	12	32 3	5 40
Hser Adi:	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00 1 0	100
PHF Adj: PHF Volume:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00 1.0	0 1.00
PHF Volume:	8	361	5	48	600	3	1	23	12	32 3	5 40
Reduct Vol:	0	0	0	0	0	0	0	Ω	0	0	0 0
Reduced Vol:	8	361	5	48	600	3	1	23	12	32 3	5 40
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00 1.0	0 1.00
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00 1.0	0 1.00
FinalVolume:	. 8	361	5	48	600	3	. 1	23	12	32 3	5 40
Saturation F											
Sat/Lane:											
Adjustment:											
Lanes:	1.00	1.00	1.00	1.00	1.00	1.00	0.03	0.65	0.32	0.30 0.3	3 0.37
Final Sat.:	1500	1500	1500	1500	1500	1500	44	971	485	446 49	0 564
G											
Capacity Ana				0 00	0 40	0 00	0 00	0 00	0 00	0 07 0 0	
Vol/Sat:											
Crit Volume: Crit Moves:	8				600		1			10	. +
Crit Moves:											

Capacity Analysis Module:

Crit Moves: ****

Future With Project- AM Peak

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative)

******************* Intersection #20 Hilgard Avenue and Westholme Avenue ************************ Cycle (sec): 100 Critical Vol./Cap.(X): 0.574 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): XXXXXX Optimal Cycle: 34 Level Of Service: A

******	*****************************											
Street Name:	Street Name: Hilgard Avenue Westholme Avenue Approach: North Bound South Bound East Bound West Bound											
Approach:	No:	rth Bo	und	Sot	ith Bo	ound	Ea	ast B	ound	We	est B	ound
Movement:	L ·	- T	- R	L ·	- T	- R	L ·	- T	- R	L ·	- T	- R
Control:		Permit	ted		ermit	ted	. 1	Permi	tted	. 1	ermi	tted
Rights:		Inclu	.de		Inclu	ıde		Incl	ude		Incl	ude
Min. Green:	0	0	0	0	0	0	0	0	0	0	0	0
Lanes:	1	0 1	1 0	1 () 1	1 0	0 :	1 0	1 0	0 (1!	0 0
Volume Module												
Base Vol:		379	41	15		131	20	10	29	40	194	
Growth Adj:			1.05		1.05	1.05		1.05			1.05	
Initial Bse:			43	16		138			30	42		
Added Vol:			0	0	49	0	0	0	0	0	0	-
PasserByVol:			0	0	0	0	0	0	0	0	0	-
Initial Fut:	171		43	16	607	138	21	11	30	42	204	
User Adj:		1.00	1.00		1.00	1.00		1.00	1.00		1.00	
PHF Adj:			1.00	1.00	1.00	1.00		1.00			1.00	
	171		43	16	607	138	21	11	30	42	204	
Reduct Vol:	0	-	0	0	0	0	0	0	0	0	0	-
Reduced Vol:			43	16	607	138		11		42	204	
PCE Adj:		1.00	1.00		1.00	1.00		1.00			1.00	
MLF Adj:		1.00	1.00		1.00	1.00		1.00			1.00	
FinalVolume:			43		607	138	. 21		30	42	204	51
	ı											
Saturation F												
Sat/Lane:		1500		1500		1500		1500			1500	
Adjustment:			1.00	1.00		1.00		1.00			1.00	
Lanes:		1.82	0.18		1.63	0.37		0.34			0.69	
Final Sat.:			277	1500	2445	555	1017				1028	260
~	l											

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

Crit Volume: 171 372 21 297
Crit Moves: **** **** **** UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future With Project- AM Peak

Future With Project AM PeakTue Jul 22, 2008 18:09:27

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) ************************* Intersection #21 Hilgard Avenue and Manning Avenue

******************* Cycle (sec): 100 Critical Vol./Cap.(X): 0.346 Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/veh): xxxxxx 28 Level Of Service: Optimal Cycle: A

Street Name: Approach:		H	ilgard	Aven	ıe				1	Manning	Aveni	ıe	
Approach:	No	rth Bo	und	So	uth Bo	ound		Ea	st Bo	ound	We	est B	ound
Movement:													
Control:		Permit	ted		Permit	ted	1	nl	it Pl	 nase	Spi	lit Pl	nase
Rights:	•	Inclu	de	•	Incli	ide	_	- 1	Incli	ide	Op.	Incl	ıde
Min Green:	0	0	0	0	0	0		Ω	0	0	0	0	0
Control: Rights: Min. Green: Lanes:	0 (0 1	1 0	1 (2	0 0	0	0	0	0 0	0 (1!	0 0
Volume Module													
Base Vol:													
Growth Adj:	1.05	1.05	1.05	1.05	1.05	1.05	1.0)5	1.05	1.05	1.05	1.05	1.05
Initial Bse:	0	752	13	22	540	0		0	0	0	6	0	69
Added Vol: PasserByVol:	0	26	0	0	49	0		0	0	0	0	0	0
Initial Fut:	0	0	10	0	-00	0		0	0	0	0	0	0
User Adj:													
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.0	10	1.00	1.00	1.00	1.00	1.00
PHF Adj.	1.00	770	1.00	1.00	1.00	1.00	1.0	0	1.00	1.00	1.00	1.00	1.00
PHF Adj: PHF Volume: Reduct Vol: Reduced Vol:	0	//6	13	22	209	0		0	0	0	0	0	09
Reduct VOI:	0	778	13	22	589	0		0	0	0	6	0	69
PCE Adj:	1 00	1 00	1 00	1 00	1 00	1 00	1 (10	1 00	1 00	1 00	1 00	1 00
MLF Adj:	1 00	1 00	1 00	1 00	1 00	1 00	1 (าก	1 00	1 00	1 00	1 00	1 00
FinalVolume:	0	778	13	22	589	0		0	0	0	6	0	69
Saturation Fl													
Sat/Lane:													
Adjustment:	1.00	1.00	1.00	1.00	1.00	1.00	1.0	0	1.00	1.00	1.00	1.00	1.00
Lanes:	0.00	1.97	0.03	1.00	2.00	0.00	0.0	0	0.00	0.00	0.08	0.00	0.92
Lanes: Final Sat.:	. 0	2805	45	1425	2850	0		0	0	0	119	0	1306
G		M - 41											
Capacity Anal Vol/Sat:					0 21	0 00	0 (١.	0 00	0 00	0.05	0 00	0.05
						0.00	0.0	0	0.00	0.00	0.05	0.00	76
Crit Volume: Crit Moves:			****	****					U				****

В

Los Angeles, CA Future With Project- AM Peak

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) *************************

Intersection #22 Gayley Avenue and Le Conte Avenue ****************** Loss Time (sec): xxxxxx

0 (Y+R=4.0 sec) Average Delay (sec/veh): Optimal Cycle: 35 Level Of Service: Street Name: Gayley Avenue Le Conte Avenue Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R Control: Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 1 0 1 1 0 1 0 1 1 0 1 0 0 1 0 1 0 1 Volume Module: >> Count Date: 30 Jan 2008 << 745-845 Base Vol: 7 635 234 124 217 15 24 119 11 157 74 127 Initial Bse: 7 667 246 130 228 16 25 125 12 165 78 133 Added Vol: 0 1 4 0 6 0 0 45 0 6 11 0 Int #25: 0 51 -23 -23 23 0 0 -23 23 -50 -51 -51 Initial Fut: 7 719 227 107 257 16 25 147 35 121 38 82 PHF Volume: 7 719 227 107 257 16 25 147 35 121 38 82 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 7 719 227 107 257 16 25 147 35 121 38 0 8.2 FinalVolume: 7 719 227 107 257 16 25 147 35 121 38 82 Saturation Flow Module: Lanes: 1.00 1.52 0.48 1.00 1.88 0.12 1.00 0.81 0.19 1.00 1.00 1.00

Final Sat.: 1500 2281 719 1500 2827 173 1500 1214 286 1500 1500 1500 -----|----|-----|------|

Vol/Sat: 0.00 0.32 0.32 0.07 0.09 0.09 0.02 0.12 0.12 0.08 0.03 0.05

Crit Volume: 473 107 182 121 Crit Moves: **** **** ****

Capacity Analysis Module:

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

UCLA NHIP and Amended LRDP Traffic Study

Los Angeles, CA Future With Project- AM Peak

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) ************************

Intersection #23 Westwood Boulevard and Le Conte Avenue

Future With Project AM PeakTue Jul 22, 2008 18:09:28

0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): XXXXXX Optimal Cycle: 60 Level Of Service:

Street Name: Westwood Boulevard Le Conte Avenue Approach: North Bound South Bound East Bound West Bound

Approach.	INO.	L CII D	Juna	200	acii be	Juliu	Ec	ים אמג	Julia	VV C	ESL D	Juliu
	L ·					- R			- R			- R
Control:	1											
Rights:						ıde			ude			
			0			0			uae 0		111011	
Min. Green:												
Lanes:				. 1 (1 0			
Volume Module												
Base Vol:		632				88		327	33	130	317	107
Growth Adj:	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05
Initial Bse:	56	664	216	34	205	92	176	343	35	137	333	112
Added Vol:	122	0	1	0	0	0	0	8	59	1	17	0
Int #25:	0	0	0	0	0	0	0	-69	0	0	-152	0
Initial Fut:	178	664	217	34	205	92	176	282	94	138	198	112
User Adj:						1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:				1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Volume:										138		
Reduct Vol:									0	0		
Reduced Vol:										138	-	-
PCE Adj:										1.00		
MLF Adj:						1.00				1.00		
FinalVolume:												
rinaivoiume.	1 1/0											
Saturation F												
Sat/Lane:				1/25	1/25	1/25	1/25	1/25	1/25	1/25	1/25	1425
Adjustment:											0.75	
			0.75									

Lanes: 1.00 2.00 1.00 1.00 2.00 1.00 1.00 1.50 0.50 1.00 1.00 1.00 Final Sat.: 1069 2138 1069 1069 2138 1069 1069 1069 1069 1069 -----| Capacity Analysis Module:

Vol/Sat: 0.17 0.31 0.20 0.03 0.10 0.09 0.17 0.18 0.18 0.13 0.19 0.11 Crit Volume: 332 34 176 198
Crit Moves: *** *** **** ****

xxxxxx

T. - T - R

Le Conte Avenue

Future With Project- AM Peak

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative)

************************* Intersection #24 Tiverton Drive and Le Conte Avenue ******************* Cycle (sec): 100 Critical Vol./Cap.(X): 0.421 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): xxxxxx Optimal Cycle: 25 Level Of Service: Street Name: Tiverton Drive Le Conte Avenue Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R T. - T - R Control: Permitted Permitted Permitted Rights: Include Include Include Ignore Min. Green: 0 0 0 0 0 0 0 0 0 0 0 Volume Module: >> Count Date: 30 Jan 2008 << 730-830 Base Vol: 25 100 28 24 35 196 181 290 40 15 328 87 Initial Bse: 26 105 29 25 37 206 190 305 42 16 344 91 Added Vol: 0 1 0 0 3 0 0 8 0 0 17 Ω 0 0 Ο Ω Ω 0 -69 Ω 0 -152 Tnt #25: Ω Ω Initial Fut: 26 106 29 25 40 206 190 244 42 16 209 91 PHF Volume: 26 106 29 25 40 206 190 244 42 16 209 0 Ω FinalVolume: 26 106 29 25 40 206 190 244 42 16 209 0 -----|----|----|-----| Saturation Flow Module: Tapes: 0.16 0.66 0.18 0.39 0.61 1.00 1.00 1.00 1.00 1.00 1.00 Final Sat.: 244 984 273 582 918 1500 1500 1500 1500 1500 1500 1500 -----|----|-----|------| Capacity Analysis Module: Vol/Sat: 0.11 0.11 0.11 0.04 0.04 0.14 0.13 0.16 0.03 0.01 0.14 0.00 Crit Volume: 26 206 190 209
Crit Moyee: **** **** ****

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA. LONG BEACH. CA

Crit Moves: ****

Control: Permitted Permitted Split Phase Split Phase Rights: Include Include Include Include Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 1 0 0 1 0 1 0 1 0 1 2 0 0 0 1 1 0 0 0 1 -----| Volume Module: >> Count Date: 30 Jan 2008 << 800-900 Base Vol: 22 429 26 10 217 285 272 0 32 7 0 24 Initial Bse: 23 450 27 11 228 299 286 0 34 7 0 25 Initial Fut: 23 468 96 11 259 316 294 0 34 159 0 25 PHF Volume: 23 468 96 11 259 316 294 0 34 159 0 25 MLF Adi: 1.00 1.00 1.00 1.00 1.00 1.00 1.10 1.00 1.00 1.00 1.00 1.00 FinalVolume: 23 468 96 11 259 316 323 0 34 159 0 25 -----|----|-----|------| Saturation Flow Module:

Lanes: 1.00 0.83 0.17 1.00 1.00 1.00 2.00 0.00 1.00 1.00 0.00 1.00

Final Sat.: 1425 1182 243 1425 1425 1425 2850 0 1425 1425 0 1425

Vol/Sat: 0.02 0.40 0.40 0.01 0.18 0.22 0.11 0.00 0.02 0.11 0.00 0.02 Crit Volume: 565 11 161 159 Crit Moves: **** **** ****

-----|----|-----|------|

UCLA NHIP and Amended LRDP Traffic Study

Los Angeles, CA

Level Of Service Computation Report

0 (Y+R=4.0 sec) Average Delay (sec/veh):

Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R

Circular 212 Planning Method (Future Volume Alternative)

Future With Project- AM Peak

Future With Project AM PeakTue Jul 22, 2008 18:09:28

Intersection #25 Hilgard Avenue and Le Conte Avenue

Street Name: Hilgard Avenue

Capacity Analysis Module:

Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/ve Optimal Cycle: 50 Level Of Service:

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) ************************* Intersection #26 Gayley Avenue and Weyburn Avenue ****************** Cycle (sec): 100 Critical Vol./Cap.(X): 0.671 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): xxxxxx Optimal Cycle: 44 Level Of Service: В

********	= • * * * * * *	*****	*****	****	*****	*****	*****	*****	******	*****	****	*****
Street Name: Approach:	No	rth Bo	und	Son	ıth Bo	nund	F:	act R	ncybari. nund	We	et Ro	ound
Movement:	т	- Т	- P	т	- T	- P	т	дыс ы. - т	- P	T	т	- P
Movement:	I			1			1			1		
Control:	1	Permit	ted	'	Permit	ted	١ ،	Permi	tted	' F	ermit	tted
Rights:		Inclu	ide		Incli	ıde		Incl	ude		Incl	ude
Rights: Min. Green:	0	0	0	0	0	0	0	0	0	0	0	0
Lanes:	1	0 1	1 0	1	1	1 0	0 :	1 0	1 0	1 0	0	1 0
Volume Module	: >>	Count	Date:	6 Fel	2008	3 << 74	5-845					
Base Vol:												
Growth Adj:	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05
Initial Bse:	29	791	117	18	420	78	200	179	23	39	45	38
Added Vol:	0	13	69	16	19	0	0	32	0	26	20	16
Added Vol: Int #25: Initial Fut:	0	0	23	46	0	0	0	0	0	50	51	51
Initial Fut:	29	804	209	80	439	78	200	211	23	115	116	105
User Adj: PHF Adj:	1.00	1.00	1.00	1.00					1.00			
PHF Adj:	1.00	1.00	1.00		1.00				1.00			
PHF Volume: Reduct Vol:	29	804	209	80	439	78	200	211	23	115	116	105
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:												
PCE Adj:												
MLF Adj:												
FinalVolume:	. 29	804	209	. 80	439	78	200	211	23	115	116	105
Saturation F												
Sat/Lane:												
Adjustment:												
Lanes:				1.00	1.70	0.30	0.92	0.97	0.11	1.00	0.53	0.47
Final Sat.:												
	ļ·											
Capacity Anal	rysis	Modul	.e:	0 05	0 17	0 17	0 14	0 14	0 14	0 00	0 1 5	0 15
Vol/Sat:	0.02	0.34	0.34	0.05	0.17	0.17	0.14	0.14	0.14	0.08	0.15	221
Crit Volume: Crit Moves:		506		80			200					ZZI ****
CIIC MOVES.		" "										

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

Future With Project- AM Peak Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) ************************ Intersection #27 Westwood Boulevard and Weyburn Avenue *********************** Cycle (sec): 100 Critical Vol./Cap.(X): 0.777 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): xxxxxx Optimal Cycle: 64 Level Of Service: Street Name: Westwood Boulevard Weyburn Avenue Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R Control: Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 1 0 1 1 0 0 1 1 0 1 0 1 0 0 0 1! 0 0 Volume Module: >> Count Date: 31 Jan 2008 << 730-830 Initial Bse: 74 692 45 6 338 30 49 59 33 35 45 14 Added Vol: 17 123 73 0 60 0 0 17 16 80 26
Int #25: 0 0 0 0 0 0 0 69 0 0 152 Ω 0 0 Ω Initial Fut: 91 815 118 6 398 30 49 145 49 115 223 14 PHF Volume: 91 815 118 6 398 30 49 145 49 115 223 14

FinalVolume: 91 815 118 25 398 30 49 145 49 115 223 14 -----|-----|------|

Lanes: 1.00 1.75 0.25 0.13 1.87 1.00 0.41 1.19 0.40 0.33 0.63 0.04 Final Sat.: 1125 1965 285 147 2103 1125 458 1342 450 367 714 44 -----|----|-----|------|

Vol/Sat: 0.08 0.41 0.41 0.04 0.19 0.03 0.11 0.11 0.11 0.31 0.31 0.31 Crit Volume: 467 6 49 351
Crit Moyes: **** **** ****

Saturation Flow Module:

Capacity Analysis Module:

UCLA NHIP and Amended LRDP Traffic Study

Los Angeles, CA

Future With Project AM PeakTue Jul 22, 2008 18:09:28

UCLA NHIP and Amended LRDP Traffic Study
Los Angeles, CA

Future With Project- AM Peak

Level 0	Of Service Computation Report
	op Method (Future Volume Alternative)
Intersection #28 Tiverton Dry	
	/ie and weyburn Avenue
Cycle (sec): 100	Critical Vol./Cap.(X): 0.327
	R=4.0 sec) Average Delay (sec/veh): 9.2
Optimal Cycle: 0	Level Of Service: A

Street Name: Tiverto	on Drive Weyburn Avenue
Approach: North Bound	South Bound East Bound West Bound
Movement: L - T - R	
Control: Stop Sign	Stop Sign Stop Sign Stop Sign
Rights: Include	Include Include Include
Min. Green: 0 0 0	0 0 0 0 0 0 0 0
Lanes: 0 0 1! 0 0	
Volume Module: >> Count Date: Base Vol: 13 106 7	
Base Vol: 13 106 7 Growth Adj: 1.05 1.05 1.05	27 0 32 26 36 0 0 34 17 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05
Initial Bse: 14 111 7	28 0 34 27 38 0 0 36 18
Added Vol: 0 0 0	0 0 3 1 35 0 0 45 0
Int #25: 0 0 0	0 0 0 0 69 0 0 152 0
Initial Fut: 14 111 7	28 0 37 28 142 0 0 233 18
User Adi: 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
PHF Adi: 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
PHF Volume: 14 111 7	28 0 37 28 142 0 0 233 18
Reduct Vol: 0 0 0	0 0 0 0 0 0 0 0
Reduced Vol: 14 111 7	28 0 37 28 142 0 0 233 18
PCE Adj: 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
MLF Adj: 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
FinalVolume: 14 111 7	28 0 37 28 142 0 0 233 18
Saturation Flow Module:	
Adjustment: 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Lanes: 0.10 0.84 0.06	0.44 0.00 0.56 0.17 0.83 0.00 0.00 0.93 0.07
Final Sat.: 70 575 38	302 0 389 122 612 0 0 712 55
Capacity Analysis Module: Vol/Sat: 0.19 0.19 0.19	0.09 xxxx 0.09 0.23 0.23 xxxx xxxx 0.33 0.33
Voi/Sat: 0.19 0.19 0.19 Crit Moves: ****	0.09 xxxx 0.09 0.23 0.23 xxxx xxxx 0.33 0.33
Delay/Veh: 9.0 9.0 9.0	8.2 0.0 8.2 9.0 9.0 0.0 0.0 9.6 9.6
Delay Adj: 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
AdjDel/Veh: 9.0 9.0 9.0	8.2 0.0 8.2 9.0 9.0 0.0 0.0 9.6 9.6
LOS by Move: A A A	A * A A A * * A A
ApproachDel: 9.0	8.2 9.0 9.6
Delay Adj: 1.00	1.00 1.00 1.00
ApprAdjDel: 9.0	8.2 9.0 9.6
LOS by Appr: A	A A A
AllWayAvgQ: 0.2 0.2 0.2	
********	*************

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

ruture	with Project Am Peakide Jul 22, 2006 16:09:26	Page 3.	3-2
	UCLA NHIP and Amended LRDP Traffic Study		
	Los Angeles, CA		
	Future With Project- AM Peak		
Note: Q	ueue reported is the number of cars per lane.		
*****	*******************	*******	*****

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) ************************* Intersection #29 Hilgard Avenue and Weyburn Avenue ************************ Cycle (sec): 100 Critical Vol./Cap.(X): 0.496

Loss Time (sec): Optimal Cycle:	R=4.0 sec)	Average De Level Of S	lay (sec/veh) ervice:	: xxxxxx A						
Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/veh): xxxxxx Optimal Cycle: 37 Level Of Service: A										
Street Name: Hilgard Avenue Weyburn Avenue Approach: North Bound South Bound East Bound West Bound										
Approach: N	orth Bound	South B	ound	East Bound	West Bound					
Movement: L	- T - R	L - T	- R L	- T - R	L - T - R					
Control:	Permitted	Permi	tted 'S	plit Phase '	Split Phase					
	Include	Incl	ude	Include 0 0 0	Include					
Min. Green:		0 0	0	0 0 0	0 0 0					
Lanes: 1					0 0 1! 0 0					
Volume Module: >> Count Date: 6 Feb 2008 << 800-900										
		13 251			7 26 27					
Growth Adj: 1.0				5 1.05 1.05						
Initial Bse: 3				6 28 66	7 27 28					
Added Vol:					0 18 0					
#25 Int:		0 0		9 0 0						
Initial Fut: 3					7 45 28					
User Adi: 1.0	0 1.00 1.00	1.00 1.00	1.00 1.0	0 1.00 1.00	1.00 1.00 1.00					
PHF Adj: 1.0	0 1.00 1.00	1.00 1.00	1.00 1.0	0 1.00 1.00	1.00 1.00 1.00					
PHF Volume: 3		14 268	220 12	1 47 66	7 45 28					
Reduct Vol:			0	0 0	0 0 0					
Reduced Vol: 3				1 47 66	7 45 28					
PCE Adj: 1.0	0 1.00 1.00	1.00 1.00	1.00 1.0	0 1.00 1.00	1.00 1.00 1.00					
MLF Adj: 1.0	0 1.00 1.00	1.00 1.00	1.00 1.0	0 1.00 1.00	1.00 1.00 1.00					
FinalVolume: 3		14 268			7 45 28					
Saturation Flow Module:										
Sat/Lane: 142				5 1425 1425						
Adjustment: 1.0				0 1.00 1.00						
Lanes: 1.0				0 0.42 0.58						
Final Sat.: 142					129 797 499					
Vol/Sat: 0.0		0.01 0.19	0.15 0.0	8 0 . 08 0 . 08	0.06 0.06 0.06					
Crit Volume:					81					
Crit Moves:	****	***	12 ***		***					

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future With Project- AM Peak

Future With Project AM PeakTue Jul 22, 2008 18:09:28

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) ************************ Intersection #30 Westwood Boulevard and Kinross Avenue ********************** Cycle (sec): 100 Critical Vol./Cap.(X): 1.071 Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/veh): xxxxxx Optimal Cycle: 180 Level Of Service: Street Name: Westwood Boulevard Kinross Avenue Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R Control: Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 1 0 1 0 1 0 1 1 1 0 0 1 0 1 0 1 0 0 1 0 Volume Module: >> Count Date: 31 Jan 2008 << 730-830 Base Vol: 53 768 25 12 344 36 55 30 24 5 45 59 Initial Bse: 56 806 26 13 361 38 58 32 25 5 47 62 Added Vol: 57 212 50 5 151 1 0 4 18 PasserByVol: 0 0 0 0 0 0 0 0 7 1 1 Initial Fut: 113 1018 76 18 512 39 58 36 43 12 48 63 PHF Volume: 113 1018 76 18 512 39 58 36 43 12 48 63 FinalVolume: 113 1018 76 70 512 39 58 36 43 12 48 63 -----|-----||-------| Saturation Flow Module: Lanes: 1.00 1.00 1.00 0.45 2.36 0.19 0.85 0.52 0.63 1.00 0.43 0.57 Final Sat.: 1125 1125 1125 513 2651 211 952 585 712 1125 488 637 -----| Capacity Analysis Module: Vol/Sat: 0.10 0.91 0.07 0.03 0.19 0.18 0.06 0.06 0.06 0.01 0.10 0.10 Crit Volume: 1018 18 58 111
Crit Moyes: **** **** ****

Saturation Flow Module:

Capacity Analysis Module:

Los Angeles, CA Future With Project- AM Peak

Level Of Service Computation Report												
Circular 212 Planning Method (Future Volume Alternative)												

<pre>Intersection #31 Westwood Boulevard and Lindbrook Drive ************************************</pre>												
								0.7				
Loss Time (sec): 0 (Y+R=4.0 sec)						Average Delay (sec/veh): xxxxxx						
Optimal Cycle: 51 Level Of Service: C								C				
Street Name: Westwood Bouelvard Lindbrook Drive Approach: North Bound South Bound East Bound West Bound										,		
Approach:		rth Bo				ound - R					est Bo	
Movement:			- R						- R		- T	
Control:												
Rights:	Include Include Include						Include					
Min. Green:	0		0	0	0	0	0	0	0	0	0	0
Lanes:	0	1 1	0 1	0	1 1	1 0	0	L 0	1 0	0	1 0	1 0
Volume Module: >> Count Date: 31 Jan 2008 << 800-900												
Base Vol:	3	796	216	20	316	10	29		45	93	131	27
Growth Adj:	1.05		1.05		1.05	1.05		1.05			1.05	1.05
Initial Bse:		836	227	21	332	11	30	137	47	98	138	28
Added Vol:	0		2	0	175	0	0	1	0	2	3	0
PasserByVol:	0	-	0	0	0	0	0	0	0	0	0	0
Initial Fut:		1154	229	21	507	11	30	138		100	141	28
	1.00		1.00		1.00	1.00		1.00			1.00	
PHF Adj:		1.00	1.00	21	1.00	1.00	30	1.00	1.00	1.00	1.00	1.00
PHF Volume: Reduct Vol:		1154	229	21	507	0	30	138	4 /	100	141	28 0
Reduced Vol:	-	1154	229	21	507	11	30	138	-	100	141	28
PCE Adj:	2.00		1.00		1.00	1.00		1.00			1.00	
MLF Adi:	1.00		1.00		1.00	1.00		1.00	1.00		1.00	1.00
FinalVolume:		1154	229	126	507	11	30	138	47	100	141	28
	l						1			1		
Saturation Play Module:												

Lanes: 0.01 1.99 1.00 1.00 1.95 0.05 0.28 1.28 0.44 0.74 1.05 0.21

Final Sat.: 12 2238 1125 1125 2195 55 318 1438 494 835 1178 238

Vol/Sat: 0.26 0.52 0.20 0.02 0.23 0.19 0.10 0.10 0.10 0.12 0.12 0.12

Crit Volume: 580 21 108 100 Crit Moves: **** ****

------|

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA

Future With Project AM PeakTue Jul 22, 2008 18:09:28

Future With Project- AM Peak

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative)

Intersection #32 Glendon/Tiverton/Lindbrook

Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/veh): Optimal Cycle: 41 Level Of Service: Street Name: Glendon Avenue/Tiverton Avenue Lindbrook Drive Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - F L - T - R Control: Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Volume Module: >> Count Date: 6 Feb 2008 << 800-900 Base Vol: 59 219 392 8 24 43 36 319 21 157 170 39 Initial Bse: 62 230 412 8 25 45 38 335 22 165 179 41 Added Vol: 0 11 6 0 2 0 0 2 0 7 5 0 PasserByVol: 0 0 0 0 0 0 0 0 0 0 0 Initial Fut: 62 241 418 8 27 45 38 337 22 172 184 41 PHF Volume: 62 241 418 8 27 45 38 337 22 172 184 41 FinalVolume: 62 241 418 8 27 45 38 337 22 344 184 41 -----|----||------| Saturation Flow Module: Lanes: 1.00 1.00 1.00 1.00 2.00 1.00 0.10 0.90 1.00 1.00 0.86 0.14 Final Sat.: 1500 1500 1500 1500 3000 1500 151 1349 1500 1500 1284 216 -----|----|-----|------| Capacity Analysis Module: Vol/Sat: 0.04 0.16 0.28 0.01 0.01 0.03 0.25 0.25 0.01 0.11 0.14 0.19

Crit Volume: 418 8 375 172 Crit Moves: **** **** ****

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future With Project- AM Peak

Level Of Service Computation Report

Circular 212 Planning Method (Future Volume Alternative) ************************* Intersection #33 Sepulveda Boulevard and Constitution Avenue ************************ 0 (Y+R=4.0 sec) Average Delay (sec/veh): xxxxxx Loss Time (sec): 34 Level Of Service: Optimal Cycle: Street Name: Sepulveda Boulevard Constitution Avenue Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R T. - T - R Control: Permitted Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 1 0 1 1 0 1 0 1 1 0 0 0 1! 0 0 0 1! 0 0 -----| Volume Module: >> Count Date: 13 Feb 2008 << 745-845 Base Vol: 64 290 7 3 1121 165 84 0 19 2 0 2 Initial Bse: 67 305 7 3 1177 173 88 0 20 2 0 2 Added Vol: 0 4 0 0 6 0 0 0 0 0 0 0 0 0 0 PasserByVol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Ω Initial Fut: 67 309 7 3 1183 173 88 0 20 2 0 PHF Volume: 67 309 7 3 1183 173 88 0 20 2 0 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 67 309 7 3 1183 173 88 0 20 0 0 0 2 FinalVolume: 67 309 7 3 1183 173 88 0 20 2 0 2 -----|----||------| Saturation Flow Module: Lanes: 1.00 1.95 0.05 1.00 1.74 0.26 0.82 0.00 0.18 0.50 0.00 0.50 Final Sat.: 1500 2930 70 1500 2617 383 1223 0 277 750 0 750

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA. LONG BEACH. CA

-----|

Vol/Sat: 0.04 0.11 0.11 0.00 0.45 0.45 0.07 0.00 0.07 0.00 0.00 0.00

Crit Volume: 67 678 108 2

Capacity Analysis Module:

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future With Project- AM Peak

Future With Project AM PeakTue Jul 22, 2008 18:09:29

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) ************************ Intersection #34 San Vicente Bouevard and Wilshire Bouelvard ************************ 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): xxxxxx Optimal Cycle: 180 Level Of Service: Street Name: San Vicente Bouevard Wilshire Bouelvard Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - F T. - T - R Control: Split Phase Split Phase Permitted Protected Rights: Ovl Include Include Tempora
 Rights:
 Ovl
 Include
 Include
 Ignore

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 Lanes: 1 0 2 0 1 2 1 0 1 0 1 0 2 1 0 1 0 3 0 1 Volume Module: >> Count Date: 13 Feb 2008 << 730-830 Base Vol: 98 204 111 1380 290 18 66 1956 65 53 2037 927 Initial Bse: 103 214 117 1449 305 19 69 2054 68 56 2139 973 Added Vol: 28 50 10 89 53 14 3 180 8 7 172 59 PasserByVol: 0 0 0 0 0 0 0 0 0 0 0 Initial Fut: 131 264 127 1538 358 33 72 2234 76 63 2311 1032 PHF Volume: 131 264 127 1538 358 33 72 2234 76 63 2311 0 FinalVolume: 131 264 127 1692 358 33 72 2234 76 63 2311 0 -----|----||------| Saturation Flow Module: Tanes: 1.00 2.00 1.00 3.00 0.92 0.08 1.00 2.90 0.10 1.00 3.00 1.00 Final Sat.: 1425 2850 1425 4275 1305 120 1425 4134 141 1425 4275 1425 -----| Capacity Analysis Module: Vol/Sat: 0.09 0.09 0.09 0.40 0.27 0.27 0.05 0.54 0.54 0.04 0.54 0.00 Crit Volume: 132 564 770 63 Crit Moves: **** **** ****

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative)

******************* Intersection #35 Sepulveda Boulevard and Wilshire Boulevard *******************

0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): XXXXXX Optimal Cycle: 180 Level Of Service: Street Name: Sepulveda Boulevard Wilshire Boulevard

percet manie.		Sebr	i veua	Doute	varu			W .	TOTITIE	DOUTE	varu	
Approach:	No:	rth Bo	ound	Sot	uth Bo	ound	E	ast Bo	ound	W	est B	ound
Movement:												- R
Control:	. P:	rotect	ed	Pı	rotect	ted	. P:	rotect	ted	P:	rotec	ted .
Rights:		Incl	ıde		Incl	ıde		Incl	ude		Incl	ude
Min. Green:	0	0	0	0	0	0	0	0	0	0	0	0
Lanes:	1	0 1	1 0	1 (0 1	1 0	1	3	1 0	2	0 4	1 0
Volume Module	ė: >>	Count	Date:	21 Fe	eb 200	08 << 5	745-84	5				
Base Vol:	156	240	263	279	637	283	71	2737	134	110	2543	62
Growth Adj:	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05
Initial Bse:	164	252	276	293	669	297	75	2874	141	116	2670	65
Added Vol:	10	1	37	2	4	0	1	800	11	18	468	2
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	0
Initial Fut:	174	253	313	295	673	297	76	3674	152	134	3138	67
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Volume:	174	253	313	295	673	297	76	3674	152	134	3138	67
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:	174	253	313	295	673	297	76	3674	152	134	3138	67
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.10	1.00	1.00
FinalVolume:	174	253	313	295	673	297	76	3674	152	147	3138	67
Saturation F	low M	odule:							'			
Sat/Lane:	1375	1375	1375	1375	1375	1375	1375	1375	1375	1375	1375	1375

Lanes: 1.00 1.00 1.00 1.00 1.39 0.61 1.00 3.84 0.16 2.00 4.90 0.10 Final Sat.: 1031 1031 1031 1031 1431 632 1031 3961 164 2063 5048 108 -----|

Vol/Sat: 0.17 0.25 0.30 0.29 0.47 0.47 0.07 0.93 0.93 0.07 0.62 0.62 Crit Volume: 174 485 956 73

Capacity Analysis Module:

Crit Moves: ****

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future With Project- AM Peak

Future With Project AM PeakTue Jul 22, 2008 18:09:29

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) ******************** Intersection #36 Veteran Avenue and Wilshire Boulevard ************************ Cycle (sec): 100 Critical Vol./Cap.(X): 1.359 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): xxxxxx

Optimal Cycl	e:	18	80	++++		Level	Of Se	rvice	:		++++	F
Street Name: Approach:												
Movement:	L	- T	- R	L ·	- T	- R	L -	- T	- R	L -	T	- R
Control: Rights: Min. Green: Lanes:	Pr 0	ot+Per Ovl 0	0 0 1	0	Permit Ovl 0	0 0 2	Pi 0 2 (rotec Incl 0	ted ude 0	Pr 0 2 0	otect Inclu 0	ed ude 0
Volume Modul					-1- 000		720 02					
Base Vol: Growth Adj: Initial Bse: Added Vol: PasserByVol: Initial Fut:	207	385 1 05	99 1 05	110	252	368 1 05	529 1 05	2901	1 05	1 05	1 05	1 05
User Adj: PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Volume: Reduct Vol: Reduced Vol: PCE Adj: MLF Adj: FinalVolume:	1.00 1.00 211	1.00 1.00 421	1.00 1.00 118	1.00 1.00 120	1.00 1.00 273	1.00 1.10 494	1.00 1.10 763	1.00 1.00 3750	1.00 1.00 137	1.00 1.10 67	1.00 1.00 2843	1.00 1.00 52
Saturation F	iow M	odule:										
Sat/Lane: Adjustment: Lanes: Final Sat.:	0.75 1.00 1069	0.75 2.00 2138	0.75 1.00 1069	0.75 1.00 1069	0.75 2.00 2138	0.75 2.00 2138	0.75 2.00 2138	0.75 3.86 4125	0.75 0.14 150	0.75 2.00 2138	0.75 3.93 4199	0.75 0.07 76
Capacity Ana Vol/Sat: Crit Volume: Crit Moves:	lysis 0.20	Modul 0.20	.e: 0.11	0.11	0.13	0.23	0.36	0.91				

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) ************************* Intersection #37 Gayley Avenue and Wilshire Boulevard ****************** Cycle (sec): 100 Critical Vol./Cap.(X): 1.162 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): xxxxxx Optimal Cycle: 180 Level Of Service: Street Name: Gayley Avenue Wilshire Boulevard
 Approach:
 North Bound
 South Bound
 East Bound
 West Bound

 Movement:
 L - T - R L - T - R L - T - R
 L - T - R
 L - T - R

Control:	Pr	ot+Per	mit]	Permit	tted	P	rotect	ted	I	ermit	ted
Rights:		Inclu	de		Ovl			Incl	ıde		Incl	ıde
Min. Green:	0	0	0	0	0	0	0	0	0	0	0	0
Lanes:	1	0 2	0 1	1 (0 1	0 2	2 (3	1 0	1 (3	1 0
Volume Module	e: >>	Count	Date:	13 Fe	eb 200	08 << 7	730-830)				
Base Vol:	59	333	52	56	100	286	496	2424	152	64	1991	116
Growth Adj:	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05
Initial Bse:	62	350	55	59	105	300	521	2545	160	67	2091	122
Added Vol:	0	0	0	18	0	89	247	475	0	0	363	37
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	0
Initial Fut:	62	350	55	77	105	389	768	3020	160	67	2454	159
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Volume:	62	350	55	77	105	389	768	3020	160	67	2454	159
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:	62	350	55	77	105	389	768	3020	160	67	2454	159
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.10	1.10	1.00	1.00	1.00	1.00	1.00
FinalVolume:	62	350	55	77	105	428	845	3020	160	67	2454	159
Saturation F	low M	odule:										
Sat/Lane:	1425	1425	1425	1425	1425	1425	1425	1425	1425	1425	1425	1425

Lanes: 1.00 2.00 1.00 1.00 1.00 2.00 2.00 3.80 0.20 1.00 3.76 0.24

Final Sat.: 1069 2138 1069 1069 1069 2138 2138 4060 215 1069 4015 260

-----|

Vol/Sat: 0.06 0.16 0.05 0.07 0.10 0.20 0.40 0.74 0.74 0.06 0.61 0.61

Crit Volume: 62 105 422 653
Crit Moves: **** **** ****

Capacity Analysis Module:

Crit Moves: ****

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future With Project- AM Peak

Future With Project AM PeakTue Jul 22, 2008 18:09:29

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) ************************ Intersection #38 Westwood Boulevard and Wilshire Boulevard *********************** 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): xxxxxx Optimal Cycle: 180 Level Of Service: Street Name: Westwood Boulevard Wilshire Boulevard Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - F T. - T - R Control: Prot+Permit Prot+Permit Protected Protected Rights: Include Ovl Include Include
Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 1 0 2 1 0 1 0 3 0 1 2 0 3 1 0 2 0 3 1 0 Volume Module: >> Count Date: 7 Feb 2008 << 730-830 Initial Bse: 142 630 123 64 286 162 448 2079 172 141 1983 98 Added Vol: 13 113 43 35 66 76 149 335 7 39 311 57 PasserByVol: 0 0 0 0 0 0 0 0 0 0 0 0 Initial Fut: 155 743 166 99 352 238 597 2414 179 180 2294 155 PHF Volume: 155 743 166 99 352 238 597 2414 179 180 2294 155 MLF Adi: 1.00 1.00 1.00 1.00 1.00 1.00 1.10 1.00 1.00 1.10 1.00 1.00 FinalVolume: 155 743 166 99 352 238 657 2414 179 198 2294 155 -----|-----|------| Saturation Flow Module: Lanes: 1.00 2.45 0.55 1.00 3.00 1.00 2.00 3.72 0.28 2.00 3.75 0.25 Final Sat.: 1031 2529 565 1031 3094 1031 2063 3840 285 2063 3865 260 -----|----|-----|------| Capacity Analysis Module: Vol/Sat: 0.15 0.29 0.29 0.10 0.11 0.23 0.32 0.63 0.63 0.10 0.59 0.59 Crit Volume: 303 99 329 612 Crit Moves: **** **** ****

	Level Of Serv	thod (Future	Volume Altern	native)
Intersection #39 Gl	endon Avenue and	d Wilshire Bo	ouelvard	*****
Cycle (sec): Loss Time (sec): Optimal Cycle:	100 0 (Y+R=4.0 s	Critica sec) Average	al Vol./Cap.(X) Delay (sec/ve	: 1.059 eh): xxxxxx
Street Name: Approach: Nort	Glendon Avenu T - R L -	ie ith Bound - T - R	Wilshir East Bound L - T - F	re Bouelvard West Bound L - T - R
Control: Pe Rights: I Min. Green: 0 Lanes: 0 0	ermitted Finclude 0 0 0 0 1! 0 0 1 0	Permitted Ovl 0 0 0 1 0 2	Protected Include 0 0 2 0 3 1 0	Permitted Include 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Growth Adj: 1.05 1 Initial Bse: 9 Added Vol: 0 PasserByVol: 0 Initial Fut: 9 User Adj: 1.00 1 PHF Adj: 1.00 1 PHF Volume: 9 Reduct Vol: 0 Reduced Vol: 9 PCE Adj: 1.00 1 MLF Adj: 1.00 1	Count Date: 7 Feb. 177 22 57	D 2008 << 800 110 41 1.05 1.05 116 43 0 7 0 0 116 50 1.00 1.00 1.00 1.00 116 50 1.00 1.00 116 50 1.00 1.00 116 50 1.00 1.00 116 50 1.00 1.00 116 55	0-900 318 1686 11 1.05 1.05 1.0 334 1770 12 6 408 0 0 0 340 2178 12 1.00 1.00 1.0 1.00 1.00 1.0 340 2178 12 1.00 1.00 1.0 340 2178 12 1.00 1.00 1.0 1.10 1.00 1.0 374 2178 12	4 66 1970 171 15 1.05 1.05 1.05 10 69 2068 180 0 0 401 11 0 0 0 0 10 1.00 1.00 1.00 10 69 2470 191 0 1.00 1.00 1.00 10 69 2470 191 0 0 0 0 10 69 2470 191 0 1.00 1.00 1.00 10 69 2470 191 0 1.00 1.00 1.00 10 69 2470 191
Saturation Flow Mod Sat/Lane: 1425 1 Adjustment: 0.75 0 Lanes: 0.04 0 Final Sat.: 46	Rule: .425 1425 1425 0.75 0.75 0.75 0.85 0.11 1.00 909 113 1069	1425 1425 0.75 0.75 1.00 2.00 1069 2138	1425 1425 1425 0.75 0.75 0.7 2.00 3.79 0.2 2138 4052 22	25 1425 1425 1425 25 0.75 0.75 0.75 21 1.00 3.71 0.29 23 1069 3969 306
Crit Volume:	0.20 0.20 0.06 218 62 **** ***	0.11 0.03	0.17 0.54 0.5 187 ****	64 0.06 0.62 0.62 665 ****

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

Future With Project AM PeakTue Jul 22, 2008 18:09:29

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future With Project- AM Peak

Level Of Service Computation Report 2000 HCM Unsignalized Method (Future Volume Alternative)

****************** Intersection #40 Malcolm Avenue and Wilshire Boulevard

************************ Average Delay (sec/veh): OVERFLOW Worst Case Level Of Service: F[xxxxx]

********	****	*****	*****	*****	****	*****	*****	****	*****	*****	****	*****
Street Name:		N	Malcol	n Aven	ıe			Wi	lshire	Boulev	/ard	
Approach:	No	rth Bo	ound	Son	ith B	ound	Ea	ast Bo	ound	We	est Bo	ound
Movement:			- R			- R			- R		- T	
							11					
Control:	l 0+	ton Si	ian	I	ton G	ign	II IIn	aont r	halla		contro	
Rights:		Incli	1911		Incl	1911	0110	Incl	odo	0110	Incl	
-		111010				0 0			1 0	1 /) 2	
Lanes:												
Volume Module												
Base Vol:	3	0	45	3	1	40		1691			2184	
Growth Adj:				1.05		1.05			1.05		1.05	
Initial Bse:	3	0	47	3	1	42	68	1776	29	23	2293	56
Added Vol:	6	0	0	21	0	0	0	403	11	0	392	20
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	0
Initial Fut:	9	0	47	24	1	42	68	2179	40	23	2685	76
User Adi:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adi:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Volume:	9	0	47	24	1	42		2179	40		2685	76
Reduct Vol:	_	0	0	0	0	0	0	0	0	0	0	0
FinalVolume:		-	47	24	-	-		2179	-		2685	76
Critical Gap		-	1/	27	_	72	00	2117	10	23	2005	70
Critical Gap		6.5	6 0	7.5	6 5	6.9	4 1			4.1		
FollowUpTim:			3.3		4.0	3.3			XXXXX			XXXXX
Capacity Modu												
Cnflict Vol:				3632		933				2219		
Potent Cap.:			360		0	272				239		
Move Cap.:			360	1		272			XXXXX			XXXXX
Volume/Cap:									XXXX			XXXX
Level Of Serv	vice I	Module	≘:									
2Way95thQ:	xxxx	xxxx	xxxxx	xxxx	xxxx	xxxxx	2.2	xxxx	xxxxx	0.3	xxxx	xxxxx
Control Del:												xxxxx
LOS by Move:	*	*	*	*	*	*	E	*	*	C	*	*
Movement:		- T.TR	– RT	LT.	- T.TR	- RT	T.T	- T.TR	- RT	T.T -	- LTR	- RT
Shared Cap.:						xxxxx						xxxxx
SharedQueue:												
Shrd ConDel:												
Shared LOS:	*			*			*		*			*
					_							
ApproachDel:	X.			X	xxxxx		X	xxxxx		X2	«xxxx	
ApproachLOS:		F			F			*		to all all all all all all a		
Note: Queue												
******	****	*****	*****	*****	****	****	*****	****	*****	*****	****	*****

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future With Project- AM Peak

Level Of Service Computation Report

Circular 212 Planning Method (Future Volume Alternative) ******************** Intersection #41 Westholme Avenue and Wilshire Boulevard ************************ 0 (Y+R=4.0 sec) Average Delay (sec/veh): xxxxxx Loss Time (sec): Optimal Cycle: 162 Level Of Service: D Street Name: Westholme Avenue Wilshire Boulevard Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R Control: Permitted Permitted Protected Protected Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 0 0 1! 0 0 0 0 1! 0 0 1 0 3 0 1 1 0 2 1 0 Volume Module: >> Count Date: 21 Feb 2008 << 800-900 Base Vol: 56 102 65 45 42 20 31 1792 63 29 2202 137 Initial Bse: 59 107 68 47 44 21 33 1882 66 30 2312 144 Added Vol: 1 0 2 0 0 0 0 434 3 2 377 PasserByVol: 0 0 0 0 0 0 0 0 0 0 0 Ω Initial Fut: 60 107 70 47 44 21 33 2316 69 32 2689 144 PHF Volume: 60 107 70 47 44 21 33 2316 69 32 2689 144 FinalVolume: 60 107 70 47 44 21 33 2316 69 32 2689 144 Saturation Flow Module: Lanes: 0.25 0.45 0.30 0.42 0.39 0.19 1.00 3.00 1.00 1.00 2.85 0.15 Final Sat.: 359 644 422 599 559 266 1425 4275 1425 1425 4058 217 -----| Capacity Analysis Module: Vol/Sat: 0.17 0.17 0.17 0.08 0.08 0.08 0.02 0.54 0.05 0.02 0.66 0.66

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

Crit Volume: 237 47 33 944
Crit Moves: **** **** ****

Crit Moves:

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA

Future With Project- AM Peak

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) ************************

Intersection #42 Warner Avenue and Wilshire Boulevard ***********************

Future With Project AM PeakTue Jul 22, 2008 18:09:29

Cycle (sec): Loss Time (sec) Optimal Cycle ************************************	ec):		0 (Y+R	=4.0	sec)	Averag	ae Dela	av (se	p.(X): ec/veh) :	:	XXX	xxx
Street Name: Approach: Movement:	No:	W rth Bo - T	arner und - R	Avenue Soi L	e uth Bo - T	ound - R	Ea L -	Wii ast Bo	lshire ound - R	Boule W L	vard est Bo - T	ound - R
Control: Rights: Min. Green: Lanes:		Permit Inclu	ted de	1	Permi	tted ude	1	Permi	tted ude	P	rotect	ted ude
Min. Green:	0	0	0	0	0	0	0	0	0	0	0	0
Lanes:	1	0 1	0 1	1 (0 0	1 0	1 (2	1 0	1	0 2	1 0
Volume Modul	1		 Date:	21 F	eb 20	 08 << 8	 300-900	:)				
Base Vol:	74	36	21	87	60	88	67	1773	31	11	2228	77
Growth Adj:	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05
Initial Bse:	78	38	22	91	63	92	70	1862	33	12	2339	81
Added Vol:	0	0	0	0	0	0	0	438	0	0	366	0
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	0
Initial Fut:	78	38	22	91	63	92	70	2300	33	12	2705	81
User Adj:											1.00	
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00			1.00	
PHF Volume:	78	38	22	91	63	92	70	2300	33	12	2705	81
PHF Volume: Reduct Vol: Reduced Vol:	0	0	0	0	0	0	. 0	0	33 0 33	0	0	0
Reduced Vol:	78	38	22	91	63	92	70	2300	33	12	2705	81
PCE Adj:	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1.00
MLF Adj:	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1.00
FinalVolume:												
Saturation F												
Sat/Lane:				1425	1425	1425	1425	1425	1425	1425	1425	1425
Adjustment:											1.00	
Lanes:											2.91	
Final Sat.:									60			124
Capacity Ana	lysis	Modul	e:									
Vol/Sat:		0.03	0.02	υ.06		0.11	0.05			0.01		
Crit Volume:					155			777			929	

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) *************************

Intersection #43 Beverly Glen Boulevard and Wilshire Boulevard ***************** 0 (Y+R=4.0 sec) Average Delay (sec/veh): xxxxxx

Loss Time (sec): Optimal Cycle: 180 Level Of Service: Street Name: Beverly Glen Boulevard Wilshire Boulevard Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R T, - T - R Control: Prot+Permit Permitted Protected Protected Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 1 0 1 1 0 1 0 1 1 0 1 0 3 0 1 1 0 2 1 0 Volume Module: >> Count Date: 12 Feb 2008 << 800-900 Base Vol: 161 335 36 34 504 48 89 1594 203 99 2075 10 Initial Bse: 169 352 38 36 529 50 93 1674 213 104 2179 11 Added Vol: 19 15 51 41 30 7 4 390 38 79 340 PasserByVol: 0 0 0 0 0 0 0 0 0 0 0 27 Ω Initial Fut: 188 367 89 77 559 57 97 2064 251 183 2519 3.8 PHF Volume: 188 367 89 77 559 57 97 2064 251 183 2519 38 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 188 367 89 77 559 57 97 2064 251 183 2519 Ω 3.8 FinalVolume: 188 367 89 77 559 57 97 2064 251 183 2519 38 -----| Saturation Flow Module: Tages: 1.00 1.61 0.39 1.00 1.81 0.19 1.00 3.00 1.00 1.00 2.96 0.04 Final Sat.: 1425 2294 556 1425 2585 265 1425 4275 1425 1425 4212 63 -----|----|-----||------| Capacity Analysis Module: Vol/Sat: 0.13 0.16 0.16 0.05 0.22 0.22 0.07 0.48 0.18 0.13 0.60 0.60

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA. LONG BEACH. CA

Crit Volume: 188 308 97 852
Crit Moyes: **** **** ****

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future With Project- AM Peak

Future With Project AM PeakTue Jul 22, 2008 18:09:29

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) ************************ Intersection #44 Sawtelle Boulevard and Ohio Avenue ************************ Cycle (sec): 100 Critical Vol./Cap.(X): 1.061 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): xxxxxx Optimal Cycle: 180 Level Of Service: Street Name: Sawtelle Boulevard Ohio Avenue Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - F T. - T - R Control: Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 0 0 1! 0 0 0 0 1! 0 0 1 0 0 1 0 1 0 0 1 0 -----|----|-----|------| Volume Module: >> Count Date: 13 Feb 2008 << 730-830 Base Vol: 60 303 129 25 90 18 82 845 52 71 458 86 Initial Bse: 63 318 135 26 94 19 86 887 55 75 481 90 Added Vol: 0 0 4 0 0 0 0 26 1 1 1 17
PasserByVol: 0 0 0 0 0 0 0 0 0 Ω Initial Fut: 63 318 139 26 94 19 86 913 56 76 498 90 PHF Volume: 63 318 139 26 94 19 86 913 56 76 498 90 FinalVolume: 63 318 139 26 94 19 86 913 56 76 498 90 -----|-----||-------| Saturation Flow Module: Lanes: 0.12 0.61 0.27 0.19 0.68 0.13 1.00 0.94 0.06 1.00 0.85 0.15 Final Sat.: 182 917 402 282 1015 203 1500 1414 86 1500 1270 230 -----|----|-----|------| Capacity Analysis Module: Vol/Sat: 0.35 0.35 0.35 0.09 0.09 0.09 0.06 0.65 0.65 0.05 0.39 0.39 Crit Volume: 521 26 969 76
Crit Moves: **** **** **** ****

Capacity Analysis Module:

Crit Moves: ****

Future With Project- AM Peak

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative)

************************* Intersection #45 Sepulveda Boulevard and Ohio Avenue ****************** Cycle (sec): 100 Critical Vol./Cap.(X): 0.894

0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): xxxxxx Optimal Cycle: 136 Level Of Service: D

Street Name: Sepulveda Boulevard Ohio Avenue

Approach:	North Bound			South Bound			Εa	ast Bo	ound	West Bound			
Movement:			- R			- R			- R		- T		
Control:	1	Permit	ted	1	Permit	ted		Permi	tted		Permit	ted	
Rights:		Inclu	de		Inclu	ıde			ude		Incl	ıde	
Min. Green:	0	0	0	0	0	0	0	0	0	0	0	0	
Lanes:	1 (1	1 0	1 () 1	1 0	1 (0 0	1 0	1 (0 0	1 0	
Volume Module	ė: >>	Count	Date:	13 Fe	eb 200	8 << 7	745-84	5					
Base Vol:	96	454	126	38	495	82	174	695	78	74	480	71	
Growth Adj:	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	
Initial Bse:	101	477	132	40	520	86	183	730	82	78	504	75	
Added Vol:	3	40	1	6	26	0	2	24	4	4	14	7	
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	0	
Initial Fut:	104	517	133	46	546	86	185	754	86	82	518	82	
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
PHF Volume:	104	517	133	46	546	86	185	754	86	82	518	82	
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0	
Reduced Vol:	104	517	133	46	546	86	185	754	86	82	518	82	
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
FinalVolume:	104				546	86		754			518	82	
Saturation F													
Sat/Lane:				1500		1500		1500			1500	1500	
Adjustment:	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Lanes:	1.00	1.59	0.41	1.00	1.73	0.27	1.00	0.90	0.10	1.00	0.86	0.14	
Final Sat.:	1500	2385	615	1500	2591	409	1500	1347	153	1500	1296	204	

-----|

Vol/Sat: 0.07 0.22 0.22 0.03 0.21 0.21 0.12 0.56 0.56 0.05 0.40 0.40

Crit Volume: 104 316 840 82

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

Future With Project- AM Peak Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) ************************ Intersection #46 Veteran Avenue and Ohio Avenue ************************ Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/veh): xxxxxx Optimal Cycle: 108 Level Of Service: Street Name: Veteran Avenue Ohio Avenue Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R Control: Permitted Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 0 0 1! 0 0 0 0 1! 0 0 1 0 0 1 0 0 1 0 Volume Module: >> Count Date: 13 Feb 2008 << 745-845 Base Vol: 33 325 35 14 148 100 268 692 37 25 476 41 Initial Bse: 35 341 37 15 155 105 281 727 39 26 500 43 Added Vol: 0 22 0 0 8 -1 6 25 1 0 21 0 PasserByVol: 0 0 0 0 0 0 0 0 0 0 0 0 Initial Fut: 35 363 37 15 163 104 287 752 40 26 521 43 PHF Volume: 35 363 37 15 163 104 287 752 40 26 521 43 FinalVolume: 35 363 37 15 163 104 287 752 40 26 521 43

Lanes: 0.08 0.84 0.08 0.05 0.58 0.37 1.00 0.95 0.05 1.00 0.92 0.08

Final Sat.: 120 1254 127 78 869 553 1500 1424 76 1500 1385 115

Vol/Sat: 0.29 0.29 0.29 0.19 0.19 0.19 0.53 0.53 0.02 0.38 0.38

Crit Volume: 435 15 287 564
Crit Moves: **** **** ****

-----|-----|------|

Saturation Flow Module:

Capacity Analysis Module:

UCLA NHIP and Amended LRDP Traffic Study

Los Angeles, CA

Future With Project AM PeakTue Jul 22, 2008 18:09:29

Saturation Flow Module:

Capacity Analysis Module:

Los Angeles, CA Future With Project- AM Peak

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) ************************* Intersection #47 Westwood Boulevard and Ohio Avenue ******************* 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): xxxxxx Optimal Cycle: 87 Level Of Service: D Street Name: Westwood Boulevard Ohio Avenue Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R T. - T - R Control: Permitted Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 1 0 2 0 1 1 0 2 0 1 1 0 0 1 0 1 0 0 1 0 Volume Module: >> Count Date: 7 Feb 2008 << 745-845 Base Vol: 124 1179 48 32 461 59 169 278 91 64 266 50 Initial Bse: 130 1238 50 34 484 62 177 292 96 67 279 53 Added Vol: 26 156 0 0 102 8 12 0 25 0 0 Ω PasserByVol: 0 0 Ο 0 0 Ω 0 0 Ω Ο Ω Ω Initial Fut: 156 1394 50 34 586 70 189 292 121 67 279 53 PHF Volume: 156 1394 50 34 586 70 189 292 121 67 279 53 Ω 53 FinalVolume: 156 1394 50 34 586 70 189 292 121 67 279 53 -----|----|----|-----|

Lanes: 1.00 2.00 1.00 1.00 2.00 1.00 1.00 0.71 0.29 1.00 0.84 0.16

Final Sat.: 1500 3000 1500 1500 3000 1500 1500 1062 438 1500 1263 237

-----|

Vol/Sat: 0.10 0.46 0.03 0.02 0.20 0.05 0.13 0.27 0.27 0.04 0.22 0.22

Crit Volume: 697 34 189 332 Crit Moves: **** **** ****

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

UCLA NHIP and Amended LRDP Traffic Study

Future With Project AM PeakTue Jul 22, 2008 18:09:29

Los Angeles, CA Future With Project- AM Peak

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) ************************ Intersection #48 Sawtelle Boulevard and Santa Monica Boulevard ************************ Cycle (sec): 100 Critical Vol./Cap.(X): 1.466 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): xxxxxx Optimal Cycle: 180 Level Of Service: Street Name: Sawtelle Boulevard Santa Monica Boulevard Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - F T. - T - R Control: Permitted Permitted Permitted Prot+Permit Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 0 0 1! 0 0 0 0 1! 0 0 1 0 2 1 0 1 0 2 1 0 -----|----|-----|------| Volume Module: >> Count Date: 14 Feb 2008 << 730-830 Base Vol: 60 454 206 94 158 29 23 1181 21 119 1704 61 Initial Bse: 63 477 216 99 166 30 24 1240 22 125 1789 64 Added Vol: 1 4 11 1 1 0 0 207 2 7 161
PasserByVol: 0 0 0 0 0 0 0 0 0 Ω Ω Initial Fut: 64 481 227 100 167 30 24 1447 24 132 1950 64 PHF Volume: 64 481 227 100 167 30 24 1447 24 132 1950 64 FinalVolume: 64 481 227 100 167 30 24 1447 24 132 1950 64 -----|----|-----||------| Saturation Flow Module: Lanes: 0.08 0.63 0.29 0.34 0.56 0.10 1.00 2.95 0.05 1.00 2.90 0.10 Final Sat.: 89 665 315 359 600 110 1069 3154 52 1069 3104 102 -----|----|-----|------| Capacity Analysis Module: Vol/Sat: 0.72 0.72 0.72 0.28 0.28 0.28 0.02 0.46 0.46 0.12 0.63 0.63 Crit Volume: 772 100 24 671 Crit Moves: **** **** ****

Capacity Analysis Module:

Crit Moves:

Los Angeles, CA Future With Project- AM Peak

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative)

******************* Intersection #49 San Diego Fwy SB Ramps and Santa Monica Boulevard

Cycle (sec): 100 Critical Vol./Cap.(X): 1.222 Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/veh): xxxxxx Optimal Cycle: 180 Level Of Service:

Street Name: San Diego Fwy SB Ramps Santa Monica Boulevard Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - F L - T - R Control: Split Phase Split Phase Permitted Protected Rights: Include Include Include Include
 Rights:
 Include
 Include
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0 Lanes: 0 0 0 0 0 1 1 0 1 1 0 0 3 1 0 2 0 3 0 0 Volume Module: >> Count Date: 14 Feb 2008 << 730-830 Base Vol: 0 0 0 720 281 401 0 1044 418 596 1462 0 Initial Bse: 0 0 0 756 295 421 0 1096 439 626 1535 0 Added Vol: 0 PasserByVol: 0 Initial Fut: 0 0 0 840 295 448 0 1278 476 670 1677 PHF Volume: 0 0 0 840 295 448 0 1278 476 670 1677 0 Ω FinalVolume: 0 0 0 924 295 493 0 1278 476 737 1677 0 -----|----||-----| Saturation Flow Module: Lanes: 0.00 0.00 0.00 2.00 0.75 1.25 0.00 3.00 1.00 2.00 3.00 0.00 Final Sat.: 0 0 0 2138 800 1337 0 3206 1069 2138 3206 0 -----|----|----|-----|

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

Vol/Sat: 0.00 0.00 0.00 0.43 0.37 0.37 0.00 0.40 0.45 0.34 0.52 0.00

Crit Volume: 0 462 476 368

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA

Future With Project AM PeakTue Jul 22, 2008 18:09:30

Future With Project- AM Peak

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative)

Intersection #50 San Diego Fwy NB Ramps and Santa Monica Boulevard

Cycle (sec): Loss Time (sec): Optimal Cycle ************************************	ec):	10	0 0 (Y+R	=4 0 s	sec)	Critic	al Vol	L./Car	p.(X):	:	1.0)30 xxx
Optimal Cycl	e:	18	0			Level	Of Ser	vice				F
Street Name: Approach: Movement:	No:	San D rth Bo - T	iego F und - R	wy NB Sou L -	Ramps th Bo T	s ound - R	Ea L -	Santa ast Bo - T	a Monic ound - R	a Bou W	levard est Bo - T	d ound – R
Control: Rights:	Sp	lit Ph Inclu	ase de	Spl	lit Pl Incl	nase ude	Pı	rotect Incl	ed ide	1	Permit Inclu	ted ide
Min. Green: Lanes:	1 :	1 1	1 1	0 0	0 0	0 0	2 (3	0 0	0	0 4	0 1
Volume Modul Base Vol:	e: >>	Count	Date:	14 Fe	eb 200	08 << 7	45-845	5				
Growth Adj:	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05
Initial Bse: Added Vol:	23	5	88	0	0	0	36	230	0	0	163	45
PasserByVol: Initial Fut:	732	408	844	0	0	0	454	1725	0	0	1547	
User Adj: PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Volume: Reduct Vol:	0	0	0	0	0	0	454	0	0	0	0	0
Reduced Vol: PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MLF Adj: FinalVolume:	805	408	928	0	0	0	499	1725	0	0	1547	
Saturation F	low Mo	odule:										
Sat/Lane: Adjustment:	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	1425 0.75	0.75
Lanes: Final Sat.:	2127	1079	2138	0	0	0	2138	3206	0	0		1069
Capacity Ana Vol/Sat: Crit Volume: Crit Moves:	lysis 0.38	Modul 0.38	e: 0.43	0.00	0.00		0.23					

Saturation Flow Module:

Capacity Analysis Module:

Future With Project- AM Peak

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative)

******************* Intersection #51 Sepulveda Boulevard and Santa Monica Boulevard ******************

0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): xxxxxx

Optimal Cycle:		180) (1+R	=4.0 :	sec)	Level	Of Se	rvice	:		XXX	F
Street Name: Approach:		Sepu.	Lveda .	Boule	vard			Santa	a Monic	a Bou	levaro	1
Movement:											est Bo - T	
movement.												
Control: Rights:	Pr	otect	ed	P1	rotect	ed	P:	rotec	ed.	P:	rotect	ted
Rights:		Includ	de		Ovl			Ovl			Ovl	
Min. Green:	0	0	0	0	U	U	0	0	0	0	0	0
Lanes:	1 0) 2 () 1	1 (2	0 1	1	0 3	0 1	1	3	0 1
Volume Module:												
		832	135	149		184		1701			1281	
Growth Adj: 1				1.05		1.05		1.05			1.05	
Initial Bse:				156		193		1786			1345	
Added Vol:				8		4	1				203	
PasserByVol:										0		
Initial Fut:						197						
User Adj: 1						1.00		1.00			1.00	
PHF Adj: 1			1.00		1.00	1.00		1.00			1.00	
PHF Volume:		910	142		813	197		2099			1548	
Reduct Vol:				0		0	0	0		0		
Reduced Vol:		910		164					383			
PCE Adj: 1						1.00		1.00			1.00	
MLF Adj: 1				1.00		1.00		1.00			1.00	
FinalVolume:				164		197					1548	
Saturation Flo												
		1375		1375		1375		1375			1375	
Adjustment: 0				0.75		0.75		0.75			0.75	
Lanes: 1			1.00	1.00		1.00		3.00			3.00	
Final Sat.: 1						1031		3094			3094	
Capacity Analy												
Vol/Sat: 0	.21	0.44	0.14	0.16	0.39	0.19	0.10	0.68	0.37	0.10	0.50	0.15

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

Crit Volume: 217 406 700 104

Crit Moves: ****

Future With Project- AM Peak Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) ************************ Intersection #52 Veteran Avenue and Santa Monica Boulevard ************************ Cycle (sec): 100 Critical Vol./Cap.(X): 0.824 Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/veh): xxxxxx Optimal Cycle: 129 Level Of Service: Street Name: Veteran Avenue Santa Monica Boulevard Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - F L - T - R Control: Prot+Permit Prot+Permit Protected Protected Rights: Include Include Include Ovl Include Include Include Ovl Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 1 0 0 1 0 1 0 0 1 0 1 0 3 1 0 1 0 3 0 1 Volume Module: >> Count Date: 14 Feb 2008 << 745-845 Base Vol: 64 265 54 132 146 66 101 1839 24 63 1320 60 Initial Bse: 67 278 57 139 153 69 106 1931 25 66 1386 63 Added Vol: 0 12 0 -1 5 5 11 309 1 0 207 -1 PasserByVol: 0 0 0 0 0 0 0 0 0 0 0 Initial Fut: 67 290 57 138 158 74 117 2240 26 66 1593 62 PHF Volume: 67 290 57 138 158 74 117 2240 26 66 1593 62

FinalVolume: 67 290 57 138 158 74 117 2240 26 66 1593 62 -----|

Lanes: 1.00 0.84 0.16 1.00 0.68 0.32 1.00 3.95 0.05 1.00 3.00 1.00 Final Sat.: 1375 1150 225 1375 936 439 1375 5436 64 1375 4125 1375 -----|----|-----|------|

Vol/Sat: 0.05 0.25 0.25 0.10 0.17 0.17 0.09 0.41 0.41 0.05 0.39 0.05

Crit Volume: 347 138 117 531 Crit Moves: **** **** ****

UCLA NHIP and Amended LRDP Traffic Study

Los Angeles, CA

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) ************************* Intersection #53 Westwood Boulevard and Santa Monica Boulevard ************************ Cycle (sec): 100 Critical Vol./Cap.(X): 1.221 0 (Y+R=4.0 sec) Average Delay (sec/veh): xxxxxx Loss Time (sec): Optimal Cycle: 180 Level Of Service: Street Name: Westwood Boulevard Santa Monica Boulevard Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R T, - T - R Control: Prot+Permit Prot+Permit Protected Protected Rights: Include Include Ovl Ovl Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 1 0 1 1 0 1 0 2 0 1 2 0 3 0 1 2 0 3 0 1 Volume Module: >> Count Date: 19 Feb 2008 << 745-845 Base Vol: 91 1008 73 218 528 75 140 1794 97 128 1288 129 Initial Bse: 96 1058 77 229 554 79 147 1884 102 134 1352 135 6 Added Vol: 4 149 9 7 104 18 26 273 3 6 183 PasserBvVol: 0 0 0 0 0 0 0 0 0 0 PasserByVol: 0 0 Ω Initial Fut: 100 1207 86 236 658 97 173 2157 105 140 1535 141 PHF Volume: 100 1207 86 236 658 97 173 2157 105 140 1535 141 MLF Adi: 1.00 1.00 1.00 1.00 1.00 1.00 1.10 1.00 1.00 1.10 1.00 FinalVolume: 100 1207 86 236 658 97 190 2157 105 154 1535 141 -----||-----||-----| Saturation Flow Module: Lanes: 1.00 1.87 0.13 1.00 2.00 1.00 2.00 3.00 1.00 2.00 3.00 1.00 Final Sat.: 1375 2568 182 1375 2750 1375 2750 4125 1375 2750 4125 1375 -----|----|-----|------| Capacity Analysis Module:

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA. LONG BEACH. CA

Vol/Sat: 0.07 0.47 0.47 0.17 0.24 0.07 0.07 0.52 0.08 0.06 0.37 0.10

Crit Volume: 647 236 719 77
Crit Moves: **** **** ****

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA

Future With Project AM PeakTue Jul 22, 2008 18:09:30

Future With Project- AM Peak Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) ************************ Intersection #54 Mulholland Drive and Roscomare Road ************************ 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): xxxxxx Optimal Cycle: 174 Level Of Service: Street Name: Mulholland Drive Roscomare Road Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R T. - T - R Control: Split Phase Split Phase Prot+Permit Prot+Permit
 Rights:
 Include
 Include
 Ovl
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 Volume Module: >> Count Date: 13 Feb 2008 << 730-830 Base Vol: 195 0 75 0 0 0 0 713 409 184 519 0 Initial Bse: 205 0 79 0 0 0 749 429 193 545 0 PHF Volume: 217 0 79 0 0 0 0 750 449 193 545 0 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 217 0 79 0 0 0 0 750 449 193 545 FinalVolume: 217 0 79 0 0 0 0 750 449 193 545 0 -----|-----|------| Saturation Flow Module: Lanes: 0.73 0.00 0.27 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00 Final Sat.: 1045 0 380 0 0 0 1425 1425 1425 0 -----| Capacity Analysis Module: Vol/Sat: 0.21 0.00 0.21 0.00 0.00 0.00 0.00 0.53 0.32 0.14 0.38 0.00 Crit Volume: 296 0 750 193 Crit Moves: **** **** ****

UCLA NHIP and Amended LRDP Traffic Study
Los Angeles, CA
Future With Project- AM Peak

Level Of Service Computation Report

2000		op Method (Future		
Intersection #55	Roscomare Ro	ad and Stradella	Road/Linda Flora	Drive
Cycle (sec): Loss Time (sec): Optimal Cycle: ************************************	100 0 (Y+R 0	Critic =4.0 sec) Averag Level	al Vol./Cap.(X): e Delay (sec/veh) Of Service:	0.692 : 14.1 B
	rth Bound - T - R	South Bound L - T - R	Stradella Road/I East Bound L - T - R	West Bound L - T - R
Control: S Rights: Min. Green: 0	top Sign Include 0 0	Stop Sign Include 0 0 0	Stop Sign Include 0 0 0	Stop Sign Include 0 0 0
Lanes: 0	0 1! 0 0			
Volume Module: >> Base Vol: 12 Growth Adj: 1.05 Initial Bse: 13 Added Vol: 0 PasserByVol: 0 Initial Fut: 13 User Adj: 1.00 PHF Adj: 1.00 PHF Volume: 13 Reduct Vol: 0 Reduced Vol: 13 PCE Adj: 1.00 MLF Adj: 1.00 FinalVolume: 1.00 FinalVolume: 1.00 Fasturation Flow MAdjustment: 1.00 Lanes: 0.11	Count Date: 74 8 1.05 1.05 78 8 12 0 0 0 0 90 8 1.00 1.00 1.00 1.00 90 8 1.00 1.00 1.00 1.00 1.00 1.00	21 Feb 2008 << 8 90 423 16 1.05 1.05 1.05 94 444 17 0 20 0 94 464 17 1.00 1.00 1.00 94 464 17 0 0 0 94 464 17 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	00-900 16 1 38 1.05 1.05 1.05 17 1 40 0 0 0 17 1 40 1.00 1.00 1.00 17 1 40 0 0 0 17 1 40 0 0 0 17 1 40 0 1.00 1.00 17 1 40 0 1.00 1.00 17 1 40 0 1.00 1.00 17 1 40 1.00 1.00 1.00 17 1 40 1.00 1.00 1.00 17 1 40 1.00 1.00 1.00 17 1 40 1.00 1.00 1.00	9 0 32 1.05 1.05 1.05 1.05 9 0 34 0 0 0 0 9 0 34 1.00 1.00 1.00 1.00 1.00 1.00 9 0 34 0 0 0 9 0 34 1.00 1.00 1.00 1.00 1.00 1.00 9 0 34 1.00 1.00 1.00 1.00 9 0 34
 Capacity Analysis Vol/Sat: 0.15	 Module:			
Crit Moves: Delay/Veh: 8.5 Delay Adj: 1.00 AdjDel/Veh: 8.5 LOS by Move: A ApproachDel: Delay Adj: ApprAdjDel: LOS by Appr: AllWayAvg0: 0.2	8.5 8.5 1.00 1.00 8.5 8.5 A A 8.5 1.00 8.5	16.1 16.1 16.1 1.00 1.00 1.00 16.1 16.1 16.1 C C C 16.1 1.00 16.1 C	8.5 8.5 8.5 1.00 1.00 1.00 8.5 8.5 8.5 A A A 8.5 1.00 8.5 A 0.1 0.1 0.1	8.4 8.4 8.4 1.00 1.00 1.00 8.4 8.4 8.4 A A A 1.00 8.4 1.00

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

ruture with Project AM Peakine Jul 22, 2008 18:09:30	Page 60-2
UCLA NHIP and Amended LRDP Traffic Study	
Los Angeles, CA Future With Project- AM Peak	
Note: Queue reported is the number of cars per lane.	

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future With Project- AM Peak

Level Of Service Computation Report

2000 HCM 4-Way Stop Method (Future Volume Alternative)

Intersection #56 Bellagio Road and Chalon Road

Cycle (sec): Loss Time (se Optimal Cycle	ec):	1(0 (Y+R 0 ****	=4.0 s	sec)	Critic Averag Level	al Volge Dela	l./Car ay (se rvice:	o.(X): ec/veh) :	:	0.6 13 ****	62 .1 B
Street Name: Approach: Movement:	No	rth Bo	Bellagi ound	o Road Sou	d uth B	ound	Ea	ast Bo	Chalon ound	Road We:	st Bo	und
Control: Rights: Min. Green: Lanes:	0 0	iop Si Incli 0	ign ude 0 0 0	0 0 (iop S Incl 0	ign ude 0	0 0	iop Si Inclu 0 1!	ign ide 0 0 0	0 0 0 0	op Si Inclu 0 0	gn ide 0
Volume Module Base Vol: Growth Adj: Initial Bse: Added Vol: PasserByVol: Initial Fut: User Adj: PHF Adj: PHF Volume: Reduct Vol: Reduced Vol: CE Adj: MLF Adj: FinalVolume:	30 1.05 32 0 0 32 1.00 1.00 32 1.00 1.00 32	Count 119 1.05 125 12 0 137 1.00 1.00 137 1.00 137	Date: 0 1.05 0 0 0 0 0 0 1.00 1.00 0 0 1.00 0 1.00 0 0 0	21 Fe 0 0 1.05 0 0 0 0 1.00 0 0 0 1.00 0 1.00 0 1.00 0 0 1.00 0 0 0	20 499 1.05 524 20 0 544 1.00 1.00 544 1.00 1.00 544	08 << 7 20 1.05 21 0 0 21 1.00 1.00 21 1.00 21 0 21 1.00 21 21 21 21 21 21 21 21	745-849 111 1.055 122 0 0 122 1.000 1.000 122 1.000 1.000 1.000	1.05 0 0 0 0 0 1.00 1.00 0 0 1.00	40 1.05 42 0 0 42 1.00 1.00 42 1.00 1.00 42	0 1.05: 0 0 0 0 1.00: 1.00: 0 0 0	0 1.05 0 0 0 0 1.00 1.00 0 0 1.00	0 1.05 0 0 0 0 1.00 1.00 0 0 0 1.00
Saturation Fl Adjustment: Lanes: Final Sat.:	1.00 0.19 142	0.81 619	1.00 0.00 0	1.00	1.00 0.96 822	1.00 0.04 32	1.00 0.22 140	1.00	1.00 0.78 509	1.00	1.00	1.00
Capacity Anal Vol/Sat: Crit Moves: Delay/Veh: Delay Adj: AdjDel/Veh: LOS by Move:	ysis 0.22 **** 8.9 1.00 8.9	Modul 0.22 8.9 1.00 8.9 A	0.0 1.00 0.0	0.0 1.00 0.0 *	0.66 **** 14.8 1.00 14.8	0.66 14.8 1.00 14.8 B	0.08 **** 8.3 1.00	0.0 1.00	0.08 8.3 1.00 8.3 A	0.0 1.00 0.0	0.0 1.00 0.0 *	0.0
Delay Adj:		1.00			1.00			1.00		X	xxxx	

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

14.8

8.3

xxxxxx

ApprAdjDel:

8.9

ruture with Project AM Peakine our 22, 2006 16.09.30	Page 61-2
UCLA NHIP and Amended LRDP Traffic Stud	у
Los Angeles, CA	
Future With Project- AM Peak	
Note: Queue reported is the number of cars per lane.	
*******************	******

Saturation Flow Module:

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future With Project- AM Peak

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative)

******************** Intersection #57 Beverly Glen Boulevard and Mulholland Drive ************************ Cycle (sec): 100 Critical Vol./Cap.(X): 1.020 0 (Y+R=4.0 sec) Average Delay (sec/veh): xxxxxx Loss Time (sec): Optimal Cycle: 180 Level Of Service: ************************* Street Name: Beverly Glen Boulevard Mulholland Drive Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R Control: Split Phase Split Phase Permitted Permitted Rights: Include Include Include Ignore
 Rights:
 Include
 Include
 Include
 Include
 Ignore

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0< Lanes: 0 1 0 0 1 0 1 1 0 1 1 0 1 1 0 1 0 2 0 1 Volume Module: >> Count Date: 26 Feb 2008 << 730-830 Base Vol: 59 199 70 765 747 129 42 559 38 42 304 292 Initial Bse: 62 209 74 803 784 135 44 587 40 44 319 307 Added Vol: 0 16 0 0 27 0 0 0 1 1 0 0 PasserBvVol: 0 0 0 0 0 0 0 0 0 0 0 0 Initial Fut: 62 225 74 803 811 135 44 587 41 45 319 307 PHF Volume: 62 225 74 803 811 135 44 587 41 45 319 0 0 Ω

-----| Capacity Analysis Module: Vol/Sat: 0.20 0.20 0.05 0.57 0.57 0.10 0.03 0.22 0.22 0.03 0.11 0.00 Crit Volume: 287 807 314 45 Crit Moves: **** **** ****

FinalVolume: 62 225 74 803 811 135 44 587 41 45 319 0 -----|----|----|----|

Lanes: 0.22 0.78 1.00 0.99 1.01 1.00 1.00 1.87 0.13 1.00 2.00 1.00 Final Sat.: 308 1117 1425 1418 1432 1425 1425 2664 186 1425 2850 1425

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

Future With Project AM PeakTue Jul 22, 2008 18:09:30 UCLA NHIP and Amended LRDP Traffic Study

> Los Angeles, CA Future With Project- AM Peak

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) ************************ Intersection #58 Beverly Glen Boulevard and Greendale Drive ***************** Cycle (sec): 100 Critical Vol./Cap.(X): 0.885 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): xxxxxx Optimal Cycle: 162 Level Of Service: D Street Name: Beverly Glen Boulevard Greendale Drive

Approach:	No:	rth Bo	und	Sot	ath Bo	ound	Εa	ast Bo	ound	W€	est Bo	ound
Movement:												
Control:												
Rights:									ıde			
Min. Green:			0			0			0			0
Lanes:												
Volume Module												
Base Vol:	0	293		128		0			0			47
Growth Adj:	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05
Initial Bse:				134		0	0	0	0	82	0	49
Added Vol:								0		0		0
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	0
Initial Fut:						0	0	0	0	82	0	49
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Volume:	0	325	18	135	995	0	0	0	0	82	0	49
Reduct Vol:	0	0	0	0		0	0			0	0	0
Reduced Vol:	0	325	18	135	995	0	0	0	0	82	0	49
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
FinalVolume:						0			0			49
Saturation F	low M	odule:										
Sat/Lane:	1425	1425	1425	1425	1425	1425	1425	1425	1425	1425	1425	1425
Adjustment:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Lanes:	0.00	0.95	0.05	0.12	0.88	0.00	0.00	0.00	0.00	0.62	0.00	0.38
Final Sat.:												
Capacity Anal												
Vol/Sat:	0.00	0.24	0.24	0.79	0.79	0.00	0.00	0.00	0.00	0.09	0.00	

Crit Volume: 0 1131 Crit Moves: **** ****

Future With Project PM PeakTue Jul 22, 2008 18:09:45

Page 1-1

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA $\,$

Future With Project- PM Peak

Scenario Report

Future With Project PM Peak

Scenario: Future With Project PM Peak

Volume: Future PM

Geometry: Future

Command:

Impact Fee: Default Impact Fee

Trip Generation: PM Peak
Trip Distribution: Project
Paths: Project
Routes: Default Route

Configuration: Future

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

Future With Project PM PeakTue Jul 22, 2008 18:09:45

Page 2-1

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future With Project- PM Peak

Trip Generation Report

Forecast for PM Peak

	Subzone		Units	In		In	Out	Trips	Total
1 2			FBI Office- 11 Palazzo Westwo						
3	#3 Zone 3		Mixed-Use - S/						
4	#4 Zone 4		Theater Expans			8 8	8 8	16 16	0.2
5 5	#5, 17 #5, 17 Zone 5	1.00 1.00 Subtotal	Mixed-Use- 108 Residential Ho	-16.00 17.00	-25.00 15.00	-16 17 1	-25 15 -10	-41 32 -9	-0.6 0.5 -0.1
6	#6 Zone 6	1.00 Subtotal	Apartments- 86	6.00	3.00	6 6	3	9 9	0.1
7	#7 Zone 7	1.00 Subtotal	Condos- 10804	34.00	17.00	34 34	17 17	51 51	0.8
8 8 8	#8, 25, 61 #8, 25, 61	1.00	Condos- 10776 Condos-10763 W Condos- 10710	22.00	11.00 12.00	22 23	11 12	33 35	0.5
9	#9 Zone 9	1.00 Subtotal	Private School	0.00	9.00	0	9 9	9 9	0.1
10	#10 Zone 10	1.00 Subtotal	Fox Studio Exp	54.00	226.00	54 54	226 226	280 280	4.2 4.2
11 11 11 11	#11, 12, 45, #11, 12, 45, #11, 12, 45, #11, 12, 45, Zone 11	1.00 1.00 1.00 1.00 Subtotal	High School Ex Private School Condos- 1333 S Condos- 552-55	37.00 65.00 2.00 3.00	55.00 166.00 1.00 2.00	37 65 2 3 107	55 166 1 2 224	92 231 3 5 331	1.4 3.5 0.0 0.1 5.0
12	#13 Zone 12		Wilshire/Comst						
13 13			ABC Entertainm Condos- 10131						

Page 2-3

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA

Future With Project- PM Peak

Zone #	Subz	one	Amount	Units	Rate In	Rate Out	Trips In	Trips Out	Total Trips	% Of Total
14 14	#16, #16,	35 35 Zone 14	1.00 1.00 Subtotal	Condos- 527 Mi Condos- 430 Ke	61.00 15.00	30.00	61 15 76	30 7 37	91 22 113	1.4 0.3 1.7
15	#18	Zone 15	1.00 Subtotal	Health/Fitness	19.00	18.00	19 19	18 18	37 37	0.6
16	# 19	Zone 16	1.00 Subtotal	Condos-1826 S	6.00	3.00	6 6	3	9 9	0.1
17	#20		1.00 Subtotal	Condos- 1417 S	6.00	3.00	6 6	3	9 9	0.1
18	#21	Zone 18	1.00 Subtotal	New Car Sales-	3.00	4.00	3	4 4	7 7	0.1
19 19	#22, #22,	70 70 Zone 19	1.00 1.00 Subtotal	Condos- 1625 S Mixed-Use- 115	7.00 43.00	3.00	7 43 50	3 21 24	10 64 74	0.2 1.0 1.1
20 20	#23, #23,	24 24 Zone 20	1.00 1.00 Subtotal	Condos- 1525 S Condos- 1633 S	7.00 6.00	3.00	7 6 13	3 3 6	10 9 19	0.2 0.1 0.3
21	#26		1.00 Subtotal	Condos- 2037 S	6.00	3.00	6 6	3	9 9	0.1
22 22 22	#27, #27, #27,	63, 65 63, 65 63, 65 Zone 22	1.00 1.00 1.00 Subtotal	Office- 12233 Westside Media SM Apt Project	140.00 16.00 45.00	36.00 15.00 25.00	140 16 45 201	36 15 25 76	176 31 70 277	2.7 0.5 1.1 4.2
23 23	#28, #28,	32 32 Zone 23	1.00 1.00 Subtotal	Condos- 1511 S Condos- 1517 B	6.00 8.00	3.00 4.00	6 8 14	3 4 7	9 12 21	0.1 0.2 0.3
24 24	#29, #29,			Mixed-Use- 116 Office- 11677						
25	#30	Zone 25	1.00 Subtotal	Mausoleum Bldg	1.00	2.00	1 1	2 2	3	0.0
26	#31	Zone 26	1.00 Subtotal	Condos- 10617	6.00	3.00	6 6	3	9 9	0.1

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future With Project- PM Peak

Future With Project PM PeakTue Jul 22, 2008 18:09:45

			Future With Pro						
			Units				Trips Out		
27	#33 Zone 2	1.00 27 Subtota	Apts- 1817 S B	5.00	2.00	5 5	2 2	7 7	0.1
28	#34 Zone 2	1.00 28 Subtota	Live/Work- 115	27.00	14.00	27 27	14 14	41 41	0.6 0.6
29	#36 Zone 2	1.00 29 Subtota	Restaurant- 10	23.00	11.00	23 23	11 11	34 34	0.5 0.5
30 30 30	#37, 56, 5° #37, 56, 5° #37, 56, 5° Zone	7 1.00 7 1.00 7 1.00 30 Subtota	Condos- 1807 S Auto Service- Office- SW Cor	6.00 4.00 18.00	3.00 3.00 89.00	6 4 18 28	3 89 95	9 7 107 123	0.1 0.1 1.6 1.9
31	#38 Zone :	1.00 31 Subtota	Condos- 2263 S	5.00	3.00	5 5	3	8	0.1
32	#39 Zone :	1.00 32 Subtota	Cooking School	3.00	2.00	3	2 2	5 5	
33	#40 Zone :	1.00 33 Subtota	Bank- 1762 Wes	73.00	67.00	73 73	67 67	140 140	2.1
34 35 35	#41- NA-Ali #42, 49 #42, 49 Zone I	re 1.00 1.00 1.00 35 Subtota	Westside Pavil Le Lycee Franc Mixed-Use- 106	0.00 46.00 15.00	0.00 62.00 15.00	0 46 15 61	0 62 15 77	0 108 30 138	1.6 0.5
36 36 36	#44, 60, 6 #44, 60, 6 #44, 60, 6 Zone	7 1.00 7 1.00 7 1.00 36 Subtota	Discounted Sto Olympic-Stoner Bed, Bath & Be	152.00 47.00 0.00	152.00 59.00 0.00	152 47 0 199	152 59 0 211	304 106 0 410	4.6 1.6 0.0 6.2
37	#46 Zone :	1.00 37 Subtota	Belmont Villag	22.00	19.00	22 22	19 19	41 41	0.6
38 38 38	#47, B12, I #47, B12, I #47, B12, I Zone I	33 1.00 33 1.00 33 1.00 38 Subtota	Apts- 10000 W Hotel- 150 Las Beverly Hilton	102.00 13.00 100.00	-115.00 12.00 61.00	102 13 100 215	2 -115 12 61 -42	-1: 25 161 173	3 -0. 0.4 2.4 2.6
39	#48 Zone :		Mixed-Use- 109			29 29	25 25	54 54	0.8
40	#50 Zone		Regent Westwoo				134 134	372 372	5.6 5.6

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA

Future With Project- PM Peak

Subzo	one	Amount	Units	Rate In	Rate Out	Trips In	Trips Out	Total Trips	% Of Total
#51	Zone 41	1.00 Subtotal	Office- 1100 W	20.00	90.00	20 20	90	110 110	
#52	Zone 42					35 35	19 19		
#53	Zone 43	1.00 Subtotal	Condos- 11611	7.00	3.00	7 7	3	10 10	0.2
#55		1.00 Subtotal	Retail- 11305	16.00	17.00	16 16	17 17	33 33	
#58							41 41	83 83	1.3
	Zone 46	Subtotal	L			46	52	98	1.5
#B1, #B1, #B1, #B1, #B1, #B1,	B5, B11 B5, B11 B5, B11 B5, B11 B5, B11 B5, B11 Zone 47	1.00 1.00 1.00 1.00 1.00 1.00 1.00 Subtotal	Young Israel- Retail Expansi Cultural Cente Condos- 437-44 Service Facili Mixed-Use- 421 Condos- 432 N	4.00 2.00 16.00 5.00 90.00 31.00 12.00	4.00 3.00 40.00 3.00 89.00 47.00 6.00	4 2 16 5 90 31 12	4 3 40 3 89 47 6	8 56 8 179 78 18 352	0.1 0.8 0.1 2.7 1.2 0.3 5.3
#B2,	B3, B6,	1.00	Mixed-Use- 265	44.00	119.00	44	119	163	2.5
	#51 #52 #53 #55 #58 #59 #B1, #B1, #B1, #B1, #B1, #B1, #B1, #B1,	#51 Zone 41 #52 Zone 42 #53 Zone 44 #55 Zone 45 #59 Zone 46 #81, 85, 811 #81, 81 #81,	#51 1.00 Zone 41 Subtotal #52 1.00 Zone 42 Subtotal #53 1.00 Zone 43 Subtotal #55 1.00 Zone 44 Subtotal #58 1.00 Zone 45 Subtotal #59 1.00 Zone 46 Subtotal #59 1.00 #B1, B5, B11 1.00	#51	#51	#51	#51	#51	Subzone

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future With Project- PM Peak

Future With Project PM PeakTue Jul 22, 2008 18:09:45

one		_		Rate	Rate	Trips	Trips	Total	% Of
			Units						
49	#B4, B14, B	2 1.00	Synagogue/Pri	7.00	8.00	7	8	15	0.
49	#B4, B14, B	2 1.00	Apts- 428-430	1.00	0.00	1	0	1	0.
49	#B4, B14, B Zone 4	2 1.00 9 Subtota	Church Expans: Synagogue/Priv Apts- 428-430 Condos- 313-3	1 3.00	2.00	3 12	2 10	5 22	0.
50	#B18, B21	1.00	Beverly Hills Robinson's May	21.00	140.00	21	140	161	2.
50	#B18, B21	1.00	Robinson's May	y 20.00	-19.00	20	-19	1	0.
	Zone 5	0 Subtota	1			41	121	162	2.
51	#B27	1.00	Health Spa- 9	4.00	4.00	4	4	8	0.
	Zone 5	1 Subtota	1			4	4	8	0 .
			Whole Foods Ma						
53	#64	1.00	New West Midd	1 51.00	47.00	51 51	47	98	1
	Zone 5		1					98	
54	#66		Union Bank of						
	Zone 5	4 Subtota	1			32	32	64	1
55	#68		Leo Baeck Temp				199	364	
	Zone 5	5 Subtota	1			165	199	364	5
56	#69	1.00	Convenience St	50.00	48.00	50	48	98	1
	Zone 5	6 Subtota	1			50	48	98	1
57	#71	1.00	Westwood Villa	a 42.00	40.00	42	40	82	1
	Zone 5	7 Subtota	1			42	40	82	1
58	#72	1.00	Office Bldg-	2 9.00	41.00	9	41	50 50	0
	Zone 5	8 Subtota	1			9	41	50	0
59			Mixed Use						
	Zone 5	9 Subtota	1			60	55	115	1
60			UCLA PARKING				413		8
	Zone 6	0 Subtota	1			177	413	590	8

Page 3-2

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA

Future With Project- PM Peak

Trip Distribution Report Percent Of Trips Project

	1	2	3	4	To 5	Gates 6	a	10	11	12	13
Zone											
1 2	0.0	0.0	0.0	0.0	0.0	0.0	0.0 16.0		0.0 11.0	0.0	0.0
3	8.0	3.0		4.0		3.0		0.0			5.0
4	8.0	3.0	0.0	4.0	0.0	3.0	16.0	0.0	11.0	0.0	5.0
5	8.0	3.0	0.0	4.0	0.0	3.0	16.0	0.0	11.0	0.0	5.0
6	10.0	0.0	0.0	0.0	0.0			0.0	5.0	0.0	0.0
7		0.0	0.0	0.0						0.0	0.0
8	15.0	0.0	0.0	0.0	0.0	0.0	5.0		5.0	0.0	0.0
9		5.0	5.0	5.0	5.0	20.0	5.0	0.0	0.0	0.0	0.0
10	10.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0	0.0
11	10.0	0.0	0.0	0.0		5.0	5.0		0.0	0.0	0.0
12	10.0	0.0	0.0	0.0	0.0		0.0	0.0	5.0	0.0	0.0
13	10.0	0.0	0.0	0.0			5.0		0.0	0.0	0.0
14 15	8.0	3.0	0.0	4.0	0.0	3.0	16.0	0.0 5.0	11.0	0.0 5.0	5.0
16	10.0	0.0	0.0	0.0	0.0	0.0	10.0		10.0	0.0	0.0
17	10.0	0.0	0.0	0.0	0.0	0.0	5.0		0.0	0.0	0.0
18	10.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0
19	10.0	0.0	0.0	0.0	0.0	0.0	5.0 5.0	5.0	0.0	0.0	0.0
20	10.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0
21	10.0	0.0	0.0	0.0	0.0	5.0	5.0 5.0	0.0	0.0	0.0	0.0
22	10.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0
23	10.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	2.5	2.5
24	10.0	0.0	0.0	0.0	0.0	0.0	5.0 5.0	5.0	0.0	0.0	0.0
25	15.0	0.0	0.0	0.0	0.0				5.0	0.0	0.0
26	10.0	0.0	0.0	0.0	0.0	0.0	10.0		0.0	0.0	0.0
27 28	10.0	0.0	0.0	0.0	0.0		5.0 5.0		0.0	0.0	0.0
28 29	10.0	0.0	0.0	0.0 4.0	0.0	3.0	16.0	5.0	11.0	0.0	5.0
30		0.0	0.0	0.0		0.0				0.0	0.0
31	10.0	0.0	0.0	0.0	0.0				0.0	0.0	0.0
32		0.0	0.0	0.0	0.0					0.0	0.0
33	0.0	0.0	0.0	0.0	0.0			5.0	10.0	0.0	0.0
34		0.0	0.0	0.0	0.0					0.0	0.0
35	10.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0
36	10.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0
37	10.0	0.0	0.0	0.0	0.0		5.0		5.0	0.0	0.0
38		0.0	0.0	0.0	0.0				5.0	0.0	0.0
39	0.0	0.0	0.0	0.0	0.0	0.0			5.0	0.0	0.0
40	8.0	3.0	0.0	4.0		3.0		0.0	11.0	0.0	5.0
41	8.0	3.0	0.0	4.0	0.0	3.0	16.0	0.0	11.0	0.0	5.0
42		0.0	0.0	0.0	0.0				5.0	0.0	0.0
43	10.0	0.0	0.0	0.0	0.0	0.0	5.0 5.0		0.0	0.0	0.0
44	10.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future With Project- PM Peak

				ure wi	CII Pro	ject-	PM Pear	` 			
	1	2	3	4	То 5	Gates 6	9	10	11	12	13
Zone											
45	0.0 10.0 10.0 10.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	5.0	0.0	0.0
46	10.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0
47	10.0	0.0	0.0	0.0	0.0	5.0	0.0	0.0	5.0	0.0	0.0
48	10.0	0.0	0.0	0.0	0.0	5.0	0.0	0.0	5.0	0.0	0.0
49	10.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0	0.0
50	10.0	0.0 5.0	0.0	0.0	0.0	5.0	0.0	0.0	5.0	0.0	0.0
51	5.0	5.0	5.0	5.0	5.0	20.0	5.0	0.0	0.0	0.0	0.0
52		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
53	10.0	0.0		0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0
54							16.0		11.0		5.0
55	0.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0 10.0	0.0	5.0
56	0.0	0.0	0.0	0.0	0.0	0.0	5.0				
57	8.0	3.0	0.0	4.0	0.0	3.0	16.0	0.0	11.0	0.0	5.0
58	10.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0
59	10.0 8.0 28.0	3.0	0.0	4.0	0.0	3.0	16.0	0.0	11.0	0.0	5.0
60	28.0	0.5	0.0	0.5	0.0	3.0	3.0	3.0	2.0	2.0	2.0
					ТО	Gates					
	14	15	16	17			20	21	22	23	28
Zone											
1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2	3.0	0.0	9.0	6.0	0.0	23.0	0.0	0.0	0.0	3.0	2.0
3	3.0	0.0	9.0	6.0		23.0	0.0	0.0	0.0	3.0	2.0
4	3.0	0.0	9.0	6.0		23.0	0.0	0.0	0.0	3.0	2.0
5 6				6.0					0.0		
6 7	5.0 5.0			5.0 5.0				0.0	0.0	0.0	0.0
8						15.0			0.0		0.0
9				0.0				0.0	0.0		0.0
10				3.0					0.0		0.0
11	5.0	0.0	5.0	3.0	0.0	10.0		0.0	0.0	0.0	0.0
12	5.0	0.0	5.0	3.0 5.0	5.0	10.0	0.0	0.0	0.0	0.0	0.0
13		0.0		3.0					0.0		0.0
14		0.0		6.0					0.0		2.0
	10.0	10.0	10.0	10.0							0.0
16	5.0			5.0					0.0		0.0
17	5.0 5.0	0.0		5.0					0.0		0.0
18		0.0	5.0	5.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0
19				5.0					0.0	0.0	0.0
20				5.0					0.0		0.0
21	5.0	0.0	5.0	3.0	0.0	10.0		0.0	0.0	0.0	0.0
22	0.0		0.0	5.0	0.0	10.0	0.0		0.0		0.0
23	5.0			2.5		10.0	0.0	0.0	0.0	0.0	0.0
24	0.0	0.0	0.0	5.0	0.0	10.0	0.0	0.0	5.0	0.0	0.0
25	5.0	0.0	5.0	5.0	5.0	15.0	0.0	0.0	0.0	0.0	0.0
26 27	5.0 5.0	0.0	5.0	5.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0
۷ /	5.0	0.0	5.0	5.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0

Page 3-4

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future With Project- PM Peak

					То	Gates					
	14	15	16	17	18	19	20	21	22	23	28
Zone -											
28	0.0	0.0	0.0	5.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0
29	3.0	0.0	9.0	6.0	0.0	23.0	0.0	0.0	0.0	3.0	2.0
30	5.0	0.0	5.0	5.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0
31	5.0	0.0	5.0	3.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0
32	5.0	0.0	5.0	5.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0
33	5.0	5.0	5.0	5.0		0.0	0.0	0.0	0.0	0.0	0.0
34	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
35	5.0	0.0	5.0	5.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0
36	0.0	0.0	0.0	5.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0
37	5.0	0.0	5.0	5.0	5.0	10.0	0.0	0.0	0.0	0.0	0.0
38	5.0	0.0	5.0	5.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0
39	5.0	5.0	5.0	5.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
40	3.0	0.0	9.0	6.0	0.0	23.0	0.0	0.0	0.0	3.0	2.0
41	3.0	0.0	9.0	6.0	0.0	23.0	0.0	0.0	0.0	3.0	2.0
42	5.0	0.0	5.0	5.0	5.0	10.0	0.0	0.0	0.0	0.0	0.0
43	5.0	0.0	5.0	0.0	0.0	10.0	0.0	0.0	5.0	0.0	0.0
44	0.0	0.0	5.0	5.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0
45	5.0	5.0	5.0	5.0		0.0	0.0	0.0	0.0	0.0	0.0
46	5.0	0.0	5.0	0.0	0.0	10.0	0.0	0.0	5.0	0.0	0.0
47	5.0	0.0		5.0	5.0	10.0	0.0	0.0	0.0	0.0	0.0
48	5.0	0.0	5.0	5.0	5.0	10.0	0.0	0.0	0.0	0.0	0.0
49	5.0	0.0	5.0	3.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0
50	5.0	0.0	5.0	5.0	5.0	10.0	0.0	0.0	0.0	0.0	0.0
51	0.0	0.0	2.5	0.0		2.5	5.0	0.0	0.0	0.0	0.0
52	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
53	0.0	0.0	0.0	5.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0
54	3.0	0.0	9.0	6.0	0.0	23.0	0.0	0.0	0.0	3.0	2.0
55 56	0.0	0.0 5.0	5.0 5.0	0.0	0.0	10.0	10.0	0.0	0.0	0.0	0.0
56 57	3.0	0.0	9.0	6.0	0.0	23.0	0.0	0.0	0.0	3.0	2.0
5 / 58	5.0	0.0	5.0	5.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0
56 59	3.0	0.0	9.0	6.0	0.0	23.0	0.0	0.0	0.0	3.0	2.0
60	3.0	3.0	3.0	3.0	1.0	39.0	3.0	1.0	0.0	0.0	0.0
00	5.0	5.0	5.0	5.0	1.0	39.0	5.0	1.0	0.0	0.0	0.0

	To Gate	as 30
Zone		
1 2 3 4 5 6 7 8	0.0 2.0 2.0 2.0 2.0 0.0 0.0	0.0 2.0 2.0 2.0 2.0 0.0 0.0
10	0.0	0.0

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future With Project- PM Peak

	To Gate	
Zone	29	
2011e		
11	0 0	0.0
12	0.0	0.0
13	0.0	0.0
14		2.0
15	0.0	0.0
16	0.0 0.0 0.0	0.0
17	0.0	0.0
18	0.0	0.0
19	0.0	0.0
20	0.0	0.0
21	0.0	0.0
22	0 0	0.0
23	0.0	0.0
24	0.0	0.0
25	0.0 0.0 0.0	0.0
26	0.0	0.0
27	0.0	0.0
28	0.0	0.0
29	0.0	2.0
30	0.0	0.0
31	0.0	0.0
32	0 0	0.0
33	0.0	0.0
34	0.0	0.0
35	0.0	0.0
36	0.0	0.0
37	0.0	0.0
38	0.0	0.0
39	0.0	0.0
40	2.0	2.0
41	2.0	2.0
42	0.0	0.0
43	0.0	0.0
44	0.0	0.0
45	0.0	0.0
46	0.0	0.0
47	0.0	0.0
48	0.0	0.0
49	0.0	0.0
50	0.0	0.0
51	0.0	0.0
52	0.0	0.0
53	0.0	0.0
54	2 0	2.0
55	0.0	0.0
56	0.0	0.0
57	2.0	2.0
58	0.0	0.0

Page 3-5

Future With Project PM PeakTue Jul 22, 2008 18:09:46

Page 4-1

0 3429

0 165

0 43

0 2775

0 1281 0 81

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA

Future With Project- PM Peak

	To Gate	es
	29	30
Zone		
59	2.0	2.0
60	0.0	0.0

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future With Project- PM Peak

______ Turning Movement Report PM Peak

Volume Northbound Southbound Eastbound Westbound Total Type Left Thru Right Left Thru Right Left Thru Right Left Thru Right Volume #1 Sepulveda Boulevard and Church Ln/Ovada Pl Base 4 1702 237 3 923 383 586 107 19 68 101 7 4141 Added 0 136 0 0 59 50 17 0 0 0 0 0 Total 4 1838 237 3 982 433 603 107 19 68 101 262 7 4403 #2 Church Lane and San Diego Fwy SB On/Off Ramp Base 6 668 261 101 479 0 5 3 9 945 1 27 2506

Added 0 17 0 20 30 0 0 0 68 0 0 135 Total 6 685 261 121 509 0 5 3 9 1013 1 27 2641

#3 Church Lane and Sunset Boulevard Base 132 41 81 559 97 753 427 1280 35 29 904 443 4781 Added 0 0 0 78 0 20 17 6 0 0 13 0 134 Total 132 41 81 637 97 773 444 1286 35 29 917 443 4915 #4 San Diego Fwy NB On/Off Ramps and Sunset Boulevard

Total 102 0 87 0 0 0 0 1130 914 0 1362 0 3594 #5 Veteran Avenue and Sunset Boulevard Hole and Subset Bodreverd Base 392 0 416 0 0 0 0 902 159 288 1414 0 3570 Added 71 0 25 0 0 0 0 10 73 27 10 0 216 Total 463 0 441 0 0 0 0 912 232 315 1424 0 3786

Base 102 0 87 0 0 0 01046 914 Added 0 0 0 0 0 0 0 84 0

#6 Bellagio Way and Sunset Boulevard Base 274 101 32 58 6 143 350 899 86 16 1295 118 3376 Added 0 0 0 8 0 22 22 13 0 0 15 7 87 Total 274 101 32 66 6 165 372 912 86 16 1310 125 3463 #7 Westwood Bouevard and Sunset Boulevard Base 205 0 201 0 0 0 0 914 99 48 1266 Added 0 0 0 0 0 0 0 0 21 0 0 22 0 2732

Total 205 0 201 0 0 0 0 935 99 48 1288 #8 Stone Canyon Road and Sunset Boulevard Added 0 0 137 65 0 106 125 1274 130 166 1027

Added 0 0 3 0 0 0 0 21 0 1 22

Total 146 0 140 65 0 106 125 1295 130 167 1049 0 47 23 3245

#9 Hilgard Avenue/Copa De Oro Road and Sunset Boulevard Base 273 35 382 37 72 21 3 1202 126 166 915 Added 7 0 63 0 0 0 0 16 8 59 17 Total 280 35 445 37 72 21 3 1218 134 225 932 7 3239 0 170

UCLA NHIP and Amended LRDP Traffic Study
Los Angeles, CA
Future With Project, DM Deak

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future With Project- PM Peak

		orthbou											Total
Type	Left	Thru R	ight	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Volume
#19 Be	verly	Glen B	lvd a	and Wy	on Dr	/Comst	ock Av	re [5-	Leg In	tersec	tion-	Wyton	n Split
Base	26	763	15	29	481	12	20	33	27	48	69	129	1653
Added	0	60	0	0	29	0	0	0			0	0	89
Total	26	823	15	29	510		20	33	27	48	69	129	1742
		Avenue											
Base		589	33		564	41	205	243	158	28	54	49	2140
Added	0	70	0	0	67	0	0	0	0	0	0	0	137
Total	102	659	33	76	631	41	205	243	158	28	54	49	2277
#21 Hi		Avenue	and			enue							
Base			8		895	0		0		11	0	24	1664
Added		70	0		67	0		0	0	0	0	0	137
Total	0	729	8	67	962	0	0	0	0	11	0	24	1801
#22 Ga	yley A	Avenue											
Base	64		214		1089	37		133	13	210		165	2874
Added	0	7	6	0	3	0		40	0	4	63	0	123
#25 In	0	34	-72	-73	73	0	0 15	-73	73	-34	-34	-34	-140
Total	64	461	148	127	1165	37	15	100	73 86	180	344	131	2857
#23 We		d Boule											
Base	105		161			223		429	107	170		65	2694
Added	178	0	7	0	0	0		26	226	7	19	0	463
#25	0	0	0	0	0	0 223	0	-218	0	0	-102	0	-320
Total	283	345	168	108	470	223	94	237	333	177	333	65	2837
#24 Ti	vertor	n Drive	and	Le Cor	nte Av	renue							
Base	37	71	43	97	84	204	134	508	137	23	476	41	1854
Added	0				1	0	0	26	0	0		0	49
#25 In	0	0	0	0	0	0	0	-218	0	0	-102	0	-320
Total	37	74	43	97	85	204	134	316	137	23	393	41	1583
#25 Hi	lgard	Avenue	and	Le Cor	nte Av	renue							
Base	59	300	11	26	493	386	338	0	85	11	0	29	1739
Added	0	44	0	0	48	19	26	0	0	0	0	0	137
#25 In	0	0		0	0	0	0	0	0	102	0	0	320
Total	59	344	229	26	542	405	364	0	85	113	0	29	2196
#26 Ga	yley A	Avenue	and V	Weyburi	n Aver	nue							
Base	62	520	215	66	991	295	92	174	34	116	174	92	2832
Added	0	19	128	12	13	0	0	66	0	71	46	13	368
#25 In	0	0	72	146	0	0	0	0	0	34	34	34	320
Total	62	539	415	224	1004	295	92	240	34	221	254	139	3520

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future With Project- PM Peak

Volume	No	rthbo	und	Sc	outhbo	und	Ea	astbou	and	We	estboi	ınd	Total
													Volume
-21-									3			3	
#27 We:	atwood	l Poul	avard	and We	arhurr	λτισηιι	_						
Page	1 5 2	670	116	42	600	105	02	1 5 1	1//	101	220	EΛ	2552
Base	T22	0/0	110	42	099	105	0.5	151	144	101	230	50	2553
Added	20	T82	175	0	232	U	0	43	16	151	46	Ü	868
#25 In	0	0	0	0	0	0	0	218	0	0	102	0	320
Total	173	863	291	42	931	105	83	412	160	252	378	50	2553 868 320 3741
#28 Ti	vertor	ı Drvi	e and	Weybu	cn Ave	nue							
Base	23	64	47	104	0	170	70	177	1	1	100	33	791
Added	0	0	0	0	0	1	3	79	0	0	89	0	172
#25 Tn	0	0	0	0	0	0	0	218	0	0	102	0	320
Total	23	64	47	104	0	171	73	474	1	1	201	3.3	791 172 320 1283
IOCAI	23	0-1	1/	104	0	1/1	13	1/1	_		201	33	1203
#29 Hi	laard	Arronii	o and	Morrhy	on Arro	muo							
#25 DI.	rgaru	Avenu	e and	weybul	III AVE	riue ra		104	175	1.4	20	0.1	1484
Base	21	360	22	21	201	5.5	58	104	1/5	14	38	21	1484
Added	U	3	0	0	2	47	41	38	0	U	4.3	Ü	174
#25 In	0	0	0	0	0	102	218	0	0	0	0	0	320
Base Added #25 In Total	51	363	22	27	563	202	317	142	175	14	81	21	1978
#30 We:	stwood	l Boul	evard	and K:	inross	Avenu	e						
Base	82	776	36	39	781	124	101	226	99	17	134	42	2456
Added	8.0	372	14	1	397	1	1	1	57	64	5	6	999
Total	162	1148	50	40	1178	125	102	227	99 57 156	81	139	42 6 48	3455
10041	102		50		11.0	120	102	22,	150	01	100		3133
#31 We	at wood	l Poul	avard	and I	indhro	ok Dri	170						
#31 Wei	1	7/7	100	20	0 5 6	16	22	127	E 7	0.2	254	44	2447
Base	Τ.	141	102	29	656	Τρ	32	13/	5/	93	254	0	2447
Base Added Total	0	466	100	0	518	1.0	0	- 4	57 0 57	-2	2	4.4	988
Total	1	1213	182	29	1374	16	32	141	57	91	256	44	3435
	_												
#32 Gle Base Added	endon/	Tiver	ton/L:	indbro	ok								
Base	32	131	193	38	130	161	33	235	19	415	270	56 0	1712
Added	0	3	1	0	14	0	0	4	0	-6	0	0	16
Total	32	134	194	38	144	161	33	239	19	409	270	56	1728
#33 Ser	oulved	la Bou	levaro	and (Consti	tution	Aveni	ıe					
Base	20	1091	2	4	865	105	558	2	80	11	5	5	2748
Added		31	0	n	3.4	100	0	0	0		0	0	65
Total	20	1122	2	4	000	105	E E O	2	0.0	11			2748 65 2813
IULAI	20	1122		-	033	103	336		80	11	5	5	2013
U24 C		t D			22.2.22-	B.	7						
#34 Sai	n vice	ente B	ouevai	ra ana	WILSE	ire Bo	ueivai	ra	0.1	1 2 0	1004	0.00	
Base	100	390	242	1119	337	49	11	1033	21	132	1804	827	
Added	10	50	5	123	47	6	13	214	23	7	216	131	
Total	110	440	247	1242	384	55	24	1247	21 23 44	139	2020	958	6910
#35 Sej	pulved	la Bou	levaro	d and V	√ilshi	re Bou	levar	f					
Base Added Total	129	583	272	113	457	137	147	1929	41	305	2395	177	6684
Added	6	12	50	13	12	10	8	779	7	53	1005	11	1966
Total	135	595	322	126	469	147	155	2708	48	358	3400	188	8650
-0041	100	3,5	222	-20	100		100	_, 50		330	2100		5550

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

UCLA NHIP and Amended LRDP Traffic Study
Los Angeles, CA
Future With Project- PM Peak

						ith Pro			eak 				
Volume		orthbo				ound		astbo			estbo		Total
Type	Left	Thru I	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Volume
#36 Ve						oulevar							
Base		677	147		1073	1604		2176			2542		
Added	4	12	24	18	20	171	79	759			894	8	201
Total	237	689	171	100	1093	1775	501	2935	52	64	3436	38	11092
						levard							
Base	223		107			679		1932			1723	85	614
Added	0	0	0	41				564		0		31	179
Total	223	305	107	178	472	948	586	2496	97	40	2376	116	794
						re Boul							
Base		499	187			248		1769			1611	108	602
Added	20	161	44	80		268	212			49		93	187
Total	178	660	231	252	799	516	431	2132	271	221	2001	201	789
						ouelvar		0014	20	1.0	1.555	0.5	460
Base	60	215	48	137		114		2014			1557		469
Added	1		0	14		-6		486		0		3	
Total	61	215	48	151	285	108	124	2500	39	19	2094	88	573
#40 Ma Base	lcolm 3		e and 42	Wilsh:		ulevar 53		2083	60	17	1670	33	400
Added	6	_	0			0	0				534	43	110
Total	9		42					2568			2204	76	510
IOLAI	9	1	42	40	1	53	21	2500	04	1/	2204	76	510
#41 We: Base	sthol: 46	ne Avei 78	nue ai 57			Boulev 12		1974	66		1644	126	442
	40 5	78	3	96	228	0	0			3		126	108
Added Total	51	78	60	98		12		2469			2216	126	550
IOLAI	21	70	60	96	220	12	39	2469	00	56	2210	120	550.
#42 Wa: Base	rner 38	Avenue 24	and 1	Wilshi: 89	re Bou 68	ılevard 44		2059	28	11	1812	51	429
Added	0	0	0	0		0	0			0		0	105
Total	38	24	34		68	44		2546	28		2384	51	535
#43 Be	verlv	Glen 1	Boule	vard a	nd Wil	lshire	Boule	vard					
Base	163		57	57		56		1768	274	106	1678	49	522
Added	15	5	53	37		8	9		-9	22		46	119
Total	178		110	94		64	-	2248			2223	95	641
#44 Sa	wtell	e Boule	evard	and O	hio Av	renue							
Base	59	93	98	78	459	126	56	458	33	99	550	53	216
Added	1	0	2	0	0	0	0		1	4	29	0	6
Total	60	93	100	78	459	126	56	482	34	103	579	53	222
				-		-							

Page 4-6

Future With Project PM PeakTue Jul 22, 2008 18:09:46

Page 4-7

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future With Project- PM Peak

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

Total 115 1117 112 213 1635 161 199 1534 141 215 1608 248 7297

				Futi		s Ange th Pro			eak	_			
Volume	No	orthbo	ound	So	outhbo	ound	Ea	astbo	und	We	estbo	und	Total
Type	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Volume
#54 Mu	lholla	and Di	rive ar	nd Rose	comare	Road							
Base	302	0	152	0	0	0	0	337	107	47	623	0	1569
Added	29	0	0	0	0	0	0	0	30	0	1	0	60
Total	331	0	152	0	0	0	0	337	137	47	624	0	1629
#55 Ros	scoma	re Roa	ad and	Strade	ella F	Road/Li	nda F	lora 1	Drive				
Base	23	410	6	39	61	13	15	0	11	6	1	62	646
Added	0	29	0	0	30	0	0	0	0	0	0	0	59
Total	23	439	6	39	91	13	15	0	11	6	1	62	705
#56 Be	llagio	Road	d and C	Chalon	Road								
Base	70	533	0	0	103	25	12	0	13	0	0	0	756
Added	0	29	0	0	30	0	0	0	0	0	0	0	59
Total	70	562	0	0	133	25	12	0	13	0	0	0	815
#57 Be	verlv	Glen	Boulev	ard ar	nd Mul	hollan	d Driv	<i>r</i> e					
Base	42	811	85	216	377	38	54	204	39	47	562	739	3213
Added	1	39	1	0	40	0	0	0	0	0	0	0	81
Total	43	850	86	216	417	38	54	204	39	47	562	739	3294
#58 Be	verlv	Glen	Boulev	ard ar	nd Gre	endale	Drive	2					
Base		1138	9	65	434	0	0	0	0	46	0	231	1924
Added	0	39	0	0	40	0	0	0	0	4	0	1	84
Total	0	1177	9	65	474	0	0	0	0	50	0	232	2008

UCLA NHIP and Amended LRDP Traffic Study

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA

Future With Project- PM Peak

Impact Analysis Report Level Of Service

Intersection	Base Del/ V/ LOS Veh C	Future Del/ V/	Change in
# 1 Sepulveda Boulevard and Church	D xxxxx 0.814	D xxxxx 0.859	+ 0.045 V/C
# 2 Church Lane and San Diego Fwy	B xxxxx 0.697	C xxxxx 0.743	+ 0.046 V/C
# 3 Church Lane and Sunset Bouleva	D xxxxx 0.866	D xxxxx 0.884	+ 0.019 V/C
# 4 San Diego Fwy NB On/Off Ramps	A xxxxx 0.438	A xxxxx 0.468	+ 0.029 V/C
# 5 Veteran Avenue and Sunset Boul	D xxxxx 0.849	E xxxxx 0.947	+ 0.098 V/C
# 6 Bellagio Way and Sunset Boulev	F xxxxx 1.018	F xxxxx 1.058	+ 0.040 V/C
# 7 Westwood Bouevard and Sunset B	A xxxxx 0.585	A xxxxx 0.593	+ 0.008 V/C
# 8 Stone Canyon Road and Sunset B	D xxxxx 0.816	D xxxxx 0.826	+ 0.009 V/C
# 9 Hilgard Avenue/Copa De Oro Roa	D xxxxx 0.881	E xxxxx 0.952	+ 0.070 V/C
$\ensuremath{\text{\#}}$ 10 Beverly Glen Boulevard and Sun	F xxxxx 1.126	F xxxxx 1.176	+ 0.050 V/C
$\ensuremath{\text{\#}}$ 11 Beverly Glen Boulevard and Sun	F xxxxx 1.238	F xxxxx 1.316	+ 0.078 V/C
# 12 Sepulveda Boulevard and San Di	В ххххх 0.636	B xxxxx 0.660	+ 0.024 V/C
$\ensuremath{\text{\#}}$ 13 Sepulveda Boulevard and Montan	C xxxxx 0.789	D xxxxx 0.806	+ 0.017 V/C
# 14 Levering Avenue and Montana Av	F 66.6 0.000	F 96.7 0.000	+30.114 D/V
# 15 Veteran Avenue and Montana Ave	F xxxxx 1.001	F xxxxx 1.068	+ 0.067 V/C
# 16 Galey Avenue and Strathmore Pl	в ххххх 0.686	B xxxxx 0.691	+ 0.005 V/C
$\mbox{\tt\#}$ 17 Veteran Avenue and Levering Av	B xxxxx 0.699	D xxxxx 0.825	+ 0.125 V/C
# 18 Hilgard Avenue and Wyton Drive	A xxxxx 0.494	A xxxxx 0.518	+ 0.023 V/C
# 19 Beverly Glen Blvd and Wyton Dr	C xxxxx 0.706	C xxxxx 0.746	+ 0.040 V/C
$\mbox{\tt\#}$ 20 Hilgard Avenue and Westholme A	A xxxxx 0.494	A xxxxx 0.516	+ 0.022 V/C
# 21 Hilgard Avenue and Manning Ave	A xxxxx 0.338	A xxxxx 0.362	+ 0.024 V/C
# 22 Gayley Avenue and Le Conte Ave	B xxxxx 0.655	B xxxxx 0.682	+ 0.027 V/C
# 23 Westwood Boulevard and Le Cont	C xxxxx 0.796	E xxxxx 0.962	+ 0.166 V/C

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future With Project- PM Peak

Future With Project PM PeakTue Jul 22, 2008 18:09:51

Intersection	Base Del/ V/ LOS Veh C	Future Del/ V/ LOS Veh C	Change in
# 24 Tiverton Drive and Le Conte Av	A xxxxx 0.572	A xxxxx 0.519	-0.053 V/C
# 25 Hilgard Avenue and Le Conte Av	A xxxxx 0.539	B xxxxx 0.640	+ 0.101 V/C
# 26 Gayley Avenue and Weyburn Aven	C xxxxx 0.709	C xxxxx 0.792	+ 0.082 V/C
# 27 Westwood Boulevard and Weyburn	E xxxxx 0.976	F xxxxx 1.349	+ 0.372 V/C
# 28 Tiverton Drvie and Weyburn Ave	B 10.2 0.382	C 24.8 0.897	+ 0.515 V/C
# 29 Hilgard Avenue and Weyburn Ave	B xxxxx 0.676	C xxxxx 0.735	+ 0.058 V/C
# 30 Westwood Boulevard and Kinross	E xxxxx 0.971	F xxxxx 1.343	+ 0.372 V/C
# 31 Westwood Boulevard and Lindbro	A xxxxx 0.562	C xxxxx 0.770	+ 0.208 V/C
# 32 Glendon/Tiverton/Lindbrook	B xxxxx 0.609	B xxxxx 0.608	-0.001 V/C
# 33 Sepulveda Boulevard and Consti	D xxxxx 0.800	D xxxxx 0.811	+ 0.010 V/C
# 34 San Vicente Bouevard and Wilsh	D xxxxx 0.879	E xxxxx 0.965	+ 0.086 V/C
# 35 Sepulveda Boulevard and Wilshi	F xxxxx 1.164	F xxxxx 1.426	+ 0.261 V/C
# 36 Veteran Avenue and Wilshire Bo	F xxxxx 1.646	F xxxxx 1.948	+ 0.303 V/C
# 37 Gayley Avenue and Wilshire Bou	F xxxxx 1.253	F xxxxx 1.535	+ 0.282 V/C
# 38 Westwood Boulevard and Wilshir	E xxxxx 0.970	F xxxxx 1.296	+ 0.327 V/C
# 39 Glendon Avenue and Wilshire Bo	E xxxxx 0.910	F xxxxx 1.038	+ 0.128 V/C
# 40 Malcolm Avenue and Wilshire Bo	F 579.4 0.000	F OVRFL 0.000	+ 1.8E+0308
# 41 Westholme Avenue and Wilshire	C xxxxx 0.769	D xxxxx 0.890	+ 0.121 V/C
# 42 Warner Avenue and Wilshire Bou	B xxxxx 0.601	C xxxxx 0.715	+ 0.114 V/C
# 43 Beverly Glen Boulevard and Wil	C xxxxx 0.766	E xxxxx 0.918	+ 0.152 V/C
# 44 Sawtelle Boulevard and Ohio Av	E xxxxx 0.920	E xxxxx 0.940	+ 0.020 V/C
# 45 Sepulveda Boulevard and Ohio A	D xxxxx 0.892	E xxxxx 0.938	+ 0.046 V/C
# 46 Veteran Avenue and Ohio Avenue	D xxxxx 0.882	E xxxxx 0.925	+ 0.043 V/C
# 47 Westwood Boulevard and Ohio Av	C xxxxx 0.769	D xxxxx 0.869	+ 0.100 V/C
# 48 Sawtelle Boulevard and Santa M	F xxxxx 1.527	F xxxxx 1.611	+ 0.084 V/C
Traffix 7.8.0115 (c) 2007 Dowling	Assoc. Licensed	to MMA, LONG BE	ACH, CA

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA

Future With Project- PM Peak

I	nte:	rsection		Future Del/ V/ LOS Veh C	
#	49	San Diego Fwy SB Ramps and San	F xxxxx 1.083	F xxxxx 1.124	+ 0.041 V/C
#	50	San Diego Fwy NB Ramps and San	F xxxxx 1.061	F xxxxx 1.140	+ 0.079 V/C
#	51	Sepulveda Boulevard and Santa	F xxxxx 1.411	F xxxxx 1.471	+ 0.061 V/C
#	52	Veteran Avenue and Santa Monic	E xxxxx 0.992	F xxxxx 1.079	+ 0.087 V/C
#	53	Westwood Boulevard and Santa ${\tt M}$	F xxxxx 1.044	F xxxxx 1.148	+ 0.104 V/C
#	54	Mulholland Drive and Roscomare	C xxxxx 0.756	C xxxxx 0.777	+ 0.021 V/C
#	55	Roscomare Road and Stradella R	в 10.6 0.525	B 11.2 0.564	+ 0.039 V/C
#	56	Bellagio Road and Chalon Road	B 14.2 0.691	C 15.4 0.732	+ 0.040 V/C
#	57	Beverly Glen Boulevard and Mul	F xxxxx 1.041	F xxxxx 1.083	+ 0.042 V/C
#	58	Beverly Glen Boulevard and Gre	F xxxxx 1.046	F xxxxx 1.076	+ 0.031 V/C

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

Los Angeles, CA Future With Project- PM Peak									
**************************************	Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) ************************************								
Cycle (sec): Loss Time (sec): Optimal Cycle:	al Vol./Cap e Delay (se Of Service:	c/veh)	0.8 : xxxx	59 XX D					
**************************************						Ovada Place West Bo L - T	und R		
Control: Rights: Min. Green: 0	Permitted Include 0 0 1 2 0 1	Permit Inclu 0 0 0 1 0	ted de	Split Ph Inclu 0 0 1 0 1!	ase de 0	Split Ph Inclu 0 0 1 0 0	ase de 0		
Volume Module: >> Base Vol: 4 Growth Adj: 1.05 Initial Bse: 4 Added Vol: 0 PasserByVol: 1.00 PHF Adj: 1.00 PHF Adj: 1.00 PHF Volume: 4 Reduct Vol: Reduct Vol: Reducd Vol: 4 FOE Adj: 6.00 MLF Adj: 1.00 FinalVolume: 25 Saturation Flow M	Count Date: 1621 226 1.05 1.05 1702 237 136 0 0 0 0 1838 237 1.00 1.00 1.00 1.00 1838 237 1.00 1.00 1.01 1.00 1.01 1.00 1.01 1.00 1.01 1.00 1.01 1.00 1.01 1.00 1.01 1.00 1.01 1.00 1.01 1.00 1.01 1.00 1.01 1.00 1.01 1.00 1.01 1.00 1.01 1.00 1.01 1.00 1.01 1.00 1.01 1.00 1.01 1.00 1.01 1.01	14 Feb 200 3 879 1.05 1.05 3 923 0 59 0 0 3 982 1.00 1.00 1.00 1.00 3 982 6.00 1.00 1.00 1.00 1.00 1.00	365 1.05 383 50 0 433 1.00 1.00 433 1.00 433 1.00 433	45-545 558 102 1.05 1.05 586 107 17 0 0 00 603 107 1.00 1.00 1.00 1.00 603 107 0 0 603 107 1.00 1.00 603 107 1.00 1.00 663 107 1.00 1.00 663 107	18 1.05 19 0 0 19 1.00 1.00 19 1.00 1.00 1.00	65 96 1.05 1.05 68 101 0 0 0 68 101 1.00 1.00 1.00 1.00 68 101 1.00 1.00 68 101 1.00 1.00 1.00 1.00 68 101 1.00 1.00 68 101 1.00 1.00 68 101	1.05 7 0 0 7 1.00 1.00 7 1.00 1.00 7		
Adjustment: 1.00 Lanes: 0.04	2.96 1.00 4215 1425	1425 1425 1.00 1.00 0.01 1.39 6 1983	1425 1.00 0.60 861	1425 1425 1.00 1.00 1.68 0.27 2395 387	1425 1.00 0.05 68	1425 1425 1.00 1.00 1.00 0.93 1425 1328	1425 1.00 0.07 97		
Capacity Analysis Vol/Sat: 0.07	Module: 0.44 0.17	0.49 0.50	0.50	'	0.28	0.05 0.08	0.08		

UCLA NHIP and Amended LRDP Traffic Study

Future With Project PM PeakTue Jul 22, 2008 18:09:51

Crit Volume: 4 717 395 108 Crit Moves: **** **** **** ****

T. - T - R

Future With Project- PM Peak

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) ************************* Intersection #2 Church Lane and San Diego Fwy SB On/Off Ramp ********************* 0 (Y+R=4.0 sec) Average Delay (sec/veh): xxxxxx Loss Time (sec): Optimal Cycle: 72 Level Of Service: Street Name: Church Lane San Diego Fwy SB On/Off Ramps Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R

-----|-----|------|

Control: Permitted Permitted Split Phase Split Phase

Rights:		Ignor	e		Incl	ıde		Incl	ıde		Inclu	ıde
Min. Green:						0			0		0	0
Lanes:		1 1				1 0		1!		1 0		
Volume Module						08 << 5						
Base Vol:		636	249		456	0			9		1	
Growth Adj:	1.05	1.05	1.05	1.05	1.05				1.05	1.05	1.05	1.05
Initial Bse:	6	668	261	101	479		5		9	945	1	27
Added Vol:				20	30				0	68	0	0
PasserByVol:	0	0	0	0	0	0	0		0	0	0	0
Initial Fut:			261	121	509	0	5	3	9	1013	1	27
User Adj:	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Volume:				121	509	0	5	3	9	1013	1	27
Reduct Vol:	0	0	0	0	0	0	0		0	0	0	0
Reduced Vol:	6	685	0	121	509	0	5	3	9	1013	1	27
PCE Adj:	2.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MLF Adj:	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.10	1.00	1.00
FinalVolume:	13		0						9	1114		27
Saturation F	low M	odule:										
Sat/Lane:	1425	1425	1425	1425	1425	1425	1425	1425	1425	1425	1425	1425
Adjustment:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Lanes:	0.04	1.96	2.00	1.00	2.00	0.00	0.29	0.18	0.53	1.95	0.01	0.04
Final Sat.:	52	2798	2850	1425	2850	0	419	251	754	2779	3	68
Capacity Ana	İysis	Modul	.e:									
Vol/Sat:	0.12	0.24	0.00	0.08	0.18	0.00	0.01	0.01	0.01	0.40	0.40	0.40
Crit Volume:		349		121					18	571		
Crit Moves:		****		****					****	****		

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future With Project- PM Peak Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) ************************ Intersection #3 Church Lane and Sunset Boulevard ************************* Cycle (sec): 100 Critical Vol./Cap.(X): 0.884 Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/veh): xxxxxx Optimal Cycle: 161 Level Of Service: Street Name: Church Lane Sunset Boulevard Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R -----|-----|------| Control: Split Phase Split Phase Protected Permitted Rights: Include Out To 2
 Rights:
 Include
 Ovl
 Include
 Ovl

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 Lanes: 1 0 1 1 0 1 1 0 0 2 2 0 3 1 0 1 0 2 0 1 Volume Module: >> Count Date: 19 Feb 2008 << 500-600 Base Vol: 126 39 77 532 92 717 407 1219 33 28 861 422 Initial Bse: 132 41 81 559 97 753 427 1280 35 29 904 443 Added Vol: 0 0 0 78 0 20 17 6 0 0 13 0 PasserByVol: 0 0 0 0 0 0 0 0 0 0 0 0 Initial Fut: 132 41 81 637 97 773 444 1286 35 29 917 443 PHF Volume: 132 41 81 637 97 773 444 1286 35 29 917 443 FinalVolume: 132 41 81 700 97 850 489 1286 35 29 917 443 -----|-----||-------| Saturation Flow Module: Lanes: 1.00 1.00 1.00 1.76 0.24 2.00 2.00 3.90 0.10 1.00 2.00 1.00 Final Sat.: 1425 1425 1425 2505 345 2850 2850 5550 150 1425 2850 1425 -----|

Future With Project PM PeakTue Jul 22, 2008 18:09:51

Vol/Sat: 0.09 0.03 0.06 0.28 0.28 0.30 0.17 0.23 0.23 0.02 0.32 0.31

Crit Volume: 132 425 244 459
Crit Moves: **** **** ****

Capacity Analysis Module:

Crit Moves: ****

Charact Manage Can Disage From MD On 1055 Danner

Capacity Analysis Module:

Crit Moves: ****

xxxxxx

Level Of Service Computation Report Circular 212 Dlanning Method (Future Volume Alternative)

CIICUIAI	. ZIZ PIAHHING	Method (Future volume Alte.	Illative)
******	*********	*******	*******
Intersection #4 Sar	n Diego Fwy NB	On/Off Ramps and Sunset Bo	ulevard
******	*********	*******	*******
Crale (sea):	100	Critical Val /Can /	v). 0 460

Cycle (sec): 100 Critical Vol./Cap.(X): 0.468 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): XXXXXX Optimal Cycle: 35 Level Of Service:

Street Name:	San	Diego	Fwy N	B On/(Off Ra	amps		St	unset E	Bouleva	ard	
Approach:	No	rth Bo	und	Sot	ıth Bo	ound	E	ast B	ound	We	est Bo	ound
Movement:	L ·	- T	- R	L -	- T	- R	L	- T	- R	L ·	- T	- R
Control:	Sp	lit Ph	ase	Sp	lit Ph	nase		Permi	tted	. 1	Permit	ted
Rights:		Inclu	de		Inclu	ıde		Ovl			Ignor	re
Min. Green:	0	0	0	0	0	0	0	0	0	0	0	0
Lanes:	1 (0 0	0 1	0 (0 0	0 0	0	0 2	0 2	0 (3	0 1
Volume Module	: >>	Count	Date:	14 Fe	eb 200)8 << 5	00-60	0				
Base Vol:	97	0	83	0	0	0	0	996	870	0	1220	0
Growth Adj:	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05
Initial Bse:	102	0	87	0	0	0	0	1046	914	0	1281	0
Added Vol:	0	0	0	0	0	0	0	84	0	0	81	0
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	0
Initial Fut:	102	0	87	0	0	0	0	1130	914	0	1362	0
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00
PHF Volume:	102	0	87	0	0	0	0	1130	914	0	1362	0
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:	102	0	87	0	0	0	0	1130	914	0	1362	0
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.10	1.00	1.00	0.00
FinalVolume:	102	0	87	0	0	0	0	1130	1005	0	1362	0
Saturation Fl	low Mo	odule:										
Sat/Lane:	1425	1425	1425	1425	1425	1425	1425	1425	1425	1425	1425	1425
Adjustment:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Lanes:	1.00	0.00	1.00	0.00	0.00	0.00	0.00	2.00	2.00	0.00	3.00	1.00
Final Sat.:	1425	0	1425	. 0	0	0	0	2850	2850	0	4275	1425

-----|

Vol/Sat: 0.07 0.00 0.06 0.00 0.00 0.00 0.40 0.35 0.00 0.32 0.00

Crit Volume: 102 0 565 0

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

Optimal Cycle: 180 Level Of Service: Street Name: Veteran Avenue Sunset Boulevard Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - F L - T - R Control: Split Phase Split Phase Permitted Prot+Permit
 Rights:
 Ovl
 Include
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 Lanes: 1 0 0 0 1 0 0 0 0 0 0 1 1 0 1 0 2 0 0 Volume Module: >> Count Date: 19 Feb 2008 << 500-600 Initial Bse: 392 0 416 0 0 0 0 902 159 288 1414 0 Ω Ω PHF Volume: 463 0 441 0 0 0 0 912 232 315 1424 0 FinalVolume: 463 0 441 0 0 0 0 912 232 315 1424 0 -----|-----|------| Saturation Flow Module: Lanes: 1.00 0.00 1.00 0.00 0.00 0.00 1.60 0.40 1.00 2.00 0.00

Final Sat.: 1425 0 1425 0 0 0 0 2273 577 1425 2850 0

Vol/Sat: 0.32 0.00 0.31 0.00 0.00 0.00 0.40 0.40 0.22 0.50 0.00

Crit Volume: 463 0 572 315

UCLA NHIP and Amended LRDP Traffic Study

Los Angeles, CA

Level Of Service Computation Report

************************ Cycle (sec): 100 Critical Vol./Cap.(X): 0.947

0 (Y+R=4.0 sec) Average Delay (sec/veh):

Future With Project- PM Peak

Circular 212 Planning Method (Future Volume Alternative) ************************

Future With Project PM PeakTue Jul 22, 2008 18:09:52

Intersection #5 Veteran Avenue and Sunset Boulevard

Loss Time (sec):

Capacity Analysis Module:

Crit Moves: ****

717

Future With Project- PM Peak

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative)

************************* Intersection #6 Bellagio Way and Sunset Boulevard ********************** Cycle (sec): 100 Critical Vol./Cap.(X): 1.058

Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/veh): xxxxxx

Optimal Cycle	e: *****	18	0	****	****	Level	Of Se:	rvice	: ******	*****	****	F ******
Street Name: Approach:												
Approach:	No	rth Bo	und	Soi	ith Bo	ound	E	ast B	ound	W	est B	ound
Movement:	L	- T	- R	L ·	- T	- R	L	- T	- R	L	- T	- R
Control:	Sp	lit Ph	ase '	Sp	lit Pl	nase	Pr	ot+Pe:	rmit		Permi	tted
Rights:		Inclu	de		Incl	ude		Incl	ude		Incl	ude
Min. Green:	0	0	0	0	0	0	0	0	0	0	0	0
Control: Rights: Min. Green: Lanes:	. 1	1 0	0 1	. 0	1 0	0 1	. 1	0 1	1 0	1	0 1	1 0
Volume Module	e: >>	Count	Date:	19 Fe	eb 201	08 << !	00-60	0	0.0		1000	110
Base Vol:					6				82			
Growth Adj:									1.05		1.05	
Initial Bse:	274	101	32	58	6	143	350	899	86	16	1295	118
Added Vol: PasserByVol:	0	U	0	8	0	22	22	13	0	0	15	7
Initial Fut:						165				16		
User Adj:						1.00		1.00			1.00	
PHF Adj:				1.00			1.00				1.00	
PHF Volume:						165	372				1310	
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:												
PCE Adj:									1.00			
MLF Adj:						1.00						
FinalVolume:						165						
Saturation F												
Sat/Lane:	1375	1375	1375	1375	1375	1375	1375	1375	1375	1375	1375	1375
Adjustment:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Lanes:				0.91	0.09	1.00	1.00	1.83	0.17	1.00	1.83	0.17
Final Sat.:						1375			237			239
Capacity Anal												
Vol/Sat:					0.05	0.12	0.27	0.36	0.36	0.01	0.52	0.52

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

**** ****

Crit Volume:

Crit Moves:

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) ************************ Intersection #7 Westwood Bouevard and Sunset Boulevard *********************** Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/veh): xxxxxx Optimal Cycle: 180 Level Of Service: Street Name: Westwood Boulevard Sunset Boulevard Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - F L - T - R Control: Split Phase Split Phase Permitted Protected Rights: Include Include Ov1 Include
Min. Green: 0 0 0 0 0 0 0 0 0 0 0 Lanes: 2 0 0 0 1 0 0 0 0 0 0 2 0 1 1 0 2 0 0 Volume Module: >> Count Date: 14 Feb 2008 << 500-600 Base Vol: 195 0 191 0 0 0 0 870 94 46 1206 0 Added Vol: 0 0 0 0 0 0 0 21 0 0 22 PasserByVol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 Initial Fut: 205 0 201 0 0 0 0 0 935 99 48 1288 Ω Ω PHF Volume: 205 0 201 0 0 0 0 935 99 48 1288 0 Ω Ω

FinalVolume: 225 0 201 0 0 0 935 99 48 1288 0 -----|----||------|

Final Sat.: 2850 0 1425 0 0 0 0 2850 1425 1425 2850 0 -----|-----|

Vol/Sat: 0.08 0.00 0.14 0.00 0.00 0.00 0.00 0.33 0.07 0.03 0.45 0.00 Crit Volume: 201 0 467 644 Crit Moves: ****

Saturation Flow Module:

Capacity Analysis Module:

UCLA NHIP and Amended LRDP Traffic Study

Los Angeles, CA

Future With Project- PM Peak

Future With Project PM PeakTue Jul 22, 2008 18:09:52

Los Angeles, CA Future With Project- PM Peak

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative)

***************** Intersection #8 Stone Canyon Road and Sunset Boulevard ******************* Cycle (sec): 100 Critical Vol./Cap.(X): 0.826 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): xxxxxx Optimal Cycle: 131 Level Of Service: D

Street Name:									unset E			
Approach:												
Movement:												
Control:	Sp.	lit Ph	nase	Sp.	lit P	nase	P:	rotect	ted		rotect	
Rights:		Incl	ıde		Ovl			Igno:	re 0		Incl	ıde
Min. Green:	0	0	0	0	0							0
Lanes:						0 0				. 1 (
Volume Module	e: >>	Count	: Date:	26 F	eb 20	08 << 4	100-50)				
Base Vol:			130	62		101		1213		158		
Growth Adj:	1.05	1.05	1.05	1.05	1.05	1.05		1.05		1.05	1.05	1.05
Initial Bse:			137	65		106	125	1274	130	166	1027	23
Added Vol:	0	0	3	0	0	0	0	21	0	1	22	0
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	0
Initial Fut:	146	0	140	65	0	106	125	1295	130	167	1049	23
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00
PHF Volume:	146	0	140	65	0	106	125	1295	0	167	1049	23
Reduct Vol:	0	0	0	0							0	0
Reduced Vol:	146	0	140	65	0	106	125	1295	0	167	1049	23
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00
MLF Adj:	1.10	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00
FinalVolume:	161	0	140	65	0	106	125	1295	0	167	1049	23
Saturation Fl	Low Mo	odule	: '									
Sat/Lane:	1375	1375	1375	1375	1375			1375		1375	1375	1375
Adjustment:	1.00	1.00	1.00	1.00	1.00	1.00		1.00		1.00	1.00	1.00
Lanes:	1.07	xxxx	0.93	0.38	0.00	0.62	1.00	2.00	1.00	1.00	1.96	0.04
Final Sat.:						852		2750				59
Capacity Anal												
Vol/Sat:					0.00	0.12	0.09			0.12	0.39	0.39
Crit Volume:			150	171				647		167		
Crit Moves:			****	****				****		****		

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA

Future With Project- PM Peak

Future With Project PM PeakTue Jul 22, 2008 18:09:52

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) ************************* Intersection #9 Hilgard Avenue/Copa De Oro Road and Sunset Boulevard ***********************

Cycle (sec): 100 Critical Vol./Cap.(X): 0.952 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): xxxxxx 180 Optimal Cycle: Level Of Service: E

**********							OI Se					.
Street Name: Approach: Movement:	Hilg No: L	ard Av rth Bo - T	renue/C ound - R	opa De Soi L	e Oro uth Bo	Road ound - R	E:	Si ast Bo - T	unset I ound - R	Bouleva We L -	ard est Bo - T	ound - R
Control:												
Rights:												
Min. Green:	0	0	0	0	0	0	0	0	0	0	0	0
Lanes:												
Volume Module	ו e: >>	Count	Date:	19 F	eb 200	18 << 4	115-51	5		1 1		'
Base Vol:	260	33	364	35					120	158	871	7
Growth Adj:									1.05			
Initial Bse:									126			
Added Vol:										59		0
PasserByVol:									0			
Initial Fut:									134			
User Adi:											1.00	
PHF Adj:											1.00	
PHF Volume:	280	35	445	37	72	21			134			
Reduct Vol:									0			
Reduced Vol:	280	35	445	37	72	21						
PCE Adi:										1.00		
MLF Adj:										1.00		
FinalVolume:									134			
Saturation F				1			1 1			1 1		
Sat/Lane:				1375	1375	1375	1375	1375	1375	1375	1375	1375
Adjustment:										1.00		
Lanes:											1.98	
Final Sat.:												22
Capacity Ana							1					
				0 09	0 09	0 09	0 00	0 49	0.49	0 16	0 34	0 34
Crit Volume:		5.20	5.20	0.05	3.03						J.J4	0.51
Crit Moves:						****			676 ***	****		
CIIC MOVED												

West Bound

Approach: North Bound South Bound East Bound

Future With Project- PM Peak

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) ************************

Intersection #10 Beverly Glen Boulevard and Sunset Boulevard ************************ Cycle (sec): 100 Critical Vol./Cap.(X): 1.176 Loss Time (sec): xxxxxx

0 (Y+R=4.0 sec) Average Delay (sec/veh): Optimal Cycle: 180 Level Of Service: Street Name: Beverly Glen Boulevard Sunset Boulevard

Control: Split Phase Split Phase Permitted Prot+Permit Rights: Ignore Include Include Include Include Min. Green: 0
Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Lanes: 1 0 1 0 1 0 1 0 0 1! 0 0 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 1 1 1 1 1 0 1
Volume Module: >> Count Date: 19 Feb 2008 << 500-600 Base Vol: 222 167 581 104 68 19 16 1286 60 389 960 79 Growth Adj: 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05
Volume Module: >> Count Date: 19 Feb 2008 << 500-600 Base Vol: 222 167 581 104 68 19 16 1266 60 389 960 79 Growth Adj: 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05
Base Vol: 222 167 581 104 68 19 16 1286 60 389 960 79 Growth Adj: 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05
Growth Adj: 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05
Initial Bse: 233 175 610 109 71 20 17 1350 63 408 1008 83 Added Vol: 0 0 60 0 0 0 0 79 0 29 76 0 PasserByVol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
Added Vol: 0 0 60 0 0 0 0 79 0 29 76 0 PasserByVol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
PasserByVol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Initial Fut: 233 175 670 109 71 20 17 1429 63 437 1084 83
User Adj: 1.00 1.00 0.00 1.00 1.00 1.00 1.00 1.0
PHF Adj: 1.00 1.00 0.00 1.00 1.00 1.00 1.00 1.0
PHF Volume: 233 175 0 109 71 20 17 1429 63 437 1084 83
Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0
Reduced Vol: 233 175 0 109 71 20 17 1429 63 437 1084 83
PCE Adj: 1.00 1.00 0.00 1.00 1.00 1.00 1.00 1.0
MLF Adj: 1.00 1.00 0.00 1.00 1.00 1.00 1.00 1.0
FinalVolume: 233 175 0 109 71 20 17 1429 63 437 1084 83
Saturation Flow Module:
Sat/Lane: 1375 1375 1375 1375 1375 1375 1375 1375
Adjustment: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
Lanes: 1.00 1.00 1.00 0.54 0.36 0.10 1.00 1.92 0.08 1.00 1.86 0.14
Final Sat.: 1375 1375 1375 749 490 137 1375 2634 116 1375 2555 195

Vol/Sat: 0.17 0.13 0.00 0.15 0.15 0.15 0.01 0.54 0.54 0.32 0.42 0.42

Crit Volume: 233 201 746 437

Capacity Analysis Module:

Crit Moves: ****

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) ************************ Intersection #11 Beverly Glen Boulevard and Sunset Boulevard (East I/S) ***************** Cycle (sec): 100 Critical Vol./Cap.(X): 1.316 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): xxxxxx Optimal Cycle: 180 Level Of Service: Street Name: Beverly Glen Boulevard Sunset Boulevard (East I/S) Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - F L - T - R Control: Split Phase Split Phase Prot+Permit Permitted
 Rights:
 Include
 Include
 Include
 Include
 Ignore

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0< Lanes: 0 0 0 0 0 0 1 0 1 0 1 0 2 0 0 0 2 0 1 Volume Module: >> Count Date: 19 Feb 2008 << 415-515 Base Vol: 0 0 0 115 0 364 862 1226 0 0 908 126 Initial Bse: 0 0 0 121 0 382 905 1287 0 0 953 132 Added Vol: 0 0 0 3 0 42 38 101 0 0 63 1 PasserByVol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 101itial Fut: 0 0 0 124 0 424 943 1388 0 0 1016 133 PHF Volume: 0 0 0 124 0 424 943 1388 0 0 1016 0 Ω FinalVolume: 0 0 0 124 0 424 943 1388 0 0 1016 0 -----|----|-----||------| Saturation Flow Module:

Lanes: 0.00 0.00 0.00 0.45 0.55 1.00 1.00 2.00 0.00 0.00 2.00 1.00

Final Sat.: 0 0 0 644 781 1425 1425 2850 0 0 2850 1425

Vol/Sat: 0.00 0.00 0.00 0.19 0.00 0.30 0.66 0.49 0.00 0.00 0.36 0.00

Crit Volume: 0 424 943 508

Capacity Analysis Module:

Crit Moves:

-----|----|-----|------|

UCLA NHIP and Amended LRDP Traffic Study

Los Angeles, CA

Future With Project- PM Peak

Future With Project PM PeakTue Jul 22, 2008 18:09:52

0 0 0

Future With Project- PM Peak

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) *************************

Intersection #12 Sepulveda Boulevard and San Diego Fwy NB Off-Ramp ***************** 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): xxxxxx

Optimal Cycle: 55 Level Of Service: Street Name: Sepulveda Boulevard San Diego Fwy NB Off-Ramp Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R T. - T - R Control: Permitted Permitted Split Phase Split Phase Rights: Include Include Include Include

 Rights:
 Include
 Include
 Include
 Include
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 Lanes: 0 0 2 0 0 0 0 2 0 0 1 0 1! 0 0 0 0 0 0 -----| Volume Module: >> Count Date: 13 Feb 2008 << 415-515 Base Vol: 0 1601 0 0 855 0 92 0 25 0 0 Initial Bse: 0 1681 0 0 898 0 97 0 26 0 0 0 Added Vol: 0 31 0 0 34 0 0 0 0 0 PasserByVol: 0 0 0 Ω Ω 0 Ω Ο Ω Ω Ω Ω Initial Fut: 0 1712 0 0 932 0 131 0 26 0 0 PHF Volume: 0 1712 0 0 932 0 131 0 26 0 0 0 Reduct Vol: 0 0 0 0 0 Reduced Vol: 0 1712 0 0 932 0 0 0 0 0 131 0 26 0 0 0 Ω MLF Adi: 1.00 1.00 1.00 1.00 1.00 1.00 1.10 1.00 1.00 1.00 1.00 1.00

-----||-----||-----| Saturation Flow Module: Lanes: 0.00 2.00 0.00 0.00 2.00 0.00 1.69 0.00 0.31 0.00 0.00 0.00 Final Sat.: 0 2850 0 0 2850 0 2410 0 440 0 0 -----||-----||-----|

FinalVolume: 0 1712 0 0 932 0 144 0 26

Capacity Analysis Module: Crit Moves: **** **** **** **** _______

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA. LONG BEACH. CA

Future With Project PM PeakTue Jul 22, 2008 18:09:52 UCLA NHIP and Amended LRDP Traffic Study

Los Angeles, CA Future With Project- PM Peak

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative)

Intersection #13 Sepulveda Boulevard and Montana Avenue ************************

0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): xxxxxx Optimal Cycle: 180 Level Of Service:

Street Name: Sepulveda Boulevard Montana Avenue Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R T. - T - R Control: Prot+Permit Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 1 0 2 0 1 1 0 1 1 0 0 0 1! 0 0 0 1 0 1 0 -----| Volume Module: >> Count Date: 13 Feb 2008 << 430-530 Base Vol: 127 1404 117 56 629 15 3 91 114 161 189 254 Initial Bse: 133 1474 123 59 660 16 3 96 120 169 198 267 Added Vol: 0 44 21 26 33 0 0 0 0 2 0 25 PasserByVol: 0 0 0 0 0 0 0 0 0 0 0 Initial Fut: 133 1518 144 85 693 16 3 96 120 171 198 292 PHF Volume: 133 1518 144 85 693 16 3 96 120 171 198 292

-----|----|-----|------| Saturation Flow Module: Lanes: 1.00 2.00 1.00 1.00 1.96 0.04 0.01 0.44 0.55 0.52 0.60 0.88 Final Sat.: 1425 2850 1425 1425 2787 63 21 623 781 737 855 1257 -----|----|-----|------|

FinalVolume: 133 1518 144 85 693 16 3 96 120 171 198 292

Capacity Analysis Module:

Vol/Sat: 0.09 0.53 0.10 0.06 0.25 0.25 0.15 0.15 0.15 0.23 0.23 Crit Volume: 759 355 218 171
Crit Moves: **** ****

Level Of Service Computation Report 2000 HCM Unsignalized Method (Future Volume Alternative) ******************* Intersection #14 Levering Avenue and Montana Avenue *********************** Average Delay (sec/veh): 21.9 Worst Case Level Of Service: F[96.7] ************************* Street Name: Levering Avenue Montana Avenue Approach: North Bound South Bound East Bound Movement: L - T - R L - T - REast Bound West Bound L - T - R L - T - R -----|-----|------| Stop Sign Stop Sign Uncontrolled Uncontrolled
Include Include Include Include Control: Rights: Lanes: 0 0 1! 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 Volume Module: >> Count Date: 7 Feb 2008 << 500-600 Base Vol: 253 0 8 0 0 0 0 322 106 1 506 0 Initial Bse: 266 0 8 0 0 0 0 338 111 1 531 0 0 0 47 0 0 0 Added Vol: 27 0 0 0 0 Ω PasserByVol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1nitial Fut: 293 0 8 0 0 0 0 338 158 1 531 0 Ω PHF Adj: PHF Volume: 293 0 8 0 0 0 0 338 158 1 531 0 Reduct Vol: 0 0 0 0 0 0 0 0 8 0 0 0 0 338 158 0 0 1 531 0 0 0 FinalVolume: 293 0 Critical Gap Module: FollowUpTim: 3.5 4.0 3.3 xxxxx xxxx xxxxx xxxxx xxxxx xxxxx 2.2 xxxx xxxxx Capacity Module: Potent Cap.: 291 262 640 xxxx xxxxx xxxxx xxxxx xxxxx xxxxx 1078 xxxx xxxxx Move Cap.: 291 262 640 xxxx xxxx xxxx xxxx xxxx xxxx 1078 xxxx xxxxx Level Of Service Module: Shared LOS: * F * * * * * * * * A * * ApproachDel: 96.7 xxxxxx xxxxxx xxxxxx xxxxxx xxxxxx

Note: Queue reported is the number of cars per lane.

F

ApproachLOS:

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA. LONG BEACH, CA

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future With Project- PM Peak

Future With Project PM PeakTue Jul 22, 2008 18:09:52

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) ************************ Intersection #15 Veteran Avenue and Montana Avenue/Galey Avenue ******************* Cycle (sec): 100 Critical Vol./Cap.(X): 1.068 Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/veh): xxxxxx Optimal Cycle: 180 Level Of Service: Street Name: Veteran Avenue Montana Avenue/Galey Avenue Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - F T. - T - R Control: Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 0 0 1! 0 0 0 0 1! 0 0 0 0 1! 0 0 0 0 1! 0 0 -----| Volume Module: >> Count Date: 13 Feb 2008 << 500-600 Base Vol: 54 452 26 58 294 49 115 158 52 22 419 284 Initial Bse: 57 475 27 61 309 51 121 166 55 23 440 298 Added Vol: 0 90 0 3 97 0 0 0 0 0 7 PasserBvVol: 0 0 0 0 0 0 0 0 0 0 PasserByVol: 0 0 Initial Fut: 57 565 27 64 406 51 121 166 55 23 440 305 PHF Volume: 57 565 27 64 406 51 121 166 55 23 440 305 FinalVolume: 57 565 27 64 406 51 121 166 55 23 440 305 -----|-----||-------| Saturation Flow Module: Lanes: 0.09 0.87 0.04 0.12 0.78 0.10 0.35 0.49 0.16 0.03 0.57 0.40 Final Sat.: 131 1306 63 184 1168 148 531 729 240 45 859 596 -----|----| Capacity Analysis Module: Vol/Sat: 0.43 0.43 0.43 0.35 0.35 0.35 0.23 0.23 0.23 0.51 0.51 Crit Volume: 649 64 121 768
Crit Woves: **** **** ****

Los Angeles, CA Future With Project- PM Peak

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative)

Street Name: Galey Avenue Strathmore Place Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R T. - T - R Control: Permitted Prot+Permit Permitted Permitted Rights: Include Include Include Ovl Min. Green: 0 0 0 0 0 0 0 0 0 0 0 Volume Module: >> Count Date: 19 Feb 2008 << 445-545 Base Vol: 22 363 171 121 156 13 8 102 18 319 152 336 Initial Bse: 23 381 180 127 164 14 8 107 19 335 160 353 Added Vol: PasserByVol: Initial Fut: 23 388 180 127 167 14 8 107 19 335 160 353 PHF Volume: 23 388 180 127 167 14 8 107 19 335 160 353 FinalVolume: 23 388 180 127 167 14 8 107 19 335 160 353 -----| Saturation Flow Module: Lanes: 1.00 1.00 1.00 1.00 1.85 0.15 0.06 0.80 0.14 1.00 1.00 1.00

Final Sat.: 1425 1425 1425 1425 2634 216 89 1136 200 1425 1425 1425

-----|----|----|

Vol/Sat: 0.02 0.27 0.13 0.09 0.06 0.06 0.09 0.09 0.09 0.24 0.11 0.25

Crit Volume: 388 127 134 335 Crit Moves: **** ****

Capacity Analysis Module:

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA

Future With Project- PM Peak

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative)

Intersection #17 Veteran Avenue and Levering Avenue

Future With Project PM PeakTue Jul 22, 2008 18:09:52

Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/veh): xxxxxx Optimal Cycle: 82 Level Of Service: D

Street Name: Veteran Avenue Levering Avenue Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R T. - T - R Control: Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 0 0 1! 0 0 0 0 1! 0 0 0 0 1 0 0 0 1! 0 0 -----| Volume Module: >> Count Date: 13 Feb 2008 << 500-600 Base Vol: 174 547 40 22 351 5 0 41 83 52 96 68 Initial Bse: 183 574 42 23 369 5 0 43 87 55 101 71 Added Vol: 14 47 15 41 56 0 0 31 16 16 13 42 PasserByVol: 0 0 0 0 0 0 0 0 0 0 0 Initial Fut: 197 621 57 64 425 5 0 74 103 71 114 113 PHF Volume: 197 621 57 64 425 5 0 74 103 71 114 113 FinalVolume: 197 621 57 64 425 5 0 74 103 71 114 113 -----|-----||-------| Saturation Flow Module: Lanes: 0.22 0.71 0.07 0.13 0.86 0.01 0.00 0.42 0.58 0.24 0.38 0.38 Final Sat.: 337 1065 98 195 1289 16 0 627 873 356 573 571

| Capacity Analysis Module: | Vol/Sat: 0.58 0.58 0.58 0.33 0.33 0.33 0.00 0.12 0.12 0.20 0.20 0.20 Crit Volume: | 875 64 0 298 Crit Moves: | **** **** **** ****

Los Angeles, CA Future With Project- PM Peak

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative)

Initial Bse: 123 654 45 35 393 24 53 116 336 21 27 13

0 Ω Initial Fut: 123 724 45 35 460 24 53 116 336 21 27 13 PHF Volume: 123 724 45 35 460 24 53 116 336 21 27 13 0 13 FinalVolume: 123 724 45 35 460 24 53 116 336 21 27 13 -----| Saturation Flow Module: Lanes: 1.00 1.88 0.12 1.00 2.00 1.00 1.00 1.00 0.34 0.45 0.21

Final Sat.: 1500 2824 176 1500 3000 1500 1500 1500 517 672 310

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

Future With Project PM PeakTue Jul 22, 2008 18:09:52

Los Angeles, CA Future With Project- PM Peak

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative)

Cycle (sec): 100 Critical Vol./Cap.(X): 0.746
Loss Time (sec): 0 (Y+R=15.0 sec) Average Delay (sec/veh): xxxxxx
Optimal Cycle: 57 Level Of Service: C

********	****											
Street Name: Approach: Movement:		Bever	ly Gle	n Bou	levar	f	Wy	ton D	rive/Co	mstoc	. Ave	nue
Approach:	No	rth Bo	ound	Sot	uth Bo	ound	E	ast Bo	ound	We	est Bo	ound
Movement:	L ·	- T	- R	L ·	- T	- R	L ·	- T	- R	L -	- T	- R
Control:	1	Permit	ted	1	Permit	tted	1	Permi	tted	1	ermi	tted
Rights: Min. Green:	0	0	0	0	0	0	0	0	0	0	0	0
Lanes:	1 (0 1	0 1	1 (0 1	0 1	0	0 1!	0 0	0 (1!	0 0
	1		1	1			11					
Volume Module	ė: >>	Count	Date:	12 Ma	ay 200	08 << 4	45-54	5				
Base Vol:	25	727	14	28	458	11	19	31	26			
Growth Adj:	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05
Initial Bse:	26	763	15	29	481	12	20	33	27	48	69	129
Initial Bse: Added Vol: PasserByVol: Initial Fut:	0	60	0	0	29	0	0	0	0	0	0	0
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	0
Initial Fut:	26	823	15	29	510	12	20	33	27	48	69	129
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Volume:	26	823	15	29	510	12	20	33	27	48	69	129
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:	26	823	15	29	510	12	20	33	27	48	69	129
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
FinalVolume:												
Saturation F												
Saturation r. Sat/Lane:					1500	1500	1 5 0 0	1 5 0 0	1500	1500	1500	1500
Adjustment:												
Adjustment.	1.00	1.00	1.00	1.00	1 00	1.00	0.00	0 41	0.24	0.00	0.00	0.50
Lanes: Final Sat.:	1500	1500	1500	1500	1500	1500	275	612	U.34	204	421	705
	1			1						1		
Capacity Ana							1		'	1		
Vol/Sat:	0.02	0.55	0.01	0.02	0.34	0.01	0.05	0.05	0.05	0.16	0.16	0.16
Crit Volume: Crit Moves:		823		29			20					247
Crit Moves:		****		****			****					***

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative)

************************* Intersection #20 Hilgard Avenue and Westholme Avenue ************************ 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): XXXXXX Optimal Cycle: 30 Level Of Service: Street Name: Hilgard Avenue Westholme Avenue Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R Control: Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 1 0 1 1 0 1 0 1 1 0 0 1 0 1 0 0 0 1! 0 0 Volume Module: >> Count Date: 30 Jan 2008 << 500-600 Base Vol: 97 561 31 72 537 39 195 231 150 27 51 47 Initial Bse: 102 589 33 76 564 41 205 243 158 28 54 49 Added Vol: 0 70 0 0 67 0 0 0 0 0 0 Ω PasserByVol: 0 0 Ο 0 0 Ω 0 0 Ω 0 Ω Ω Initial Fut: 102 659 33 76 631 41 205 243 158 28 54 49 PHF Volume: 102 659 33 76 631 41 205 243 158 28 54 49 0 40 FinalVolume: 102 659 33 76 631 41 205 243 158 28 54 49 -----| Saturation Flow Module: Lanes: 1.00 1.91 0.09 1.00 1.88 0.12 0.68 0.80 0.52 0.21 0.41 0.38 Final Sat.: 1500 2859 141 1500 2817 183 1016 1203 781 324 612 564 -----|----|-----|------| Capacity Analysis Module:

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA. LONG BEACH. CA

Crit Volume: 102 336 205 131
Crit Moves: **** **** ****

Crit Moves: ****

Los Angeles, CA Future With Project- PM Peak Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) ************************ Intersection #21 Hilgard Avenue and Manning Avenue ******************* Cycle (sec): 100 Critical Vol./Cap.(X): 0.362 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/v Optimal Cycle: 29 Level Of Service: xxxxxx Street Name: Hilgard Avenue Manning Avenue Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R T. - T - R Control: Permitted Permitted Split Phase Split Phase Rights: Include Include Include Include Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 0 0 1 1 0 1 0 2 0 0 0 0 0 0 0 0 1! 0 0 -----|----|-----|------| Volume Module: >> Count Date: 30 Jan 2008 << 445-545 Base Vol: 0 628 8 64 852 0 0 0 0 10 0 23 Initial Bse: 0 659 8 67 895 0 0 0 11 0 24 PHF Volume: 0 729 8 67 962 0 0 0 11 0 24 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 0 729 8 67 962 0 0 0 0 11 0 24 FinalVolume: 0 729 8 67 962 0 0 0 11 0 24 Saturation Flow Module: Lanes: 0.00 1.98 0.02 1.00 2.00 0.00 0.00 0.00 0.00 0.30 0.00 0.70 Final Sat.: 0 2818 32 1425 2850 0 0 0 432 0 993 -----|

UCLA NHIP and Amended LRDP Traffic Study

Future With Project PM PeakTue Jul 22, 2008 18:09:52

Vol/Sat: 0.00 0.26 0.26 0.05 0.34 0.00 0.00 0.00 0.00 0.02 0.00 0.02 Crit Volume: 0 481 0 35 Crit Moyes: **** ****

Capacity Analysis Module:

Saturation Flow Module:

Future With Project- PM Peak

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative)

************************* Intersection #22 Gayley Avenue and Le Conte Avenue ******************

0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): xxxxxx Optimal Cycle: 45 Level Of Service: В Street Name: Gayley Avenue Le Conte Avenue

Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R T. - T - R Control: Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Volume Module: >> Count Date: 30 Jan 2008 << 500-600 Base Vol: 61 400 204 190 1037 35 14 127 12 200 300 157 Initial Bse: 64 420 214 200 1089 37 15 133 13 210 315 165 Added Vol: 0 7 6 0 3 0 0 40 #25 Int: 0 34 -72 -73 73 0 0 -73 0 4 63 0 73 -34 -34 -34 Initial Fut: 64 461 148 127 1165 37 15 100 86 180 344 131 PHF Volume: 64 461 148 127 1165 37 15 100 86 180 344 131 FinalVolume: 64 461 148 127 1165 37 15 100 86 180 344 131 -----|-----|-----|

Final Sat.: 1500 2270 730 1500 2908 92 1500 809 691 1500 1500 1500 -----|----|-----|------| Capacity Analysis Module: Vol/Sat: 0.04 0.20 0.20 0.08 0.40 0.40 0.01 0.12 0.12 0.12 0.23 0.09

Tanes: 1.00 1.51 0.49 1.00 1.94 0.06 1.00 0.54 0.46 1.00 1.00 1.00

Crit Volume: 64 601 15 344
Crit Moves: **** **** **** Crit Moves: ****

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA. LONG BEACH. CA

Future With Project PM PeakTue Jul 22, 2008 18:09:52 UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA

Future With Project- PM Peak

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) *************************

Intersection #23 Westwood Boulevard and Le Conte Avenue

0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): xxxxxx Optimal Cycle: 180 Level Of Service:

Street Name: Westwood Boulevard Le Conte Avenue Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R T. - T - R Control: Permitted Permitted Permitted Prot+Permit Rights: Ovl Include Include Include
 Rights:
 Ovl
 Include
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

Volume Module: >> Count Date: 30 Jan 2008 << 500-600 Base Vol: 100 329 153 103 448 212 90 409 102 162 396 62 Initial Bse: 105 345 161 108 470 223 94 429 107 170 416 65 Added Vol: 178 0 7 0 0 0 0 26 226 7 19 #25: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Ω Ω Initial Fut: 283 345 168 108 470 223 94 237 333 177 333 65 PHF Volume: 283 345 168 108 470 223 94 237 333 177 333 65

FinalVolume: 283 345 168 108 470 223 94 237 333 177 333 65 -----|----|-----||------| Saturation Flow Module: Final Sat.: 1069 2138 1069 1069 2138 1069 1069 1069 1069 1069 1069 1069

-----| Capacity Analysis Module:

Vol/Sat: 0.26 0.16 0.16 0.10 0.22 0.21 0.09 0.22 0.31 0.17 0.31 0.06 Crit Volume: 283 235 333 177 Crit Moves: ****

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) ******************* Intersection #24 Tiverton Drive and Le Conte Avenue ************************ Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/veh): xxxxxx

Optimal Cycle:		30	-1.0 bcc/	Level	Of Service:	:	AAA	A
Street Name: Approach:	. 7	Civerto	n Drive		Le	e Conte A	venue	
Movement: L	- T	- R	_ L - T	- R	L - T	- R	L - T	- R
						-		
Control:	Permit	ted	Permi	tted	Permit	ted	Permit	ted
Rights: Min. Green:	Inclu	ıde	Incl	ıde	Incl	ıde	Ignoi	ce
					1 0 1			
						-		
Volume Module:								
Base Vol:			92 80		128 484			
Growth Adj: 1.							.05 1.05	
Initial Bse:					134 508			41
Added Vol:								0
#25 Int:								
Initial Fut:					134 316		23 393	41
User Adj: 1.			1.00 1.00	1.00	1.00 1.00	1.00 1	.00 1.00	0.00
PHF Adj: 1.			1.00 1.00	1.00	1.00 1.00	1.00 1	.00 1.00	
PHF Volume:			97 85	204	134 316			
Reduct Vol:	0 0							
Reduced Vol:					134 316			
PCE Adj: 1.					1.00 1.00	1.00 1	.00 1.00	0.00
MLF Adj: 1.	00 1.00	1.00	1.00 1.00				.00 1.00	
FinalVolume:								
						-		
Saturation Flow	Module:							
Sat/Lane: 15	00 1500						500 1500	
Adjustment: 1.	00 1.00		1.00 1.00		1.00 1.00		.00 1.00	
Lanes: 0.			0.53 0.47				.00 1.00	1.00
Final Sat.: 3							500 1500	
						-		
Capacity Analys	is Modul	le:						

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

Vol/Sat: 0.10 0.10 0.10 0.12 0.12 0.14 0.09 0.21 0.09 0.02 0.26 0.00

Crit Volume: 154 97 134 393
Crit Moves: **** **** ****

Future With Project- PM Peak Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) ************************ Intersection #25 Hilgard Avenue and Le Conte Avenue ************************ Cycle (sec): 100 Critical Vol./Cap.(X): 0.640 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/ve Optimal Cycle: 52 Level Of Service: xxxxxx Street Name: Hilgard Avenue Le Conte Avenue Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R Control: Permitted Permitted Split Phase Split Phase Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 1 0 0 1 0 1 0 1 0 1 2 0 0 0 1 1 0 0 0 1 Volume Module: >> Count Date: 30 Jan 2008 << 445-545 Base Vol: 56 286 10 25 470 368 322 0 81 10 0 28 Initial Bse: 59 300 11 26 493 386 338 0 85 11 0 29 Initial Fut: 59 344 229 26 542 405 364 0 85 113 0 29 PHF Volume: 59 344 229 26 542 405 364 0 85 113 0 29 Reduct Vol: 0 0 0

FinalVolume: 59 344 229 26 542 405 401 0 85 113 0 29 -----|-----|------|

Lanes: 1.00 0.60 0.40 1.00 1.00 1.00 2.00 0.00 1.00 1.00 0.00 1.00 Final Sat.: 1425 857 568 1425 1425 1425 2850 0 1425 1425 0 1425 -----|----|-----|------|

Vol/Sat: 0.04 0.40 0.40 0.02 0.38 0.28 0.14 0.00 0.06 0.08 0.00 0.02

Crit Volume: 573 26 200 113 Crit Moves: **** **** ****

Saturation Flow Module:

Capacity Analysis Module:

UCLA NHIP and Amended LRDP Traffic Study

Los Angeles, CA

Future With Project PM PeakTue Jul 22, 2008 18:09:52

Level Of Service Computation Report

Future With Project- PM Peak

Circular 212 Planning Method (Future Volume Alternative) ************************* Intersection #26 Gayley Avenue and Weyburn Avenue ****************** Cycle (sec): 100 Critical Vol./Cap.(X): 0.792 Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/veh): xxxxxx Ontimal Cycle: Level Of Service:

Optimal Cycle	e:	44444	9			Level	Of Se	rvice	:			C
Street Name: Approach: Movement:	No:	rth Bo	ayley . und - R	Avenue Sou	e uth Bo - T	ound - R	Ea	ast Bo	Weyburr	n Avenu We	est Bo	ound - R
Control:		Dormit	+04		ormit			Dormi!			ormit	
Control: Rights: Min. Green: Lanes:		Theli	ide		Incli	ide		Incl	ide	P	Tncli	ide
Min. Green:	0	0	0	0	0	0	0	0	0	0	0	0
Lanes:	1	0 1	1 0	1 () 1	1 0	0	1 0	1 0	1 0	0	1 0
Volume Module	: >>	Count	Date:	6 Fel	2008	3 << 50	0-600					
Base Vol:	59	495	205	63	944	281	88	166	32			
Growth Adj:	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05
Initial Bse: Added Vol: #25 Int:	62	520	215	66	991	295	92	174	34	116	174	92
Added Vol:	0	19	128	12	13	0	0	66	0	71	46	13
#25 Int:	0	0	72	146	0	0	0	0	0	34	34	34
IIIILIAI rut.	02	222	413	224	T004	253	52	240	34	221	234	133
User Adj:	1.00	1.00	1.00			1.00						
PHF Adj:	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
PHF Volume:	62	539				295						
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:										221	254	139
PCE Adj:				1.00	1.00	1.00	2.00	1.00	1.00	1.00	1.00	1.00
MLF Adj:				1.00					1.00			
FinalVolume:	62	539	415	224	1004	295	185	240	34	221	254	139
Saturation F				1500	1500	1500	1.500	1500	1500	1500	1500	1500
Sat/Lane:												
Adjustment:						1.00						
Lanes:						0.45						0.35
Final Sat.:												
Capacity Anal												
Vol/Sat:					0 43	0 43	0 09	0 14	0 15	0 15	0 26	0.26
Crit Volume:	0.04	0.52	477	224	0.43	0.43	92	0.14	0.13	0.13	0.20	394
Crit Volume: Crit Moves:			****	****			****					****
CIIC MOVES.												

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

Future With Project- PM Peak Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) ************************ Intersection #27 Westwood Boulevard and Weyburn Avenue ********************** Cycle (sec): 100 Critical Vol./Cap.(X): 1.349 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): xxxxxx Optimal Cycle: 180 Level Of Service: Street Name: Westwood Boulevard Weyburn Avenue Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R Control: Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 1 0 1 1 0 0 1 1 0 1 0 1 0 0 0 1! 0 0 Volume Module: >> Count Date: 31 Jan 2008 << 500-600 Initial Bse: 153 678 116 42 699 105 83 151 144 101 230 50 Added Vol: 20 185 175 0 232 0 0 43 16 151 46 #25 Int: 0 0 0 0 0 0 0 218 0 0 102 Ω Ω Initial Fut: 173 863 291 42 931 105 83 412 160 252 378 50 PHF Volume: 173 863 291 42 931 105 83 412 160 252 378 50 PCE Adj: 1.00 1.00 1.00 4.00 1.00 1.00 2.00 1.00 1.00 1.00 1.00 FinalVolume: 173 863 291 168 931 105 166 412 160 252 378 50 -----|-----|------|

Lanes: 1.00 1.50 0.50 0.40 1.60 1.00 0.29 1.28 0.43 0.37 0.56 0.07 Final Sat.: 1125 1684 566 446 1804 1125 326 1436 487 416 625 83 -----|

Vol/Sat: 0.15 0.51 0.51 0.09 0.52 0.09 0.25 0.29 0.33 0.60 0.60 0.60 Crit Volume: 173 581 83 680
Crit Moves: **** **** ****

UCLA NHIP and Amended LRDP Traffic Study

Los Angeles, CA

Future With Project PM PeakTue Jul 22, 2008 18:09:52

Saturation Flow Module:

Capacity Analysis Module:

Crit Moves: ****

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future With Project- PM Peak

Level Of Service Computation Report 2000 HCM 4-Way Stop Method (Future Volume Alternative)

*********									******		****	*****
Intersection	#28 '	Tivert	on Drv	ie and	d Weyb	urn Av	renue					

Cycle (sec): Loss Time (sec) Optimal Cycle		10	0			Critic	cal Vo	l./Caj	p.(X):		0.8	397
Loss Time (se	ec):		0 (Y+R	=4.0 :	sec)	Averag	ge Dela	ay (s	ec/veh)	:	24	1.8
Optimal Cycle	≘:		0			Level	Of Ser	rvice	:			C
********	****	*****	*****	****	*****	*****	*****	****	*****	*****	****	*****
Street Name:		T	iverto	n Dri	ve			1	Weyburn	Avenu	ıe	
Approach: Movement:	No:	rth Bo	und	So	uth Bo	und	Εa	ast B	ound	W∈	est Bo	ound
Movement:	L	- T	- R	. L .	- T	- R	_ L -	- T	- R	, L -	- Т	- R
Control: Rights: Min. Green:												
Control:	S	top Si	gn	S	top Si	gn	Si	top S	ign	St	op S:	ıgn
Rights:	0	Inclu	ae	0	Inclu	.ae	0	Incl	uae	0	Incli	ıae
Min. Green: Lanes:	0	0 1.		0	0 1.	0	0	2 1 1	0	0	. 1.	0
Lanes:	. 0	0 1:	0 0	1 0 1	0 1:	0 0		J 1:	0 0	1 0 0) 1:	0 0
Lanes: Volume Module		Count	Date:	6 Fel	 h 2008		1					
Base Vol:	-		45						1			
Growth Adj:												
Initial Bse:									1			
Added Vol:	0	0	0	0	0	1	3	79	0	0	89	0
Added Vol: #25 Int:	0	0	0	0	0	0	3	218	0	0	102	0
Initial Fut:	23	64	47	104	0						291	
User Adj:							1.00				1.00	1.00
PHF Adj:			1.00	1.00		1.00	1.00	1.00		1.00	1.00	1.00
PHF Volume:	23	64	47	104	0	171	73	474	1	1	291	33
Reduct Vol:	0	0	0	0	0	0	0	0	0		0	
Reduced Vol:									1			
PCE Adj:												
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
FinalVolume:	_ 23	64	47	104	0	171	. 73	474	1	. 1	291	33
Saturation Fl Adjustment:				1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00	1 00
Lanes:												
Final Sat.:	01			1			02	329		1	420	
Capacity Anal				1								
Vol/Sat:				0.52	xxxx	0.52	0 90	0 90	0.90	0.58	0 58	0.58
Crit Moves:			0.20	****		0.55	0.50	****		0.50	0.50	****
Delay/Veh:			12.1	15.0	0.0	15.0	37.7	37.7	37.7	16.3	16.3	16.3
Delay Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adibal /Web:	12 1	12 1	12 1	15 0	0 0	15.0	37.7	37.7	37.7	16.3	16.3	16.3
LOS by Move:	В	В	В	C	*	C	E	E	E	C	C	C
ApproachDel:		12.1			15.0			37.7			16.3	
Delay Adj:		1.00			1.00			1.00			1.00	
ApprAdjDel:		12.1			15.0			37.7			16.3	
LOS by Move: ApproachDel: Delay Adj: ApprAdjDel: LOS by Appr:		В			C			E			C	
AllWayAvgQ:	0.3	0.3	0.3	0.8	0.8	0.8	4.9	4.9	4.9	1.1	1.1	1.1
*******	****	*****	*****	****	*****	*****	*****	****	*****	*****	****	*****

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

ruture v	VILLE PROJECT PM PEAKINE Dul 22, 2006 16:09:53	Page 33-2
	UCLA NHIP and Amended LRDP Traffic Study	
	Los Angeles, CA	
	Future With Project- PM Peak	
Note: Or	neue reported is the number of cars per lane.	
	teue reporteu is the number of cars per lane.	******

xxxxxx

Future With Project- PM Peak

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) ************************* Intersection #29 Hilgard Avenue and Weyburn Avenue ************************ Cycle (sec): 100 Critical Vol./Cap.(X): 0.735 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): xxxxxx

Optimal Cycle): :		70			Level	Of Se	rvice	:			. C
Street Name:			Jilaard	Δυερι	10			,	Weyhurr	Δtreni	10	
Street Name: Approach:	No	rth Bo	nind	Sol	ith Bo	nund	F:	act R	ncybari. ound	W	et Br	nund
Movement:	т.	- Т	- P	т	- Т	- P	т	- Т	- P	т	- Т	- P
			I	1			1			1		1
Control:		Dermit	-ted	' 1	Dermit	ted I	Sn	li+ D	hace l	I Sn	li+ Dì	nage
Rights:		Incli	ıde		Incli	ide	DP.	Incl	ude	Op.	Incli	ide
Rights: Min. Green:	0	0	0	0	0	0	0	0	0	0	0	0
Lanes:	1	0 0	1 0	1 (1	0 1	1	າ ດັ	1 0	0 (1!	0 0
							1			1		
Volume Module	: >>	Count	Date:	6 Fel	2008	3 << 50	0-600		'			'
Base Vol:	49	343	21	26	534	50	55	99	167	13	36	20
Growth Adj:	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05
Initial Bse:	51	360	22	27	561	53	58	104	175	14	38	21
Added Vol: #25 Int: Initial Fut:	0	3	0	0	2	47	41	38	0	0	43	0
#25 Int:	0	0	0	0	0	102	218	0	0	0	0	0
Initial Fut:	51	363	22	27	563	202	317	142	175	14	81	21
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	1.00	1.00		1.00		1.00	1.00	1.00	1.00		1.00	1.00
PHF Volume:				27					175			
Reduct Vol:												
Reduced Vol:	51	363	22	27	563	202	317	142	175	14	81	21
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
FinalVolume:	51	363	22	27	563	202	317	142	175	14	81	21
Saturation Fl												
Sat/Lane:											1425	
Adjustment:						1.00					1.00	
Lanes:									0.55			
Final Sat.:	1425	1343	82	1425	1425	1425	1425	638	788	168	997	259
Capacity Anal												
Vol/Sat:	0.04	0.27	0.27	0.02	0.39	0.14	0.22	0.22	0.22	0.08	0.08	0.08

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

Crit Volume: 51 563 317 115

Crit Moves: ****

Optimal Cycle: 180 Level Of Service: Street Name: Westwood Boulevard Kinross Avenue Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R Control: Permitted Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 1 0 1 0 1 0 1 1 1 0 0 1 0 1 0 1 0 1 0 Volume Module: >> Count Date: 31 Jan 2008 << 500-600 Initial Bse: 82 776 36 39 781 124 101 226 99 17 134 42 Added Vol: 80 372 14 1 397 1 1 1 57 64 5 6 PasserByVol: 0 0 0 0 0 0 0 0 0 0 0 Initial Fut: 162 1148 50 40 1178 125 102 227 156 81 139 48 PHF Volume: 162 1148 50 40 1178 125 102 227 156 81 139 48

FinalVolume: 162 1148 50 239 1178 125 102 227 156 81 139 48 -----|-----||-------|

Lanes: 1.00 1.00 1.00 0.76 2.00 0.24 0.42 0.94 0.64 1.00 0.74 0.26 Final Sat.: 1125 1125 1125 854 2247 273 473 1054 723 1125 837 288 -----|----|-----|------|

Vol/Sat: 0.14 1.02 0.04 0.05 0.52 0.46 0.22 0.22 0.22 0.07 0.17 0.17

Crit Volume: 1148 40 242 81 Crit Moves: **** **** ****

UCLA NHIP and Amended LRDP Traffic Study

Los Angeles, CA

Level Of Service Computation Report

0 (Y+R=4.0 sec) Average Delay (sec/veh):

Cycle (sec): 100 Critical Vol./Cap.(X): 1.343

Future With Project- PM Peak

Circular 212 Planning Method (Future Volume Alternative)

Future With Project PM PeakTue Jul 22, 2008 18:09:53

Intersection #30 Westwood Boulevard and Kinross Avenue

Loss Time (sec):

Saturation Flow Module:

Capacity Analysis Module:

Capacity Analysis Module:

Los Angeles, CA Future With Project- PM Peak

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative)

************************* Intersection #31 Westwood Boulevard and Lindbrook Drive ************************ Cycle (sec): 100 Critical Vol./Cap.(X): 0.770

0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): XXXXXX C Optimal Cycle: 63 Level Of Service:

*********		o *****	*****	****	****	******				*****	****	*****	ŧ
Street Name:		Wes	twood	Bouelv	vard			L:	indbroc	k Driv	re		
Approach:	No	rth Bo	und	Sou	ath Bo	ound	Εá	ast Bo	ound	W∈	est Bo	ound	
Movement:						- R					- T	- R	
Control:	1	Permit	ted	I	Permi	tted	I	Permit	ted	E	Permit	ted	
Rights:		Inclu				ıde			ıde		Incl	ıde	
Min. Green:	-	0	0		0	0		0	0	0	0	0	
Lanes:		1 1				1 0							
Volume Module													
	≘; >> 1		173	28					54	89	242	42	
Base Vol: Growth Adj:	_		1.05			1.05		130			1.05		
Initial Bse:			182		856			137				44	
Added Vol:	0		102	29				4		-2	254	0	
PasserByVol:	-		-	0	210	0	-	0	-	-2	0	-	
Initial Fut:		1213	182	-	1374	-	-	141	-		256	-	
User Adi:			1.00		1.00			1.00			1.00		
		1.00	1.00		1.00			1.00			1.00		
		1213	182		1374		32	141			256	44	
Reduct Vol:			- 0		0		0	0			0		
Reduced Vol:	1	1213	182	29	1374	16	32	141	57	91	256	44	
PCE Adj:	6.00	1.00	1.00	6.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
FinalVolume:						16		141			256	44	
Saturation Fl													
			1500		1500			1500			1500		
Adjustment:			0.75		0.75		0.75				0.75		
Lanes:		1.99	1.00		2.50			1.23			1.31		
Final Sat.:		2238	1125		2812			1382			1471		
~				1			1			1			

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

Vol/Sat: 0.09 0.54 0.16 0.06 0.49 0.46 0.10 0.10 0.10 0.17 0.17

Crit Volume: 609 29 32 196 Crit Moves: **** **** ****

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA

Future With Project- PM Peak

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) ************************

Intersection #32 Glendon/Tiverton/Lindbrook

Future With Project PM PeakTue Jul 22, 2008 18:09:53

******************* Cycle (sec): 100 Critical Vol./Cap.(X): 0.608 Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/veh): Optimal Cycle: 37 Level Of Service: xxxxxx

Street Name: Glendon Avenue/Tiverton Avenue Lindbrook Drive Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R Control: Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0

Volume Module: >> Count Date: 6 Feb 2008 << 445-545 Base Vol: 30 125 184 36 124 153 31 224 18 395 257 53 Initial Bse: 32 131 193 38 130 161 33 235 19 415 270 56 Added Vol: 0 3 1 0 14 0 0 4 0 -6 0 0 PasserByVol: 0 0 0 0 0 0 0 0 0 0 0 0 Initial Fut: 32 134 194 38 144 161 33 239 19 409 270 56 PHF Volume: 32 134 194 38 144 161 33 239 19 409 270 56 FinalVolume: 32 134 194 38 144 161 65 239 19 409 270 56

-----|-----|------| Saturation Flow Module: Lanes: 1.00 1.00 1.00 1.00 2.00 1.00 0.12 0.88 1.00 1.00 0.85 0.15 Final Sat.: 1500 1500 1500 1500 3000 1500 180 1320 1500 1500 1273 227 -----|-----|------|

Capacity Analysis Module:

Vol/Sat: 0.02 0.09 0.13 0.03 0.05 0.11 0.18 0.18 0.01 0.27 0.21 0.24 Crit Volume: 194 38 272 409 Crit Moves: **** **** **** ************************

xxxxxx

Los Angeles, CA Future With Project- PM Peak

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative)

************************ Intersection #33 Sepulveda Boulevard and Constitution Avenue ************************ Cycle (sec): 100 Critical Vol./Cap.(X): 0.811

0 (Y+R=4.0 sec) Average Delay (sec/veh): xxxxxx Loss Time (sec): 76 Level Of Service: Optimal Cycle: D Street Name: Sepulveda Boulevard Constitution Avenue

No	rth Bo	und	Sot	ith Bo	ound	Εa	ast Bo	ound	We	est Bo	ound
L ·	- T	- R	L ·	- T	- R	L -	- T	- R	L ·	- T	- R
			1			I	Permit	ted	I	Permit	ted
	Inclu	ıde		Incl	ıde		Incl	ıde		Incl	ıde
0	0	0	0	0	0	0	0	0	0	0	0
1 (0 1	1 0	1 (1	1 0	0 (1!	0 0	0 (1!	0 0
≘: >>	Count	Date:	13 Fe	eb 200	08 << 4	115-519	5				
19	1039	2	4	824	100	531	2	76	10	5	5
1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05
20	1091	2	4	865	105	558	2	80	11	5	5
0	31	0	0	34	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
20	1122	2	4	899	105	558	2	80	11	5	5
1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
20	1122	2	4	899	105	558	2	80	11	5	5
0	0	0	0	0	0	0	0	0	0	0	0
20	1122	2	4	899	105	558	2	80	11	5	5
1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
20	1122	2	4	899	105	558	2	80	11	5	5
low Mo	odule:										
1500	1500	1500	1500	1500	1500	1500	1500	1500	1500	1500	1500
1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
1.00	1.99	0.01	1.00	1.79	0.21	0.87	0.01	0.12	0.50	0.25	0.25
	L 1 0 0 1 1 1 1 1 1 1	L - T Permit Inclu 0 0 1 1 0 1		L - T - R L - Permitted Include 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	L - T - R L - T Permitted Include In	L - T - R	L - T - R L - T - T - R L - T - R L - T - R L - T - R L - T - R L - T - R L - T - T - R L - T - T L - T - T L - T	L - T - R	L - T - R L - T - R L - T - R	L - T - R L - T R L - T R L - T R L - T - R L - T R L - T R L - T R L - T R L - T R L R L R R R R R R	L - T - R

Final Sat.: 1500 2994 6 1500 2686 314 1308 5 187 750 375 375

Capacity Analysis Module:

Crit Moves:

Vol/Sat: 0.01 0.37 0.37 0.00 0.33 0.33 0.43 0.43 0.43 0.01 0.01 0.01

Crit Volume: 562 4 639 11
Crit Movee: **** ****

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

Optimal Cycle: 180 Level Of Service: Street Name: San Vicente Bouevard Wilshire Bouelvard Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - F L - T - R Control: Split Phase Split Phase Permitted Protected
 Rights:
 Ovl
 Include
 Include
 Ignore

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 Lanes: 1 0 2 0 1 2 1 0 1 0 1 0 2 1 0 1 0 3 0 1 Volume Module: >> Count Date: 13 Feb 2008 << 445-545 Base Vol: 95 371 230 1066 321 47 10 984 20 126 1718 788 Initial Bse: 100 390 242 1119 337 49 11 1033 21 132 1804 827 Added Vol: 10 50 5 123 47 6 13 214 23 7 216 131 PasserByVol: 0 0 0 0 0 0 0 0 0 0 0 Initial Fut: 110 440 247 1242 384 55 24 1247 44 139 2020 958 PHF Volume: 110 440 247 1242 384 55 24 1247 44 139 2020 0 Ω Ω FinalVolume: 110 440 247 1367 384 55 24 1247 44 139 2020 0 -----|-----|------| Saturation Flow Module:

Lanes: 1.00 2.00 1.00 3.00 0.87 0.13 1.00 2.90 0.10 1.00 3.00 1.00

Final Sat.: 1425 2850 1425 4275 1245 180 1425 4129 146 1425 4275 1425

Vol/Sat: 0.08 0.15 0.17 0.32 0.31 0.31 0.02 0.30 0.30 0.10 0.47 0.00

Crit Volume: 247 456 430 673 Crit Moves: **** ****

-----|-----|------|

UCLA NHIP and Amended LRDP Traffic Study

Los Angeles, CA

Level Of Service Computation Report

0 (Y+R=4.0 sec) Average Delay (sec/veh):

Circular 212 Planning Method (Future Volume Alternative)

Future With Project- PM Peak

Future With Project PM PeakTue Jul 22, 2008 18:09:53

Intersection #34 San Vicente Bouevard and Wilshire Bouelvard

Loss Time (sec):

Capacity Analysis Module:

Capacity Analysis Module:

Future With Project- PM Peak

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative)

******************* Intersection #35 Sepulveda Boulevard and Wilshire Boulevard ************************

Critical Vol (Can (V):

Cycle (sec): Loss Time (se Optimal Cycle	ec):	10	0 (Y+R	=4.0	sec)	Critical Vol./Cap.(X):) Average Delay (sec/veh): Level Of Service: ************************************					: xxxxxx		
******	****	*****	*****	****	****	*****	****	****	*****	****	****	*****	
Street Name:		Sepi	ılveda	Boule	vard			Wil	lshire	Boule	vard		
Approach:	No:	rth Bo	ound	Son	ath Bo	ound	E	ast Bo	ound	We	est Bo	ound	
Movement:	L ·	- T	- R	L ·	- T	- R	L ·	- T	- R	L ·	- T	- R	
Control:	P:	rotect	ed	. P:	rotect	ted	. P:	rotect	ted	. P:	rotect	ed	
Rights:		Inclu	ıde		Incl	ude		Incl	ıde		Incl	ıde	
Min. Green:			0		0	0			0		0	0	
Lanes:	1	0 1	1 0	1) 1	1 0	1	0 3	1 0	2 (0 4	1 0	
Volume Module													
Base Vol:	123	555	259	108	435	130	140	1837	39	290	2281	169	
Growth Adj:	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	
Initial Bse:	129	583	272	113	457	137	147	1929	41	305	2395	177	
Added Vol:	6	12	50	13	12	10	8	779	7	53	1005	11	
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	0	
Initial Fut:	135	595	322	126	469	147		2708	48	358	3400	188	
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
PHF Volume:	135	595	322	126	469	147	155	2708	48	358	3400	188	
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0	
Reduced Vol:	135	595	322	126	469	147	155	2708	48	358	3400	188	
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.10	1.00	1.00	
FinalVolume:	135	595	322	126	469	147	155	2708	48	393	3400	188	
Saturation Fl	low Mo	odule:											
Sat/Lane:	1375	1375	1375	1375	1375	1375	1375	1375		1375	1375	1375	
Adjustment:	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	
Lanes:	1.00	1.30	0.70	1.00	1.52	0.48	1.00	3.93	0.07	2.00	4.74	0.26	
Final Sat.:	1031	1338	724	1031	1571	491	1031	4053	72	2063	4885	271	

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

Vol/Sat: 0.13 0.44 0.44 0.12 0.30 0.30 0.15 0.67 0.67 0.19 0.70 0.70

Crit Volume: 458 126 689 197
Crit Moves: **** **** ****

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future With Project- PM Peak

Future With Project PM PeakTue Jul 22, 2008 18:09:53

Circular 212 Planning Method (Future Volume Alternative) ************************ Intersection #36 Veteran Avenue and Wilshire Boulevard ********************** Cycle (sec): 100 Critical Vol./Cap.(X): 1.948 Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/veh): xxxxxx Optimal Cycle: 180 Level Of Service: Street Name: Veteran Avenue Wilshire Boulevard Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - F L - T - R Control: Prot+Permit Permitted Protected Protected Rights: Ovl Ovl Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 1 0 2 0 1 1 0 2 0 2 2 0 3 1 0 2 0 3 1 0 Volume Module: >> Count Date: 21 Feb 2008 << 500-600

Level Of Service Computation Report

Initial Bse: 233 677 147 82 1073 1604 422 2176 48 44 2542 30 Added Vol: 4 12 24 18 20 171 79 759 4 20 894 8 PasserByVol: 0 0 0 0 0 0 0 0 0 0 0 0 Initial Fut: 237 689 171 100 1093 1775 501 2935 52 64 3436 38 PHF Volume: 237 689 171 100 1093 1775 501 2935 52 64 3436 38 FinalVolume: 237 689 171 100 1093 1953 551 2935 52 71 3436 38 ------|-----||------------| Saturation Flow Module: Lanes: 1.00 2.00 1.00 1.00 2.00 2.00 2.00 3.93 0.07 2.00 3.96 0.04 Final Sat.: 1069 2138 1069 1069 2138 2138 2138 4200 75 2138 4228 47 -----| Capacity Analysis Module: Vol/Sat: 0.22 0.32 0.16 0.09 0.51 0.91 0.26 0.70 0.70 0.03 0.81 0.81

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

Crit Volume: 237 976 0 869

Crit Moves: ****

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) ************************* Intersection #37 Gayley Avenue and Wilshire Boulevard ******************* Cycle (sec): 100 Critical Vol./Cap.(X): 1.535 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): xxxxxx Optimal Cycle: 180 Level Of Service: Street Name: Gayley Avenue Wilshire Boulevard Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R T, - T - R Control: Prot+Permit Permitted Protected Permitted Lanes: 1 0 2 0 1 1 0 1 0 2 2 0 3 1 0 1 0 3 1 0 Volume Module: >> Count Date: 13 Feb 2008 << 500-600 Base Vol: 212 290 102 130 450 647 332 1840 92 38 1641 81 Initial Bse: 223 305 107 137 472 679 349 1932 97 40 1723 85 Added Vol: 0 0 0 41 0 269 237 564 0 0 653 PasserByVol: 0 0 0 0 0 0 0 0 0 0 3.1 0 PasserByVol: 0 0 Ω Initial Fut: 223 305 107 178 472 948 586 2496 97 40 2376 116 PHF Volume: 223 305 107 178 472 948 586 2496 97 40 2376 116 FinalVolume: 223 305 107 178 472 1043 644 2496 97 40 2376 116 -----||-----||------||------| Saturation Flow Module: Tages: 1.00 2.00 1.00 1.00 1.00 2.00 2.00 3.85 0.15 1.00 3.81 0.19 Final Sat.: 1069 2138 1069 1069 1069 2138 2138 4116 159 1069 4076 199 -----|----|-----|------| Capacity Analysis Module: Vol/Sat: 0.21 0.14 0.10 0.17 0.44 0.49 0.30 0.61 0.61 0.04 0.58 0.58

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA. LONG BEACH. CA

Crit Volume: 223 472 322 623
Crit Moves: **** **** ****

Crit Moves: ****

Intersection #38 Westwood Boulevard and Wilshire Boulevard ************************ 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): xxxxxx Optimal Cycle: 180 Level Of Service: Street Name: Westwood Boulevard Wilshire Boulevard Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - F T. - T - R Control: Prot+Permit Prot+Permit Protected Protected Rights: Include Ovl Include Include
 Rights:
 Include
 Ovl
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 Lanes: 1 0 2 1 0 1 0 3 0 1 2 0 3 1 0 2 0 3 1 0 -----|----|-----|------| Volume Module: >> Count Date: 7 Feb 2008 << 400-500 Base Vol: 150 475 178 164 601 236 209 1685 237 164 1534 103 Initial Bse: 158 499 187 172 631 248 219 1769 249 172 1611 108 Added Vol: 20 161 44 80 168 268 212 363 22 49 390 93 PasserByVol: 0 0 0 0 0 0 0 0 0 0 0 0 Initial Fut: 178 660 231 252 799 516 431 2132 271 221 2001 201 PHF Volume: 178 660 231 252 799 516 431 2132 271 221 2001 201 Reduct Vol: 0 0 0 0 0 0 0 Ω 0 0 Ω

Reduced Vol: 178 660 231 252 799 516 431 2132 271 221 2001 201

MLF Adi: 1.00 1.00 1.00 1.00 1.00 1.00 1.10 1.00 1.00 1.10 1.00 1.00

FinalVolume: 178 660 231 252 799 516 475 2132 271 243 2001 201

-----|----|-----|------|

Tanes: 1.00 2.22 0.78 1.00 3.00 1.00 2.00 3.55 0.45 2.00 3.63 0.37

Final Sat.: 1031 2292 802 1031 3094 1031 2063 3660 465 2063 3748 377

Vol/Sat: 0.17 0.29 0.29 0.24 0.26 0.50 0.23 0.58 0.58 0.12 0.53 0.53 Crit Volume: 297 252 237 550
Crit Moyes: **** **** ****

-----|

Saturation Flow Module:

Capacity Analysis Module:

UCLA NHIP and Amended LRDP Traffic Study

Los Angeles, CA

Level Of Service Computation Report

Circular 212 Planning Method (Future Volume Alternative)

Future With Project- PM Peak

Future With Project PM PeakTue Jul 22, 2008 18:09:53

Level Of Service Computation Report
Circular 212 Planning Method (Future Volume Alternative)

******************* Intersection #39 Glendon Avenue and Wilshire Bouelvard ************************ Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/veh): xxxxxx Optimal Cycle: 180 Level Of Service: Street Name: Glendon Avenue Wilshire Bouelvard Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R Control: Permitted Permitted Protected Permitted Rights: Include Ovl Include Include
 Rights:
 Include
 Ovl
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 Lanes: 0 0 1! 0 0 1 0 1 0 2 2 0 3 1 0 1 0 3 1 0 Volume Module: >> Count Date: 7 Feb 2008 << 430-530 Base Vol: 57 205 46 130 271 109 117 1918 36 18 1483 81 Initial Bse: 60 215 48 137 285 114 123 2014 38 19 1557 85 Added Vol: 1 0 0 14 0 -6 1 486 1 0 537 PasserByVol: 0 0 0 0 0 0 0 0 0 0 0 3 Ω Initial Fut: 61 215 48 151 285 108 124 2500 39 19 2094 PHF Volume: 61 215 48 151 285 108 124 2500 39 19 2094 88 Ω FinalVolume: 61 215 48 151 285 119 136 2500 39 19 2094 88 -----|----||------| Saturation Flow Module: Lanes: 0.19 0.66 0.15 1.00 1.00 2.00 2.00 3.94 0.06 1.00 3.84 0.16 Final Sat.: 200 709 159 1069 1069 2138 2138 4210 65 1069 4103 172 -----| Capacity Analysis Module: Vol/Sat: 0.30 0.30 0.30 0.14 0.27 0.06 0.06 0.59 0.59 0.02 0.51 0.51 Crit Volume: 324 151 635 546
Crit Moyee: **** **** Crit Moves:

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

Future With Project PM PeakTue Jul 22, 2008 18:09:53

UCLA NHIP and Amended LRDP Traffic Study

Los Angeles, CA

Future With Project- PM Peak

Level Of Service Computation Report

2000 HCM Unsignalized Method (Future Volume Alternative)

Intersection #40 Malcolm Avenue and Wilshire Boulevard

*******	****	****	*****	*****	****	*****	****	****	*****	*****	****	*****
Street Name: Approach:		1	Malcolr	n Aven	ıe			Wi	lshire	Boulev	ard	
Approach:	No	rth Bo	nind	Soi	ıth R	nund	Ea	ast Bo	nind	We	est Bo	nund
Movement:	Т	- т	- P	т	- т	- P	т	_ т	- P	т	- т	- P
	I			I I			1					
Movement: 	C+	ton C	an	11	ton C	ian	TIM	aontr	1104	TING	nont w	21104
Diabta:	اد	Twal.	-911	3	LOP 3.	1911	UIIC	JOIILI (on red	0110	Tm ~1.	JIIEU
Rights: Lanes:		THCT	ide o		THCT	uae		THCT	ide		THCT	uae
Lanes:	, 0 () I!	0 0) I:	0 0	, T (0 2	Ι 0	. I () 2	T 0
Volume Module												
Base Vol:												
Growth Adj:	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05
Initial Bse:	3	1	42	12	1	53	27	2083	60	17	1670	33
Added Vol:	6	0	0	36	0	0	0	485	4	0	534	43
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	0
Initial Bse: Added Vol: PasserByVol: Initial Fut:	9	1	42	48	1	53	27	2568	64	17	2204	76
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
User Adj: PHF Adj: PHF Volume:	9	1	42	48	1	53	27	2568	64	17	2204	76
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduct Vol: FinalVolume:	9	1	42	48	1	53	27	2568	64	17	2204	76
Critical Gap	Modu.	le:										
Critical Gp:			6 9	7 5	6 5	6 9	4 1	xxxx	xxxxx	4 1	xxxx	xxxxx
FollowInTim:	3 5	4 0	3 3	3 5	4 0	3 3	2 2	XXXX	XXXXX	2 2	XXXX	XXXXX
FollowUpTim:	l						1			11		
Capacity Modu	1 11e:			1 1			1			1 1		1
Coffict Vol:	3423	1967	888	3186	1962	772	2270	vvvv	~~~~	2632	vvvv	vvvvv
Cnflict Vol: Potent Cap.:	3 12 3	1 1 1	201	1	1702	346	2275	vvvv	vvvvv	164	vvvv	vvvvv
Move Cap.:	0	1	201	U -	1	346	226	VVVV	VVVVV	164	VVVV	VVVVV
Volume/Cap:												XXXX
Level Of Serv												
							0 4			0 0		
2Way95thQ:												
Control Del:2 LOS by Move:	XXXXX	XXXX	XXXXX	XXXXX	XXXX	XXXXX	23.1	XXXX	XXXXX	29.4	XXXX	xxxxx *
Movement:												
Shared Cap.:												
SharedQueue:												
Shrd ConDel:	xxxx	xxxx	xxxxx	XXXXX	xxxx	XXXXX	xxxxx	XXXX	XXXXX	XXXXX	XXXX	XXXXX
Shared LOS:	*	*	*	*	*	*	*	*	*	*	*	*
Shared LOS: ApproachDel: ApproachLOS:	X	XXXXX		X	xxxxx		X	xxxxx		X	XXXX	
ApproachLOS:		F			F			*			*	
*******	****	****	*****	*****	****	*****	*****	****	*****	*****	****	*****
Note: Queue 1	report	ted is	the r	number	of c	ars per	lane					

Note: Queue reported is the number of cars per lane.

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative)

******************* Intersection #41 Westholme Avenue and Wilshire Boulevard ************************ Cycle (sec): 100 Critical Vol./Cap.(X): 0.890

0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): xxxxxx 170 Level Of Service: Ontimal Cycle: D

Optimal Cycle:		'U	+++++		Level	OI Sei	rvice	: 			D ++++++
Street Name: Approach: N	W∈	stholm	e Avei	nue			Wi	lshire	Boulev	vard	
Movement: L											
Control:											
Rights: Min. Green:	Inclu	ıde	_	Incl	ıde	_	Incl	ude		Incl	ıde
Lanes: 0											
Volume Module: >											
Base Vol: 4					11			63		1566	
Growth Adj: 1.0											
Initial Bse: 4											
Added Vol:	5 0	3	0	0	0	0	495	2	3	572	0
PasserByVol:	0 0	0	0	0	0	0	0	0	0	0	0
Initial Fut: 5											126
User Adj: 1.0							1.00			1.00	
PHF Adj: 1.0					1.00	1.00					
PHF Volume: 5								68			126
Reduct Vol:											
Reduced Vol: 5											
PCE Adj: 1.0											
MLF Adj: 1.0											
FinalVolume: 5											
Saturation Flow											
Sat/Lane: 142											
Adjustment: 1.0					1.00						
Lanes: 0.2					0.03						
Final Sat.: 38		451			49		4275		1425	4045	230

-----|

Vol/Sat: 0.13 0.13 0.13 0.24 0.24 0.24 0.03 0.58 0.05 0.04 0.55 0.55

Crit Volume: 51 337 823 58

Capacity Analysis Module:

Crit Moves: ****

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future With Project- PM Peak

Level Of Service Computation Report

Circular 212 Planning Method (Future Volume Alternative) *************************

Intersection #42 Warner Avenue and Wilshire Boulevard ************************

Future With Project PM PeakTue Jul 22, 2008 18:09:53

Cycle (sec): 100 Critical Vol./Cap.(X): 0.715 xxxxxx

Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/veh):
Optimal Cycle: 65 Level Of Service: Street Name: Warner Avenue Wilshire Boulevard

Street Name:			arner				Wilshire Boulevard					
Approach:	North Bound South Bound East Bound									We	est B	ound
Movement:												
Control:												
Rights:												
Min. Green:	0	IIICIU	ue ^	0	THET	iue ^	0	11101	aue ^	0	THET	uue ^
									1 0			
Lanes:												
Volume Module												
Base Vol:						42			27	1.0	1726	49
Growth Adj:											1.05	
Initial Bse:											1812	
Added Wel:	30	2 1	24	0.5	00	44	33	407	20	11	E72	21
Added Vol: PasserByVol:	0	0	0	0	0	0	0	407	0	0	3/2	0
Initial Fut:						44		2546			2384	
User Adj:											1.00	
PHF Adi:											1.00	
PHF Volume:												
Reduct Vol:												
Reduced Vol:												
PCE Adj:											1.00	
MLF Adj:											1.00	
FinalVolume:												
Saturation F				1			11					
Sat/Lane:	1425	1425	1425	1425	1425	1425	1425	1425	1425	1425	1425	1425
Adjustment:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
			1.00							1.00	2.94	0.06
Final Sat.:											4185	
	ļ											

Capacity Analysis Module: Vol/Sat: 0.03 0.02 0.02 0.06 0.08 0.08 0.02 0.60 0.60 0.01 0.57 0.57 Crit Volume: 38 112 858 11 Crit Moves: ****

Capacity Analysis Module:

Crit Moves: ****

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future With Project- PM Peak

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative)

******************* Intersection #43 Beverly Glen Boulevard and Wilshire Boulevard ******************** Cycle (sec): 100 Critical Vol./Cap.(X): 0.918

Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/veh): xxxxxx 180 Level Of Service: Optimal Cycle: E

******	****	*****	*****	****	****	*****	****	****	*****	****	****	*****
Street Name:		Bever	ly Gle	n Boul	levar	f		Wi	lshire	Boule	vard	
Approach:	No:	rth Bo	und	Sot	ath Bo	ound	E	ast B	ound	W	est B	ound
Movement:						- R						
Control:	Pro	ot+Per	mit		Permi	tted	P:	rotect	ted	P:	rotec	ted
Rights:		Inclu	ıde		Incl	ıde		Incl	ıde		Incl	ude
Min. Green:			0		0	0			0		0	
Lanes:						1 0				1	0 2	1 0
Volume Module												
	155		54		392		114				1598	
Growth Adj:			1.05		1.05			1.05			1.05	
Initial Bse:			57	57	412	56		1768			1678	
Added Vol:			53	37		-	9		-9	22		
PasserByVol:		-	0	0	-	0	0	0	-	0	0	-
Initial Fut:	178		110	94	396	64		2248			2223	
User Adj:		1.00	1.00		1.00			1.00			1.00	
PHF Adj:			1.00		1.00	1.00		1.00			1.00	
	178		110	94		64		2248			2223	
	0	-	0	0	0	0	0	-	0	0	0	-
Reduced Vol:			110	94	396			2248			2223	
PCE Adj:		1.00	1.00		1.00			1.00			1.00	
MLF Adj:			1.00		1.00	1.00		1.00			1.00	
FinalVolume:			110		396			2248			2223	
Saturation F												
Sat/Lane:		1425		1425				1425			1425	
Adjustment:			1.00	1.00				1.00			1.00	
	1.00		0.37		1.72	0.28		3.00			2.88	
Final Sat.:			524		2455			4275			4099	
~	l											

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

Vol/Sat: 0.12 0.21 0.21 0.07 0.16 0.16 0.09 0.53 0.19 0.09 0.54 0.54

Crit Volume: 178 230 129 773
Crit Moves: **** **** ****

UCLA NHIP and Amended LRDP Traffic Study

Los Angeles, CA Future With Project- PM Peak

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative)

Intersection #44 Sawtelle Boulevard and Ohio Avenue

Future With Project PM PeakTue Jul 22, 2008 18:09:53

************************ Cycle (sec): 100 Critical Vol./Cap.(X): 0.940 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): xxxxxx

Optimal Cycle: 180 Level Of Service: Street Name: Sawtelle Boulevard Ohio Avenue

Approach:	No:	rth Bo	und	Sot	ath Bo	ound	Ea	ast B	ound	We	est B	ound
Movement:	L	- T	- R	L ·	- T	- R	L -	- T	- R	L ·	- T	- R
Control:		 Permit	 t.ed		Permit	ted	1	Permi	 t.t.ed		Permi	t.t.ed
Min Green:	0	0	0	0	0	0	0	0	0	0	0	0
Rights: Min. Green: Lanes:	n	n 1 i	n n	0 1	1 11	n n	1 (ากั	1 0	1 (ากั	1 1
	1			1						1		
Volume Module	ו e: >>	Count	Date:	13 Fe	eb 200	18 <<	100-500)	ı	1		ı
Base Vol:	56	89	93	74	437	120	53	436	31	94	524	50
Growth Adj:												
Initial Bse:												
Added Vol:	1	0	2	0	0	0	0	24	1	4	29	0
Added Vol: PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	0
Initial Fut:	60	93	100	78	459	126	56	482	34	103	579	53
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Volume:												
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:	60	93	100	78	459	126	56	482	34	103	579	53
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MLF Adj:											1.00	
FinalVolume:												
Saturation F												
Sat/Lane:											1500	
Adjustment:											1.00	
Lanes:											0.92	
Final Sat.:												
Capacity Ana	lysis	Modul	e:									

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) ************************* Intersection #45 Sepulveda Boulevard and Ohio Avenue ******************* 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): xxxxxx Optimal Cycle: 180 Level Of Service: E Street Name: Sepulveda Boulevard Ohio Avenue Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R T. - T - R Control: Permitted Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 1 0 1 1 0 1 0 1 1 0 1 0 0 1 0 1 0 0 1 0 Volume Module: >> Count Date: 13 Feb 2008 << 500-600 Base Vol: 145 659 127 114 848 197 94 397 43 68 477 36 Initial Bse: 152 692 133 120 890 207 99 417 45 71 501 38 Added Vol: 3 64 4 3 67 2 1 21 4 2 28 PasserRvVol: 0 0 0 0 0 0 0 0 0 0 3 Ω Initial Fut: 155 756 137 123 957 209 100 438 49 73 529 41 PHF Volume: 155 756 137 123 957 209 100 438 49 73 529 41 0 41 FinalVolume: 155 756 137 123 957 209 100 438 49 73 529 41 -----|----|-----| Saturation Flow Module:

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA. LONG BEACH. CA

Lanes: 1.00 1.69 0.31 1.00 1.64 0.36 1.00 0.90 0.10 1.00 0.93 0.07

Final Sat.: 1500 2539 461 1500 2463 537 1500 1349 151 1500 1393 107

Capacity Analysis Module:

Crit Moves: ****

-----|

Vol/Sat: 0.10 0.30 0.30 0.08 0.39 0.39 0.07 0.32 0.32 0.05 0.38 0.38

Crit Volume: 155 583 100 570

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future With Project- PM Peak Level Of Service Computation Report

Future With Project PM PeakTue Jul 22, 2008 18:09:53

Circular 212 Planning Method (Future Volume Alternative) ************************ Intersection #46 Veteran Avenue and Ohio Avenue ************************ Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/veh): xxxxxx Optimal Cycle: 180 Level Of Service: Street Name: Veteran Avenue Ohio Avenue Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R T. - T - R Control: Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 0 0 1! 0 0 0 0 1! 0 0 1 0 0 1 0 1 0 0 1 0 -----| Volume Module: >> Count Date: 13 Feb 2008 << 445-545 Base Vol: 26 328 45 17 368 156 145 502 46 145 480 43 Initial Bse: 27 344 47 18 386 164 152 527 48 152 504 45 Added Vol: 1 34 0 0 34 11 6 17 1 0 20 0 PasserByVol: 0 0 0 0 0 0 0 0 0 0 0 0 Initial Fut: 28 378 47 18 420 175 158 544 49 152 524 45 PHF Volume: 28 378 47 18 420 175 158 544 49 152 524 45 FinalVolume: 28 378 47 18 420 175 158 544 49 152 524 45 -----|----|-----|------| Saturation Flow Module: Lanes: 0.06 0.84 0.10 0.03 0.69 0.28 1.00 0.92 0.08 1.00 0.92 0.08 Final Sat.: 94 1250 156 44 1029 428 1500 1375 125 1500 1381 119 -----| Capacity Analysis Module: Vol/Sat: 0.30 0.30 0.30 0.41 0.41 0.41 0.11 0.40 0.40 0.10 0.38 0.38 Crit Volume: 28 613 593 152 Crit Moves: **** **** ****

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative)

************************* Intersection #47 Westwood Boulevard and Ohio Avenue ************************ 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): xxxxxx Optimal Cycle: 110 Level Of Service: D Street Name: Westwood Boulevard Ohio Avenue Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R T. - T - R Control: Permitted Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 1 0 2 0 1 1 0 2 0 1 1 0 0 1 0 1 0 0 1 0 Volume Module: >> Count Date: 7 Feb 2008 << 445-545 Base Vol: 91 859 41 44 1223 116 89 232 79 85 246 41 Initial Bse: 96 902 43 46 1284 122 93 244 83 89 258 43 Added Vol: 17 222 0 0 232 9 5 0 17 0 0 PasserBvVol: 0 0 0 0 0 0 0 0 0 0 0 Ω PasserByVol: 0 0 Ω Initial Fut: 113 1124 43 46 1516 131 98 244 100 89 258 43 PHF Volume: 113 1124 43 46 1516 131 98 244 100 89 258 43 0 43 FinalVolume: 113 1124 43 46 1516 131 98 244 100 89 258 43 -----|----||-----| Saturation Flow Module:

Tages: 1.00 2.00 1.00 1.00 2.00 1.00 1.00 0.71 0.29 1.00 0.86 0.14

Final Sat.: 1500 3000 1500 1500 3000 1500 1500 1064 436 1500 1286 214

-----|----|-----|------|

Vol/Sat: 0.08 0.37 0.03 0.03 0.51 0.09 0.07 0.23 0.23 0.06 0.20 0.20

Crit Volume: 113 758 344 89

Capacity Analysis Module:

Crit Moves: ****

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA. LONG BEACH. CA

************************ Intersection #48 Sawtelle Boulevard and Santa Monica Boulevard ************************ 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): xxxxxx Optimal Cycle: 180 Level Of Service: Street Name: Sawtelle Boulevard Santa Monica Boulevard Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - F T. - T - R Control: Permitted Permitted Permitted Prot+Permit Rights: Include Include Include Include

UCLA NHIP and Amended LRDP Traffic Study

Los Angeles, CA

Level Of Service Computation Report

Circular 212 Planning Method (Future Volume Alternative)

Future With Project- PM Peak

Future With Project PM PeakTue Jul 22, 2008 18:09:53

Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 0 0 1! 0 0 0 0 1! 0 0 1 0 2 1 0 1 0 2 1 0 -----|----|-----|------| Volume Module: >> Count Date: 14 Feb 2008 << 400-500 Base Vol: 74 359 393 120 531 31 14 1288 31 169 1202 68 Initial Bse: 78 377 413 126 558 33 15 1352 33 177 1262 71 1 Added Vol: 2 2 8 0 4 0 0 205 1 9 260 PasserByVol: 0 0 0 0 0 0 0 0 0 0 Initial Fut: 80 379 421 126 562 33 15 1557 34 186 1522 72 PHF Volume: 80 379 421 126 562 33 15 1557 34 186 1522 72 FinalVolume: 80 379 421 126 562 33 15 1557 34 186 1522 72 -----|----|-----|------| Saturation Flow Module: Lanes: 0.09 0.43 0.48 0.17 0.78 0.05 1.00 2.94 0.06 1.00 2.86 0.14 Final Sat.: 97 461 511 187 833 48 1069 3139 68 1069 3061 146 -----|----|-----|------| Capacity Analysis Module: Vol/Sat: 0.82 0.82 0.82 0.67 0.67 0.67 0.01 0.50 0.50 0.17 0.50 0.50 Crit Volume: 879 126 530 186 Crit Moves: **** **** ****

xxxxxx

Future With Project- PM Peak

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) ************************

Intersection #49 San Diego Fwy SB Ramps and Santa Monica Boulevard *******************

Cycle (sec): 100 Critical Vol./Cap.(X): 1.124 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): xxxxxx

Optimal Cycle															
Street Name:		San I	iego F	wy SB	Rampa	S			Sant	a Monic	a	Bou.	levar	f	
Approach:	No	rth Bo	und	Sot	ath Bo	ound		Εá	ast B	ound		We	est B	oun	
Movement:	L ·	- T	- R	L ·	- T	- R		L -	- T	- R		L -	- T	-	R
Control: Rights: Min. Green:	 Sp	lit Ph	ase	Sp.	lit Pl	 nase			Permi	 tted	-	P1	rotec		
Rights:	op.	Incli	ide	Op.	Incl	ıde		-	Incl	ıde			Incl	ıde	
Min Green:	0	111010	n	٥	11101	n		Λ	11101	n		0	11101	uuc	
Lanes:	0 (0 0	0 0	1	1 0	1 1		0 0	3	1 0		2 (3	0	0
							П				1-				
Volume Module	: >>	Count	Date:	14 Fe	eb 20	08 << 4	14	5-545	5						
Base Vol:												560	1179		0
Growth Adj:													1.05		
Initial Bse:	0	0	0	396	557	203		0	1656	260		588	1238		0
Added Vol:	0	0	0	-21	0	57		0	170	44		29	213		0
Initial Bse: Added Vol: PasserByVol:	0	0	0	0	0	0		0	0	0		0	0		0
Initial Fut:	0	0	0	375	557	260		0	1826	304		617	1451		0
User Adj:								1.00	1.00	1.00	- 1	1.00	1.00	1	.00
PHF Adj:								1.00	1.00	1.00	- 1	1.00	1.00	1	.00
PHF Volume:	0	0	0	375	557	260		0	1826				1451		0
Reduct Vol: Reduced Vol:	0	0	0	0	0	0		0		0		0	0		0
Reduced Vol:	0	0	0	375	557	260		0	1826	304		617	1451		0
PCE Adj:								1.00	1.00	1.00	- 1	1.00	1.00	1	.00
MLF Adj:	1.00	1.00	1.00	1.10	1.00	1.10		1.00	1.00	1.00	- 1	1.10	1.00	1	.00
FinalVolume:															0
							П				-				
Saturation F	low Mo	odule:													
Sat/Lane:															425
Adjustment:	0.75	0.75	0.75	0.75	0.75	0.75		0.75	0.75	0.75	(0.75	0.75	0	.75
Lanes:											2	2.00	3.00	0	.00
Final Sat.:	0	0	0	1400	1806	1069		0	3664	611			3206		0
											-				
Capacity Anal															
Wol/Sat:	\cap	\cap \cap \cap	\cap \cap \cap	n 2a	U 31	n 27		\cap	0 50	0.50	(u so	n 45	Λ	$\cap \cap$

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

Vol/Sat: 0.00 0.00 0.00 0.29 0.31 0.27 0.00 0.50 0.50 0.32 0.45 0.00

Crit Volume: 0 329 533 339
Crit Moyee: **** ****

Crit Moves:

Optimal Cycle: 180 Level Of Service: Street Name: San Diego Fwy NB Ramps Santa Monica Boulevard Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - F L - T - R Control: Split Phase Split Phase Protected Permitted
 Rights:
 Include
 Include
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0 Lanes: 1 1 1 1 1 0 0 0 0 0 2 0 3 0 0 0 0 4 0 1 Volume Module: >> Count Date: 14 Feb 2008 << 415-515 Initial Bse: 470 529 431 0 0 0 523 1436 0 0 1420 498 Added Vol: 57 21 -21 0 0 0 40 109 0 0 185 34 PasserByVol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 101111 Fut: 527 550 410 0 0 0 563 1545 0 0 1605 532 PHF Volume: 527 550 410 0 0 563 1545 0 0 1605 532 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 527 550 410 0 0 0 563 1545 0 0 1605 532 MLF Adj: 1.10 1.00 1.10 1.00 1.00 1.00 1.10 1.00 1.00 1.00 1.00 1.00 FinalVolume: 580 550 450 0 0 619 1545 0 0 1605 532 -----|----||------| Saturation Flow Module: Lanes: 1.54 2.11 1.35 0.00 0.00 0.00 2.00 3.00 0.00 0.00 4.00 1.00

Final Sat.: 1646 2255 1443 0 0 0 2138 3206 0 0 4275 1069 -----|

Vol/Sat: 0.35 0.24 0.31 0.00 0.00 0.00 0.29 0.48 0.00 0.00 0.38 0.50 Crit Volume: 377 0 310 532
Crit Mayes: **** ****

UCLA NHIP and Amended LRDP Traffic Study

Los Angeles, CA

Level Of Service Computation Report

0 (Y+R=4.0 sec) Average Delay (sec/veh):

Circular 212 Planning Method (Future Volume Alternative)

Intersection #50 San Diego Fwy NB Ramps and Santa Monica Boulevard

Future With Project- PM Peak

Future With Project PM PeakTue Jul 22, 2008 18:09:54

Loss Time (sec):

Capacity Analysis Module:

Crit Moves: ****

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) ************************* Intersection #51 Sepulveda Boulevard and Santa Monica Boulevard *********************** Cycle (sec): 100 Critical Vol./Cap.(X): 1.471 0 (Y+R=4.0 sec) Average Delay (sec/veh): xxxxxx Loss Time (sec): Optimal Cycle: 180 Level Of Service: Street Name: Sepulveda Boulevard Santa Monica Boulevard Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R T, - T - R Control: Protected Protected Protected Protected Lanes: 1 0 2 0 1 1 0 2 0 1 1 0 3 0 1 1 0 3 0 1 Volume Module: >> Count Date: 19 Feb 2008 << 430-530 Base Vol: 166 796 203 146 1123 200 145 1404 304 190 1350 162 Initial Bse: 174 836 213 153 1179 210 152 1474 319 200 1418 170 7 Added Vol: 4 60 2 7 62 3 4 83 1 0 212 PasserByVol: 0 0 0 0 0 0 0 0 0 0 Ω Initial Fut: 178 896 215 160 1241 213 156 1557 320 200 1630 177 PHF Volume: 178 896 215 160 1241 213 156 1557 320 200 1630 177 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 Ω Reduced Vol: 178 896 215 160 1241 213 156 1557 320 200 1630 177 FinalVolume: 178 896 215 160 1241 213 156 1557 320 200 1630 177 -----|----|-----|------| Saturation Flow Module:

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA. LONG BEACH. CA

Tages: 1.00 2.00 1.00 1.00 2.00 1.00 1.00 3.00 1.00 1.00 3.00 1.00

Final Sat.: 1031 2063 1031 1031 2063 1031 1031 3094 1031 1031 3094 1031

-----|----|-----|------|

Vol/Sat: 0.17 0.43 0.21 0.16 0.60 0.21 0.15 0.50 0.31 0.19 0.53 0.17

Crit Volume: 178 621 519 200
Crit Moves: **** **** ****

Capacity Analysis Module:

Crit Moves: ****

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future With Project- PM Peak

Future With Project PM PeakTue Jul 22, 2008 18:09:54

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) ************************ Intersection #52 Veteran Avenue and Santa Monica Boulevard ************************ Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/veh): xxxxxx Optimal Cycle: 180 Level Of Service: Street Name: Veteran Avenue Santa Monica Boulevard Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - F T. - T - R Control: Prot+Permit Prot+Permit Protected Protected Rights: Include Include Include Ovl Include Include Include Ovl Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 1 0 0 1 0 1 0 0 1 0 1 0 3 1 0 1 0 3 0 1 -----|----|-----|------| Volume Module: >> Count Date: 14 Feb 2008 << 445-545 Base Vol: 62 284 46 123 534 59 174 1549 31 89 1412 86 Initial Bse: 65 298 48 129 561 62 183 1626 33 93 1483 90 Added Vol: 0 14 0 1 16 17 19 73 1 0 201 2 PasserByVol: 0 0 0 0 0 0 0 0 0 0 0 0 Initial Fut: 65 312 48 130 577 79 202 1699 34 93 1684 92 PHF Volume: 65 312 48 130 577 79 202 1699 34 93 1684 92 FinalVolume: 65 312 48 130 577 79 202 1699 34 93 1684 92 Saturation Flow Module: Lanes: 1.00 0.87 0.13 1.00 0.88 0.12 1.00 3.92 0.08 1.00 3.00 1.00 Final Sat.: 1375 1191 184 1375 1209 166 1375 5394 106 1375 4125 1375 -----| Capacity Analysis Module: Vol/Sat: 0.05 0.26 0.26 0.09 0.48 0.48 0.15 0.32 0.32 0.07 0.41 0.07 Crit Volume: 65 656 202 551
Crit Moyes: **** **** ****

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) *************************

Intersection #53 Westwood Boulevard and Santa Monica Boulevard *********************** Cycle (sec): 100 Critical Vol./Cap.(X): 1.148

Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/yeh): xxxxxx

Loss Time (se Optimal Cycle	ec):	1.9	0 (Y+R	=4.0 s	sec)	Averag	e Dela	ay (se	ec/veh) :	:	XXX	KXX E
**********	- • • * * * *	****	*****	****	****	*****	*****	****	*****	****	****	*****
Street Name:												
Approach:												
Movement:	L ·	- T	- R	L -	- T	- R	L -	- T	- R	L	- T	- R
Control:	Pro	ot+Per	rmit	Pro	t+Pe:	rmit	Pı	cotect	ted	P:	rotect	ted
Rights: Min. Green:		Incl	ıde		Incl	ude		Ovl			Ovl	
Min. Green:	0	0	0	0	0	0	0	0	0	0	0	0
Lanes:	1	0 1	1 0	1 () 2	0 1	2 (3	0 1	2	0 3	0 1
Volume Module	e: >>	Count	t Date:	19 Fe	eb 20	08 << 5	00-600)				
Base Vol:	106	867	99	197	1358	122	164	1424	131	195	1376	230
Growth Adj:	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05
Initial Bse:				207	1426	128	172	1495			1445	
Added Vol:								39	3	10	163	6
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	0
Initial Fut:				213	1635	161	199	1534	141	215	1608	248
User Adj:				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	1.00	1.00	1.00	1.00	1.00						1.00	
PHF Volume:	115	1117	112	213					141			
Reduct Vol:	0	0	0									
Reduced Vol:												
PCE Adj:						1.00			1.00			
MLF Adj:				1.00								
FinalVolume:												
Saturation Fl				1275	1275	1275	1 275	1 2 7 5	1275	1 275	1275	1275
Sat/Lane:												
Adjustment:												
Lanes:				1.00								
Final Sat.:				1375								
Capacity Anal							1					

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

Vol/Sat: 0.08 0.45 0.45 0.15 0.59 0.12 0.08 0.37 0.10 0.09 0.39 0.18

Crit Volume: 115 817 110 536
Crit Moves: **** **** ****

Crit Moves: ****

Future With Project- PM Peak Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) ************************ Intersection #54 Mulholland Drive and Roscomare Road ******************* Cycle (sec): 100 Critical Vol./Cap.(X): 0.777 Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/veh): xxxxxx Optimal Cycle: 102 Level Of Service: Street Name: Mulholland Drive Roscomare Road Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - F L - T - R Control: Split Phase Split Phase Prot+Permit Prot+Permit
 Rights:
 Include
 Include
 Ov1
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 Lanes: 0 0 1! 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 0 Volume Module: >> Count Date: 13 Feb 2008 << 445-545 Initial Bse: 302 0 152 0 0 0 0 337 107 47 623 0 Added Vol: 29 0 0 0 0 0 0 0 30 0 1
PasserByVol: 0 0 0 0 0 0 0 0 0 0 0
Initial Fut: 331 0 152 0 0 0 0 337 137 47 624 Ω PHF Volume: 331 0 152 0 0 0 0 337 137 47 624 0 FinalVolume: 331 0 152 0 0 0 0 337 137 47 624 0 ------|------||------------------|

Final Sat.: 976 0 449 0 0 0 1425 1425 1425 0 -----|----|

Vol/Sat: 0.34 0.00 0.34 0.00 0.00 0.00 0.00 0.24 0.10 0.03 0.44 0.00

Crit Volume: 484 0 0 624 Crit Moves: **** ****

UCLA NHIP and Amended LRDP Traffic Study

Los Angeles, CA

Future With Project PM PeakTue Jul 22, 2008 18:09:54

Saturation Flow Module:

Capacity Analysis Module:

Saturation Flow Module:

Capacity Analysis Module:

ApproachDel: 12.5

1.00

12.5

В

Crit Moves: ****

Delay Adj:

ApprAdjDel:

LOS by Appr:

Page 60-1

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future With Project- PM Peak

Level Of Service Computation Report 2000 HCM 4-Way Stop Method (Future Volume Alternative)

Intersection #55 Roscomare Road and Stradella Road/Linda Flora Drive									
Cycle (sec): 100 Critical Vol./C	ap.(X): 0.564								
Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/veh): 11.2								
Optimal Cycle: 0 Level Of Servic	e: B								
*****************	******								
Street Name: Roscomare Road Stradell	a Road/Linda Flora Drive								
Approach: North Bound South Bound East	Bound West Bound								
Movement: L - T - R L - T - R L - T	- R L - T - R								
Control: Stop Sign Stop Sign Stop									
	lude Include								
	0 0 0 0 0								
Lanes: 0 0 1! 0 0 0 0 1! 0 0 0 0 1	! 0 0 . 0 0 1! 0 0								
Volume Module: >> Count Date: 21 Feb 2008 << 415-515									
	0 10 6 1 59								
Growth Adj: 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.0									
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								
114404 101									
14556157 00 0 0 0 0	$egin{array}{cccccccccccccccccccccccccccccccccccc$								
User Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	0 11 0 1 02								
PHF Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0									
	0 11 6 1 62								
	0 0 0 0 0								
	0 11 6 1 62								
PCE Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00	0 11 0 1 02								
MLF Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0									
	0 11 6 1 62								

Lanes: 0.05 0.94 0.01 0.27 0.64 0.09 0.58 0.00 0.42 0.09 0.02 0.89 Final Sat.: 41 778 11 207 484 67 364 0 260 62 10 614

Vol/Sat: 0.56 0.56 0.56 0.19 0.19 0.19 0.04 xxxx 0.04 0.10 0.10 0.10

Delay/Veh: 12.5 12.5 12.5 8.6 8.6 8.6 8.4 0.0 8.4 8.2 8.2 AdjDel/Veh: 12.5 12.5 12.5 8.6 8.6 8.4 0.0 8.4 8.2 8.2 8.2

AllwayAvqO: 1.2 1.2 1.2 0.2 0.2 0.0 0.0 0.0 0.1 0.1 0.1

1.00

8.4

1.00

8.2

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

1.00

8.6

Futur	e with Project PM Peakine Jul 22, 2008 18:09:54	Page 60-2
	UCLA NHIP and Amended LRDP Traffic Study	
	Los Angeles, CA	
	Future With Project- PM Peak	
	Queue reported is the number of cars per lane.	
****	************************	******

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future With Project- PM Peak

Level Of Service Computation Report
2000 HCM 4-Way Stop Method (Future Volume Alternative)

2000	HCM 4-Way Stop	Method (Fut	ure volume A.	iternative)	
********	******	******	*****	*******	******
Intersection #56					
*******	******	*******	*****	******	*****
Cycle (sec):	100	Cri	tical Vol./Ca	ap.(X):	0.732
Loss Time (sec):	0 (Y+R=4)	.0 sec) Ave	rage Delay (sec/veh):	15.4

Loss Time (se	e:		0			Level	Of Ser	rvice	:		C
Street Name: Approach: Movement:	No:	Brth Bo	ellagi und - R	o Road Sou	d uth Bo - T	ound - R	Ea	ast Bo	Chalon ound	Road West E	ound - R
Control: Rights: Min. Green: Lanes:	0	0 1 0	0 0	0 0	0	1 0	0 (0	0 0	0 0 0	0 0
Volume Module Base Vol: Growth Adj: Initial Bse: Added Vol: PasserByVol: Initial Fut: User Adj: PHF Adj: PHF Volume: Reduct Vol: Reduced Vol: PCE Adj: MLF Adj: FinalVolume:	6: >> 67 1.05 70 0 0 70 1.00 70 0 70 1.00 1.00 70	Count 508 1.05 533 29 0 562 1.00 562 1.00 562 1.00 562 1.00 562	Date: 0 1.05 0 0 0 1.00 1.00 1.00 0 1.00 1.0	21 Fe 0 0 1.05 0 0 0 0 1.00 0 0 0 0 0 1.00 0 0 0 0 0 0	98 1.05 103 30 0 133 1.00 133 1.00 133 1.00 133	08 << 5 24 1.05 25 0 0 25 1.00 1.00 25 1.00 25 1.00 25 1.00 25 25 1.00 25 25 1.00	00-600 11 1.05 12 0 0 12 1.00 1.00 12 1.00 12 1.00	0 1.05 0 0 0 0 1.00 1.00 0 0 1.00	12 1.05 13 0 0 13 1.00 1.00 13 1.00 1.00 1.00	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1.05 0 0 0 1.00 1.00 0 0 0 1.00 0 0 0
Saturation F: Adjustment: Lanes: Final Sat.:	low Mo 1.00 0.11 96	0dule: 1.00 0.89 769	1.00	1.00	1.00 0.84 663	1.00 0.16 126	1.00 0.48 297	1.00	1.00 0.52 324	1.00 1.00	1.00
Capacity Anal Vol/Sat: Crit Moves: Delay/Veh: Delay Adj: AdjDel/Veh: LOS by Move: ApproachDel: Delay Adj: ApprAdjDel: LOS by Appr: AllWayAvgQ:	lysis 0.73 17.4 1.00 17.4 C	Modul 0.73 **** 17.4 1.00 17.4 C 17.4 1.00 17.4 C	e: xxxx 0.0 1.00 0.0 *	0.0 1.00 0.0 *	0.20 **** 8.5 1.00 8.5 A 8.5 1.00 8.5	0.20 8.5 1.00 8.5 A	0.04 8.4 1.00 8.4 A	0.0 1.00 0.0 *	0.04 **** 8.4 1.00 8.4	0.0 0.0	0.0 1.00 0.0 *

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

Future With Project PM PeakTue Jul 22, 2008 18:09:54	Page 61-2
UCLA NHIP and Amended LRDP Traffic Study Los Angeles. CA	
Future With Project- PM Peak	
Note: Queue reported is the number of cars per lane.	*****

0

Los Angeles, CA Future With Project- PM Peak

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative)

Optimal Cycle: 180 Level Of Service:

Street Name: Beverly Glen Boulevard Mulholland Drive Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R T. - T - R Control: Split Phase Split Phase Permitted Permitted Rights: Include Include Include Ignore
 Rights:
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 Include
 <t Lanes: 0 1 0 0 1 0 1 1 0 1 1 0 1 1 0 2 0 1 Volume Module: >> Count Date: 26 Feb 2008 << 500-600 Base Vol: 40 772 81 206 359 36 51 194 37 45 535 704 Initial Bse: 42 811 85 216 377 38 54 204 39 47 562 739 0 Added Vol: 1 39 1 0 40 0 0 0 0 0 0 0 0 0 PasserByVol: 0 0 0 0 0 0 0 0 0 0 0 0 Ω Initial Fut: 43 850 86 216 417 38 54 204 39 47 562 739

PHF Volume: 43 850 86 216 417 38 54 204 39 47 562 0

Capacity Analysis Module:

Vol/Sat: 0.63 0.63 0.06 0.22 0.22 0.03 0.04 0.09 0.09 0.03 0.20 0.00

Crit Volume: 893 317 54 281

Crit Moves: **** **** **** ****

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future With Project- PM Peak

Future With Project PM PeakTue Jul 22, 2008 18:09:54

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) ************************ Intersection #58 Beverly Glen Boulevard and Greendale Drive ****************** 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): xxxxxx Optimal Cycle: 180 Level Of Service: Street Name: Beverly Glen Boulevard Greendale Drive Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - F T. - T - R Control: Permitted Permitted Split Phase Split Phase Rights: Include Include Include Include Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1! 0 0 -----| Volume Module: >> Count Date: 5 Feb 2008 << 415-515 Base Vol: 0 1084 9 62 413 0 0 0 44 0 220 Initial Bse: 0 1138 9 65 434 0 0 0 0 46 0 231 Added Vol: 0 39 0 0 40 0 0 0 4 0 1
PasserByVol: 0 0 0 0 0 0 0 0 0 0 0 0 0
Initial Fut: 0 1177 9 65 474 0 0 0 0 50 50 0 232 PHF Volume: 0 1177 9 65 474 0 0 0 0 50 0 232 FinalVolume: 0 1177 9 65 474 0 0 0 50 0 232 -----|-----||-------| Saturation Flow Module: Lanes: 0.00 0.99 0.01 0.12 0.88 0.00 0.00 0.00 0.00 0.18 0.00 0.82 Final Sat.: 0 1414 11 172 1253 0 0 0 0 253 0 1172 -----|----|-----|------| Capacity Analysis Module: Crit Volume: 1187 65 0 282
Crit Moyes: **** **** ************************

Existing LOS Analysis Future Without Project LOS Analysis Future With Project LOS Analysis

(Unsignalized Intersections Analyzed as Signalized Intersections)

Existing AM Peak

Configuration:

Wed Jul 23, 2008 16:53:42

Page 1-1

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA

Existing 2008 (Unsignalized as Signalized) AM Peak

Scenario Report

Existing AM Peak Scenario:

Existing AM Peak Command: Volume: Existing AM

Geometry: Existing

Impact Fee: Default Impact Fee

AM Peak Trip Generation: Trip Distribution: Project Paths: Project Routes:

Default Route Existing

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

Existing AM Peak

Wed Jul 23, 2008 16:53:42

Page 2-1

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA

Existing 2008 (Unsignalized as Signalized) AM Peak

Turning Movement Report AM Peak

Volume Type		rthbou Thru R			outhbo Thru			astbou Thru			estbo Thru		Total Volume
						Ln/Ova			0.5	0.5			0010
Base	12	485	72		1321		84	52	26	87	144	0	2818
Added	0	0	0	0		0	0	0	0	0	0	0	0
Total	12	485	72	4	1321	531	84	52	26	87	144	0	2818
#2 Chu	rch Lai	ne and	l San	Diego	Fwy :	SB On/O	ff Rar	np					
Base	0	143	317	223	656	0	0	2	1	1435	1	22	2800
Added	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	0	143	317	223	656	0	0	2	1	1435	1	22	2800
#3 Chu	rch Lai	ne and	Suns	set Bo	uleva	rd							
Base	51	7	102	652	158	962	99	1713	111	6	1170	432	5463
Added	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	51	7	102	652	158	962	99	1713	111	6	1170	432	5463
#4 San	Diego	Fwv N	IB On	Off R	amps a	and Sun	set Bo	ouleva	ard				
Base	642	0	521	0	0	0		1473	949	0	976	0	4561
Added	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	642	0	521	0	0	0	0	1473	949	0	976	0	4561
#5 Vet	eren A	renije	and (Suncet	Poul.	auard							
Base	57	0	347	0	0	0	٥	1726	185	295	926	0	3536
Added	0	0	0	0	0	0	0	0	0	0		0	0
Total	57	0	347	0	0	0		1726	185	295		0	3536
#6 Bel	lagio	Wass an	d Cur	ncet B	011] 617	ard							
Base	41	, ay ai. 5	8	172	50	254	178	1680	226	17	923	96	3650
Added	0	0	0	1,2	0	0	0	0	0	0	0	0	0
Total	41	5	8	172	50	254		1680	226	17	923	96	3650
		_	,				,						
						oulevar		1 4 2 4	200	1.00	1016		2010
Base	26	0	21	0	0	0		1434	376		1016	0	3048
Added	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	26	0	21	0	0	0	0	1434	376	175	1016	0	3048
						oulevar							
Base	49	1	43	0	0	60		1270	240	89	1153	22	2984
Added	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	49	1	43	0	0	60	57	1270	240	89	1153	22	2984
#9 Hile	gard A	venue/	Copa	De Or	o Road	d and S	unset	Boule	evard				
Base	142	38	107	28	73	16	18	1031	261	452	1067	21	3254
Added	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	142	38	107	28	73	16	18	1031	261	452	1067	21	3254

Existing AM Peak

Wed Jul 23, 2008 16:53:42

Page 2-2

Existing AM Peak Wed Jul 23, 2008 16:53:42

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA

Existing 2008 (Unsignalized as Signalized) AM Peak

Volume	No	orthbo	und	S	outhbo	ound	Ea	astbo	and	We	estbo	ınd	Total
Type	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Volume
			-						-			_	
#10 Be	verly	Glen	Boule	vard a	nd Sur	nset Bo	uleva	rd					
Base	87	92	389	50	76	9	15	1022	106	479	1402	72	3799
Added	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	87	92	389	50	76	9	15	1022	106	479	1402	72	3799
#11 Be	verly	Glen	Boule	vard a	nd Sur	nset Bo	uleva	rd (Ea	ast I/S	;)			
Base	0		0					1127	0		1123	33	3555
Added	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	0	0	0	148	0	811	313	1127	0	0	1123	33	3555
#12 Sej	oulve	da Bou	levar	d and	San D:	iego Fw	y NB (Off-Ra	amp				
Base	0	381	0		1307	0	276	0	9	0	0	0	1973
Added	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	0	381	0	0	1307	0	276	0	9	0	0	0	1973
#13 Ser	oulve	la Bou	levar	d and I	Montai	na Aven	iue						
Base	74		273		1103	22	8	272	100	98	70	71	2731
Added	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	74		273	328	1103	22	8	272	100	98	70	71	2731
#14 Le	verin	a Aven	ue and	d Monta	ana A	renue							
Base		0	3				0	761	339	6	155	0	1301
Added	0		0		0	0	0	0	0	0	0	0	0
Total	37		3	0	0	0	0	761	339	6	155	0	1301
#15 Ve	teran	Avenu	e and	Montai	na Ave	enue/Ga	lev A	venue					
Base	33	219	21			19	114		43	11	78	48	1627
Added	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	33	219	21	168	319	19	114	554	43	11	78	48	1627
#16 Ga	lev A	zenue	and St	trathmo	ore Pi	Lace							
Base	5		280	474		3	2	118	14	95	18	47	1400
Added	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	5		280	474	265	3	2		14	95	18	47	1400
#17 Ve	teran	Avenu	e and	Lever	ina A	zenue							
Base	19	233	28	21		3	2	115	203	66	23	29	1129
Added	0	0	0	0	0	0	0		0	0	0	0	0
Total	19	233	28	21		3	2	115	203	66	23	29	1129
-0041		200	20		307	,			200		23		
#18 Hi	lgard	Avenu	e and	Wyton	Drive	<u>.</u>							
Base	207	276		27		53	16	24	94	59	85	28	1467
Added	0	0	Ó			0	0	0	0	0	0	0	0
Total	207	276		27		53	16	24	94	59	85	28	1467
-0041	20,	2.0		- ,	505	55	-0		- 1		0.5	20	/

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

UCLA NHIP and Amended LRDP Traffic Study

Page 2-3

Los Angeles, CA Existing 2008 (Unsignalized as Signalized) AM Peak

#20 Hilgard Avenue and Westholme Avenue Base 163 379 41 15 531 131 20 10 29 40 194 49 Added 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Total 163 379 41 15 531 131 20 10 29 40 194 49 #21 Hilgard Avenue and Manning Avenue Base 0 716 12 21 514 0 0 0 0 0 6 0 6 Added 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Total 0 716 12 21 514 0 0 0 0 0 6 0 66 #22 Gayley Avenue and Le Conte Avenue Base 7 635 234 124 217 15 24 119 11 157 74 127 Added 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Total 7 635 234 124 217 15 24 119 11 157 74 127 Added 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Volum n Spli 99 99 160
#19 Beverly Glen Blvd and Wyton Dr/Comstock Ave [5-Leg Intersection- Wyton Base 8 300 5 46 498 3 1 22 11 30 33 38 Added 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	n Spli 99 99 160 160
Base 8 300 5 46 498 3 1 22 11 30 33 38 Added 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Total 8 300 5 46 498 3 1 22 11 30 33 38 #20 Hilgard Avenue and Westholme Avenue Base 163 379 41 15 531 131 20 10 29 40 194 49 Added 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Total 163 379 41 15 531 131 20 10 29 40 194 49 #21 Hilgard Avenue and Manning Avenue Base 0 716 12 21 514 0 0 0 0 6 0 66 Added 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 66 #22 Gayley Avenue and Le Conte Avenue Base 7 635 234 124 217 15 24 119 11 157 74 127 Added 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Total 7 635 234 124 217 15 24 119 11 157 74 127 #23 Westwood Boulevard and Le Conte Avenue Base 53 632 206 32 195 88 168 327 33 130 317 107	99 99 160 160
Base 8 300 5 46 498 3 1 22 11 30 33 38 Added 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Total 8 300 5 46 498 3 1 22 11 30 33 38 #20 Hilgard Avenue and Westholme Avenue Base 163 379 41 15 531 131 20 10 29 40 194 49 Added 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Total 163 379 41 15 531 131 20 10 29 40 194 49 #21 Hilgard Avenue and Manning Avenue Base 0 716 12 21 514 0 0 0 0 6 0 66 Added 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 66 #22 Gayley Avenue and Le Conte Avenue Base 7 635 234 124 217 15 24 119 11 157 74 127 Added 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Total 7 635 234 124 217 15 24 119 11 157 74 127 #23 Westwood Boulevard and Le Conte Avenue Base 53 632 206 32 195 88 168 327 33 130 317 107	99 99 160 160
Base 8 300 5 46 498 3 1 22 11 30 33 38 Added 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Total 8 300 5 46 498 3 1 22 11 30 33 38 #20 Hilgard Avenue and Westholme Avenue Base 163 379 41 15 531 131 20 10 29 40 194 49 Added 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Total 163 379 41 15 531 131 20 10 29 40 194 49 #21 Hilgard Avenue and Manning Avenue Base 0 716 12 21 514 0 0 0 0 6 0 66 #21 Hilgard Avenue and Manning Avenue Base 0 716 12 21 514 0 0 0 0 6 0 66 #22 Gayley Avenue and Le Conte Avenue Base 7 635 234 124 217 15 24 119 11 157 74 127 Added 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Total 7 635 234 124 217 15 24 119 11 157 74 127 #23 Westwood Boulevard and Le Conte Avenue Base 53 632 206 32 195 88 168 327 33 130 317 107	99 99 160 160
Added 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	99 160 160
#20 Hilgard Avenue and Westholme Avenue Base 163 379 41 15 531 131 20 10 29 40 194 49 Added 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Total 163 379 41 15 531 131 20 10 29 40 194 49 #21 Hilgard Avenue and Manning Avenue Base 0 716 12 21 514 0 0 0 0 6 0 66 Added 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Total 0 716 12 21 514 0 0 0 0 0 6 0 66 #22 Gayley Avenue and Le Conte Avenue Base 7 635 234 124 217 15 24 119 11 157 74 127 Added 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Total 7 635 234 124 217 15 24 119 11 157 74 127 Added 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	99 160 160
Base 163 379 41 15 531 131 20 10 29 40 194 45 Added 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	160
Base 163 379 41 15 531 131 20 10 29 40 194 45 Added 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	160
Added 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	160
Total 163 379 41 15 531 131 20 10 29 40 194 49 #21 Hilgard Avenue and Manning Avenue Base 0 716 12 21 514 0 0 0 0 0 0 0 0 6 Added 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Total 0 716 12 21 514 0 0 0 0 0 0 0 0 0 #22 Gayley Avenue and Le Conte Avenue Base 7 635 234 124 217 15 24 119 11 157 74 127 Added 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Total 7 635 234 124 217 15 24 119 11 157 74 127 #23 Westwood Boulevard and Le Conte Avenue Base 53 632 206 32 195 88 168 327 33 130 317 107	160
Base 0 716 12 21 514 0 0 0 0 6 0 66 Added 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	122
Base 0 716 12 21 514 0 0 0 0 6 0 66 Added 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	122
Added 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	< <
Total 0 716 12 21 514 0 0 0 0 6 0 66 #22 Gayley Avenue and Le Conte Avenue Base 7 635 234 124 217 15 24 119 11 157 74 127 Added 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Total 7 635 234 124 217 15 24 119 11 157 74 127 #23 Westwood Boulevard and Le Conte Avenue Base 53 632 206 32 195 88 168 327 33 130 317 107	
#22 Gayley Avenue and Le Conte Avenue Base 7 635 234 124 217 15 24 119 11 157 74 127 Added 0 0 0 0 0 0 0 0 0 0 0 0 0 Total 7 635 234 124 217 15 24 119 11 157 74 127 #23 Westwood Boulevard and Le Conte Avenue Base 53 632 206 32 195 88 168 327 33 130 317 107	
Base 7 635 234 124 217 15 24 119 11 157 74 127 Added 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	133
Added 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.7.4
Total 7 635 234 124 217 15 24 119 11 157 74 127 #23 Westwood Boulevard and Le Conte Avenue Base 53 632 206 32 195 88 168 327 33 130 317 107	
#23 Westwood Boulevard and Le Conte Avenue Base 53 632 206 32 195 88 168 327 33 130 317 107	
Base 53 632 206 32 195 88 168 327 33 130 317 107	174
	228
Added 0 0 0 0 0 0 0 0 0 0 0	
Added 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	228
#24 Tiverton Drive and Le Conte Avenue	
Base 25 100 28 24 35 196 181 290 40 15 328 87	134
Added 0 0 0 0 0 0 0 0 0 0 0	
Total 25 100 28 24 35 196 181 290 40 15 328 87	134
#25 Hilgard Avenue and Le Conte Avenue	
Base 22 429 26 10 217 285 272 66 32 7 145 24	153
Added 0 0 0 0 0 0 0 0 0 0 0 0 0	
Total 22 429 26 10 217 285 272 66 32 7 145 24	
#26 Gayley Avenue and Weyburn Avenue	
Base 28 753 111 17 400 74 190 170 22 37 43 36	188
Added 0 0 0 0 0 0 0 0 0 0 0	
Total 28 753 111 17 400 74 190 170 22 37 43 36	
#27 Westwood Boulevard and Weyburn Avenue	
Base 70 659 43 6 322 29 47 56 31 33 43 13	
Added 0 0 0 0 0 0 0 0 0 0 0	
Total 70 659 43 6 322 29 47 56 31 33 43 13	

Total

Wed Jul 23, 2008 16:53:42

Page 2-4

59

Existing AM Peak Wed Jul 23, 2008 16:53:42 Page 2-5

78 74 480 71 2863

0

71 2863

0 0

78 74 480

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA. LONG BEACH. CA

0

0 0

0

#45 Sepulveda Boulevard and Ohio Avenue

0

0 0

Added

Base 96 454 126 38 495 82 174 695

Total 96 454 126 38 495 82 174 695

0 0

UCLA NHIP and Amended LRDP Traffic Study

Los Angeles, CA Existing 2008 (Unsignalized as Signalized) AM Peak ______ Volume Northbound Southbound Eastbound Westbound Total Type Left Thru Right Left Thru Right Left Thru Right Left Thru Right Volume #28 Tiverton Drvie and Weyburn Avenue Base 13 106 7 27 0 32 26 36 0 0 34 17 298 0 0 0 Ω 0 0 0 13 106 7 27 0 32 26 36 0 34 17 298 Total #29 Hilgard Avenue and Weyburn Avenue Base 29 461 5 13 251 39 0 0 0 0 0 0 34 27 63 7 26 2.7 982 0 0 0 Added 0 Ω Ω 0 29 461 5 13 251 39 34 27 63 Total #30 Westwood Boulevard and Kinross Avenue Base 53 768 25 12 344 36 55 30 5 45 24 59 1456 Added 0 0 0 0 0 0 53 768 25 12 344 Ω 0 0 Ω 0 0 Ω 0

#31 Westwood Boulevard and Lindbrook Drive 3 796 216 20 316 10 29 130 0 0 0 0 0 0 0 0 45 93 131 1816 Base Added 0 0 0 0 0 0 0 3 796 216 20 316 10 29 130 45 93 131 Total 27 1816 #32 Glendon/Tiverton/Lindbrook 59 219 392 8 24 43 36 319 0 0 0 0 0 0 0 0 21 157 170 39 1487 Rase Added 0 0 0 Ω 0 Total 59 219 392 8 24 43 36 319 21 157 170 39 1487

36

55 30

24

5 45

53 2037 927

7205

#33 Sepulveda Boulevard and Constitution Avenue 2 0 2 1757 0 0 2 0 Ω 0 2 1757 #34 San Vicente Bouevard and Wilshire Bouelvard

Added 0 0 0 0 0 0 0 Ω 0 0 Ω 0 Total 98 204 111 1380 290 18 66 1956 65 53 2037 927 #35 Sepulveda Boulevard and Wilshire Boulevard Base 156 240 263 279 637 283 71 2737 134 110 2543 Added 0 0 0 0 0 0 0 0 0 0 0 62 7515 Ω Ω

Base 98 204 111 1380 290 18 66 1956 65

Total 156 240 263 279 637 283 71 2737 134 110 2543 62 7515 #36 Veteran Avenue and Wilshire Boulevard

Existing AM Peak

Wed Jul 23, 2008 16:53:42

Page 2-6

Existing AM Peak Wed Jul 23, 2008 16:53:42

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA

Existing 2008 (Unsignalized as Signalized) AM Peak

Volume	No	rthbo	und	Sc	outhbo	nund	Ea	astbo	ınd	We	estbo	ınd	Total
													Volume
-21-			5									5	
#46 Vet	eran	Avenu	e and	Ohio A	Avenue								
Base	33	325	35			100	268	692	37	25	476	41	2194
Added		0			0	0		0		0			0
Total				14		-	268			-	-		
10001	55	323	55			100	200	0,2	5,	23	1,0		2271
#47 Wes	twood	Boul	evard	and Oh	nio As	zenije							
Base		1179	48			59	169	278	91	64	266	50	2821
Added						0	0		0	0			0
Total	124	1179	48	0 32	461	59	169		91	64			2821
10001				32	101		200	2.0		0.1	200	50	2021
#48 Saw	tella	Boul	evard	and Sa	anta N	Monica	Boulles	zard					
Base		454	206	94		29		1181	21	119	1704	61	4110
Added		0			0			0			0		
Total		454		94		29		1181			1704		4110
IOCUI	00	151	200	7.1	130	2,5	23	1101	21	117	1,01	01	1110
#49 San	Diec	to Fuzz	SR R	amne ar	nd Sar	nta Mon	ica Bo	111 ev:	ard				
				720			.ica b			596	1462	0	4922
Added				720				0					
Total									418			0	
IOCAI	U	U	U	720	201	401	U	1011	410	330	1402	U	4722
#50 San	Diec	to Fuzz	NR R	amne ar	nd Sar	nta Mon	ica Bo	111 ev	ard				
Base		384								0	1318	324	5243
Added	0	0	, 20	0	0	0	0.0	1121	0	0	0	0	
Total	675	384	720	0	0	0	398	1424	0	0	1318	324	
IOCUI	075	501	720	O	Ü	0	370	1121	· ·	· ·	1310	521	3213
#51 Sep	ulveć	a Bou	levaro	d and 9	Santa	Monica	Boule	avard					
Base		832	135			184	99			97	1281	140	5938
Added	0	0	0	0	0	0	0	0		0	0		0
Total		832	135				99				1281	-	5938
IOCUI	200	032	155	117	, 55	101	,,,	1,01	301	,	1201	110	3230
#52 Vet	eran	Διτεπιι	e and	Santa	Monio	ra Roul	evard						
Base			54		146	66		1839	24	63	1320	60	4134
Added		0			0					0			
Total	64		54			66		1839		-	1320	-	
IOCUI	01	203	51	132	110	00	101	1037	21	03	1320	00	1131
#53 Wes	+ wood	Boul	arrand	and Ca	nta N	Ioniaa	Poul les	rard					
Base		1008	73			75		1794	97	128	1288	129	5569
Added		0	, 0			0	140			0	0		
	91		73								1288		5569
iULai	DΙ	1000	13	210	526	13	T#0	1/24	<i>51</i>	120	1200	129	5509
#54 Mul	holls	nd Dr	1170 27	nd Poss	nomare	Poad							
Base	195	0	75			0 Road	0	713	409	184	510	0	2095
Added						0	0	,13	409				
Total	105	0	75	0	0	0	0	712	409	184		0	
iocai	123	U	/ 5	U	U	U	U	113	409	104	219	U	2095

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

UCLA NHIP and Amended LRDP Traffic Study

Los Angeles, CA
Existing 2008 (Unsignalized as Signalized) AM Peak

Page 2-7

		LAL	berng	2000 (011019	marrac	u ub L	rgnar	IZCU,	mi i cc	en e		
Volume			und			und			nd			und	
Type	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Volume
#55 Ro	scomar	e Roa	d and	Strade	ella R	oad/Li	nda Fl	ora D	rive				
Base	12	74	8	90	423	16	16	1	38	9	0	32	719
Added		0	0	0	0	0	0	0	0	0	0	0	0
Total	12	74	8	90	423	16	16	1	38	9	0	32	719
#56 Be													
Base	30	119	0	0		20	11	0	40	0	0	0	719
Added	0	0	0		0	0	0	0	0	0	0	0	0
Total	30	119	0	0	499	20	11	0	40	0	0	0	719
#57 Be	verlv	Glen	Roules	zard ar	d Mul	hollan	d Driv	re.					
Base	59	199	70	765	747	129	42	559	38	42	304	292	3246
Added	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	59	199	70		747	129	42	559	38	42	304	-	3246
#58 Be	verly	Glen	Boulev	ard ar	nd Gre	endale	Drive	2					
Base	0	293	13	128	923	0	0	0	0	78	0	47	1482
Added	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	0	293	13	128	923	0	0	0	0	78	0	47	1482
#283 4	N5 Mar	ker	North	of Sur	cet								
Base	05 1141	0	0	01 001	0	0	0	0	0	0	0	0	0
Added	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	0	0	0	0	0	0	0	0	0	0	0	0	0
10001	Ü	Ü	Ü	Ü	Ü	Ü	ŭ	Ü		Ü	Ü		Ŭ
#284 4	05 Mar	ker,	b/w Co	onstitu	tion	and Su	nset						
Base	0	0	0	0	0	0	0	0	0	0	0	0	0
Added	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	0	0	0	0	0	0	0	0	0	0	0	0	0
#285 4	N5 Mar	ker c	ı/o Sar	nta Mor	nica P	el vd							
Base	05 Mai	0	0 Dai	0	0	,1 va 0	0	0	0	0	0	0	0
Added	0	0	0		0	0	0	0	0	0	0	0	0
Total	0	0	0	0	0	0	0	0	0	0	0	0	0

Existing AM Peak

Wed Jul 23, 2008 16:53:42

Page 3-1

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA

Existing 2008 (Unsignalized as Signalized) AM Peak

Impact Analysis Report Level Of Service

Intersection	Base Del/ V/	Future Del/ V/	Change in
# 14 Levering Avenue and Montana Av	LOS Veh C E xxxxx 0.955	LOS Veh C E xxxxx 0.955	+ 0.000 V/C
# 28 Tiverton Drvie and Weyburn Ave	A xxxxx 0.192	A xxxxx 0.192	+ 0.000 V/C
# 40 Malcolm Avenue and Wilshire Bo	C xxxxx 0.718	C xxxxx 0.718	+ 0.000 V/C
# 55 Roscomare Road and Stradella R	A xxxxx 0.504	A xxxxx 0.504	+ 0.000 V/C
# 56 Bellagio Road and Chalon Road	A xxxxx 0.500	A xxxxx 0.500	+ 0.000 V/C

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

Existing AM Peak

Wed Jul 23, 2008 16:53:42

Page 4-1

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Existing 2008 (Unsignalized as Signalized) AM Peak

*********		lar 21	2 Plan	ning N	Method		Volu	me Alt	ternati		*****	*****
Intersection									******	****	*****	******
Cycle (sec): Loss Time (sec) Optimal Cycle	ec):		0 (Y+R	=4.0 s	sec)	Averag	re Dela	ay (se	ec/veh)	:	XXXX	CXX
Street Name: Approach: Movement:	Nor L -	Le th Bo	vering und - R	Avent Sot L	ie ith Bo - T	ound - R	Ea L	ast Bo T	Montana ound - R	Avenu We	ue est Bo - T	ound - R
Control: Rights: Min. Green: Lanes:	[q2 0 0 0	lit Pha Inclue 0 1!	ase de 0	Sp] 0 0 (lit Pl Inclu 0	nase ude 0 0 0	0	Permit Inclu 0 0 0	tted ude 0 1 0	0 0	Permit Inclu 0 1 0	ited ide 0 0 0
Volume Module Base Vol: Growth Adj: Initial Bse: User Adj: PHF Adj: PHF Volume: Reduct Vol: Reduced Vol: PCE Adj: MLF Adj: FinalVolume:	1.00 37 1.00 37 1.00 1.00 37 0 37 1.00 1.00	Count 0 1.00 0 1.00 1.00 0 0 0 1.00 1.00 0 0 0	Date: 3 1.00 3 1.00 1.00 3 0 3 1.00 1.00 3	7 Fek 0 1.00 0 1.00 1.00 0 0 0 1.00 1.00	0 2008 0 1.00 1.00 1.00 0 0 0 0 0 0 1.00 1.00	3 << 80 0 1.00 0 1.00 1.00 0 0 0 1.00 1.00	00-900 0 1.00 0 1.00 1.00 0 0 0 1.00 1.00	761 1.00 761 1.00 1.00 761 0 761 1.00 1.00 761	339 1.00 339 1.00 1.00 339 0 339 1.00 1.00 339	6 1.00 6 1.00 1.00 6 0 6 1.00 1.00	155 1.00 155 1.00 1.00 155 0 155 1.00 1.00	0 1.00 0 1.00 1.00 0 0 0 1.00 1.00
Saturation F Sat/Lane: Adjustment: Lanes: Final Sat.:	low Mo 1200 1.00 0.92 1110	dule: 1200 1.00 0.00	1200 1.00 0.08 90	1200 1.00 0.00 0	1200 1.00 0.00 0	1200 1.00 0.00 0	1200 1.00 0.00 0	1200 1.00 0.69 830	1200 1.00 0.31 370	1200 1.00 0.04 45	1200 1.00 0.96 1155	1200 1.00 0.00 0
Capacity Anal Vol/Sat: Crit Volume: Crit Moves:	lysis 0.03	Modul 0.00	e: 0.03	0.00					'	0.13		

Capacity Analysis Module:

Existing AM Peak

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA

Existing 2008 (Unsignalized as Signalized) AM Peak

Level Of Service Computation Report Circular 212 Planning Method (Base Volume Alternative)

******************* Intersection #28 Tiverton Drvie and Weyburn Avenue ************************ Cycle (sec): 100 Critical Vol./Cap.(X): 0.192 Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/veh): xxxxxx Optimal Cycle: 18 Level Of Service: Street Name: Tiverton Drive Weyburn Avenue Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R Control: Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 0 0 1! 0 0 0 0 1! 0 0 0 1 0 0 0 0 0 1 0 Volume Module: >> Count Date: 6 Feb 2008 << 700-800 Base Vol: 13 106 7 27 0 32 26 36 0 0 34 17 Initial Bse: 13 106 7 27 0 32 26 36 0 0 34 17 PHF Volume: 13 106 7 27 0 32 26 36 0 0 34 17 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 13 106 7 27 0 32 26 36 0 0 0 0 34 0 17 FinalVolume: 13 106 7 27 0 32 26 36 0 0 34 17 Saturation Flow Module: Lanes: 0.10 0.84 0.06 0.46 0.00 0.54 0.42 0.58 0.00 0.00 0.67 0.33 Final Sat.: 124 1010 67 549 0 651 503 697 0 0 800 400

-----|----|-----|------|

 Vol/Sat:
 0.11
 0.10
 0.10
 0.05
 0.00
 0.05
 0.05
 0.05
 0.00
 0.00
 0.04
 0.04

 Crit Volume:
 126
 27
 26
 51

 Crit Moves:

	UCLA	NHIP		ded LRDP ngeles, (c Stud	dy			
	Existing		Unsignal	ized as S	Signali:		AM Pea	k		
	т.			e Computa						
(Circular 21							ve)		
******							*****	*****	****	*****
Intersection	#40 Malcol	m Aven	ue and W ******	ilshire E	Bouleva:	rd * * * * * *	*****	*****	****	*****
Cycle (sec):	10	0		Critic	cal Vol	./Cap	.(X):		0.7	718
Loss Time (se	ec):	0 (Y+R	=4.0 sec) Averag	ge Delay	y (se	c/veh)	:	XXXX	xxx
Loss Time (se Optimal Cycle	e: 5	1		Level	Of Ser	vice:				C
Street Name: Approach:	North Bo	und	South	Bound	Eas	st Bo	und	We	st Bo	ound
Movement:										
Control: Rights: Min. Green: Lanes:	Permit	tea de	Per	mitted clude	Ρ.	ermit: Inclu	tea 1e	Р	Tncl	tea ide
Min. Green:	0 0	0	0	0 0	0	0	0	0	0	0
Lanes:	0 0 1!	0 0	0 0	1! 0 0	1 0	2	1 0	1 0	2	1 0
Volume Module			7 Ech 2	000 44 7						
Base Vol:	3 0	45	7 FED 2	1 40	65	1691	28	22	2184	53
Growth Adj:	1.00 1.00	1.00	1.00 1.	00 1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse: User Adj:	3 0	45	3	1 40	65	1691	28	22	2184	53
User Adj: PHF Adj:	1.00 1.00	1.00	1.00 1.	00 1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Volume:	3 0	45	3	1 40	65	1691	28	22	2184	53
PHF Volume: Reduct Vol: Reduced Vol:	0 0	0	0	0 0	0	0	0	0	0	0
Reduced Vol:	3 0	45	3	1 40	65	1691	28	22	2184	53
PCE Adj: MLF Adj:	1.00 1.00	1.00	1.00 1.	00 1.00	1.00	1.00	1.00	1.00	1.00	1.00
FinalVolume:	3 0	45	3	1 40	65	1691	28	22	2184	53
Saturation F										
Sat/Lane: Adjustment:										
Lanes:	0.06 0.00	0.94	0.07 0.	02 0.91	1.00	2.95	0.05	1.00	2.93	0.07
Final Sat.:	75 0	1125	82	27 1091	1200	3541	59	1200	3515	85
Capacity Anal Vol/Sat:			0 04 0	04 0 04	0.05.0	1 48	0 48	0 02	0 62	0.62
Crit Volume:	0.04 0.00	48	3	0.04	65	J. 1 0	0.40	0.02	0.02	746
Crit Volume: Crit Moves:		****	****		***					****

0

Existing AM Peak

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Existing 2008 (Unsignalized as Signalized) AM Peak

Level Of Service Computation Report

Circular 212 Planning Method (Base Volume Alternative) ************************ Intersection #55 Roscomare Road and Stradella Road/Linda Flora Drive

************************** 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): xxxxxx Optimal Cycle: 29 Level Of Service:

Street Name: Roscomare Road Stradella Road/Linda Flora Drive Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R Control: Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 0 0 1! 0 0 0 0 1! 0 0 0 0 1! 0 0 0 0 1! 0 0 Volume Module: >> Count Date: 21 Feb 2008 << 800-900 Base Vol: 12 74 8 90 423 16 16 1 38 9 0 32 Initial Bse: 12 74 8 90 423 16 16 1 38 9 0 32

32 FinalVolume: 12 74 8 90 423 16 16 1 38 9 0 32 -----|----|-----| Saturation Flow Module: Lanes: 0.13 0.79 0.08 0.17 0.80 0.03 0.29 0.02 0.69 0.22 0.00 0.78 Final Sat: 153 945 102 204 960 36 349 22 829 263 0 937

PHF Volume: 12 74 8 90 423 16 16 1 38 9 0 32

Capacity Analysis Module: Vol/Sat: 0.08 0.08 0.08 0.44 0.44 0.44 0.05 0.05 0.05 0.03 0.00 0.03 Crit Volume: 12 529 55 9
Crit Move: **** **** **** Crit Moves: ****

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA. LONG BEACH. CA

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Existing 2008 (Unsignalized as Signalized) AM Peak ______ Level Of Service Computation Report Circular 212 Planning Method (Base Volume Alternative) ******************* Intersection #56 Bellagio Road and Chalon Road ****************** 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): xxxxxx Optimal Cycle: 37 Level Of Service: Street Name: Bellagio Road Chalon Road Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - F T. - T - R Control: Permitted Permitted Split Phase Split Phase Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 0 1 0 0 0 0 0 0 1 0 0 0 1! 0 0 0 0 0 Volume Module: >> Count Date: 21 Feb 2008 << 745-845 Base Vol: 30 119 0 0 499 20 11 0 40 0 0 Initial Bse: 30 119 0 0 499 20 11 0 40 0 0 PHF Volume: 30 119 0 0 499 20 11 0 40 0 0 FinalVolume: 30 119 0 0 499 20 11 0 40 0 0 -----|-----|------| Saturation Flow Module: Lanes: 0.20 0.80 0.00 0.00 0.96 0.04 0.22 0.00 0.78 0.00 0.00 0.00 Final Sat: 242 958 0 0 1154 46 259 0 941 0 0 -----| Capacity Analysis Module: Crit Volume: 30 519 51 0 Crit Moves: ****

Existing PM Peak

Wed Jul 23, 2008 16:54:02

Page 1-1

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA

Existing 2008 (Unsignalized as Signalized) PM Peak

Scenario Report

Existing PM Peak Scenario:

Existing PM Peak Command: Volume: Existing PM

Geometry: Existing

Impact Fee: Default Impact Fee

PM Peak Trip Generation: Trip Distribution: Project Paths: Project

Routes: Default Route

Configuration: Existing

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

Existing PM Peak

Wed Jul 23, 2008 16:54:02

Page 2-1

UCLA NHIP and Amended LRDP Traffic Study

Los Angeles, CA

Existing 2008 (Unsignalized as Signalized) PM Peak

Turning Movement Report PM Peak

Volume Type		rthbo Thru l			outhbo Thru			astbou Thru			estbou Thru		Total Volume
#1 Sepi													
Base		1621	226	3		365	558	102	18	65	96	7	3944
Added	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	4	1621	226	3	879	365	558	102	18	65	96	7	3944
#2 Chu	rch La	ne and	d San	Diego	Fwy S	SB On/O	off Ran	mp					
Base	6	636	249	96	456	0	5	3	9	900	1	26	2387
Added	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	6	636	249	96	456	0	5	3	9	900	1	26	2387
#3 Chu	rch La	ne and	d Suns	et Boi	ılevai	rd							
Base	126	39	77	532	92	717	407	1219	33	28	861	422	4553
Added	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	126	39	77	532	92	717	407	1219	33	28	861	422	4553
#4 San	Diego	Fwv 1	NR On/	Off Ra	amps a	and Sur	set B	oul eva	ard				
Base	97	0	83	0	0	0	0	996	870	0	1220	0	3266
Added	0	0	0	0	0	0	0	0	0.0	0	0	0	0
Total	97	0	83	0	0	0	0	996	870	0	1220	0	3266
		-		_	-	_	-			-		_	
#5 Vet													
Base	373	0	396	0	0	0	0	859	151		1347	0	3400
Added	0	0	0	0	0	0	0	0	0	0		0	0
Total	373	0	396	0	0	0	0	859	151	274	1347	0	3400
#6 Bel:	lagio	Way a	nd Sur	set Bo	ouleva	ard							
Base	261	96	30	55	6	136	333	856	82	15	1233	112	3215
Added	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	261	96	30	55	6	136	333	856	82	15	1233	112	3215
#7 West	twood	Boueva	ard an	nd Suns	set Bo	oulevar	rd						
Base	195	0	191	0	0	0	0	870	94	46	1206	0	2602
Added	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	195	0	191	0	0	0	0	870	94	46	1206	0	2602
#8 Sto	ne Can	von R	oad ar	nd Suns	set Bo	nulevar	-d						
Base	139	0	130	62	0	101		1213	124	158	978	22	3046
Added	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	139	0	130	62	0	101		1213	124	158	978	22	3046
#9 Hile	rard A	wenne	/Cona	De Oro	n Poar	and 9	Singet	Boule	avard				
Base	260	33	364	35	69	20		1145	120	158	871	7	3085
Added	200	0	0	0	0	0	0	1143	0	130	0 / 1	ó	0
Total	260	33	364	35	69	20	-	1145	120	158	871	7	3085
10001	200	55	551	55	0,5	20	5		-20		0,1	,	5005

Existing PM Peak

Wed Jul 23, 2008 16:54:02

Page 2-2

Existing PM Peak Wed Jul 23, 2008 16:54:02

UCLA NHIP and Amended LRDP Traffic Study

Page 2-3

Los Angeles, CA Existing 2008 (Unsignalized as Signalized) PM Peak

													Total Volume
1/20	2010	1111 0	1113110	Dere		1(19110	2020	1111 0	1113110	2010	1111 0	1(19110	VOIGING
													n Split
Base	25	727	14		458	11	19		26	46			1574
Added	0		0						0	0	0		
Total	25	727	14	28	458	11	19	31	26	46	66	123	1574
#20 Hi													
Base	97		31			39	195		150	27	51		
Added	0	0	0		0	0	0		0	0	0		0
Total	97	561	31	72	537	39	195	231	150	27	51	47	2038
#21 Hi													
	0		8		852	0			0		0		1585
Added		0			0								
Total	0	628	8	64	852	0	0	0	0	10	0	23	1585
#22 Gar													
Base	61		204		1037	35		127			300		
Added			0		0	0	0		0		0	0	0
Total	61	400	204	190	1037	35	14	127	12	200	300	157	2737
#23 We													
Base		329	153		448	212		409			396		2566
Added			0			0		0		-	-	-	-
Total	100	329	153	103	448	212	90	409	102	162	396	62	2566
#24 Ti													
Base	35	68	41			194		484	130	22	453		
Added	0	0	0			0	0					-	
Total	35	68	41	92	80	194	128	484	130	22	453	39	1766
#25 Hi													
Base		286	10			368	322		81	10	97		1961
Added			0			0	0	-	-	-		-	0
Total	56	286	10	25	470	368	322	208	81	10	97	28	1961
#26 Gay													
Base	59		205			281		166	32	110	166	88	2697
Added	0	0	0		0	0	0			0		0	
Total	59	495	205	63	944	281	88	166	32	110	166	88	2697
#27 Wes	stwood	l Boul											
Base	146	646	110	40	666	100		144		96	219	48	2431
Added	0	0	0		0	0	0	0	0	0	0	0	0
Total	146	646	110	40	666	100	79	144	137	96	219	48	2431

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA

Existing 2008 (Unsignalized as Signalized) PM Peak

													Total
Type	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Volume
#10 Bes	verly	Glen	Boulev	ard a	nd Sui	nset Bo	uleva	rd					
Base	222	167	581	104	68	19	16	1286	60	389	960	79	3951
Added	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	222	167	581	104	68	19	16	1286	60	389	960	79	3951
#11 Bev	verly	Glen	Boulev	ard a	nd Sui	nset Bo	uleva	rd (Ea	ast I/S	;)			
Base	0	0	0	115	0	364	862	1226	0	0	908	126	3601
Added	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	0	0	0	115	0	0 364	862	1226	0 0 0	0	908	126	3601
#12 Ser	oulve	da Boi	ulevard	l and s	San D	iego Fw	v NB (Off-Ra	ame				
Base	. 0	1601	0	0	855	0	92	0	25	0	0	0	2573
Added	0	0	0	0	0	0	0	0	0	0	0	0	2573 0
						0		0	25	0	0	0	2573
#13 Ser	oulve	da Boi	ulevard	l and I	Montai	na Aven	ue						
Base	127	1404	117	56	629	15	3	91	114	161	189	254	3160
Added		0	0	0	0	0	0	- 0		0	0	0	0
Total	127	1404	117	56	629	15 0 15	3	91	114	161	189	254	3160
#14 Lev	verin	a Avei	nue and	Monta	ana A	venue							
Base Added	253	0	8	0	0	0	0	322	106	1	506	0	1196
Added	0	0	0	0	0	0	0	0	0	1	0	0	0
Total	253	0	8	0	0	0	0	322	106	1	506	0	1196
#15 Vet	teran	Aven	ue and	Montai	na Av	enue/Ga	ley A	venue					
Base						49	115	158	52	22	419	284	1983
		0	0	0	0	0	0	0	52 0	0	0	0	0
Added Total	54	452	26	58	294	0 49	115	158	52	22	419		
#16 Ga	ley A	venue	and St	rathmo	ore P	lace							
Base	22	363	171	121	156	13	8	102	18	319	152	336	1781
Added	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	22	363	171	121	156	13	8	102	18	319	152	336	1983 1781 0 1781
Base	174	547	40	22	351	5	0	41	83	52	96	68	1479
Added	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	174	547	40	22	351	venue 5 0 5	0	41	83	52	96	68	1479
#18 Hi	lgard	Aven	ue and	Wyton	Drive	e							
Base	117	623	43	33	374	23	50	110	320	20	26	12	1751
Base Added	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	117	623	43	33	374	23	50		320	20	26	12	1751

Wed Jul 23, 2008 16:54:02

Page 2-4

Existing PM Peak Wed Jul 23, 2008 16:54:02

UCLA NHIP and Amended LRDP Traffic Study

Los Angeles, CA

Existing 2008 (Unsignalized as Signalized) PM Peak

Page 2-5

UCLA NHIP and Amended LRDP Traffic Study

Los Angeles, CA

Existing 2008 (Unsignalized as Signalized) PM Peak

Volume	No	rthbo	und	S	outhbo	nund	Ea	astbo	ınd	We	estbo	ınd	Total
Type	Left.	Thru	Right.	Left	Thru	Right.	Left	Thru	Right	Left	Thru	Right.	Volume
-21-			5										
#28 Tiv	rerton	Drwi	e and	Weyhu	rn Atr	eniie							
Base	22	61	45	99	Ω	162	67	169	1	1	95	31	753
Added	22	01	10	0	0	0	0,	100	1		0	0	
Total	22	c 1	4.5	99	0	160	67						
IOLAI	22	0.1	45	99	U	102	67	109	1	T	95	31	/53
#29 Hil	المسمسا	7		Til on alonn	7								
						enue Fo	55	0.0	167	1.0	20	20	1412
Base	49	343	21	26	534	50	55	99	167			20	1413
Added Total	0	0	U	0		- 0		0 99	0	0			0
Total	49	343	21	26	534	50	55	99	167	13	36	20	1413
#30 Wes													
Base		739	34	37	744	118	96		94	16			
Added		0		0	0	0	0	0		0	0		
Total	78	739	34	37	744	118	96	215	94	16	128	40	2339
#31 Wes					indbr	ook Dri	ve						
Base	1	711	173	28	815	15	30	130	54	89	242	42	2330
Added	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	1	711	173	28	815	15	30	130	0 54	89	242	42	2330
#32 Gl∈	endon/	Tiver	ton/L	indbro	ok								
Base	30	125	184	36	124	153	31	224		395		53	
Added	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	30	125	184	36	124	153	31	224	18	395	257	0 53	1630
#33 Ser	oulved	a Bou	levaro	d and (Const	itution	Aveni	ie.					
Base	19	1039	2	4	824	100		2	76	1.0	5	5	2617
Base Added	-0	0	0	0	0	- 0	0			0	0	5 0	0
Total	19	1039	2	4	824	100	531			10	5	5	2617
10041		1000	-	-	021	100	331	~	, ,				2017
#34 Sar	Vice	nte B	01167721	rd and	Wilel	nire Bo	nelva.	rd					
Base	95	371	230	1066			10		20	126	1718	788	5776
Base Added Total	7.5	0,1	230	1000	221	1/			0	120	1,10	0	
Total	0.5	271	220	1066	221	0 47	10		20		1718		5776
IOCAI	23	3/1	230	1000	321	1/	10	204	20	120	1/10	700	3770
#35 Sep	1	- D	1		at Lab	Da	1	a					
	u i vea	a BOU	revaro	100	42E	TTE BOU	140	1027	20	200	2201	160	6366
Base	143	222	∠59	T 0 8	435	130 0	140	103/	39	290	2281	169 0	0366
Added							140						
Total	123	555	259	T08	435	130	140	T83./	39	290	2281	169	6366
						,	,						
#36 Vet								0000		4.0	0.40-	0.5	054-
Base		645	140	78	1022	1528	402	2072	46	42	2421	29	
Added Total	0	0	0	_ 0	0	0	0	0	0	. 0	0	0	0
Total	222	645	140	78	1022	1528	402	2072	46	42	2421	29	8647

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

______ Volume Northbound Southbound Eastbound Westbound Total Type Left Thru Right Left Thru Right Left Thru Right Left Thru Right Volume #37 Gayley Avenue and Wilshire Boulevard Base 212 290 102 130 450 647 332 1840 92 38 1641 81 5855 Total 212 290 102 130 450 647 332 1840 92 38 1641 81 5855 #38 Westwood Boulevard and Wilshire Boulevard Base 150 475 178 164 601 236 209 1685 237 164 1534 103 5736 Added 0 0 0 0 0 0 0 0 0 0 0 Total 150 475 178 164 601 236 209 1685 237 164 1534 103 5736 #39 Glendon Avenue and Wilshire Bouelvard Base 57 205 46 130 271 109 117 1918 36 18 1483 81 4471 Added 0 0 0 0 0 0 0 0 0 0 0 Total 57 205 46 130 271 109 117 1918 36 18 1483 81 4471 #40 Malcolm Avenue and Wilshire Boulevard Base 3 1 40 11 1 50 26 1984 57 16 1590 31 3810 Added 0 0 0 0 0 0 0 0 0 0 0 0 Total 3 1 40 11 1 50 26 1984 57 16 1590 31 3810 #41 Westholme Avenue and Wilshire Boulevard Base 44 74 54 93 217 11 37 1880 63 52 1566 120 4211 Added 0 0 0 0 0 0 0 0 0 0 0 0 0 Total 44 74 54 93 217 11 37 1880 63 52 1566 120 4211 #42 Warner Avenue and Wilshire Boulevard Base 36 23 32 85 65 42 33 1961 27 10 1726 49 4089

Base 155 459 54 54 392 53 114 1684 261 101 1598 47 4972

Total 155 459 54 54 392 53 114 1684 261 101 1598 47 4972

0 0

94 397

0 0

0 0 0 0

0 0

31 94 524 50 2057

43 68 477 36 3205

0 0

50 2057

0

Λ

0

31 94 524

0

0

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

0

Total 145 659 127 114 848 197 94 397 43 68 477 36 3205

#43 Beverly Glen Boulevard and Wilshire Boulevard

Base 56 89 93 74 437 120 53 436 Added 0 0 0 0 0 0 0 0

Total 56 89 93 74 437 120 53 436

0 0

Added 0 0 0 0 0 0

#44 Sawtelle Boulevard and Ohio Avenue

#45 Sepulveda Boulevard and Ohio Avenue Base 145 659 127 114 848 197

0

0 0

Added

Existing PM Peak

Wed Jul 23, 2008 16:54:02

Page 2-6

Existing PM Peak Wed Jul 23, 2008 16:54:02 Page 2-7

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA

Existing 2008 (Unsignalized as Signalized) PM Peak

Volume	No	rthbo	und	S	outhbo	ound	Ea	astbo	und	We	estbo	und	Total Volume
1700	DCIC	IIII u	KIGHC	пстс	IIII u	Kigiic	пстс	IIII u	Rigire	DCIC	IIII u	Rigiic	VOIAIIC
#46 Vet	oran	Arronii	o and	Ohio	Arronii								
Base			45		368	156	145	502	46	145	480	43	2301
Added											0	0	0
Total	26	328	45	0 17	368	156	145	502	0 46	145	480	0 43	2301
#47 Wes		Da 1		a m al Ol	hi								
#47 wes		859	evard 41		1223	116		232	70	9.5	246	41	3146
Added		0				0	0	232	79 0	0.5	240	0	0
Total				44			89			85			
10001		000			1223	110	0,5	232		0.5	210		3110
#48 Saw							Boule	vard					
	74		393						31		1202		
Added				0		0			0				
Total	74	359	393	120	531	31	14	1288	31	169	1202	68	4280
#49 San	Dieg	o Fwv	SB Ra	amps ai	nd Sai	nta Mor	nica B	oulev	ard				
Base									248	560	1179	0	4664
Added	0	0	0	0	0	0	0	0	0				
Added Total	0	0	0	377	530	193	0	1577	248	560	1179	0	4664
#50 San	Diog	o Evar	MD D		nd Car	nta Mar	nian B	o] o	and				
Base		504	410	n ayını	nu sai	nca Moi	11Ca B	1368	aru n	0	1352	474	5054
Added		0	410	0	0	0	420	1300	0	0	1332	1/1	0
Total		504	410	0	0	0	498	1368	0	0	1352	474	5054
#51 Sep Base	ulved	a Bou	levar	d and	Santa	Monica	a Boule	evard					
Base	166	796	203	146	1123	200	145	1404	304	190	1350	162	
Added	0	0	0	0	0	0	0	0	0 304	0	0	0	
Total	166	796	203	146	1123	200	145	1404	304	190	1350	162	6189
#52 Vet	eran	Avenu	e and	Santa	Moni	ca Boul	levard		31 0 31				
Base	62	284	46	123	534	59 0	174	1549	31	89	1412	86	4449
Added		0	0	0	0	0	0	0	0	0	0	0	0
Total	62	284	46	123	534	59	174	1549	31	89	1412	86	4449
#53 Wes	twood	Poul	orrand	and C	anta I	Monian	Boule.	rand					
Base			evaru 99		1358			1424	131	105	1376	230	6269
		0				0			0			230	
Total	106		99			122					1376		
10041	100	507	,,,	101	1550	122	101	_ 127	131	173	13,0	250	0200
#54 Mul													
Base			145	0	0	0	0	321	102	45		0	
Added Total	0	0	0	0	0	0	0	0	0			0	0
Total	288	0	145	0	0	0	0	321	102	45	593	0	1494

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

UCLA NHIP and Amended LRDP Traffic Study

Los Angeles, CA
Existing 2008 (Unsignalized as Signalized) PM Peak

		EX:	isting	2008 (Unsig	gnalize	a as	signa.	11zea)	PM Pea	ak 		
Volume			ound			ound			und		estbo		Total
Type	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Volume
#55 Ro	scomaı	re Roa	ad and	Strade	ella 1	Road/Li	nda F	lora 1	Drive				
Base	22	390	6	37	58	12	14	0	10	6	1	59	615
Added	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	22	390	6	37	58	12	14	0	10	6	1	59	615
#56 Be													
Base	67	508	0	0	98	24	11	0	12	0	0	0	720
Added	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	67	508	0	0	98	24	11	0	12	0	0	0	720
#57 Be	verly	Glen	Boule	vard ar	nd Mu	lhollan	d Dri	<i>r</i> e					
Base	40	772	81	206	359	36	51	194	37	45	535	704	3060
Added	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	40	772	81	206	359	36	51	194	37	45	535	704	3060
#58 Be	verly	Glen	Boule	vard ar	nd Gre	eendale	Drive	2					
Base	0	1084	9	62	413	0	0	0	0	44	0	220	1832
Added	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	0	1084	9	62	413	0	0	0	0	44	0	220	1832
#283 4	05 Mai	rker,	North	of Sur	set								
Base	0	0	0	0	0	0	0	0	0	0	0	0	0
Added	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	0	0	0	0	0	0	0	0	0	0	0	0	0
#284 4	05 Mai	rker,	b/w Co	onstitu	tion	and Su	nset						
Base	0	0	0	0	0	0	0	0	0	0	0	0	0
Added	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	0	0	0	0	0	0	0	0	0	0	0	0	0
#285 4	05 Mai	rker :	s/o Sar	nta Mor	nica 1	31vd							
Base	0	0	0	0	0	0	0	0	0	0	0	0	0
Added	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	0	0	0	0	0	0	0	0	0	0	0	0	0

Existing PM Peak

Wed Jul 23, 2008 16:54:02

Page 3-1

UCLA NHIP and Amended LRDP Traffic Study

Los Angeles, CA

Existing 2008 (Unsignalized as Signalized) PM Peak

Impact Analysis Report Level Of Service

Intersection	Base Del/ V/	Future Del/ V/	Change in
# 14 Levering Avenue and Montana Av	LOS Veh C B xxxxx 0.640	LOS Veh C B xxxxx 0.640	+ 0.000 V/C
# 28 Tiverton Drvie and Weyburn Ave	A xxxxx 0.434	A xxxxx 0.434	+ 0.000 V/C
# 40 Malcolm Avenue and Wilshire Bo	B xxxxx 0.626	B xxxxx 0.626	+ 0.000 V/C
# 55 Roscomare Road and Stradella R	A xxxxx 0.446	A xxxxx 0.446	+ 0.000 V/C
# 56 Bellagio Road and Chalon Road	A xxxxx 0.498	A xxxxx 0.498	+ 0.000 V/C

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

Existing PM Peak

Wed Jul 23, 2008 16:54:02

Page 4-1

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA

Existing 2008 (Unsignalized as Signalized) PM Peak

Level Of Service Computation Report

Level Of Service Computation Report Circular 212 Planning Method (Base Volume Alternative)												

Intersection #14 Levering Avenue and Montana Avenue												
Cycle (sec): Loss Time (sec) Optimal Cycle		10	0			Critic	al Vo	l./Car	o.(X):		0.6	540
Loss Time (se	ec):		0 (Y+R	=4.0 8	sec)	Averag	e Dela	ay (se	ec/veh)	:	XXXX	xx
Optimal Cycle	∍:	5	2			Level	Of Ser	rvice	:			В
********	****	*****	*****	****	*****	*****	****	****	*****	****	*****	*****
Street Name: Approach: Movement:		Le	vering	Aveni	ıe			ľ	Montana	Aveni	ıe	
Approach:	No:	rth Bo	und	Sot	ith Bo	ound	Εa	ast Bo	ound	We	est Bo	ound
Movement:	L	- T	- R	, L -	- T	- R	, L -	- T	- R	, L -	- T	- R
Control: Rights: Min. Green:												
Control:	Sp	lit Pn	ase	Sp.	Lit Pr	lase		ermit	tea		ermit	tea
Min Croon:	0	inciu	iae	0	Incli	iae	0	Incli	aae o	0	Incli	iae
Lanes:	0	n 1 i	n n	0 0	ר ח	n n	0 0	ר ח	1 0	η .	ı n	0
	l		1	1		I	1			1		
Volume Module	: >: >>	Count	Date:	7 Feb	2008	3 << 50	0-600		1	1		1
Base Vol:	253	Ω	8	0	Ω	0	0	322	106	1	506	Ω
Growth Adj: Initial Bse: User Adj: PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:	253	0	8	0	0	0	0	322	106	1	506	0
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Volume:	253	0	8	0	0	0	0	322	106	1	506	0
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
PHF Volume: Reduct Vol: Reduced Vol: PCE Adj:	253	0	8	1 00	0	1 00	1 00	322	106	1 00	506	1 00
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
FinalVolume:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
rinaivoiume.	233		1	1			1	322		1	500	I
Sat/Lane:	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200
Adjustment:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adjustment: Lanes:	0.97	0.00	0.03	0.00	0.00	0.00	0.00	0.75	0.25	0.01	0.99	0.00
Final Sat.:	1163	0	37	0	0	0	0	903	297	2	1198	0
Final Sat.: 1163 0 37 0 0 0 0 903 297 2 1198 0												
Vol/Sat:	0.22	0.00	0.22	0.00	0.00	0.00	0.00	0.36	0.36	0.42	0.42	0.00

Crit Volume: 261 0 0 507
Crit Moves: **** ****

Capacity Analysis Module:

Crit Moves: ****

UCLA NHIP and Amended LRDP Traffic Study

Existing PM Peak

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Existing 2008 (Unsignalized as Signalized) PM Peak

Level Of Service Computation Report Circular 212 Planning Method (Base Volume Alternative) ************************

Intersection #28 Tiverton Drvie and Weyburn Avenue ******************** Cycle (sec): 100 Critical Vol./Cap.(X): 0.434 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): xxxxxx Optimal Cycle: 25 Level Of Service: Street Name: Tiverton Drive Weyburn Avenue Approach: North Bound South Bound East Bound West Bound

Movement:		- T			- T			- T		_ L -		
Control:	1	Permit	ted	1	Permit	ted		Permi	tted	Pe	ermit	ted
Rights:		Inclu	de		Inclu	ıde		Incl	ude	:	Incli	ıde
Min. Green:	0	0	0	0	0	0	0	0	0	0	0	0
Lanes:	0	0 1!	0 0	0	0 1!	0 0	0	1!	0 0	0 0	1!	0 0
Volume Module	: : >>	Count	Date:	6 Fel	b 2008	<< 50	0-600					
Base Vol:	22	61	45	99	0	162	67	169	1	1	95	31
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:	22	61	45	99	0	162	67	169	1	1	95	31
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Volume:	22	61	45	99	0	162	67	169	1	1	95	31
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:	22	61	45	99	0	162	67	169	1	1	95	31
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
FinalVolume:	22	61	45	99	0	162	67	169	1	1	95	31
Saturation Fl	low Mo	odule:										
Sat/Lane:	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200
Adjustment:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

Lanes: 0.17 0.48 0.35 0.38 0.00 0.62 0.28 0.71 0.01 0.01 0.75 0.24

Final Sat.: 206 572 422 455 0 745 339 856 5 9 898 293

Crit Volume: 22 261 237 1

Los Angeles, CA Existing 2008 (Unsignalized as Signalized) PM Peak ______ Level Of Service Computation Report Circular 212 Planning Method (Base Volume Alternative) ******************* Intersection #40 Malcolm Avenue and Wilshire Boulevard ********************** Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/veh): Optimal Cycle: 39 Level Of Service: xxxxxx Street Name: Malcolm Avenue Wilshire Boulevard Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - F T. - T - R Control: Permitted Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 0 0 1! 0 0 0 0 1! 0 0 1 0 2 1 0 1 0 2 1 0 Volume Module: >> Count Date: 7 Feb 2008 << 415-515 Base Vol: 3 1 40 11 1 50 26 1984 57 16 1590 31 Initial Bse: 3 1 40 11 1 50 26 1984 57 16 1590 31 PHF Volume: 3 1 40 11 1 50 26 1984 57 16 1590 31 Reduced Vol: 3 1 40 11 1 50 26 1984 57 16 1590 31 FinalVolume: 3 1 40 11 1 50 26 1984 57 16 1590 31 Saturation Flow Module: Lanes: 0.07 0.02 0.91 0.18 0.01 0.81 1.00 2.92 0.08 1.00 2.94 0.06 Final Sat.: 82 27 1091 213 19 968 1200 3499 101 1200 3531 69 Capacity Analysis Module: Vol/Sat: 0.04 0.04 0.04 0.05 0.05 0.05 0.02 0.57 0.57 0.01 0.45 0.45 Crit Volume: 44 11 680 16
Crit Moves: **** **** ****

Existing PM Peak

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Existing 2008 (Unsignalized as Signalized) PM Peak

Level Of Service Computation Report

Circular 212 Planning Method (Base Volume Alternative) ******************* Intersection #55 Roscomare Road and Stradella Road/Linda Flora Drive ************************ Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/veh): xxxxxx Optimal Cycle: 26 Level Of Service: ************************ Street Name: Roscomare Road Stradella Road/Linda Flora Drive Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R Control: Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 0 0 1! 0 0 0 0 1! 0 0 0 0 1! 0 0 0 0 1! 0 0 Volume Module: >> Count Date: 21 Feb 2008 << 415-515 Base Vol: 22 390 6 37 58 12 14 0 10 6 1 59 Initial Bse: 22 390 6 37 58 12 14 0 10 6 1 59 PHF Volume: 22 390 6 37 58 12 14 0 10 6 1 59 0 FinalVolume: 22 390 6 37 58 12 14 0 10 6 1 59 -----|----|-----|-----| Saturation Flow Module: Lanes: 0.05 0.94 0.01 0.35 0.54 0.11 0.58 0.00 0.42 0.09 0.02 0.89 Final Sat.: 63 1120 17 415 650 135 700 0 500 109 18 1073 -----| Capacity Analysis Module: Vol/Sat: 0.35 0.35 0.35 0.09 0.09 0.09 0.02 0.00 0.02 0.05 0.05 0.06

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

Crit Volume: 418 37 14 66
Crit Moves: **** **** ****

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Existing 2008 (Unsignalized as Signalized) PM Peak								
	Level Of Service Computation Report Circular 212 Planning Method (Base Volume Alternative)							
Intersection #56 Bellagio Road and Chalon Road								
Cycle (sec): Loss Time (sec): Optimal Cycle	100 ec): 0 (Y+ e: 37	R=4.0 sec)	Critical Vol Average Dela Level Of Ser	./Cap.(X): y (sec/veh): vice:	0.498 xxxxxx			
Movement:	North Bound L - T - R	L - T	- R L -	T - R	West Bound L - T - R			
Control: Rights: Min. Green: Lanes:	Permitted	Permit Inclu 0 0 0 0 0	tted Spl ude 0 0	it Phase Include 0 0 1! 0 0	0 0 0 0 0			
Volume Modul Base Vol: Growth Adj: Initial Bse: User Adj: PHF Adj: PHF Volume: Reduct Vol: Reduced Vol: PCE Adj: MLF Adj: FinalVolume:	e: >> Count Date 67 508 0 1.00 1.00 1.00 67 508 0 1.00 1.00 1.00 1.00 1.00 1.00 67 508 0 0 0 0 67 508 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	21 Feb 200 0 98 1.00 1.00 0 98 1.00 1.00 1.00 1.00 0 98 0 0 0 98 1.00 1.00 1.00 1.00 0 98	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 12 1.00 1.00 0 12 1.00 1.00 1.00 1.00 0 12 0 0 0 12 1.00 1.00 1.00 1.00	0 0 0 0 0 1.00 1.00 0 0 0 0 1.00 1.00 1			
Saturation F Sat/Lane: Adjustment: Lanes: Final Sat.:	low Module: 1200 1200 1200 1.00 1.00 1.00 0.12 0.88 0.00	1200 1200 1.00 1.00 0.00 0.80 0 964	1200 1200 1.00 1.00 0.20 0.48 236 574	1200 1200 1.00 1.00	1200 1200 1200 1.00 1.00 1.00 0.00 0.00 0.00 0 0 0			
Capacity Ana Vol/Sat: Crit Volume: Crit Moves:		0.00 0.10	0.10 0.02	0.00 0.02 23 ****	0.00 0.00 0.00			

Future Without Project AM PWed Jul 23, 2008 18:06:11

Page 1-1

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA

Future 2013 Without Project (Unsignalized as Signalized) - AM Peak

Scenario Report

Scenario: Future Without Project AM Peak

Future Without Project AM Peak Volume: Future AM

Geometry: Future

Command:

Impact Fee: Default Impact Fee

Trip Generation: AM Peak Trip Distribution: Project Paths: Project

Routes: Default Route

Configuration: Future

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

Future Without Project AM PWed Jul 23, 2008 18:06:11

Page 2-1

UCLA NHIP and Amended LRDP Traffic Study

Los Angeles, CA

Future 2013 Without Project (Unsignalized as Signalized) - AM Peak

Trip Generation Report

Forecast for AM Peak

Zone #	Subzone Amount							
1 2	#1- NA FBI 1.00 #2 1.00 Zone 2 Subtotal	FBI Office- 11 Palazzo Westwo	0.00 114.00	0.00 119.00	0 114	0 119	0 233	0.0
3	#3 1.00 Zone 3 Subtotal	Mixed-Use - S/	149.00	45.00	149 149	45 45	194 194	3.7 3.7
4	#4 1.00 Zone 4 Subtotal	Theater Expans	1.00	0.00	1	0	1 1	0.0
5 5	#5, 17 1.00 #5, 17 1.00 Zone 5 Subtotal	ICCDIACHCIAI HO	13.00	2.00	10		2 1	-0.0 0.5 0.4
6	#6 1.00 Zone 6 Subtotal	Apartments- 86						0.2
7	#7 1.00 Zone 7 Subtotal	Condos- 10804	7.00	34.00	7 7	34 34	41 41	0.8
8 8 8	#8, 25, 61 1.00 #8, 25, 61 1.00 #8, 25, 61 1.00 Zone 8 Subtotal	Condos-10763 W Condos- 10710	4.00	22.00	4 5	22 23	26 28	0.5
9	#9 1.00 Zone 9 Subtotal	Private School	9.00	0.00	9 9	0	9 9	0.2
10	#10 1.00 Zone 10 Subtota	Fox Studio Exp	420.00	30.00	420 420	30 30	450 450	8.7 8.7
11 11 11 11	#11, 12, 45, 1.00 #11, 12, 45, 1.00 #11, 12, 45, 1.00 #11, 12, 45, 1.00 Zone 11 Subtota	High School Ex Private School Condos- 1333 S Condos- 552-55	92.00 94.00 0.00 1.00	40.00 55.00 2.00 3.00	92 94 0 1	40 55 2 3 100	132 149 2 4 287	2.5 2.9 0.0 0.1 5.5
12	#13 1.00 Zone 12 Subtota	Wilshire/Comst	3.00	12.00	3	12 12	15 15	0.3
13 13	#14, 15, 43 1.00 #14, 15, 43 1.00 Zone 13 Subtota	ABC Entertainm Condos- 10131	101.00 -37.00	-181.00 85.00	101 -37 64	L -181 85 -96	-80 48 -32	0.9 -0.6

Future 2013 Without Project (Unsignalized as Signalized) - AM Peak

Zone					Rate	Rate	Trips	Trips	Total	% Of
#	Subz	one	Amount	Units	In	Out	In	Out	Trips	Total
14	#16,	35	1.00	Condos- 527 Mi	12.00	61.00	12	61	73	1.4
14	#16,	Zone 14	Subtota	Condos- 527 Mi Condos- 430 Ke	3.00		15	76	91	1.8
15	#18	Zone 15	1.00 Subtota	Health/Fitness	-20.00	-28.00	-20 -20	-28 -28	-48 -48	-0.9 -0.9
16	# 19	Zone 16	1.00 Subtota	Condos-1826 S	1.00	6.00	1 1	6 6	7 7	0.1
				Condos- 1417 S						
				New Car Sales-						
19 19	#22, #22,	70 70	1.00	Condos- 1625 S Mixed-Use- 115	1.00 10.00	7.00 46.00	1 10	7 46	8 56	0.2
20 20	#23, #23,	24 24 Zone 20	1.00 1.00 Subtota	Condos- 1525 S Condos- 1633 S l	1.00 1.00	7.00 6.00	1 1 2	7 6 13	8 7 15	0.2 0.1 0.3
21	#26	Zone 21	1.00 Subtota	Condos- 2037 S	1.00	6.00	1	6 6	7 7	0.1
22	#27,	63, 65	1.00	Office- 12233	10.00	56.00	10	56	66	1.3
22	#27, #27,	63, 65 63, 65 Zone 22	1.00 1.00 Subtotal	Office- 12233 Westside Media SM Apt Project	11.00	46.00	11 45	46 134	57 179	1.1
23 23	#28, #28,	32 32	1.00	Condos- 1511 S Condos- 1517 B	1.00	6.00 8.00	1 2	6 8	7 10	0.1
24 24	#29, #29,	54 54 Zone 24	1.00 1.00 Subtota	Mixed-Use- 116 Office- 11677	60.00 205.00	26.00 28.00	60 205 265	26 28 54	86 233 319	1.7 4.5 6.2
25	#30	Zone 25	1.00 Subtota	Mausoleum Bldg	1.00	0.00	1	0	1 1	0.0
26	#31	Zone 26	1.00 Subtotal	Condos- 10617	1.00	6.00	1	6 6	7 7	0.1

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

Future Without Project AM PWed Jul 23, 2008 18:06:11

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA

Future 2013 Without Project (Unsignalized as Signalized) - AM Peak

Zone #	Subzone	Amount	Units	Rate In	Rate Out	Trips In	Trips Out	Total Trips	% Of Total
27	#33 Zone 27	1.00 Subtota	Apts- 1817 S B	2.00	6.00	2 2	6 6	8	0.2
28	#34 Zone 28	1.00 Subtota	Live/Work- 115	9.00	34.00	9 9	34 34	43 43	0.8
29	#36 Zone 29	1.00 Subtota	Restaurant- 10	2.00	2.00	2 2	2 2	4 4	0.1
30 30 30	#37, 56, 57 #37, 56, 57 #37, 56, 57 Zone 30	1.00 1.00 1.00 Subtota	Condos- 1807 S Auto Service- Office- SW Cor	1.00 4.00 55.00	6.00 2.00 7.00	1 4 55 60	6 2 7 15	7 6 62 75	0.1 0.1 1.2 1.4
	#38 Zone 31	1.00 Subtota	Condos- 2263 S	1.00	6.00	1 1	6 6	7 7	0.1
32	#39 Zone 32	1.00 Subtota	Cooking School	4.00	2.00	4 4	2 2	6 6	
33	#40 Zone 33	1.00 Subtota	Bank- 1762 Wes	3.00	8.00	3	8 8	11 11	0.2
34 35 35	#41- NA-Alre #42, 49 #42, 49 Zone 35	1.00 1.00 1.00 Subtota	Westside Pavil Le Lycee Franc Mixed-Use- 106	0.00 171.00 5.00	0.00 109.00 7.00	0 171 5 176	0 109 7 116	0 280 12 292	0.0 5.4 0.2 5.6
36 36 36	#44, 60, 67 #44, 60, 67 #44, 60, 67 Zone 36	1.00 1.00 1.00 Subtota	Discounted Sto Olympic-Stoner Bed, Bath & Be	20.00 2.00 0.00	10.00 0.00 0.00	20 2 0 22	10 0 0 10	30 2 0 32	0.6 0.0 0.0 0.6
37	#46 Zone 37	1.00 Subtota	Belmont Villag	17.00	8.00	17 17	8 8	25 25	0.5 0.5
38 38 38	#47, B12, B3 #47, B12, B3 #47, B12, B3 Zone 38	1.00 1.00 1.00 Subtota	Apts- 10000 W Hotel- 150 Las Beverly Hilton	-167.00 15.00 48.00	9.00 9.00 94.00	-16' 15 48 -104	7 115 9 94 218	-52 24 142 114	2 -1. 0.5 2.7 2.2
39	#48 Zone 39	1.00 Subtota	Mixed-Use- 109	9.00	18.00	9 9	18 18	27 27	0.5 0.5
40	#50 Zone 40		Regent Westwoo						

Page 2-4

Future Without Project AM PWed Jul 23, 2008 18:06:11

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA

Future 2013 Without Project (Unsignalized as Signalized) - AM Peak

Zone #	Subzone	Amount	Units	Rate In	Rate Out	Trips In	Trips Out	Total Trips	% Of Total
41	#51 Zone 4		Office- 1100 W				10 10	80 80	1.5
42	#52 Zone 4		Del Capri Hote					45 45	0.9
43	#53 Zone 4		Condos- 11611			2 2	7 7	9 9	0.2
44	#55 Zone 4		Retail- 11305			7 7	4 4	11 11	0.2
45	#58 Zone 4		Fastfood- 1086			75 75		125 125	2.4
		Subtota	Brentwood Reta				1 1	3	0.1
47 47 47 47 47 47 47	#B1, B5, B1 #B1, B5, B1 #B1, B5, B1 #B1, B5, B1 #B1, B5, B1 #B1, B5, B1 #B1, B5, B1 Zone 4	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	Young Israel- Retail Expansi Cultural Cente Condos- 437-44 Service Facili Mixed-Use- 421 Condos- 432 N	16.00 1.00 34.00 1.00 101.00 29.00 3.00	9.00 1.00 21.00 6.00 55.00 9.00 12.00	101	1 21 6 55	25 2 55 7 156 38 15 298	0.5 0.0 1.1 0.1 3.0 0.7 0.3 5.8
48 48 48 48 48 48 48 48 48 48 48 48	#B2, B3, B6 #B2, B3, B6 #B2, B3, B6 #B2, B3, B6 #B2, B3, B6 #B2, B3, B6 #B2, B3, B6 #B2, B3, B6 #B2, B3, B6 #B2, B3, B6 #B2, B3, B6 #B2, B3, B6 #B2, B3, B6 #B2, B3, B6 #B2, B3, B6 #B2, B3, B6 #B2, B3, B6	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	Beverly Hills Mixed-Use- 265 Condos- 125 S Medical Plaza- Commercial/Ret Mixed-Use- 131 Assisted Care Senior Congreg Screening Room Condos- 261-28 Mixed-Use- 950 Mixed-Use- 959 Hotel- 9730 Wi Condos- 140-14 Condos- 133 Sp Office/Medical Condos- 156-16 Condos- 144 Re Condos- 155 N 1	103.00 3.00 77.00 8.00 64.00 1.00 0.00 11.00 70.00 11.00 0.00 14.00 0.00 0.00	30.00 15.00 22.00 6.00 43.00 7.00 2.00 0.00 -1.00 23.00 27.00 44.00 4.00 2.00 6.00 1.00	10 11 70 1 0 14 1 0	22 6 43 7 2 0 -1 23 27 44 4 2 4	33 38	0.6 0.7 2.2 0.1 0.0

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

Page 2-5

UCLA NHIP and Amended LRDP Traffic Study

Los Angeles, CA

Future 2013 Without Project (Unsignalized as Signalized) - AM Peak

					Units						
49	#B4,	B14, E	32	1.00	Church Expans Synagogue/Pri Apts- 428-430 Condos- 313-3	si 1.00	0.00	1	0	1	0.
49	#B4,	B14, E	32	1.00	Synagogue/Pri	iv 23.00	13.00	23	13	36	0.
49	#B4,	B14, E	32	1.00	Apts- 428-430	0.00	1.00	0	1	1	0
49	#B4,	B14, E	32	1.00	Condos- 313-3	31 1.00	3.00	1	3	4	0
		Zone 4	19	Subtotal				25	17	42	0
50	#B18	, B21		1.00	Beverly Hills	s 131.00	-4.00	131	-4	127	2
50	#B18	B21		1.00	Robinson's Ma	ay 34.00	116.00	34	116	150	2
		Zone 5	50	Subtotal				165	112	277	5
51	#B27			1.00	Health Spa- 9	96 1.00	1.00	1	1	2	0
		Zone 5	51	Subtotal				1	1	2	0
52	#62-1	JA Whol	٩	1 00	Whole Foods N	Ma 0 00	0 00	0	0	0	0
53	#64	W WIIO3		1 00	Whole Foods M New West Mide	11 126 00	104 00	126	104	230	4
										230	
54	#66			1.00	Union Bank of	F 3.00	2.00	3	2	5	0
		Zone 5	54	Subtotal	Union Bank of			3	2	5	0
55	#68			1.00	Leo Baeck Ter	mp 10.00	0.00	10	0	10	0
		Zone 5	55	Subtotal				10	0	10	0
56	#69			1.00	Convenience S	st 126.00	125.00	126	125	251	4
		Zone 5	6	Subtotal	L			126	125	251	4
57	#71			1.00	Westwood Vill	la 52.00	51.00	52	51	103	2
		Zone 5	57	Subtotal				52	51	103	2
58	#72			1.00	Office Bldg-	2 41.00	6.00	41	6	47	0
		Zone 5	8	Subtotal	Office Bldg-			41	6	47	0
59	Hekma	at Mixe	ed	1.00	Mixed Use	52.00	36.00	52	36	88	1
		Zone 5	59	Subtotal				52	36	88	1

Future 2013 Without Project (Unsignalized as Signalized) - AM Peak

Trip Distribution Report

Percent Of Trips Project

	To Gates											
	1	2	3	4	5	6	9	10	11	12	13	
Zone												
1	0.0	0 0	0 0	0 0	0 0	0 0	0.0	0 0	0 0	0.0	0.0	
1 2		0.0			0.0	3.0						
3	8.0 8.0	3.0	0.0	4.0				0.0	11.0	0.0	5.0	
			0.0			3.0		0.0	11.0	0.0	5.0	
4	8.0	3.0	0.0	4.0	0.0	3.0		0.0	11.0	0.0	5.0	
5	8.0	3.0	0.0	4.0		3.0		0.0		0.0	5.0	
6	10.0	0.0	0.0	0.0	0.0	5.0		0.0	5.0	0.0	0.0	
7	15.0	0.0	0.0	0.0					5.0	0.0	0.0	
8	15.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	5.0	0.0	0.0	
9	5.0	5.0	5.0	5.0	5.0			0.0	0.0	0.0	0.0	
10	10.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0	0.0	
11	10.0	0.0	0.0	0.0			5.0	0.0	0.0	0.0	0.0	
12	10.0	0.0	0.0	0.0	0.0	5.0	0.0	0.0	5.0	0.0	0.0	
13		0.0	0.0	0.0	0.0	5.0		0.0	0.0	0.0	0.0	
14	8.0	3.0	0.0	4.0	0.0	3.0			11.0	0.0	5.0	
15	0.0	0.0	0.0	0.0	0.0	0.0		5.0	10.0	5.0	0.0	
16		0.0	0.0	0.0				5.0		0.0	0.0	
17	10.0	0.0	0.0	0.0	0.0				0.0	0.0	0.0	
18	10.0	0.0	0.0	0.0						0.0	0.0	
19	10.0	0.0	0.0	0.0	0.0	0.0		5.0	0.0	0.0	0.0	
20		0.0	0.0	0.0				5.0	0.0	0.0	0.0	
21	10.0	0.0	0.0	0.0	0.0	5.0		0.0	0.0	0.0	0.0	
22	10.0	0.0	0.0	0.0	0.0			5.0	0.0	0.0	0.0	
23	10.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	2.5	2.5	
24	10.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0	
25	15.0	0.0	0.0	0.0	0.0			5.0	5.0	0.0	0.0	
26		0.0	0.0	0.0	0.0	0.0			0.0	0.0	0.0	
27	10.0	0.0	0.0	0.0	0.0				0.0	0.0	0.0	
28		0.0	0.0	0.0	0.0				0.0	0.0	0.0	
29	8.0	3.0	0.0	4.0		3.0		0.0	11.0	0.0	5.0	
30	10.0	0.0	0.0	0.0	0.0	0.0			0.0	0.0	0.0	
31	10.0	0.0	0.0	0.0					0.0	0.0	0.0	
32	10.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0	
33	0.0	0.0	0.0	0.0	0.0			5.0	10.0	0.0	0.0	
34	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	
35	10.0	0.0	0.0	0.0	0.0	0.0		5.0	0.0	0.0	0.0	
36	10.0	0.0	0.0	0.0	0.0	0.0		5.0	0.0	0.0	0.0	
37	10.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	5.0	0.0	0.0	
38	10.0	0.0	0.0	0.0	0.0			0.0	5.0	0.0	0.0	
39	0.0	0.0	0.0	0.0	0.0		5.0		5.0	0.0	0.0	
40	8.0	3.0	0.0	4.0		3.0		0.0		0.0	5.0	
41	8.0	3.0	0.0	4.0	0.0	3.0		0.0	11.0	0.0	5.0	
42	10.0	0.0	0.0	0.0				5.0	5.0	0.0	0.0	
43	10.0	0.0	0.0	0.0	0.0	0.0	5.0		0.0	0.0	0.0	
44	10.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0	

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

UCLA NHIP and Amended LRDP Traffic Study

Los Angeles, CA
Future 2013 Without Project (Unsignalized as Signalized)- AM Peak

	Future	2013	Wit	hout	Project	(Unsi	ignaliz	ed as	Signal	ized)-	AM Pea	ak
	1	L	2	3	4	5	Gates 6	9	10	11	12	13
										E 0	0.0	0.0
46				0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	
47		. 0		0.0		0.0	5.0	0.0	0.0	5.0	0.0	0.0
48	10	. 0	0.0	0.0	0.0	0.0	5.0	0.0	0.0	5.0	0.0	0.0
49	1.0	Λ	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0	0.0
50	10	. 0	0.0	0.0	0.0	0.0	5.0	0.0	0.0	5.0	0.0	0.0
51	5.	. 0	5.0	5.0	5.0	5.0	20.0	5.0	0.0	0.0	0.0	0.0
52	0 .	. 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0 5.0	0.0		0.0
53	10	. 0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	
54	8.	. 0	3.0	0.0		0.0	3.0	16.0	0.0	11.0	0.0	5.0
55 56	0.	. 0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	10.0	0.0	5.0
50 57	Ω.	. 0	3.0	0.0	1 4 0	0.0	3.0	16 0	0.0	11.0	0.0	5.0
58	0 8 10	0	0.0	0.0	4.0 0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0
59	8.	. 0	3.0	0.0	4.0	0.0	3.0	16.0	0.0	11.0	0.0	5.0
					1.0		Gates	0.0	0.1	0.0	0.0	0.0
Zone	14	1	15	16	17	18	19	20	21	22	23	28
20116												
1	0 .	. 0	0.0	0.0 9.0	0.0 0.0 6.0 0.6.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2			0.0	9.0	6.0	0.0	23.0	0.0	0.0	0.0	3.0	2.0
3	3.	. 0	0.0	9.0	6.0	0.0	23.0	0.0	0.0	0.0	3.0	2.0
4 5	3.	. 0	0.0	9.0	6.0	0.0	23.0	0.0	0.0	0.0	3.0	2.0
6	5.	. O	0.0	5.0	5.0	5.0	10 0	0.0	0.0	0.0	0.0	0.0
7	5 . 5 .	. 0	0.0	5.0		5.0	15.0	0.0	0.0	0.0	0.0	0.0
8	5	. 0	0.0	5.0	5.0	5.0	15.0	0.0	0.0	0.0	0.0	0.0
9	5.	. 0	0.0	2.5	0.0	5.0	2.5	5.0	0.0	0.0	0.0	0.0
10	5.		0.0	5.0	3.0	0.0	10.0	0.0	0.0	0.0	0.0	
11	5 .	. 0		5.0	3.0	0.0	10.0	0.0	0.0	0.0		
12	5	. 0	0.0	5.0							0.0	0.0
13		. 0		5.0					0.0		0.0	
14 15	3 10	. 0	0.0	9.0			23.0	0.0	0.0	0.0	3.0	2.0
16	5.		0.0	5.0					0.0		0.0	
17	5	. O	0.0	5.0					3.0			0.0
18	5	. 0	0.0	5.0		0.0	10.0	0.0	0.0	0.0	0.0	0.0
19	0	Ω	0.0	0.0		0.0	10.0	0.0	0.0		0.0	0.0
20	0	. 0	0.0	0.0		0.0	10.0	0.0	0.0	0.0	0.0	0.0
21	5.	. 0	0.0	5.0					0.0		0.0	0.0
22	0 . 5 .	. 0	0.0	0.0	5.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0
23			2.5	5.0		0.0						0.0
24	0.	. 0	0.0	0.0	5.0	0.0	10.0	0.0		5.0	0.0	0.0
25 26	5.	. U	0.0	5.0		5.0	15.0	0.0	0.0	0.0	0.0	0.0
26 27	5.	. 0	0.0	5.0) 5.U	0.0	10.0	0.0	0.0	0.0	0.0	
28	5 . 5 . 5 .	0	0.0	0.0	5.0 5.0 5.0	0.0	10.0	0.0	0.0	0.0	0.0	
20	0.		5.5	0.0	, 5.0	0.0	10.0	0.0	0.0	0.0	0.0	3.0

UCLA NHIP and Amended LRDP Traffic Study

Los Angeles, CA

Future 2013 Without Project (Unsignalized as Signalized)- AM Peak

	To Gates												
	14	15	16	17	18	19	20	21	22	23	28		
Zone -													
29	3.0	0.0	9.0	6.0	0.0	23.0	0.0	0.0	0.0	3.0	2.0		
30	5.0	0.0	5.0	5.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0		
31	5.0	0.0	5.0	3.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0		
32	5.0	0.0	5.0	5.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0		
33	5.0	5.0	5.0	5.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
34	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
35	5.0	0.0	5.0	5.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0		
36	0.0	0.0	0.0	5.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0		
37	5.0	0.0	5.0	5.0	5.0	10.0	0.0	0.0	0.0	0.0	0.0		
38	5.0	0.0	5.0	5.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0		
39	5.0	5.0	5.0	5.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
40	3.0	0.0	9.0	6.0	0.0	23.0	0.0	0.0	0.0	3.0	2.0		
41	3.0	0.0	9.0	6.0	0.0	23.0	0.0	0.0	0.0	3.0	2.0		
42	5.0	0.0	5.0	5.0	5.0	10.0	0.0	0.0	0.0	0.0	0.0		
43	5.0	0.0	5.0	0.0	0.0	10.0	0.0	0.0	5.0	0.0	0.0		
44	0.0	0.0	5.0	5.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0		
45	5.0	5.0	5.0	5.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
46	5.0	0.0	5.0	0.0	0.0	10.0	0.0	0.0	5.0	0.0	0.0		
47	5.0	0.0	5.0	5.0	5.0	10.0	0.0	0.0	0.0	0.0	0.0		
48	5.0	0.0	5.0	5.0	5.0	10.0	0.0	0.0	0.0	0.0	0.0		
49	5.0	0.0	5.0	3.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0		
50	5.0	0.0	5.0	5.0	5.0	10.0	0.0	0.0	0.0	0.0	0.0		
51	0.0	0.0	2.5	0.0		2.5	5.0	0.0	0.0	0.0	0.0		
52	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
53	0.0	0.0	0.0	5.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0		
54	3.0	0.0	9.0	6.0	0.0	23.0	0.0	0.0	0.0	3.0	2.0		
55	0.0	0.0	5.0	0.0	0.0	10.0	10.0	0.0	0.0	0.0	0.0		
56	5.0	5.0	5.0	5.0		0.0	0.0	0.0	0.0	0.0	0.0		
57	3.0	0.0	9.0	6.0	0.0	23.0	0.0	0.0	0.0	3.0	2.0		
58	5.0	0.0	5.0	5.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0		
59	3.0	0.0	9.0	6.0	0.0	23.0	0.0	0.0	0.0	3.0	2.0		

	To Gate	30
Zone		
1	0.0	0.0
2	2.0	2.0
3	2.0	2.0
4	2.0	2.0
5	2.0	2.0
6	0.0	0.0
7	0.0	0.0
8	0.0	0.0
9	0.0	0.0
10	0.0	0.0
11	0.0	0.0
12	0.0	0.0
12	0.0	0.0

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

Future Without Project AM PWed Jul 23, 2008 18:06:12 Page 3-4 UCLA NHIP and Amended LRDP Traffic Study

Los Angeles, CA Future 2013 Without Project (Unsignalized as Signalized) - AM Peak

	To Gate				
_	29				
Zone					
13	0.0	0.0			
14	0.0 2.0	2.0			
15	0 0	0.0			
16	0.0	0.0			
17		0.0			
18	0.0	0.0			
19		0.0			
20	0.0	0.0			
21	0.0	0.0			
22	0.0	0.0			
23	0.0	0.0			
24	0.0	0.0			
25		0.0			
26		0.0			
27	0 0	0.0			
28	0.0	0.0			
29	2.0	2.0			
30	0.0	0.0			
31	0.0	0.0			
32	0.0	0.0			
33		0.0			
34	0.0	0.0			
35	0.0	0.0			
36	0.0	0.0			
37	0.0	0.0			
38	0.0	0.0			
39	0 0	0.0			
40	2.0	2.0			
41	2.0	2.0			
42	0.0	0.0			
43	0.0	0.0			
44	0.0	0.0			
45	0.0	0.0			
46	0.0	0.0			
47	0.0	0.0			
48	0.0	0.0			
49	0.0	0.0			
50	0.0	0.0			
51	0.0	0.0			
52		0.0			
53	0.0	0.0			
54	2.0	2.0			
55	0.0	0.0			
56	0.0 2.0	0.0			
57		2.0			
58	0.0	0.0			
59	2.0	2.0			

UCLA NHIP and Amended LRDP Traffic Study

Los Angeles, CA

Future 2013 Without Project (Unsignalized as Signalized) - AM Peak

Turning Movement Report AM Peak

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA

Future 2013 Without Project (Unsignalized as Signalized) - AM Peak

Volume	N	orthbo	und	 Sc		ound			und		estbo	und	Total
									Right				
#10 Be	verly												
Base	91		408	53	80	9		1073	111		1472		
Added	0		45	0		0	0			74			
Total	91	97	453	53	80	9	16	1100	111	577	1511	76	4174
									ast I/S				
Base	0	-	0			852		1183			1179		3733
Added	0	0	0	0		24	18			0			
Total	0	0	0	155	0	876	347	1236	0	0	1268	37	3919
#12 Sej													
Base	0		0	-	1372	0	290	0	9	0	0	0	2072
Added	0	_	0	0	-	0	4	0	-	0	-	-	14
Total	0	404	0	0	1378	0	294	0	9	0	0	0	2086
#13 Sej	pulve	da Bou	levaro	d and M	Montar	na Aven	ue						
Base	78	328	287	344	1158	23	8	286	105	103	74	75	2868
Added	0	4	4	16	2	0	0	0	0	4	0	10	40
Total	78	332	291	360	1160	23	8	286	105	107	74	85	2908
#14 Le	verin	g Aven	ue and	d Monta	ana Av	renue							
Base	39	0	3		0	0	0	799	356	6	163	0	1366
Added	14	0	0	0	0	0	0	0	20	0	0	0	34
Total	53	0	3	0	0	0	0	799	376	6	163	0	1400
#15 Ve	teran	Avenu	e and	Montar	na Ave	enue/Ga	ley A	venue					
Base	35	230	22	176	335	20	120	582	45	12	82	50	1708
Added	0	41	0	0	53	0	0	0	0	0	0	0	94
Total	35	271	22	176	388	20	120	582	45	12	82	50	1802
#16 Ga	ley A	venue	and St	trathmo	ore Pl	Lace							
Base	5	83	294	498	278	3	2	124	15	100	19	49	1470
Added	0	0	0	0	0	0	0	0	0	0	0	0	(
Total	5	83	294	498	278	3	2	124	15	100	19	49	1470
#17 Ve	teran	Avenu	e and	Lever	ing Av	renue							
Base	20	245	29	22		3	2	121	213	69	24	30	1189
Added	5	16	3	25	28	0	0		10	33	9	24	
Total	25		32			3	2		223	102			
#18 Hi	lgard	Avenu	e and	Wyton	Drive	2							
Base	217		9		618	56	17	25	99	62	89	29	1540
Added	0	24	Ó		41	0	0	0	0	0	0	0	65
Total	217		9			56	17	25	99	62	89	29	160
	/	211		20	000	55	- /	23		Ų <u>2</u>	0,0	2,7	

Future Without Project AM PWed Jul 23, 2008 18:06:12

Page 4-4

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA

Future 2013 Without Project (Unsignalized as Signalized) - AM Peak

Volume													
Type	Leit	Thru	Right	Leit	Thru	Right	Leit	Thru	Right	Leit	Thru	Right	Volume
#19 Bev	02111	Clan	Dland .	and War	on D	r/Comat	oals 7.	-0 [E	Too Tr	torace	tion	Wrston	Cnli+
Base	8		5 bivu				.ock Av			32		40	1045
Added		45	0		74	0		0	0	0	0	0	119
Total	8		5		597	3	1	23		32	35	40	1164
IULAI	0	300	5	40	331	3	_	23	12	34	33	40	1104
#20 Hil	aard	Δινεηιι	e and	Westh	olme :	Arrenije							
Base	171	398	43	16	558	138	21	11	30	42	204	51	1682
Added	0	24	0	0	41	0	0	0	0	0	0	0	65
Total	171	422	43	16		138	21	11	30	42	204	51	1747
10041	1,1	122	13	10	3,5,5	150	21		50	12	201	31	1,1,
#21 Hil	gard	Avenu	e and	Mannir	na Ave	enue							
Base		752	13	22	540	0	0	0	0	6	0	69	1402
Added		24	0	0	41	0	0	0	0	0	0	0	65
		776	13	22	581	0	0	0	0	6	0	69	1467
10041	Ü	,,,			301	Ü	·	Ū	ŭ	·	Ū	0,5	110,
#22 Gay	ley A	venue	and 1	Le Cont	e Av	enue							
Base	7	667	246	130	228	16	25	125	12	165	78	133	1831
Added	0	0	4	0	0	0	0	45	0	4	11	0	64
Int #2	0	51	-23	-23	23	0	0	-23	23	-50	-51	-51	-124
Total	7	718	227	107	251	16	25	147	35	119	38	82	1771
#23 Wes	twood	l Boul	.evard		e Con	te Aver	iue						
Base	56	664	216	34	205	92	176	343	35	137	333	112	2402
Added	122	0	1	0	0		0	7	59	0	14	0	203
Int #2		0	0	0	0	0	0		0	0	-152	0	-221
Total	178	664	217	34	205	92	176	281	94	137	195	112	2384
#24 Tiv							100	205	4.0		244	0.1	1 41 6
Base	26	105	29	25	37	206	190	305	42		344		1416
Added	0	0	0		0		0		0	0		0	21
Int #2 Total	0	105	0	0 25	0	-	0		0	-	-152	0	-221
Total	26	105	29	25	37	206	190	242	42	16	206	91	1216
#25 Hil	aard	Διερι	e and	T.e. Cor	nte 7	zenile							
Base	23	450	27	11	228	299	286	0	34	7	0	25	1390
Added	0	17	0		27	14	7	0	0	0	0	0	65
Int #2	0	0	69	0	0	14	0	0	0	152	0	0	221
Total		467	96	11	-	313	293	0	34	152	0	25	1676
IULAI	23	40/	96	11	255	313	293	U	54	159	U	∠5	10/0
#26 Gay	lev A	venue	and I	Vevburi	n Avei	nue							
Base	29	791	117	18	420	78	200	179	23	39	45	38	1975
Added	0	10	68	16	10	0	0	32	0	24	20	16	196
Int #2	0	0	23	46	0	0	0	0	0	50	51	51	221
Total		801	208	80		78	200	211	23	113	116	105	2392

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

UCLA NHIP and Amended LRDP Traffic Study
Los Angeles, CA
Future 2013 Without Project (Unsignalized as Signalized) - AM Peak

		e 2013											
Volume	No	rthbou	nd	S	outhbo	und	Ea	astbou	ınd	We	estbo	und	Total
Type	Left	Thru R	ight	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Volume
#27 Wes	stwood	Boule	vard	and We	eyburn	Avenu	.e						
Base	74	692	45	6	338	30	49	59	33	35	45	14	1420
Added	17	123	73		59	0	0		16	80			
Int #2		0	0		0	0	0		0	0		0	221
Total	91	815	118	6	397	30	49	144	49	115	220	14	2048
#28 Ti													
Base	14	111	7			34	27		0	0		18	
Added	0	0	0			0	0		0	0			79
Int #2		0	0	0		0	0		0	0			221
Total	14	111	7	28	0	34	27	142	0	0	232	18	613
		Avenue											
Base	30	484	5			41	36		66	7			1031
Added	0	1	0	0		26	16	19	0	0	18	0	81
#25 In		0	0			152	69		0	0			
Total	30	485	5	14	265	219	121	47	66	7	45	28	1333
		Boule											
Base		806	26	13		38	58		25	5	47		1529
Added	43		50	5		0	0		15	7			
Total	99	1018	76	18	512	38	58	36	40	12	48	63	2018
#31 We:													
Base		836	227	21		11	30		47	98		28	1907
Added	0		2	0		0	0		0	2		0	
Total	3	1141	229	21	504	11	30	137	47	100	138	28	2388
#32 Gle	endon/	Tivert	on/L:	indbro									
Base	62	230	412	8		45	38	335	22	165	179	41	1561
Added	0	11	6	0		0	0		0	7			
Total	62	241	418	8	27	45	38	337	22	172	181	41	1591
#33 Sej	pulved	la Boul	evar	d and	Consti	tution	Aveni	ıe					
Base	67	305	7	3	1177	173	88	0	20	2	0	2	1845
Added	0	4	0	0	6	0	0	0	0	0	0	0	10
Total	67	309	7	3	1183	173	88	0	20	2	0	2	1855
#34 Sai	n Vice	nte Bo	uevai	rd and	Wilsh	ire Bo	uelvai	rd					
Base		214	117			19		2054	68	56	2139	973	7565
Added	28	50	10	79	53	14	3	170	8	7	170	57	649
Total	131	264	127	1528	358	33	72	2224	76	63	2309	1030	8214
#35 Sej	oulved	la Boul	evaro	d and W	Wilshi	re Bou	levaro	f					
Base		252	276		669	297		2874	141	116	2670	65	7891
Added	10	1	28	2		0		539		16	403	2	
Total	174	253	304	295	673	297	76	3413	152	132	3073	67	8908

Future Without Project AM PWed Jul 23, 2008 18:06:12 Page 4-6

UCLA NHIP and Amended LRDP Traffic Study

UCLA NHIP and Amended LRDP Traffic Study

Los Angeles, CA

Future 2013 Without Project (Unsignalized as Signalized) - AM Peak

Volume	No	orthbo	und	Sc	outhbo	ound	Ea	astbo	and	We	estbo	ınd	Total
													Volume
			_						-				
#36 Ve	teran	Avenu	e and	Wilsh:	ire Bo	oulevar	d						
Base	217	404	104	116	265	386 29	555	3046	141	55	2412	37	7737
Added	-6	1	1.0		4	29	2	570	-4	5	398	0	1009
Total	211	405	114	116	269	415	557	3616	137	60	2810	37	8746
IOCUI	211	105		110	200	113	33,	3010	137	00	2010	5,	0710
#37 Ca	vilev 7	\170nii0	and I	Jilahi:	ca Poi	ılevard							
Page	62	350	55	50	105	300	521	2545	160	67	2001	122	6435
Added	02	220	22	1/	103	200	100	471	100	07	2/10	20	1017
Madeu	60	350		77	105	55 355	103	2016	160	67	2420	140	7452
IOLAI	02	350	55	13	105	333	030	3010	100	6 /	2439	142	7452
II 2 0 - 17-		1 D 1		3 77	1 -1-1-								
#38 We	Stwood	1 BOUL	evara	and w	LISHI	re Boul 162 76	evara	0000	1.70		1000		6205
Base	142	630	123	64	286	162	448	2079	172	141	1983	98	6327
Added		100	4.3	35	63	76	149	329	- 6	39	284	57	1190
Total	151	730	166	99	349	238	597	2408	178	180	2267	155	7517
		_											
#39 GI	endon	Avenu	e and	Wilsh:	re Bo	ouelvar	d						
Base	9	186	23	60	116	43	334	1770	120	69	2068	180	4978
Added	0	0	0	2	0	7 50	6	401	0	0	373	11	800
Total	9	186	23	62	116	50	340	2171	120	69	2442	191	5778
#40 Ma	lcolm	Avenu	e and	Wilsh:	ire Bo	oulevar	d						
Base	3	0	47	3	1	42	68	1776	29	23	2293	56	4342
Added	6	0	0	21	0	0	0	396	11	0	364	20	818
Total	9	0	47	24	1	42	68	2172	40	23	2657	76	4342 818 5160
						Boulev							
Base	59	107	68	47	44	21	33	1882	66	30	2312	144	4813
Added	1	0	2	0	0	0	0	427	3	2	349	0	784
Total	60	107	70	47	44	21 0 21	33	2309	69	32	2661	144	5597
#42 Wa	rner A	Avenue	and V	Vilshi	re Boi	ılevard							
Base	78	38	22	91	63	92	70	1862	33	12	2339	81	4781
Added	0	0	0	0	0	0	0	431	0	0	338	0	769
Total	78	38	22	91	63	0 92	70	2293	33	12	2677	81	5550
												0 81	
#43 Be	verlv	Glen	Boule	rard ar	nd Wi	lshire	Boulles	rard					
Page	160	352	38	7 GI GI	520	lshire 50 4	03	1674	212	104	2170	11	5447
Added	105	15	E 1	// 1	20	70	23	205	213	70	2110	27	
Total	104	367	31	77	550	54	96	2050	250	183	2/07	38	
iocal	104	307	09	11	559	54	20	2009	250	103	242/	30	0432
#44 Sa	t o 1 1 -	. Boul	011020	and of	nio 7-	roniio							
#44 Sa	wrelle	210	evard	and Of	TTO A	venue 10	0.6	007		7.5	401	0.0	2330 31 2361
Base	0.3	218	135	26	94	19	86	08/	55	/5	481	90	2330
Added	0	210	125	0	0	10	0	15	1	7.	15	0	31
Total	63	318	135	26	94	19	86	902	56	75	496	90	2361

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

	P	201			Lo	s Ange	les,	CA	s Signa	-	`	D 1-	
Volume									und				
Type	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Volume
#45 Sej	pulve	da Bou	levard	and (Ohio A	venue							
Base	101	477	132	40	520	86	183	730	82	78	504	75	3006
Added	3	33	1	6	24	0	0	11	4	4	11	7	104
Total	104	510	133	46	544	86	183	741	86	82	515	82	3110
#46 Ve													
Base	35		37	15		105	281			26		43	2304
Added	0		0	0	5	-3	-1		1	0	20	0	50
Total	35	350	37	15	160	102	280	746	40	26	520	43	2354
#47 We													
Base		1238	50	34		62	177					53	
Added		143	0		99	6	6		25	0	-	0	305
Total	156	1381	50	34	583	68	183	292	121	67	279	53	3267
#48 Sa													
Base	63		216	99	166	30		1240			1789		
Added	_	0	11	1		0		196			159	0	377
Total	64	477	227	100	166	30	24	1436	24	132	1948	64	4693
#49 Sa													
Base	0	-	0	756	295	421		1096	439		1535		5168
Added		-		84		27		171	37		139		502
Total	0	0	0	840	295	448	0	1267	476	670	1674	0	5670
#50 Sa													
Base	709		756	0	-	0		1495	0		1384		5505
Added	23		88	0				219			160	45	576
Total	732	408	844	0	0	0	454	1714	0	0	1544	385	6081
#51 Sej													
Base	216		142	156	791	193		1786			1345	147	6235
Added	1	29	0	8	20	4		302	4	2		7	579
Total	217	903	142	164	811	197	105	2088	383	104	1546	154	6814
#52 Ve	teran	Avenu	e and	Santa	Monic	a Boul	.evard						
Base	67	278	57	139		69		1931	25		1386	63	4341
Added	0		0	-1		4			1		206	-1	
- · ·		000		1 2 0	1-6		110	0005	0.0		1 - 0 0		40.60

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

Total 67 282 57 138 156 73 112 2235 26 66 1592 62 4867

Added 4 142 9 7 102 16 20 273 3 6 183 6 771
Total 100 1200 86 236 656 95 167 2157 105 140 1535 141 6618

#53 Westwood Boulevard and Santa Monica Boulevard

Future Without Project AM PWed Jul 23, 2008 18:06:12

Page 5-1

UCLA NHIP and Amended LRDP Traffic Study

Los Angeles, CA

Future 2013 Without Project (Unsignalized as Signalized) - AM Peak

											•		
Volume			ound			ound						und	Total
Type	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Volume
#54 Mul	lholla	and Dr	rive an	nd Rose	comar	e Road							
Base	205	0	79	0	0	0	0	749	429	193	545	0	2200
Added	12	0	0	0	0	0	0	1	18	0	0	0	31
Total	217	0	79	0	0	0	0	750	447	193	545	0	2231
#55 Ros	scomaı	re Roa	ad and	Strade	ella 1	Road/Li	nda F	lora 1	Orive				
Base	13	78	8		444	17	17	1	40	9	0	34	755
Added	0	12	0	0	18	0	0	0	0	0	0	0	30
Total	13	90	8	94	462	17	17	1	40	9	0	34	785
#56 Bel	llagio	n Road	d and (Chalon	Road								
Base	32		0		524	21	12	0	42	0	0	0	755
Added	0	12	0	0	18	0	0	0	0	0	0	0	30
Total	32	137	0	0	542	21	12	0	42	0	0	0	785
#57 Bev	zerlv	Glen	Boule	vard at	nd Mu	lhollan	d Driv	ze.					
Base	62		74				44		40	44	319	307	3408
Added	0	16	0	0	25	0	0	0	1	1	0	0	43
Total	62	225	74	803	809	135	44	587	41	45	319	307	3451
#58 Bev	zerlv	Glen	Boule	vard at	nd Gr	endale	Drive	_					
Base		308	14			0	0	0	0	82	0	49	1556
Added		16	4			0	0	0	0	0	0	0	45
Total	0	324	18	135	993	0	0	0	0	82	0	49	1601

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

UCLA NHIP and Amended LRDP Traffic Study

Los Angeles, CA Future 2013 Without Project (Unsignalized as Signalized)- AM Peak

> Impact Analysis Report Level Of Service

Intersection	Base Del/ V/	Future Del/ V/	Change in
# 14 Levering Avenue and Montana Av	LOS Veh C F xxxxx 1.003	LOS Veh C F xxxxx 1.031	+ 0.028 V/C
# 28 Tiverton Drvie and Weyburn Ave	A xxxxx 0.201	A xxxxx 0.365	+ 0.163 V/C
# 40 Malcolm Avenue and Wilshire Bo	C xxxxx 0.754	D xxxxx 0.883	+ 0.129 V/C
# 55 Roscomare Road and Stradella R	A xxxxx 0.529	A xxxxx 0.544	+ 0.015 V/C
# 56 Bellagio Road and Chalon Road	A xxxxx 0.525	A xxxxx 0.540	+ 0.015 V/C

Future 2013 Without Project (Unsignalized as Signalized) - AM Peak

Level Of Service Computation Report

Circular 212 Planning Method (Future Volume Alternative)

Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R Control: Split Phase Split Phase Permitted Permitted Rights: Include Include Include Include
 Rights:
 Include
 Include
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0 Lanes: 0 0 1! 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 -----|----|-----|------| Volume Module: >> Count Date: 7 Feb 2008 << 800-900 Base Vol: 37 0 3 0 0 0 0 761 339 6 155 0 Initial Bse: 39 0 3 0 0 0 799 356 6 163 0 Added Vol: 14 0 0 0 0 0 0 0 20 0 0 0 PasserByVol: 0 0 0 Ω 0 0 0 0 Ω 0 Ω 0 Initial Fut: 53 0 3 0 0 0 0 799 376 6 163 PHF Volume: 53 0 3 0 0 0 0 799 376 6 163 0 Reduct Vol: 0 0 0 376 6 163 0 Reduced Vol: 53 0 Ω FinalVolume: 53 0 3 0 0 0 799 376 6 163 0 -----|----||-----| Saturation Flow Module:

Lanes: 0.94 0.00 0.06 0.00 0.00 0.00 0.08 0.32 0.04 0.96 0.00

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA

Future 2013 Without Project (Unsignalized as Signalized) - AM Peak

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative)

Future Without Project AM PWed Jul 23, 2008 18:06:12

Optimal Cycle	e:		23	+++++		Level	Of Ser	vice	:			A
Street Name: Approach:	No	rth Bo	nind	Sol	ith Bo	nund	E.a	st Bo	nind	Wes	t Bo	nund
Movement:	T.	- Т	- R	Τ	- Т	- R	T	- Т	- R	T	т	- R
Control:	1	Dermit	t ed	T	Permit	ted	T	ermit	ted	De	rmit	ted
Rights:		Incl	ıde		Incl	ıde		Incl	ıde	I	ncli	ıde
Min. Green:	0	0	0	0	0	0	0	0	0	0	0	0
Rights: Min. Green: Lanes:	0 (0 1!	0 0	0 0	1!	0 0	0 1	. 0	0 0	0 0	0	1 0
	l			1			1					
Volume Module	e: >>	Count	Date:	6 Feb	2008	3 << 70	008-00					
Base Vol:	13	106	7	27	Ü	32	26	36	0			
Growth Adj:	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05 1	05	1.05
Initial Bse: Added Vol: Int #25: Initial Fut:	14	111	7	28	0	34	27	38	0	0	36	18
Added Vol:	0	0	0	0	0	0	0	35	0	0	44	0
Int #25:	0	0	0	0	0	0	0	69	0	0	152	0
Initial Fut:	14	111		28	0	34	27	142	. 0	. 0	232	18
User Adj: PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00 1	00	1.00
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00 1	00	1.00
PHF Volume: Reduct Vol: Reduced Vol:	14	111	7	28	0	34	27	142	0	0	232	18
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:	14	111	- 7	28	0	34	27	142	0	0	232	18
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00 1	00	1.00
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00 1	00	1.00
FinalVolume:	14	111	7	28	U	34	27	142	U	1 0	232	18
Saturation F												
Saturation F.				1200	1200	1200	1200	1200	1200	1200 1	200	1200
Adjustment:												
Lanes:												
Final Sat.:												
Capacity Ana	lvsis	Modu	le:	1			1		ı	1		1
Vol/Sat:	0.11	0.11	0.11	0.05	0.00	0.05	0.14	0.14	0.00	0.00 0	.21	0.21
Crit Volume:		132		28			27					250
Crit Volume: Crit Moves:		****		****			****					****

Future 2013 Without Project (Unsignalized as Signalized) - AM Peak

Level Of Service Computation Report

Circular 212 Planning Method (Future Volume Alternative) ************************* Intersection #40 Malcolm Avenue and Wilshire Boulevard ************************

Loss Time (se Optimal Cycle	ec):		0 (Y+R:	=4.0 s	sec)	Averag	e Dela	ay (s	ec/veh)):	XXXX	KXX
Optimal Cycle	∍:	12	3			Level	Of Sei	rvice	:			D
******	****	*****	*****	****	*****	*****	****	****	*****	*****	*****	******
Street Name: Approach:		M.	alcolm	Aveni	ıe			Wi	lshire	Boule	vard	
Approach:	No	rth Bo	und	Sot	ıth Bo	und	Εá	ast B	ound	We	est Bo	ound
Movement:	ь.	- T	- R	ь.	- T	- R	ь -	- T	– R	ь.	- T	- R
Control:	1	Permit	ted	1	Permit	ted	I	Permi	tted	1	≥ermit	ted
Rights: Min. Green:		Inclu	de		Inclu	ıde		Incl	ude		Incl	ıde
Min. Green:	0	0	0	0	0	0	0	0	0	0	0	0
Lanes:												
Volume Module	5: >>	Count	Date:	7 Fel	2008	<< 74	5-845					
Base Vol:									28		2184	
Growth Adj:	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05
Initial Bse: Added Vol: PasserByVol: Initial Fut:	3	0	47	3	1	42	68	1776	29	23	2293	56
Added Vol:	6	0	0	21	0	0	0	396	11	0	364	20
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	0
Initial Fut:	9	0	47	24	1	42	68	2172	40	23	2657	76
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	1.00	1.00	1.00		1.00	1.00					1.00	
PHF Volume:	9	0	47	24		42				23		
Reduct Vol:	0	0	0			0						
Reduced Vol:						42						
PCE Adj:											1.00	
MLF Adj:											1.00	
FinalVolume:												
Saturation Fl												
Sat/Lane:											1200	
Adjustment:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Lanes:	0.16	0.00	0.84	0.36	0.02	0.62	1.00	2.95	0.05	1.00	2.92	0.08
Lanes: Final Sat.:	195	0	1005	431	19	750	1200	3534	66	1200	3500	100
Capacity Anal												
Vol/Sat:											0.76	

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

Crit Volume: 56 24 68 911
Crit Moves: **** **** ****

Crit Moves:

Future 2013 Without Project (Unsignalized as Signalized) - AM Peak ______ Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) ************************* Intersection #55 Roscomare Road and Stradella Road/Linda Flora Drive *************************** Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/veh): Optimal Cycle: 32 Level Of Service: xxxxxx Street Name: Roscomare Road Stradella Road/Linda Flora Drive Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R Control: Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 0 0 1! 0 0 0 0 1! 0 0 0 0 1! 0 0 0 0 1! 0 0 Volume Module: >> Count Date: 21 Feb 2008 << 800-900 Base Vol: 12 74 8 90 423 16 16 1 38 9 0 32 Initial Bse: 13 78 8 94 444 17 17 1 40 9 0 34 Added Vol: 0 12 0 0 18 0 0 0 0 0 0 0 0 0 0 0 0 0 PasserByVol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 Initial Fut: 13 90 8 94 462 17 17 1 40 9 0 34 PHF Volume: 13 90 8 94 462 17 17 1 40 9 0 34 FinalVolume: 13 90 8 94 462 17 17 1 40 9 0 34 ------|-----|------| Saturation Flow Module: Lanes: 0.11 0.81 0.08 0.16 0.81 0.03 0.29 0.02 0.69 0.22 xxxx 0.78 Final Sat.: 137 972 91 198 967 35 349 22 829 263 0 937 -----|

UCLA NHIP and Amended LRDP Traffic Study

Los Angeles, CA

Future Without Project AM PWed Jul 23, 2008 18:06:12

Vol/Sat: 0.09 0.09 0.09 0.48 0.48 0.48 0.05 0.05 0.05 0.04 0.00 0.04

Crit Volume: 13 573 58 9
Crit Moves: **** **** ****

Capacity Analysis Module:

Crit Moves: ****

Page 10-1

UCLA NHIP and Amended LRDP Traffic Study

Los Angeles, CA

Future 2013 Without Project (Unsignalized as Signalized) - AM Peak

Level Of Service Computation Report

______ Circular 212 Planning Method (Future Volume Alternative)

Intersection #56 Bellagio Road and Chalon Road **********************

Loss Time (sec):	0 (Y+R	=4.0 sec)	Averag	e Delay (se	c/veh)	XXXX	xx
Optimal Cycle:	40		Level	Of Service:			A
Street Name: Approach: No	Bellagi	o Road			Chalon	Road	
Approach: No	rth Bound	South Bo	ound	East Bo	und	West Bo	ound
	- T - R						
Control:							
Rights: Min. Green: 0	Include	Incl	ıde	Inclu	ide _	Inclu	ıde
Min. Green: 0	0 0	0 0		0 0	. 0	0 0	. 0
Lanes: 0						0 0 0	
Volume Module: >>					4.0		
	119 0	0 100	20	11 0		0 0	
Growth Adj: 1.05		1.05 1.05		1.05 1.05	1.05		
Initial Bse: 32		0 524 0 18	21	12 0	42		0
Added Vol: 0			0	0 0	0		0
PasserByVol: 0	127 0	0 0 0 542	21	12 0	0 42		0
Initial Fut: 32 User Adj: 1.00				1.00 1.00	1.00	1.00 1.00	
PHF Adj: 1.00		1.00 1.00	1.00	1.00 1.00	1.00	1.00 1.00	
PHF Volume: 32		0 542	21	1.00 1.00	42	0 0	0
Reduct Vol: 0		0 542		0 0			0
Reduced Vol: 32			21			0 0	
PCE Adi: 1.00				1.00 1.00		1.00 1.00	
MLF Adi: 1.00				1.00 1.00	1.00	1.00 1.00	
FinalVolume: 32		0 542	21	12 0		0 0	
Saturation Flow M		1	ı	ı	1	ı	1
	1200 1200	1200 1200	1200	1200 1200	1200	1200 1200	1200
Adjustment: 1.00	1.00 1.00	1.00 1.00	1.00	1.00 1.00	1.00	1.00 1.00	1.00
Lanes: 0.19		0.00 0.96		0.22 0.00	0.78	0.00 0.00	0.00
Final Sat.: 224							
Capacity Analysis	Module:	•	'	•		•	
Vol/Sat: 0.14	0.14 0.00	0.00 0.47	0.47	0.04 0.00	0.04	0.00 0.00	0.00
a 11 mm 1		5.60			- 4		

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

Crit Volume: 32 563 54 0
Crit Moves: **** ****

Future Without Project PM PWed Jul 23, 2008 18:06:25

Page 1-1

Future Without Project PM PWed Jul 23, 2008 18:06:25

Page 2-1

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA

Future 2013 Without Project (Unsignalized as Signalized) - PM Peak

Scenario Report

Scenario: Future Without Project PM Peak

Command: Future Without Project PM Peak Volume: Future PM

Geometry: Future

Impact Fee: Default Impact Fee

Trip Generation: PM Peak
Trip Distribution: Project
Paths: Project
Routes: Default Route

Configuration: Future

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

UCLA NHIP and Amended LRDP Traffic Study

Los Angeles, CA

Future 2013 Without Project (Unsignalized as Signalized) - PM Peak

Trip Generation Report

Forecast for PM Peak

Zone #	Subzone		Units	In		In	Out	Trips	Total
1 2	#1- NA FBI #2	1.00	FBI Office- 11 Palazzo Westwo	0.00 266.00	0.00 237.00	0 266	0 237	0 503	0.0
3	#3 Zone 3 8	1.00 Subtotal	Mixed-Use - S/	195.00	271.00	195 195	271 271	466 466	7.7 7.7
4	#4 Zone 4 :	1.00 Subtotal	Theater Expans	8.00	8.00	8	8 8	16 16	0.3
5 5	#5, 17 #5, 17 Zone 5 8	1.00 1.00 Subtotal	Mixed-Use- 108 Residential Ho	-16.00 17.00	-25.00 15.00	-16 17 1	-25 15 -10	-41 32 -9	-0.7 0.5 -0.1
6	#6 Zone 6 :	1.00 Subtotal	Apartments- 86	6.00	3.00	6 6	3	9 9	0.1
7	#7 Zone 7 :	1.00 Subtotal	Condos- 10804	34.00	17.00	34 34	17 17	51 51	0.8
8 8 8	#8, 25, 61 #8, 25, 61	1.00	Condos-10776 Condos-10763 W Condos-10710	22.00 23.00	11.00 12.00	22 23	-3 11 12 20	33 35	0.5
9	#9 Zone 9 8	1.00 Subtotal	Private School	0.00	9.00	0	9 9	9 9	0.1
10	#10 Zone 10	1.00 Subtotal	Fox Studio Exp	54.00	226.00	54 54	226 226	280 280	4.7 4.7
11 11 11 11	#11, 12, 45, #11, 12, 45, #11, 12, 45, #11, 12, 45, Zone 11	1.00 1.00 1.00 1.00 Subtotal	High School Ex Private School Condos- 1333 S Condos- 552-55	37.00 65.00 2.00 3.00	55.00 166.00 1.00 2.00	37 65 2 3 107	55 166 1 2 224	92 231 3 5 331	1.5 3.8 0.0 0.1 5.5
12	#13 Zone 12		Wilshire/Comst						
13 13	#14, 15, 43 #14, 15, 43 Zone 13	1.00 1.00 Subtotal	ABC Entertainm Condos- 10131	-683.00 -49.00	-216.00 -105.00	-68 -49 -732	33 -216 9 -105 -321	-89 -154 -1053	99 -14 4 -2. -17.5

Page 2-2

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future 2013 Without Project (Unsignalized as Signalized) - PM Peak

Zone #	Subz			Units	Rate In		Trips In	Trips Out	Total Trips	% Of Total
14 14	#16, #16,	35 35 Zone 14	1.00 1.00 Subtotal	Condos- 527 I Condos- 430 I	Mi 61.00 Ke 15.00	30.00 7.00	61 15 76	30 7 37	91 22 113	1.5 0.4 1.9
15	#18	Zone 15	1.00 Subtotal	Health/Fitnes	ss 19.00	18.00	19 19	18 18	37 37	0.6
16	# 19	Zone 16	1.00 Subtotal	Condos-1826	6.00	3.00	6 6	3	9 9	0.1
17	#20	Zone 17	1.00 Subtotal	Condos- 1417	S 6.00	3.00	6 6	3	9 9	0.1
18	#21	Zone 18	1.00 Subtotal	New Car Sales	3.00	4.00	3	4 4	7 7	0.1
19 19	#22, #22,	70 70 Zone 19	1.00 1.00 Subtotal	Condos- 1625 Mixed-Use- 1	S 7.00 15 43.00	3.00 21.00	7 43 50	3 21 24	10 64 74	0.2 1.1 1.2
20 20	#23, #23,	24 24 Zone 20	1.00 1.00 Subtotal	Condos- 1525 Condos- 1633	S 7.00 S 6.00	3.00	7 6 13	3 3 6	10 9 19	0.2 0.1 0.3
21	#26	Zone 21	1.00 Subtotal	Condos- 2037	S 6.00	3.00	6 6	3	9 9	0.1
22 22 22	#27, #27, #27,	63, 65 63, 65 63, 65 Zone 22	1.00 1.00 1.00 Subtotal	Office- 1223 Westside Med: SM Apt Project	3 140.00 ia 16.00 ct 45.00	36.00 15.00 25.00	140 16 45 201	36 15 25 76	176 31 70 277	2.9 0.5 1.2 4.6
23 23	#28, #28,	32 32 Zone 23	1.00 1.00 Subtotal	Condos- 1511 Condos- 1517	S 6.00 B 8.00	3.00 4.00	6 8 14	3 4 7	9 12 21	0.1 0.2 0.3
24 24	#29, #29,	54 54 Zone 24	1.00 1.00 Subtotal	Mixed-Use- 11 Office- 1167	16 37.00 7 29.00	71.00 144.00	37 29 66	71 144 215	108 173 281	1.8 2.9 4.7
25	#30	Zone 25	1.00 Subtotal	Mausoleum Blo	dg 1.00	2.00	1	2 2	3	0.0
26	#31	Zone 26	1.00 Subtotal	Condos- 1061	7 6.00	3.00	6 6	3	9 9	0.1

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

Future Without Project PM PWed Jul 23, 2008 18:06:25 Page 2-3

> UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA

Future 2013 Without Project (Unsignalized as Signalized) - PM Peak

Zone #	Subzone	Amount	Units						
27	#33 Zone 27	1.00 Subtota	Apts- 1817 S B	5.00	2.00	5 5	2 2	7 7	0.1
28	#34 Zone 28	1.00 Subtota	Live/Work- 115	27.00	14.00	27 27	14 14	41 41	0.7 0.7
29	#36 Zone 29	1.00 Subtota	Restaurant- 10	23.00	11.00	23 23	11 11	34 34	0.6
30 30 30	#37, 56, 57 #37, 56, 57 #37, 56, 57 Zone 30	1.00 1.00 1.00 Subtota	Condos- 1807 S Auto Service- Office- SW Cor	6.00 4.00 18.00	3.00 3.00 89.00	6 4 18 28	3 3 89 95	9 7 107 123	0.1 0.1 1.8 2.0
31	#38 Zone 31	1.00 Subtota	Condos- 2263 S	5.00	3.00	5 5	3	8	0.1
32	#39 Zone 32	1.00 Subtota	Cooking School	3.00	2.00	3 3	2 2	5 5	0.1
33	#40 Zone 33	1.00 Subtota	Bank- 1762 Wes	73.00	67.00	73 73	67 67	140 140	2.3
34 35 35	#41- NA-Alre #42, 49 #42, 49 Zone 35	1.00 1.00 1.00 Subtota	Westside Pavil Le Lycee Franc Mixed-Use- 106	0.00 46.00 15.00	0.00 62.00 15.00	0 46 15 61	0 62 15 77	0 108 30 138	0.0 1.8 0.5 2.3
			Discounted Sto Olympic-Stoner Bed, Bath & Be						
37	#46 Zone 37	1.00 Subtota	Belmont Villag	22.00	19.00	22 22	19 19	41 41	0.7 0.7
38 38 38	#47, B12, B3 #47, B12, B3 #47, B12, B3 Zone 38	1.00 1.00 1.00 Subtota	Apts- 10000 W Hotel- 150 Las Beverly Hilton	102.00 13.00 100.00	-115.00 12.00 61.00	10: 13 100 215	2 -115 12 61 -42	-1: 25 161 173	3 -0. 0.4 2.7 2.9
39	#48 Zone 39	1.00 Subtota	Mixed-Use- 109	29.00	25.00	29 29	25 25	54 54	0.9
40	#50 Zone 40	1.00 Subtota	Regent Westwoo	238.00	134.00	238 238	134 134	372 372	6.2 6.2

Los Angeles, CA Future 2013 Without Project (Unsignalized as Signalized) - PM Peak

______ Rate Rate Trips Trips Total % Of In Out In Out Trips Total Zone # Subzone Amount Units 41 #51 42 #52 54 0.9 54 0.9 43 #53 1.00 Condos- 11611 7.00 3.00 7 3 10 0.2 Zone 43 Subtotal 7 3 10 0.2 44 #55 45 #58 46 #59 1.00 Brentwood Reta 46.00 52.00 46 98 1.6 98 1.6 47 #B1, B5, B11 1.00 Young Israel- 4.00 4.00 8 0 1 47 #B1, B5, B11 1.00 Retail Expansi 2.00 3.00 2 3 5 0.1 1.00 Cultural Cente 16.00 40.00 16 40 47 #B1, B5, B11 56 0.9 47 #B1, B5, B11 1.00 Condos- 437-44 5.00 3.00 5 3 8 0 1 47 #B1, B5, B11 1.00 Service Facili 90.00 89.00 90 179 3 0 47 #B1, B5, B11 1.00 Mixed-Use- 421 31.00 47.00 31 47 47 #B1, B5, B11 1.00 Condos- 432 N 12.00 6.00 12 6 78 1 3 18 0 3 48 #B2, B3, B6, 1.00 Beverly Hills 141.00 97.00 141 97 238 4 0 48 #B2, B3, B6, 1.00 Mixed-Use- 265 44.00 119.00 44 119 163 2.7 48 #B2, B3, B6, 1.00 Condos- 125 S 14.00 7.00 21 0.3 14 52 116 1.00 Medical Plaza- 52.00 116.00 168 2.8 48 #B2, B3, B6, 48 #B2, B3, B6, 1.00 Commercial/Ret 14.00 18.00 14 18 32 0.5 48 #B2, B3, B6, 1.00 Mixed-Use- 131 46.00 69.00 46 115 1.9 48 #B2, B3, B6, 1.00 Assisted Care 8.00 7.00 8 15 0.2 48 #B2, B3, B6, 1.00 Senior Congreg 7.00 6.00 48 #B2, B3, B6, 1.00 Screening Room 4.00 1.00 1 5 0.1 82 1.4 51 48 #B2, B3, B6, 1.00 Mixed-Use- 920 51.00 31.00 31 48 #B2, B3, B6, 1.00 Mixed-Use- 959 43.00 33.00 43 33 76 1.3 64 48 #B2, B3, B6, 1.00 Hotel- 9730 Wi 64.00 56.00 56 120 2.0 48 #B2, B3, B6, 1.00 Condos- 140-14 4.00 2.00 6 0 1 2 0.0 48 #B2, B3, B6, 1.00 Condos- 133 Sp 1.00 1.00 48 #B2, B3, B6, 1.00 Office/Medical 7.00 21.00 21 28 0.5 1.00 Condos- 156-16 5.00 3.00 48 #B2, B3, B6, 8 0.1 2 0.0 48 #B2, B3, B6, 1.00 Condos- 144 Re 1.00 1.00 1.00 Condos- 155 N 1.00 1.00 48 #B2, B3, B6, 1 0.0

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

Zone 48 Subtotal 507 589 1096 18.2

Future Without Project PM PWed Jul 23, 2008 18:06:25

UCLA NHIP and Amended LRDP Traffic Study
Los Angeles, CA

Future 2013 Without Project (Unsignalized as Signalized) - PM Peak

Zone #	Subz	one		Amount	Units	Rate In	Rate Out	Trips In	Trips Out	Total Trips	% Of Total
49	#B4,	в14,	В2	1.00	Church Expansi Synagogue/Priv Apts- 428-430 Condos- 313-31	1.00	0.00	1	0	1	0.0
49	#B4,	B14,	B2	1.00	Synagogue/Priv	7.00	8.00	7	8	15	0.2
49	#B4,	B14,	B2	1.00	Apts- 428-430	1.00	0.00	1	0	Ţ	0.0
49	₩B4,	Zone	49	Subtotal	Condos- 313-31	3.00	2.00	12	10	22	0.1
50	#B18	, B21		1.00	Beverly Hills	21.00	140.00	21	140	161	2.7
50	#B18,				Robinson's May					1	
		Zone	50	Subtotal	٠			41	121	162	2.7
51	#B27			1.00	Health Spa- 96	4.00	4.00	4	4	8	0.1
		Zone	51	Subtotal	Health Spa- 96						0.1
52	#62-1	NA Who	ole	1.00	Whole Foods Ma New West Middl	0.00	0.00	0	0 47	0 98	0.0
53								51	47	98	1.6
		Zone	53	Subtotal	L			51	47	98	1.6
54	#66			1.00	Union Bank of	32.00	32.00	32	32	64	1.1
		Zone	54	Subtotal	٠			32	32	64	1.1
55	#68			1.00	Leo Baeck Temp	165.00	199.00	165			6.0
		Zone	55	Subtotal	٠			165	199	364	6.0
56	#69			1.00	Convenience St	50.00	48.00	50	48	98	1.6
		Zone	56	Subtotal	٠			50	48	98	1.6
57	#71			1.00	Westwood Villa	42.00	40.00	42	40	82	1.4
		Zone	57	Subtotal	٠			42	40	82	1.4
58	#72			1.00	Office Bldg- 2	9.00	41.00	9	41	50	
		Zone	58	Subtotal	٠٠٠٠٠٠٠٠٠٠٠٠٠			9	41	50	0.8
59	Hekma				Mixed Use						
		Zone	59	Subtotal	l			60	55	115	1.9

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA

Future 2013 Without Project (Unsignalized as Signalized) - PM Peak

Trip Distribution Report

Percent Of Trips Project

To Gates											
	1	2	3	4	5	6	9	10	11	12	13
Zone											
1 2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3 4	8.0	3.0	0.0	4.0	0.0	3.0	16.0	0.0	11.0	0.0	5.0
4 5	8.0	3.0	0.0	4.0	0.0	3.0	16.0	0.0	11.0	0.0	5.0
6	8.0 10.0	3.0	0.0	4.0	0.0	3.0 5.0	16.0	0.0	11.0	0.0	5.0
7	15.0	0.0	0.0	0.0	0.0	0.0	5.0		5.0	0.0	0.0
8	15.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	5.0	0.0	0.0
9	5.0	5.0	5.0	5.0	5.0	20.0	5.0	0.0	0.0	0.0	0.0
10	10.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0	0.0
11	10.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0	0.0
12	10.0	0.0	0.0	0.0	0.0	5.0	0.0	0.0	5.0	0.0	0.0
13	10.0	0.0	0.0	0.0	0.0	5.0	5.0		0.0	0.0	0.0
14	8.0	3.0	0.0	4.0	0.0	3.0	16.0	0.0	11.0	0.0	5.0
15	0.0	0.0	0.0	0.0	0.0	0.0	10.0	5.0	10.0	5.0	0.0
16	10.0	0.0	0.0	0.0	0.0		5.0	5.0	5.0	0.0	0.0
17	10.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0
18	10.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0
19	10.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0
20	10.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0
21	10.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0	0.0
22 23	10.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0 5.0	0.0	0.0	0.0
23	10.0	0.0	0.0	0.0	0.0	0.0	5.0 5.0	5.0	0.0	2.5	2.5
25	15.0	0.0	0.0	0.0	0.0		5.0	5.0	5.0	0.0	0.0
26	10.0	0.0	0.0	0.0	0.0	0.0	10.0	0.0	0.0	0.0	0.0
27	10.0	0.0	0.0	0.0	0.0		5.0	5.0	0.0	0.0	0.0
28	10.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0
29	8.0	3.0	0.0	4.0	0.0	3.0	16.0	0.0	11.0	0.0	5.0
30	10.0	0.0	0.0	0.0	0.0	0.0	10.0		0.0	0.0	0.0
31	10.0	0.0	0.0	0.0	0.0	5.0	5.0		0.0	0.0	0.0
32	10.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0
33	0.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	10.0	0.0	0.0
34	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
35	10.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0
36	10.0	0.0	0.0	0.0	0.0	0.0	5.0		0.0	0.0	0.0
37	10.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	5.0	0.0	0.0
38	10.0	0.0	0.0	0.0	0.0	5.0	0.0	0.0	5.0	0.0	0.0
39	0.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	5.0	0.0	0.0
40	8.0	3.0	0.0	4.0	0.0	3.0	16.0	0.0	11.0	0.0	5.0
41	8.0	3.0	0.0	4.0	0.0	3.0	16.0	0.0	11.0	0.0	5.0
42 43	10.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0 5.0	5.0	0.0	0.0
43	10.0	0.0	0.0	0.0	0.0	0.0	5.0 5.0	5.0	0.0	0.0	0.0
44	TU.U	0.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA

Future Without Project PM PWed Jul 23, 2008 18:06:25

Future 2013 Without Project (Unsignalized as Signalized) - PM Peak

-	ucuic 20	15 1110	nout i	10,000	(01101	gnarra	ca ab .	Jigilai	12ca,	111 1 0	an.
					то	Gates					
	1	2	3	4		6	9	10	11	12	13
Zone											
45	0.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	5.0	0.0	0.0
46	10.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0
47	10.0	0.0	0.0	0.0	0.0	5.0	0.0	0.0	5.0	0.0	0.0
48	10.0	0.0	0.0	0.0	0.0	5.0	0.0	0.0	5.0	0.0	0.0
49	10.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0	0.0
50	10.0	0.0	0.0	0.0	0.0	5.0	0.0	0.0	5.0	0.0	0.0
51	5.0	5.0	5.0	5.0	5.0	20.0	5.0	0.0	0.0	0.0	0.0
52	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
53	10.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0
54	8.0	3.0	0.0	4.0	0.0	3.0	16.0	0.0	11.0	0.0	5.0
55	0.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0	5.0
56	0.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	10.0	0.0	0.0
57	8.0	3.0	0.0	4.0	0.0	3.0	16.0	0.0	11.0	0.0	5.0
58	10.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0
59	0.0 10.0 10.0 10.0 10.0 5.0 0.0 0.0 0.0 0.0 0.0 0.0 8.0 10.0 8.0	3.0	0.0	4.0	0.0	3.0	16.0	0.0	11.0	0.0	5.0
				17	To	Gates	0.0	0.1	0.0	0.0	
	14						20	21	22	23	
Zone											
1	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
2	3 0	0.0	9 0	6.0	0.0	23 0	0.0	0.0	0.0	3 0	2 0
3	3.0	0.0	9 0	6.0	0.0	23.0	0.0	0.0	0.0	3.0	2.0
4	3.0	0.0	9 0	6.0	0.0	23.0	0.0	0.0	0.0	3.0	2.0
5	3.0	0.0	9.0	6.0	0.0	23.0	0.0	0.0	0.0	3.0	2.0
6	5.0	0.0	5.0	5.0	5.0	10.0	0.0	0.0	0.0	0.0	0.0
7	5.0	0.0	5.0	5.0	5.0	15.0	0.0	0.0	0.0	0.0	0.0
8	5.0	0.0	5.0	5.0	5.0	15.0	0.0	0.0	0.0	0.0	0.0
9	0.0	0.0	2.5	0.0	5.0	2.5	5.0	0.0	0.0	0.0	0.0
10	5.0	0.0	5.0	3.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0
11	5.0	0.0	5.0	3.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0
12	5.0	0.0	5.0	5.0	5.0	10.0	0.0	0.0	0.0	0.0	0.0
13	5.0	0.0	5.0	3.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0
14	3.0	0.0	9.0	6.0	0.0	23.0	0.0	0.0	0.0	3.0	2.0
15	10.0	10.0	10.0	10.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
16	5.0	0.0	5.0	5.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0
17	5.0	0.0	5.0	5.0	0.0	10.0	0.0	3.0	0.0	0.0	0.0
18	5.0	0.0	5.0	5.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0
19	0.0	0.0	0.0	5.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0
20	0.0	0.0	0.0	5.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0
21	5.0	0.0	5.0	3.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0
22	0.0	0.0	0.0	5.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0
23	5.0	2.5	5.0	2.5	0.0	10.0	0.0	0.0	0.0	0.0	0.0
24	0.0	0.0	0.0	5.0	0.0	10.0	0.0	0.0	5.0	0.0	0.0
25 26	5.0	0.0	5.0	5.0	5.0	15.0	0.0	0.0	0.0	0.0	0.0
26	5.0	0.0	5.0	5.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0
28	5.0	0.0	0.0	5.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0
∠0	0.0 3.0 3.0 3.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 0.0 0.0 0	0.0	0.0	5.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0

UCLA NHIP and Amended LRDP Traffic Study

Los Angeles, CA
Future 2013 Without Project (Unsignalized as Signalized)- PM Peak

racare zoto wremout rioject (onorganizzea ab bigarizzea) in real														
	To Gates 14 15 16 17 18 19 20 21 22 23 28													
		15							22	23	28			
Zone														
29	3.0	0.0	9.0	6.0	0 0	23.0	0.0	0.0	0.0	3.0	2.0			
30	5.0	0.0	5.0			10.0	0.0	0.0	0.0	0.0	0.0			
31	5.0	0.0	5.0	3.0		10.0	0.0	0.0	0.0	0.0	0.0			
32	5.0	0.0	5.0	5.0		10.0	0.0	0.0	0.0	0.0	0.0			
33	5.0	5.0	5.0	5.0		0.0	0.0	0.0	0.0	0.0	0.0			
34	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0			
35	5.0	0.0	5.0	5.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0			
36	0.0	0.0	0.0	5.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0			
37	5.0	0.0	5.0	5.0	5.0	10.0	0.0	0.0	0.0	0.0	0.0			
38	5.0	0.0	5.0	5.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0			
39	5.0	5.0	5.0	5.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
40	3.0	0.0	9.0	6.0	0.0	23.0	0.0	0.0	0.0	3.0	2.0			
41	3.0	0.0		6.0	0.0	23.0	0.0	0.0	0.0	3.0	2.0			
42	5.0	0.0	5.0		5.0		0.0	0.0	0.0	0.0	0.0			
43	5.0	0.0	5.0		0.0		0.0	0.0	5.0	0.0	0.0			
44	0.0	0.0	5.0		0.0		0.0	0.0	0.0	0.0	0.0			
45	5.0	5.0	5.0			0.0	0.0	0.0	0.0	0.0	0.0			
46	5.0	0.0	5.0		0.0	10.0	0.0	0.0	5.0	0.0	0.0			
47	5.0	0.0	5.0		5.0	10.0	0.0	0.0	0.0	0.0	0.0			
48	5.0	0.0	5.0		5.0	10.0	0.0	0.0	0.0	0.0	0.0			
49	5.0	0.0	5.0			10.0	0.0	0.0	0.0	0.0	0.0			
50	5.0	0.0	5.0			10.0	0.0	0.0	0.0	0.0	0.0			
51	0.0	0.0	2.5	0.0		2.5	5.0	0.0	0.0	0.0	0.0			
52	0.0	0.0		0.0		0.0	0.0	0.0	0.0	0.0	0.0			
53	0.0	0.0	0.0	5.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0			
54 55	3.0	0.0		6.0	0.0	23.0	0.0	0.0	0.0	3.0	2.0			
55 56	5.0	5.0	5.0	5.0		0.0	0.0	0.0	0.0	0.0	0.0			
56 57	3.0	0.0	9.0		0.0	23.0	0.0	0.0	0.0		2.0			
58	5.0	0.0			0.0	10.0	0.0	0.0	0.0		0.0			
50 59	3.0	0.0			0.0		0.0	0.0						
59	5.0	0.0	5.0	0.0	0.0	23.0	0.0	0.0	0.0	3.0	2.0			

	To Gate	es
	29	30
Zone		
1	0.0	0.0
2	2.0	2.0
3	2.0	2.0
4	2.0	2.0
5	2.0	2.0
6	0.0	0.0
7	0.0	0.0
8	0.0	0.0
9	0.0	0.0
10	0.0	0.0
11	0.0	0.0
12	0.0	0.0

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

Future Without Project PM PWed Jul 23, 2008 18:06:25

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA

Future 2013 Without Project (Unsignalized as Signalized) - PM Peak

	To Gate	
	29	
Zone		
13	0.0	0.0
14	2.0 0.0 0.0	2.0
15	0.0	0.0
16 17	0.0	0.0
		0.0
18 19	0.0	0.0
19	0.0	0.0
20	0.0	0.0
21	0.0	0.0
22	0.0	0.0
23 24		0.0
25		0.0
26	0.0	0.0
27		0.0
28	0.0	0.0
29	0.0	2 0
30	0 0	0.0
31	0.0	0.0
		0.0
32 33	0.0	0.0
3.4	0.0	0.0
35	0.0	0.0
36	0.0	0.0
37	0.0	0.0
38	0.0	0.0
39	0.0	0.0
40	2.0	2.0
41	2.0	2.0
42	0.0	0.0
43	0.0	0.0
44	0.0	0.0
45		0.0
46	0.0	0.0
47		0.0
48	0.0	0.0
49	0.0	0.0
50	0.0	
51	0.0	0.0
52		0.0
53	0.0	0.0
54		2.0
55		0.0
56 57		0.0
58		0.0
59	2.0	2.0
39	2.0	2.0

UCLA NHIP and Amended LRDP Traffic Study

Los Angeles, CA

Future 2013 Without Project (Unsignalized as Signalized) - PM Peak

Turning Movement Report

PM Peak

Volume Northbound Southbound Eastbound Westbound Total										matal.			
Volume Type													Total Volume
11100	пстс	IIII a .	icigiic	DCIC	IIII u	RIGIIC	DCIC	IIII u	Rigire	DCLC	IIII u	Kigiic	VOIGING
#1 Sept	ılved	a Boul	evard	and Ch	nurch	Ln/Ova	da Pl						
Base	4	1702	237	3	923	383	586	107	19	68	101	7	4141
Added	0	136	0	0	59	50	17	0	0	0	0	0	262
Total	4	1838	237	3	982	433	603	107	19	68	101	7	4403
#2 Chui	cah I	ane an	d Can	Diego	Eure C	P On/C	off Dar	mro.					
Base	6	668	261	101	479	0 0117	5 LI Kai	3	9	945	1	27	2506
Added	0	17	201	20	30	0	0	0	0	68	0	0	135
Total	6	685	261	121	509	0	5	3	9	1013	1	27	2641
	_						_	_	-		_		
#3 Chui	rch L	ane an	d Suns	set Bou	ılevar	ď							
Base	132	41	81	559	97	753	427	1280	35	29	904	443	4781
Added	0	0	0	78	0	20	17	0	0	0	1	0	116
Total	132	41	81	637	97	773	444	1280	35	29	905	443	4897
#4 San	Diea	n Fwv i	NR On	Off Ra	amps a	nd Sur	set R	nuleva	ard				
Base	102	0 1 1 1 1	87	0	0	0		1046	914	0	1281	0	3429
Added	0	0	0	0	0	0	0	78	0	0	69	0	147
Total	102	0	87	0	0	0	0	1124	914	0	1350	0	3576
#5 Vete	eran i			Sunset	Boule	vard							
Base	392	0	416	0	0	0	0	902	159		1414	0	3570
Added	59	0	23	0	0	0	0	10	68	26	10	0	196
Total	451	0	439	0	0	0	0	912	227	314	1424	0	3766
#6 Bel:	lagio	Way a	nd Sui	nset Bo	nuleva	rd							
Base	274	101	32	58	6	143	350	899	86	16	1295	118	3376
Added	0	0	0	8	0	21	20	13	0	0	15	7	84
Total	274	101	32	66	6	164	370	912	86	16	1310	125	3460
		_											
#7 West								014		4.0	1000		0.00
Base	205	0	201	0	0	0	0	914	99		1266	0	2732
Added	0	0	0	0	0	0	0	21	0	0	22	0	43
Total	205	0	201	0	0	0	0	935	99	48	1288	0	2775
#8 Stor	ne Car	nyon R	oad ar	nd Suns	set Bo	ulevar	rd						
Base	146	0	137	65	0	106	125	1274	130	166	1027	23	3198
Added	0	0	0	0	0	0	0	21	0	0	22	0	43
Total	146	0	137	65	0	106	125	1295	130	166	1049	23	3241
#9 Hild	rard	Δτεριιο	/Cona	De Oro	Poad	l and 9	linget	Boule	avard				
Base	273	35	382	37	72	21		1202	126	166	915	7	3239
Added	7	0	55	0	0	0	0	13	8	56	15	0	154
Total	280	35	437	37	72	21		1215	134	222	930	7	3393

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA

Future 2013 Without Project (Unsignalized as Signalized) - PM Peak

									Signa				
Volume			ound						and				Total
Type	Leit	Thru	Right	Leit	Thru	Right	Leit	Thru	Right	Leit	Thru	Right	Volume
#10 Be	verly	Glen	Boule	vard a	nd Sun	set Bo	uleva	rd					
Base	233	175	610	109	71	20	17	1350	63	408	1008	83	4149
Added	0	0	57	0	0	0	0	68	0	28	71	0	224
Total	233	175	667	109	71	20	17	1418	63	436	1079	83	4373
									ast I/S				
Base	0		0	121		382		1287	0	0	953	132	
Added	0	0	0	3	0	41	36	89	0	0	58	1	228
Total	0	0	0	124	0	423	941	1376	0	0	1011	133	4009
#12 Se	pulve	da Boı	ılevar			ego Fw	y NB (Off-Ra	amp				
Base		1681	0			0	97		26	0	0	-	
Added	-	31	0	0		0	34		0	0	0	-	99
Total	0	1712	0	0	932	0	131	0	26	0	0	0	2801
#13 Se													
Base		1474	123	59		16	3		120	169			
Added	-	44	21	26		0	0		0	2			
Total	133	1518	144	85	693	16	3	96	120	171	198	292	3469
#14 Le								220					1056
Base	266		8	0	0	0		338	111	1			
Added	27		0	0	0	0		0	47	0		0	
Total	293	0	8	0	0	0	0	338	158	1	531	0	1330
#15 Ve													
Base	57		27	61		51	121	166	55	23			
Added	0		0	0		0	0		0	0		-	
Total	57	557	27	61	403	51	121	166	55	23	440	298	2258
#16 Ga													
Base			180	127		14		107	19	335			
Added	0		0	0		0	0		0	0		0	
Total	23	381	180	127	164	14	8	107	19	335	160	353	1870
#17 Ve													
Base	183	574	42	23		5	0		87	55			
Added	14		15	41		0	0		16	16			
Total	197	614	57	64	422	5	0	74	103	71	114	113	1834
#18 Hi													
Base	123	654	45	35	393	24	53	116	336	21	27	13	
Added	0	61	0	0		0	0	0	0	0	0	0	125
Total	123	715	45	35	457	24	53	116	336	21	27	13	1964

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA

Future 2013 Without Project (Unsignalized as Signalized) - PM Peak

Volume														
#19 Beverly Glen Blvd and Wyton Dr/Comstock Ave [5-Leg Intersection- Wyton Split Base 26 763 15 29 481 12 20 33 27 48 69 129 1653 Added 0 57 0 0 28 0 0 0 0 0 0 0 0 0 0 85 Total 26 820 15 29 509 12 20 33 27 48 69 129 1738 #20 Hilgard Avenue and Westholme Avenue Base 102 589 33 76 564 41 205 243 158 28 54 49 2140 Added 0 61 0 0 64 0 0 0 0 0 0 0 0 0 0 125 Total 102 650 33 76 628 41 205 243 158 28 54 49 2265 #21 Hilgard Avenue and Manning Avenue Base 0 659 8 67 895 0 0 0 0 0 0 11 0 24 1664 Added 0 61 0 0 64 0 0 0 0 0 0 11 0 24 1664 Added 0 61 0 0 64 0 0 0 0 0 0 11 0 24 1664 Added 0 61 0 0 64 0 0 0 0 0 0 11 0 24 1789 #22 Gayley Avenue and Manning Avenue Base 64 420 214 200 1089 37 15 133 13 210 315 165 2874 Added 0 0 0 0 3 0 0 0 0 11 0 24 1789 #25 In 0 34 -72 -73 73 0 0 -73 73 -34 -34 -34 -140 Total 64 454 145 127 1162 37 15 100 86 179 344 131 2843 #23 Westwood Boulevard and Le Conte Avenue Base 105 345 161 108 470 223 94 234 333 176 332 65 281 #25 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0														
Base 26 763 15 29 481 12 20 33 27 48 69 129 1653 Added 0 57 0 0 0 28 0 0 0 0 0 0 0 0 0 0 85 Total 26 820 15 29 509 12 20 33 27 48 69 129 1738 #20 Hilgard Avenue and Westholme Avenue Base 102 589 33 76 564 41 205 243 158 28 54 49 2140 Added 0 61 0 0 64 0 0 0 0 0 0 0 0 0 125 Total 102 650 33 76 628 41 205 243 158 28 54 49 2265 #21 Hilgard Avenue and Manning Avenue Base 0 669 8 67 895 0 0 0 0 0 11 0 24 1664 Added 0 61 0 0 0 64 0 0 0 0 0 0 0 125 Total 0 720 8 67 959 0 0 0 0 0 11 0 24 1789 #22 Gayley Avenue and Le Conte Avenue Base 64 420 214 200 1089 37 15 133 13 210 315 165 2874 Added 0 0 0 3 0 0 0 0 40 0 3 63 0 109 #25 In 0 34 -72 -73 73 0 0 -73 73 -34 -34 -34 -140 Total 64 454 145 127 1162 37 15 100 86 179 344 131 2843 #23 Westwood Boulevard and Le Conte Avenue Base 105 345 161 108 470 223 94 429 107 170 416 65 2694 Added 178 0 6 0 0 0 0 0 23 226 6 18 0 457 #25 0 0 0 0 0 0 0 0 23 226 6 6 18 0 457 #25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	туре .	Leit	ınru .	Right	Leit	Thru	Right	Leit	Thru	Right	Leit	Thru	Right	volume
Base 26 763 15 29 481 12 20 33 27 48 69 129 1653 Added 0 57 0 0 0 28 0 0 0 0 0 0 0 0 0 0 85 Total 26 820 15 29 509 12 20 33 27 48 69 129 1738 #20 Hilgard Avenue and Westholme Avenue Base 102 589 33 76 564 41 205 243 158 28 54 49 2140 Added 0 61 0 0 64 0 0 0 0 0 0 0 0 0 125 Total 102 650 33 76 628 41 205 243 158 28 54 49 2265 #21 Hilgard Avenue and Manning Avenue Base 0 669 8 67 895 0 0 0 0 0 11 0 24 1664 Added 0 61 0 0 0 64 0 0 0 0 0 0 0 125 Total 0 720 8 67 959 0 0 0 0 0 11 0 24 1789 #22 Gayley Avenue and Le Conte Avenue Base 64 420 214 200 1089 37 15 133 13 210 315 165 2874 Added 0 0 0 3 0 0 0 0 40 0 3 63 0 109 #25 In 0 34 -72 -73 73 0 0 -73 73 -34 -34 -34 -140 Total 64 454 145 127 1162 37 15 100 86 179 344 131 2843 #23 Westwood Boulevard and Le Conte Avenue Base 105 345 161 108 470 223 94 429 107 170 416 65 2694 Added 178 0 6 0 0 0 0 0 23 226 6 18 0 457 #25 0 0 0 0 0 0 0 0 23 226 6 6 18 0 457 #25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0														
Base 26 763 15 29 481 12 20 33 27 48 69 129 1653 Added 0 57 0 0 0 28 0 0 0 0 0 0 0 0 0 0 85 Total 26 820 15 29 509 12 20 33 27 48 69 129 1738 #20 Hilgard Avenue and Westholme Avenue Base 102 589 33 76 564 41 205 243 158 28 54 49 2140 Added 0 61 0 0 64 0 0 0 0 0 0 0 0 0 125 Total 102 650 33 76 628 41 205 243 158 28 54 49 2265 #21 Hilgard Avenue and Manning Avenue Base 0 669 8 67 895 0 0 0 0 0 11 0 24 1664 Added 0 61 0 0 0 64 0 0 0 0 0 0 0 125 Total 0 720 8 67 959 0 0 0 0 0 11 0 24 1789 #22 Gayley Avenue and Le Conte Avenue Base 64 420 214 200 1089 37 15 133 13 210 315 165 2874 Added 0 0 0 3 0 0 0 0 40 0 3 63 0 109 #25 In 0 34 -72 -73 73 0 0 -73 73 -34 -34 -34 -140 Total 64 454 145 127 1162 37 15 100 86 179 344 131 2843 #23 Westwood Boulevard and Le Conte Avenue Base 105 345 161 108 470 223 94 429 107 170 416 65 2694 Added 178 0 6 0 0 0 0 0 23 226 6 18 0 457 #25 0 0 0 0 0 0 0 0 23 226 6 6 18 0 457 #25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	#19 Bev	erlv	Glen	Blvd a	and Wyt	on D	r/Comst	ock A	ze [5-	-Leg In	tersec	tion-	Wyton	Split
#20 Hilgard Avenue and Westholme Avenue Base 102 589 33 76 564 41 205 243 158 28 54 49 2140 Added 0 61 0 0 64 0 0 0 0 0 0 0 0 125 Total 102 650 33 76 628 41 205 243 158 28 54 49 2265 #21 Hilgard Avenue and Manning Avenue Base 0 659 8 67 895 0 0 0 0 0 11 0 24 1664 Added 0 61 0 0 64 0 0 0 0 0 11 0 24 1789 #22 Gayley Avenue and Le Conte Avenue Base 64 420 214 200 1089 37 15 133 13 210 315 165 2874 Added 0 0 3 0 0 0 0 40 0 3 63 0 109 #25 In 0 34 76 17 18 43 97 84 204 134 508 137 23 476 41 1854 Added 178 0 6 0 0 0 0 0 0 23 20 0 0 0 0 0 0 0 0 0 0 0														
#20 Hilgard Avenue and Westholme Avenue Base 102 589 33 76 564 41 205 243 158 28 54 49 2140 Added 0 61 0 0 64 0 0 0 0 0 0 0 0 0 125 Total 102 650 33 76 628 41 205 243 158 28 54 49 2265 #21 Hilgard Avenue and Manning Avenue Base 0 659 8 67 895 0 0 0 0 0 11 0 24 1664 Added 0 61 0 0 64 0 0 0 0 0 11 0 24 1664 Added 0 61 0 0 64 0 0 0 0 0 0 0 0 125 Total 0 720 8 67 959 0 0 0 0 0 0 11 0 24 1789 #22 Gayley Avenue and Le Conte Avenue Base 64 420 214 200 1089 37 15 133 13 210 315 165 2874 Added 0 0 3 3 0 0 0 0 40 0 3 63 0 109 #25 In 0 34 -72 -73 73 0 0 -73 73 -34 -34 -34 -140 Total 64 454 145 127 1162 37 15 100 86 179 344 131 2843 #23 Westwood Boulevard and Le Conte Avenue Base 105 345 161 108 470 223 94 429 107 170 416 65 2694 Added 178 0 6 0 0 0 0 23 226 6 18 0 457 #25 In 0 34 -74 13 97 84 204 134 508 137 23 476 41 1854 Added 178 0 0 0 0 0 0 0 -218 0 0 -102 0 -320 Total 283 345 167 108 470 223 94 234 333 176 332 65 2831 #24 Tiverton Drive and Le Conte Avenue Base 37 71 43 97 84 204 134 508 137 23 476 41 1854 Added 0 0 0 0 0 0 0 0 -218 0 0 -102 0 -320 Total 37 71 43 97 84 204 134 312 137 23 476 41 1854 Added 0 0 0 0 0 0 0 0 0 0 22 0 0 17 0 39 #25 In 0 0 0 0 0 0 0 0 0 0 22 0 0 17 0 39 #25 In 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Added	0	57	0	0	28	0	0	0	0	0	0	0	85
Base 102 589 33 76 564 41 205 243 158 28 54 49 2140 Added 0 61 0 0 64 0 0 0 0 0 0 0 0 0 0 125 Total 102 650 33 76 628 41 205 243 158 28 54 49 2265 #21 Hilgard Avenue and Manning Avenue Base 0 659 8 67 895 0 0 0 0 0 11 0 24 1664 Added 0 61 0 0 64 0 0 0 0 0 11 0 24 1789 #22 Gayley Avenue and Le Conte Avenue Base 64 420 214 200 1089 37 15 133 13 210 315 165 2874 Added 0 0 0 3 0 0 0 0 0 3 63 0 109 #25 In 0 34 -72 -73 73 0 0 0 -73 73 -34 -34 -34 -34 -140 Total 64 454 145 127 1162 37 15 100 86 179 344 131 2843 #23 Westwood Boulevard and Le Conte Avenue Base 105 345 161 108 470 223 94 429 107 170 416 65 2694 Added 178 0 6 6 0 70 0 0 22 20 0 0 17 0 39 #25 Total 283 345 167 108 470 223 94 234 333 176 332 65 2831 #24 Tiverton Drive and Le Conte Avenue Base 37 71 43 97 84 204 134 508 137 23 476 41 1854 Added 0 0 0 0 0 0 0 0 0 0 22 0 0 17 0 39 #25 In 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Total	26	820	15	29	509	12	20	33	27	48	69	129	1738
Base 102 589 33 76 564 41 205 243 158 28 54 49 2140 Added 0 61 0 0 64 0 0 0 0 0 0 0 0 0 0 125 Total 102 650 33 76 628 41 205 243 158 28 54 49 2265 #21 Hilgard Avenue and Manning Avenue Base 0 659 8 67 895 0 0 0 0 0 11 0 24 1664 Added 0 61 0 0 64 0 0 0 0 0 11 0 24 1789 #22 Gayley Avenue and Le Conte Avenue Base 64 420 214 200 1089 37 15 133 13 210 315 165 2874 Added 0 0 0 3 0 0 0 0 3 63 0 109 #25 In 0 34 -72 -73 73 0 0 0 -73 73 -34 -34 -34 -34 -140 Total 64 454 145 127 1162 37 15 100 86 179 344 131 2843 #23 Westwood Boulevard and Le Conte Avenue Base 105 345 161 108 470 223 94 429 107 170 416 65 2694 Added 178 0 6 6 0 0 0 0 0 22 20 0 0 17 0 39 #25 In 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		,	_											
Added 0 61 0 0 64 0 0 0 0 0 0 0 0 0 0 0 0 125 Total 102 650 33 76 628 41 205 243 158 28 54 49 2265 #21 Hilgard Avenue and Manning Avenue Base 0 659 8 67 895 0 0 0 0 0 11 0 24 1664 Added 0 61 0 0 64 0 0 0 0 0 0 11 0 24 1789 #22 Gayley Avenue and Le Conte Avenue Base 64 420 214 200 1089 37 15 133 13 210 315 165 2874 Added 0 0 0 3 0 0 0 0 40 0 3 363 0 109 #25 In 0 34 -72 -73 73 0 0 -73 73 -34 -34 -34 -34 -140 Total 64 454 145 127 1162 37 15 100 86 179 344 131 2843 #23 Westwood Boulevard and Le Conte Avenue Base 105 345 161 108 470 223 94 429 107 170 416 65 2694 Added 178 0 6 0 0 0 0 23 226 6 18 0 457 #25 0 0 0 0 0 0 0 0 23 226 6 18 0 457 #25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0								205	0.40	1.50	0.0	- 4	4.0	01.40
Total 102 650 33 76 628 41 205 243 158 28 54 49 2265 #21 Hilgard Avenue and Manning Avenue Base														
#21 Hilgard Avenue and Manning Avenue Base														
Base 0 659 8 67 895 0 0 0 0 0 11 0 24 1664 Added 0 61 0 0 64 0 0 0 0 0 11 0 24 1789 #22 Gayley Avenue and Le Conte Avenue Base 64 420 214 200 1089 37 15 133 13 210 315 165 2874 Added 0 0 3 0 0 0 0 0 40 0 3 63 0 109 #25 In 0 34 -72 -73 73 0 0 -73 73 -34 -34 -34 -140 Total 64 454 145 127 1162 37 15 100 86 179 344 131 2843 #23 Westwood Boulevard and Le Conte Avenue Base 105 345 161 108 470 223 94 429 107 170 416 65 2694 Added 178 0 6 0 0 0 0 23 226 6 18 0 457 #25 D 0 0 0 0 0 0 0 0 0 23 226 6 18 0 457 #25 D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	IOLAI	102	650	33	76	020	41	205	243	120	20	54	49	2205
Added 0 61 0 0 64 0 0 64 0 0 0 0 0 0 0 0 0 125 Total 0 720 8 67 959 0 0 0 0 0 0 11 0 24 1789 #22 Gayley Avenue and Le Conte Avenue Base 64 420 214 200 1089 37 15 133 13 210 315 165 2874 Added 0 0 3 3 0 0 0 0 0 40 0 3 63 0 109 #25 In 0 34 -72 -73 73 0 0 -73 73 -34 -34 -34 -140 Total 64 454 145 127 1162 37 15 100 86 179 344 131 2843 #23 Westwood Boulevard and Le Conte Avenue Base 105 345 161 108 470 223 94 429 107 170 416 65 2694 Added 178 0 6 0 0 0 0 0 23 226 6 18 0 457 #25 0 0 0 0 0 0 0 0 0 23 226 6 18 0 457 #25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	#21 Hil	gard	Avenu	e and	Manni	ng Ave	enue							
Total 0 720 8 67 959 0 0 0 0 0 11 0 24 1789 #22 Gayley Avenue and Le Conte Avenue Base 64 420 214 200 1089 37 15 133 13 210 315 165 2874 Added 0 0 3 0 0 0 0 40 0 3 63 0 109 #25 In 0 34 -72 -73 73 0 0 -73 73 -34 -34 -34 -140 Total 64 454 145 127 1162 37 15 100 86 179 344 131 2843 #23 Westwood Boulevard and Le Conte Avenue Base 105 345 161 108 470 223 94 429 107 170 416 65 2694 Added 178 0 6 0 0 0 0 23 226 6 18 0 457 #25 0 0 0 0 0 0 0 0 0 -23 226 6 18 0 457 #25 0 0 0 0 0 0 0 0 0 0 -23 33 176 332 65 2831 #24 Tiverton Drive and Le Conte Avenue Base 37 71 43 97 84 204 134 508 137 23 476 41 1854 Added 0 0 0 0 0 0 0 0 22 0 0 17 0 39 #25 In 0 0 0 0 0 0 0 0 0 22 0 0 17 0 39 #25 In 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Base	0	659	8	67	895	0	0	0	0	11	0	24	1664
#22 Gayley Avenue and Le Conte Avenue Base 64 420 214 200 1089 37 15 133 13 210 315 165 2874 Added 0 0 3 0 0 0 0 0 40 0 3 63 0 109 #25 In 0 34 -72 -73 73 0 0 -73 73 -34 -34 -34 -140 Total 64 454 145 127 1162 37 15 100 86 179 344 131 2843 #23 Westwood Boulevard and Le Conte Avenue Base 105 345 161 108 470 223 94 429 107 170 416 65 2694 Added 178 0 6 0 0 0 0 23 226 6 18 0 457 #25 0 0 0 0 0 0 0 0 0 0 -218 0 0 -102 0 -320 Total 283 345 167 108 470 223 94 234 333 176 332 65 2831 #24 Tiverton Drive and Le Conte Avenue Base 37 71 43 97 84 204 134 508 137 23 476 41 1854 Added 0 0 0 0 0 0 0 0 22 0 0 17 0 39 #25 In 0 0 0 0 0 0 0 0 0 22 0 0 17 0 39 #25 In 0 0 0 0 0 0 0 0 0 0 22 0 0 17 0 39 #25 In 0 0 0 0 0 0 0 0 0 0 0 0 22 0 0 17 0 39 #25 Hilgard Avenue and Le Conte Avenue Base 59 300 11 26 493 386 338 0 85 11 0 29 1739 Added 0 39 0 0 46 17 22 0 0 0 0 0 0 0 22 Total 59 339 229 26 539 403 360 0 85 113 0 29 2183 #26 Gayley Avenue and Weyburn Avenue Base 62 520 215 66 991 295 92 174 34 116 174 92 2832 Added 0 8 125 12 8 0 0 6 6 0 70 46 13 348 #25 In 0 0 0 72 146 0 0 0 0 0 0 34 34 34 34 32	Added	0	61	0	0	64	0	0	0	0	0	0	0	125
Base 64 420 214 200 1089 37 15 133 13 210 315 165 2874 Added 0 0 3 0 0 0 0 0 40 0 3 63 0 109 #25 In 0 34 -72 -73 73 0 0 -73 73 -34 -34 -34 -140 Total 64 454 145 127 1162 37 15 100 86 179 344 131 2843 #23 Westwood Boulevard and Le Conte Avenue Base 105 345 161 108 470 223 94 429 107 170 416 65 2694 Added 178 0 6 0 0 0 0 23 226 6 18 0 457 #25 0 0 0 0 0 0 0 0 0 -218 0 0 0 -102 0 -320 Total 283 345 167 108 470 223 94 234 333 176 332 65 2831 #24 Tiverton Drive and Le Conte Avenue Base 37 71 43 97 84 204 134 508 137 23 476 41 1854 Added 0 0 0 0 0 0 0 0 22 0 0 17 0 39 #25 In 0 0 0 0 0 0 0 0 0 22 3 0 0 17 0 39 #25 Ihlgard Avenue and Le Conte Avenue Base 59 300 11 26 493 386 338 0 85 11 0 29 1739 Added 0 39 0 0 46 17 22 0 0 0 0 0 0 22 Total 59 339 229 26 539 403 360 0 85 113 0 29 2183 #26 Gayley Avenue and Weyburn Avenue Base 62 520 215 66 991 295 92 174 34 116 174 92 2832 #25 In 0 0 0 72 146 0 0 0 0 0 0 0 34 34 34 34 32	Total	0	720	8	67	959	0	0	0	0	11	0	24	1789
Base 64 420 214 200 1089 37 15 133 13 210 315 165 2874 Added 0 0 3 0 0 0 0 0 40 0 3 63 0 109 #25 In 0 34 -72 -73 73 0 0 -73 73 -34 -34 -34 -140 Total 64 454 145 127 1162 37 15 100 86 179 344 131 2843 #23 Westwood Boulevard and Le Conte Avenue Base 105 345 161 108 470 223 94 429 107 170 416 65 2694 Added 178 0 6 0 0 0 0 23 226 6 18 0 457 #25 0 0 0 0 0 0 0 0 0 -218 0 0 0 -102 0 -320 Total 283 345 167 108 470 223 94 234 333 176 332 65 2831 #24 Tiverton Drive and Le Conte Avenue Base 37 71 43 97 84 204 134 508 137 23 476 41 1854 Added 0 0 0 0 0 0 0 0 22 0 0 17 0 39 #25 In 0 0 0 0 0 0 0 0 0 22 3 0 0 17 0 39 #25 Ihlgard Avenue and Le Conte Avenue Base 59 300 11 26 493 386 338 0 85 11 0 29 1739 Added 0 39 0 0 46 17 22 0 0 0 0 0 0 22 Total 59 339 229 26 539 403 360 0 85 113 0 29 2183 #26 Gayley Avenue and Weyburn Avenue Base 62 520 215 66 991 295 92 174 34 116 174 92 2832 #25 In 0 0 0 72 146 0 0 0 0 0 0 0 34 34 34 34 32						_								
Added 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-								1.00	1.0	010	215	1.55	0054
#25 In 0 34 -72 -73 73 0 0 -73 73 -34 -34 -34 -34 -140 Total 64 454 145 127 1162 37 15 100 86 179 344 131 2843 #23 Westwood Boulevard and Le Conte Avenue Base 105 345 161 108 470 223 94 429 107 170 416 65 2694 Added 178 0 6 0 0 0 0 0 23 226 6 18 0 457 #25 0 0 0 0 0 0 0 0 0 0 -218 0 0 -102 0 -320 Total 283 345 167 108 470 223 94 234 333 176 332 65 2831 #24 Tiverton Drive and Le Conte Avenue Base 37 71 43 97 84 204 134 508 137 23 476 41 1854 Added 0 0 0 0 0 0 0 0 0 22 0 0 17 0 39 #25 In 0 0 0 0 0 0 0 0 0 0 22 0 0 17 0 39 #25 In 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0														
#23 Westwood Boulevard and Le Conte Avenue Base														
#23 Westwood Boulevard and Le Conte Avenue Base 105 345 161 108 470 223 94 429 107 170 416 65 2694 Added 178 0 6 0 0 0 0 23 226 6 18 0 457 #25 0 0 0 0 0 0 0 0 0 -218 0 0 -102 0 -320 Total 283 345 167 108 470 223 94 234 333 176 332 65 2831 #24 Tiverton Drive and Le Conte Avenue Base 37 71 43 97 84 204 134 508 137 23 476 41 1854 Added 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 17 0 39 #25 In 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0														
Base 105 345 161 108 470 223 94 429 107 170 416 65 2694 Added 178 0 6 0 0 0 0 23 226 6 18 0 457 #25 0 <td>Total</td> <td>64</td> <td>454</td> <td>145</td> <td>127</td> <td>1162</td> <td>37</td> <td>15</td> <td>100</td> <td>86</td> <td>179</td> <td>344</td> <td>131</td> <td>2843</td>	Total	64	454	145	127	1162	37	15	100	86	179	344	131	2843
Base 105 345 161 108 470 223 94 429 107 170 416 65 2694 Added 178 0 6 0 0 0 0 23 226 6 18 0 457 #25 0 <td>#23 Wes</td> <td>twood</td> <td>Boul</td> <td>evard</td> <td>and Le</td> <td>e Con</td> <td>te Aven</td> <td>iue</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	#23 Wes	twood	Boul	evard	and Le	e Con	te Aven	iue						
#25									429	107	170	416	65	2694
#25	Added	178	0	6	0	0	0	0	23	226	6	18	0	457
#24 Tiverton Drive and Le Conte Avenue Base 37 71 43 97 84 204 134 508 137 23 476 41 1854 Added 0 0 0 0 0 0 0 0 0 22 0 0 17 0 39 #25 In 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	#25	0		0		0		0	-218	0	0	-102	0	-320
Base 37 71 43 97 84 204 134 508 137 23 476 41 1854 Added 0 0 0 0 0 0 0 0 22 0 0 17 0 39 125 II 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Total	283	345	167	108	470	223	94	234	333	176	332	65	2831
Base 37 71 43 97 84 204 134 508 137 23 476 41 1854 Added 0 0 0 0 0 0 0 0 22 0 0 17 0 39 125 II 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0														
Added 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0								124	F00	127	22	176	41	1054
#25 In 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0														
#25 Hilgard Avenue and Le Conte Avenue Base 59 300 11 26 493 386 338 0 85 11 0 29 1739 Added 0 39 0 0 46 17 22 0 0 0 0 0 0 124 #25 In 0 0 218 0 0 0 0 0 0 102 0 0 320 Total 59 339 229 26 539 403 360 0 85 113 0 29 2183 #26 Gayley Avenue and Weyburn Avenue Base 62 520 215 66 991 295 92 174 34 116 174 92 2832 Added 0 8 125 12 8 0 0 0 66 0 70 46 13 348 #25 In 0 0 72 146 0 0 0 0 0 0 34 34 34 320							0							
#25 Hilgard Avenue and Le Conte Avenue Base 59 300 11 26 493 386 338 0 85 11 0 29 1739 Added 0 39 0 0 46 17 22 0 0 0 0 0 0 124 #25 In 0 0 218 0 0 0 0 0 0 102 0 0 320 Total 59 339 229 26 539 403 360 0 85 113 0 29 2183 #26 Gayley Avenue and Weyburn Avenue Base 62 520 215 66 991 295 92 174 34 116 174 92 2832 Added 0 8 125 12 8 0 0 0 66 0 70 46 13 348 #25 In 0 0 72 146 0 0 0 0 0 0 34 34 34 320			71	42	0.7	0.4	204							
Base 59 300 11 26 493 386 338 0 85 11 0 29 1739 Added 0 39 0 0 46 17 22 0 0 0 0 0 12 0 0 320 0 320 320 320 320 320 360 0 85 113 0 29 2183 #26 Gayley Avenue and Weyburn Avenue Base 62 520 215 66 991 295 92 174 34 116 174 92 2832 Added 0 8 125 12 8 0 0 66 0 70 46 13 348 #25 In 0 0 72 146 0 0 0 0 0 34 34 32	IULAI	37	/1	43	51	04	204	134	312	137	23	391	41	13/3
Added 0 39 0 0 46 17 22 0 0 0 0 0 0 124 #25 In 0 0 218 0 0 0 0 0 0 0 102 0 0 320 Total 59 339 229 26 539 403 360 0 85 113 0 29 2183 #26 Gayley Avenue and Weyburn Avenue Base 62 520 215 66 991 295 92 174 34 116 174 92 2832 Added 0 8 125 12 8 0 0 66 0 70 46 13 348 #25 In 0 0 72 146 0 0 0 0 0 0 34 34 32 32	#25 Hil	gard	Avenu	e and	Le Cor	nte A	venue							
#25 In 0 0 0 218 0 0 0 0 0 0 0 0 0 0 0 0 0 0 320 Total 59 339 229 26 539 403 360 0 85 113 0 29 2183 #26 Gayley Avenue and Weyburn Avenue Base 62 520 215 66 991 295 92 174 34 116 174 92 2832 Added 0 8 125 12 8 0 0 66 0 70 46 13 348 #25 In 0 0 72 146 0 0 0 0 0 0 34 34 34 320	Base	59	300	11	26	493	386	338	0	85	11	0	29	1739
Total 59 339 229 26 539 403 360 0 85 113 0 29 2183 #26 Gayley Avenue and Weyburn Avenue Base 62 520 215 66 991 295 92 174 34 116 174 92 2832 Added 0 8 125 12 8 0 0 66 0 70 46 13 348 #25 In 0 0 0 72 146 0 0 0 0 0 0 34 34 34 320	Added	0	39	0	0	46	17	22	0	0	0	0	0	124
#26 Gayley Avenue and Weyburn Avenue Base 62 520 215 66 991 295 92 174 34 116 174 92 2832 Added 0 8 125 12 8 0 0 66 0 70 46 13 348 #25 In 0 0 72 146 0 0 0 0 0 34 34 34 320	#25 In	0	0	218	0	0	0	0	0	0	102	0	0	320
Base 62 520 215 66 991 295 92 174 34 116 174 92 2832 Added 0 8 125 12 8 0 0 66 0 70 46 13 348 #25 In 0 0 72 146 0 0 0 0 0 34 34 34 320	Total	59	339	229	26	539	403	360	0	85	113	0	29	2183
Base 62 520 215 66 991 295 92 174 34 116 174 92 2832 Added 0 8 125 12 8 0 0 66 0 70 46 13 348 #25 In 0 0 72 146 0 0 0 0 0 34 34 34 320	#26 C	1 orr *	onii.o	and t	Josephs.	n 7								
Added 0 8 125 12 8 0 0 66 0 70 46 13 348 #25 In 0 0 72 146 0 0 0 0 0 34 34 320								0.2	174	2.4	116	174	0.2	2022
#25 In 0 0 72 146 0 0 0 0 34 34 34 320														

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

UCLA NHIP and Amended LRDP Traffic Study
Los Angeles, CA

Future Without Project PM PWed Jul 23, 2008 18:06:25 Page 4-6

UCLA NHIP and Amended LRDP Traffic Study

Los Angeles, CA

Future 2013 Without Project (Unsignalized as Signalized)- PM Peak

Volume Northbound Southbo						ound	Ea	astbou	ınd	We	estbo	und	Total
													Volume
1750	DOLO		1125110	2020	1111 0	1115110	2010	1111 0	1125110	2020	1111 0	1125110	VOIGING
#36 7/0	teran	Arrenii	e and	Wilch	ira D	oulevar	- 4						
#30 VE	222	677	1/17	WII 511.	1072	1604	422	2176	10	11	25/2	20	0070
Dase	233	0//	T#/	02	10/3	1004	11	2170	40	1.0	2342	30	1511
Added	- 4	- 4	22	1	1005	1610	11	693	-4	Τρ	739	1	9079 1511 10590
Total	231	98T	169	83	10/5	1018	433	2869	52	60	328I	31	10590
					_								
#37 Ga	yley A	Avenue	and I	Vilshi:	re Bo	ulevard							
Base	223	305	107	137	472	679 110 789	349	1932	97	40	1723	85	6148
Added	0	0	0	21	0	110	169	547	0	0	646	23	1516
Total	223	305	107	158	472	789	518	2479	97	40	2369	108	7664
#38 We	stwood	d Boul	evard	and W	ilshi:	re Boul	evard						
Base	158	499	187	172	631	248	219	1769	249	172	1611	108	6023
Added	17	155	44	80	153	268	212	331	17	49	376	93	6023 1795
Total	175	654	231	252	784	516	431	2100	266	221	1987	201	7818
#39 G1	endon	Avenu	e and	Wilsh	ire B	ouelvar	d						
Base	60	215	48	137	285	114	123	2014	3.8	19	1557	85	4695
Added	1	213	10	14	203	-6	123	454	1	10	523	3	991
Total	61	215	48	151	285	108	124	2468	3.0	10	2080	88	991 5686
IUCAI	01	213	10	131	203	100	121	2400	33	10	2000	00	3000
#40 Ma	1 1	7		rational and a	D	oulevar							
#40 Ma	1001111	Avenu	40	WIISH.	1 TTE D	Julevai	u 27	2002	60	17	1670	2.2	4001
Base	3	Τ.	42	12	Τ.	23	21	453	00	Ι/	10/0	33	1062
Added	9	1	40	36	0	53 0 53	0	453	- 4	17	520	4.5	1062
Total	9	Τ	42	48	1	53	27	2536	64	17	2189	76	5063
		_											
#41 We	stholr	ne Ave	nue ai	nd Wil:	shire	Boulev	ard						
Base	46	78	57	98	228	12	39	1974	66	55	1644	126	
Added	5	0	3	0	0	0	0	463	2	3	558	0	1034
Total	51	78	60	98	228	12	39	2437	68	58	2202	126	5456
#42 Wa	rner A	Avenue	and I	Wilshi:	re Bo	ulevard	Į.						
Base	38	24	34	89	68	44	35	2059	28	11	1812	51	4293
Added	0	0	0	0	0	0 44	0	455	0	0	558	0 51	1013
Total	38	24	34	89	68	44	35	2514	28	11	2370	51	5306
#43 Be	verlv	Glen	Boule	vard a	nd Wi	lshire	Boule	vard					
Base	163	482	57	57	412	56	120	1768	274	106	1678	49	5221
Added	13	5	53	37	-16	lshire 56 7	6	455	-13	22	534	46	1149
Total	176	487	110	94	396	63	126	2223	261	128	2212	95	6370
10041	-70	107	-10	, ,	330	03	120	2223	201	120	2212	,,,	0370
#44 Ca	wtella	BO111	eward	and O	nio A	venue							
Tar Da	M C C T T C	_ DOUL	ao	70	450	126	56	450	32	9.0	550	5.2	2160 37 2197
nddod Nddod	1	23	20	/ 0	4:09	120	96	10	33	29	17	0.5	2100
Added	τ .	0.3	0	70	450	120	- 0	120	2.4	0	Τ/	- 0	2107
Total	60	93	98	78	459	126	56	476	34	99	567	53	2197

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

	Los Angeles, CA Future 2013 Without Project (Unsignalized as Signalized)- PM Peak													
Volume Northbound Southbound Type Left Thru Right Left Thru Right								astbo Thru			estbou Thru		Total Volume	
#45 Se Base		692	133	120	890	207		417	45	71		38	3365	

UCLA NHIP and Amended LRDP Traffic Study

Type	петс	IIII u	Kigiic	петс	IIII u	Kigiic	петс	IIII u	Kigiic	петс	IIII u	Rigiic	VOIUME
#45 Se	pulved	la Boi	ulevard	and (Ohio	Avenue							
Base	152	692	133	120	890	207	99	417	45	71	501	38	3365
Added	3	61	4	3	58	0	0	15	4	2	14	3	167
Total	155	753	137	123	948	207	99	432	49	73	515	41	3532
IULAI	133	133	137	123	240	207	22	432	47	13	313	41	3332
			ue and										
Base	27	344	47	18	386	164	152	527	48	152	504	45	2416
Added	1	27	0	0	19	3	2	15	1	0	14	0	82
Total	28	371	47	18	405	167	154	542	49	152	518	45	2498
#47 We	stwood	l Bou	levard	and Ol	nio A	venue							
Base	96	902	43		1284	122	93	244	83	89	258	43	3303
Added	17	216	0	0	218	3	2	0	17	0	0	0	473
Total		1118	43	-	1502	125	95	244	100	89	258	43	3776
IULAI	113	1110	43	40	1302	123	93	244	100	0,5	230	43	3770
#48 Sa						Monica							
Base	78	377	413	126	558	33	15	1352	33	177	1262	71	4494
Added	2	0	8	0	0	0	0	200	1	9	248	1	469
Total	80	377	421	126	558	33	15	1552	34	186	1510	72	4963
#49 Sa	n Diec	o Fw	v SB Ra	mps ai	nd Sai	nta Mon	ica Bo	ouleva	ard				
Base	0	0	0	396	557	203		1656	260	588	1238	0	4897
Added	0	0	0	-21	0	57	0	164	44	29		0	474
Total	0	0	0	375	557	260	-	1820	304		1439	0	5371
						nta Mon							
Base	470	529	431	0	0	0		1436	0	0	1420	498	5307
Added	57	21	-21	0	0	0	40		0	0	173	34	407
Total	527	550	410	0	0	0	563	1539	0	0	1593	532	5714
#51 Se	pulved	la Boi	ılevard	and s	Santa	Monica	Boule	evard					
Base	174	836	213		1179	210		1474	319	200	1418	170	6498
Added	4	57	2 2	7	54		4		1	0	199	7	416
Total	178	893	215		1233	213	_	1552	320	-	1617	177	6914
IULAI	1/6	093	213	100	1233	213	130	1332	320	200	101/	1//	0514
						ca Boul							
Base	65	298	48	129	561	62	183	1626	33	93	1483	90	4671
Added	0	11	0	1	7	11	16	70	1	0	195	2	314
Total	65	309	48	130	568	73	199	1696	34	93	1678	92	4985
#53 W=	stwood	Bou.	levard	and S	anta 1	Monica	Boule	vard					
Base	111	910	104		1426	128		1495	138	205	1445	242	6582
Added	4	203	8	207	200	27	24	39	3	10	163	6	693
Total		1113	112		1626	155		1534	141		1608	248	7275
ioral	112	1113	112	Z13	1070	T 2 2	196	1534	141	215	TOUR	248	12/5

Future Without Project PM PWed Jul 23, 2008 18:06:25

Page 4-7

Future Without Project PM PWed Jul 23, 2008 18:06:25

Page 5-1

UCLA NHIP and Amended LRDP Traffic Study

Los Angeles, CA

Future 2013 Without Project (Unsignalized as Signalized) - PM Peak

Volume	No	rthbo	ound	So	outhbo	ound	Ea	astbo	und	W	estbo	ınd	Total
Type	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Volume
#54 Mu	lholla	nd Dr	rive ar	nd Rose	comare	- Road							
Base	302	0	152	0	0	0	0	337	107	47	623	0	1569
Added	27	0	0	0	0	0	0	0	29	0	1	0	57
Total	329	0	152	0	0	0	0	337	136	47	624	0	1626
		-		-	-	-	-					-	
#55 Ros	scomar	e Roa	ad and	Strade	ella E	Road/Li	inda F	lora 1	Drive				
Base	23	410	6	39	61	13	15	0	11	6	1	62	646
Added	0	27	0	0	29	0	0	0	0	0	0	0	56
Total	23	437	6	39	90	13	15	0	11	6	1	62	702
#56 Be	llagio	Road	and (Chalon	Road								
Base	70	533	0	0	103	25	12	0	13	0	0	0	756
Added	0	27	0	0	29	0	0	0	0	0	0	0	56
Total	70	560	0	0	132	25	12	0	13	0	0	0	812
#57 Bes													
Base	42	811	85	216	377	38	54	204	39	47	562	739	3213
Added	1	37	1	0	39	0	0	0	0	0	0	0	78
Total	43	848	86	216	416	38	54	204	39	47	562	739	3291
#58 Bev	verly	Glen	Boulev	ard ar	nd Gre	eendale	e Drive	≘					
Base	0	1138	9	65	434	0	0	0	0	46	0	231	1924
Added	0	37	0	0	39	0	0	0	0	4	0	1	81
Total	0	1175	9	65	473	0	0	0	0	50	0	232	2005

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA

Future 2013 Without Project (Unsignalized as Signalized) - PM Peak

Impact Analysis Report Level Of Service

Intersection	Base Del/ V/	Future Del/ V/	Change in
# 14 Levering Avenue and Montana Av	LOS Veh C B xxxxx 0.672	LOS Veh C B xxxxx 0.694	+ 0.023 V/C
# 28 Tiverton Drvie and Weyburn Ave	A xxxxx 0.456	C xxxxx 0.703	+ 0.247 V/C
# 40 Malcolm Avenue and Wilshire Bo	B xxxxx 0.657	D xxxxx 0.828	+ 0.171 V/C
# 55 Roscomare Road and Stradella R	A xxxxx 0.468	A xxxxx 0.491	+ 0.022 V/C
# 56 Bellagio Road and Chalon Road	A xxxxx 0.523	A xxxxx 0.546	+ 0.023 V/C

Future 2013 Without Project (Unsignalized as Signalized) - PM Peak

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative)

Street Name: Levering Avenue Montana Avenue Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R Control: Split Phase Split Phase Permitted Permitted Rights: Include Include Include Include
 Rights:
 Include
 Include
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0 Lanes: 0 0 1! 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 Volume Module: >> Count Date: 7 Feb 2008 << 500-600 Base Vol: 253 0 8 0 0 0 0 322 106 1 506 0 Initial Bse: 266 0 8 0 0 0 0 338 111 1 531 0 Added Vol: 27 0 0 0 0 0 0 0 47 0 0 PasserByVol: 0 0 0 0 0 0 0 0 0 0 0 0 0 Initial Fut: 293 0 8 0 0 0 0 338 158 1 531 PHF Volume: 293 0 8 0 0 0 0 338 158 1 531 0 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 293 0 8 0 0 0 0 338 158 0 0 0 158 1 531 Ω Ω FinalVolume: 293 0 8 0 0 0 0 338 158 1 531 0 -----|-----| Saturation Flow Module:

Vol/Sat: 0.25 0.00 0.25 0.00 0.00 0.00 0.01 0.41 0.44 0.44 0.00 Crit Volume: 301 0 0 532 Crit Moves: ****

Capacity Analysis Module:

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

UCLA NHIP and Amended LRDP Traf Los Angeles, CA	Efic Study										
Future 2013 Without Project (Unsignalized a											
Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative)											
Intersection #28 Tiverton Drvie and Weyburn Avenue											
Cycle (sec): 100 Critical V Loss Time (sec): 0 (Y+R=4.0 sec) Average De Optimal Cycle: 48 Level Of S	Vol./Cap.(X): 0.703 elay (sec/veh): xxxxx Service: C ************************************										
Approach: North Bound South Bound Movement: L - T - R L - T - R L	Weyburn Avenue East Bound West Bound - T - R L - T - R										
Control: Permitted Permitted Rights: Include Include Min. Green: 0 0 0 0 0 0 Lanes: 0 0 1! 0 0 0 1! 0 0 0	Permitted Permitted Include 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0										
PHF Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	00 57 169 1 1 95 31 05 1.05 1.05 1.05 1.05 1.05 70 177 1 1 100 33 0 78 0 0 89 0 0 218 0 0 102 0 70 473 1 1 291 33 00 1.00 1.00 1.00 1.00 1.00 70 473 1 1 291 33 00 1.00 1.00 1.00 1.00 1.00 70 473 1 1 291 33 0 0 1.00 1.00 1.00 1.00 1.00 70 473 1 1 291 33 0 0 0 0 0 0 0 0 0 70 473 1 1 291 33 0 1.00 1.00 1.00 1.00 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0										

Future Without Project PM PWed Jul 23, 2008 18:06:25

Crit Moves: ****

xxxxxx

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA

Future 2013 Without Project (Unsignalized as Signalized) - PM Peak

Level Of Service Computation Report

Circular 212 Planning Method (Future Volume Alternative) *************************

Intersection #40 Malcolm Avenue and Wilshire Boulevard ************************

Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/veh): xxxxxx

Optimal Cycle	=4.0 8	sec)	Level Of Service: D					D D				
*******	****	*****	*****	****	*****	*****	****	****	*****	****	****	*****
Street Name:		М	alcolm	Aveni	ıe			Wi	lshire	Boule	vard	
Approach:	No	rth Bo	und	Sot	ıth Bo	und	Ea	ast Bo	ound	We		ound
Movement:	L ·	- T	- R	L ·	- T	- R	L ·	- T	- R	L ·	- T	- R
Control:		Permit	ted		Permit	ted		Permit	ted	. 1	ermi [†]	tted
Rights:		Inclu	de		Inclu	de		Incl	ıde		Incl	ude
Min. Green:	0	0	0	0	0	0	0	0	Ü	0	0	0
Lanes:												
Volume Module												
Base Vol:					1			1984			1590	
Growth Adj:											1.05	
Initial Bse:												
Added Vol:	6	0	0	36	0	0	0	453	4			
PasserByVol:	0	0	0	0	0	0	0	0	0			0
Initial Fut:						53		2536			2189	
User Adj:					1.00			1.00			1.00	
PHF Adj:					1.00						1.00	
PHF Volume:									64			
Reduct Vol: Reduced Vol:	0	0	0	0	0	0	0					
									64			76
PCE Adj:									1.00		1.00	
MLF Adj:					1.00				64	1.00		
FinalVolume:	, 9	1	42									
Saturation F												
			1200	1200	1200	1200	1200	1200	1200	1200	1200	1200
Adjustment:						1.00					1.00	
Lanes:				0.47		0.52					2.90	
Lanes												

Final Sat.: 210 24 966 564 12 623 1200 3512 88 1200 3480 120

Vol/Sat: 0.04 0.04 0.04 0.08 0.08 0.08 0.02 0.72 0.72 0.01 0.63 0.63

Crit Volume: 9 101 867 17

Capacity Analysis Module:

Crit Moves: ****

-----|

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/veh): Optimal Cycle: 28 Level Of Service: Street Name: Roscomare Road Stradella Road/Linda Flora Drive Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R Control: Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 0 0 1! 0 0 0 0 1! 0 0 0 0 1! 0 0 0 0 1! 0 0 Volume Module: >> Count Date: 21 Feb 2008 << 415-515 Base Vol: 22 390 6 37 58 12 14 0 10 6 1 59 Initial Bse: 23 410 6 39 61 13 15 0 11 6 1 62 Added Vol: 0 27 0 0 29 0 0 0 0 0 0 0 0 0 PasserByVol: 0 0 0 0 0 0 0 0 0 0 0 0 Initial Fut: 23 437 6 39 90 13 15 0 11 PHF Volume: 23 437 6 39 90 13 15 0 11 6 1 62

FinalVolume: 23 437 6 39 90 13 15 0 11 6 1 62

Lanes: 0.05 0.94 0.01 0.27 0.64 0.09 0.58 0.00 0.42 0.09 0.02 0.89

Vol/Sat: 0.39 0.39 0.39 0.12 0.12 0.12 0.02 0.00 0.02 0.06 0.06 0.06

Crit Volume: 466 39 15 69
Crit Moyes: **** **** ****

-----|

Saturation Flow Module:

Capacity Analysis Module:

UCLA NHIP and Amended LRDP Traffic Study

Future 2013 Without Project (Unsignalized as Signalized) - PM Peak ______

Circular 212 Planning Method (Future Volume Alternative)

Intersection #55 Roscomare Road and Stradella Road/Linda Flora Drive

Los Angeles, CA

Level Of Service Computation Report

Future Without Project PM PWed Jul 23, 2008 18:06:25

Page 10-1

UCLA NHIP and Amended LRDP Traffic Study

Los Angeles, CA

Future 2013 Without Project (Unsignalized as Signalized) - PM Peak ______

Level Of Service Computation Report

Circular 212 Planning Method (Future Volume Alternative) *******************

Intersection #56 Bellagio Road and Chalon Road *******************

Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/veh): xxxxxx Optimal Cycle: 41 Level Of Service: A **************************** Street Name: Bellagio Road Chalon Road Approach: North Bound South Bound East Bound West Bound

Movement:	L ·	- T	- R	L ·	- T	- R	L -	- T	- R	L -	Т	- R
Control:	1	Permit]1	Permit			lit Ph		Spl		
Rights:		Inclu			Inclu			Inclu			Incl	ıde
Min. Green:	0	0	0	0		0	0	0	0	0	0	0
Lanes:	0	1 0	0 0	0	0 0	1 0	0 (1!	0 0	0 0	0 (0 0
Volume Module	ė: >>	Count	Date:	21 F	eb 200	08 << 5	500-600)				
Base Vol:	67	508	0	0	98	24	11	0	12	0	0	0
Growth Adj:	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05
Initial Bse:	70	533	0	0	103	25	12	0	13	0	0	0
Added Vol:	0	27	0	0	29	0	0	0	0	0	0	0
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	0
Initial Fut:	70	560	0	0	132	25	12	0	13	0	0	0
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Volume:	70	560	0	0	132	25	12	0	13	0	0	0
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:	70	560	0	0	132	25	12	0	13	0	0	0
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
FinalVolume:	70	560	0	0	132	25	12	0	13	0	0	0
Saturation F	low M	odule:	'	'			' '		'			'
Sat/Lane:	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200	1200
Adjustment:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Lanes:	0.11	0.89	0.00	0.00	0.84	0.16	0.48	0.00	0.52	0.00	0.00	0.00

Final Sat.: 134 1066 0 0 1008 192 574 0 626 0 0 -----|------||-------|

Vol/Sat: 0.53 0.53 0.00 0.00 0.13 0.13 0.02 0.00 0.02 0.00 0.00 0.00 Crit Volume: 631 0 24 0
Crit Moyes: **** **** _____

Capacity Analysis Module:

Page 1-1

Future With Project AM PeakWed Jul 23, 2008 18:06:43

Page 2-1

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA

Future With Project (Unsignalized as Signalized) - AM Peak

Trip Generation Report

Forecast for AM Peak

Zone #	Subzo	one	Amount	Units	Rate In	Rate Out	Trips In	Trips Out	Total Trips	% Of Total
	#1- 1 #2		1.00	FBI Office- 11 Palazzo Westwo	114.00	119.00	114	0 119 119	233	4.1
3	#3	Zone 3	1.00 Subtotal	Mixed-Use - S/	149.00	45.00	149 149	45 45	194 194	3.4 3.4
4	#4	Zone 4	1.00 Subtotal	Theater Expans	1.00	0.00	1 1	0	1 1	0.0
5 5	#5, 1 #5, 1			Mixed-Use- 108 Residential Ho						
6	#6	Zone 6	1.00 Subtotal	Apartments- 86	2.00	8.00	2 2	8 8	10 10	0.2
7	#7	Zone 7		Condos- 10804						
8 8 8	#8, 2 #8, 2	25, 61 25, 61 25, 61 Zone 8	1.00 1.00 1.00 Subtotal	Condos- 10776 Condos-10763 W Condos- 10710	-14.00 4.00 5.00	29.00 22.00 23.00	-14 4 5 -5	29 22 23 74	15 26 28 69	0.3 0.5 0.5 1.2
9	#9	Zone 9	1.00 Subtotal	Private School	9.00	0.00	9 9	0	9 9	0.2
10	#10			Fox Studio Exp						
11 11 11 11	#11, #11,	12, 45, 12, 45,	1.00	High School Ex Private School Condos- 1333 S Condos- 552-55	0.00	2.00 3.00	0 1	2	2	0.0
12	#13	Zone 12	1.00 Subtotal	Wilshire/Comst	3.00	12.00	3	12 12	15 15	0.3
13 13	#14, #14,	15, 43 15, 43 Zone 13	1.00 1.00 Subtotal	ABC Entertainm Condos- 10131	101.00 -37.00	-181.00 85.00	101 -37 64	L -181 85 -96	-80 48 -32	0.9 -0.6

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA

Future With Project (Unsignalized as Signalized) - AM Peak

Scenario Report

Scenario: Future With Project AM Peak

Command: Future With Project AM Peak Volume: Future AM Geometry: Future

Impact Fee: Default Impact Fee

Trip Generation: AM Peak
Trip Distribution: Project
Paths: Project
Routes: Default Route

Configuration: Future

Future With Project (Unsignalized as Signalized) - AM Peak

Zone #				Units	Rate In		Trips In	Trips Out	Total Trips	% Of Total
14 14	#16, #16,	35 35 Zone 14	1.00 1.00 Subtotal	Condos- 527 Mi Condos- 430 Ke	12.00 3.00	61.00 15.00	12 3 15	61 15 76	73 18 91	1.3 0.3 1.6
15	#18	Zone 15	1.00 Subtotal	Health/Fitness	-20.00	-28.00	-20 -20	-28 -28	-48 -48	-0.9 -0.9
16	# 19	Zone 16	1.00 Subtotal	Condos-1826 S	1.00	6.00	1 1	6 6	7 7	0.1
17	#20	Zone 17	1.00 Subtotal	Condos- 1417 S	1.00	6.00	1 1	6 6	7 7	0.1
	#21		1.00 Subtotal	New Car Sales-	4.00	2.00	4	2 2	6 6	0.1
19 19	#22, #22,	70 70 Zone 19	1.00 1.00 Subtotal	Condos- 1625 S Mixed-Use- 115	1.00 10.00	7.00 46.00	1 10 11	7 46 53	8 56 64	0.1 1.0 1.1
20 20	#23, #23,	24 24 Zone 20	1.00 1.00 Subtotal	Condos- 1525 S Condos- 1633 S	1.00	7.00 6.00	1 1 2	7 6 13	8 7 15	0.1 0.1 0.3
21	#26	Zone 21	1.00 Subtotal	Condos- 2037 S	1.00	6.00	1	6 6	7 7	0.1
22 22 22	#27, #27, #27,	63, 65 63, 65 63, 65 Zone 22	1.00 1.00 1.00 Subtotal	Office- 12233 Westside Media SM Apt Project	10.00 24.00 11.00	56.00 32.00 46.00	10 24 11 45	56 32 46 134	66 56 57 179	1.2 1.0 1.0 3.2
23 23	#28, #28,	32 32 Zone 23	1.00 1.00 Subtotal	Condos- 1511 S Condos- 1517 B	1.00	6.00 8.00	1 2 3	6 8 14	7 10 17	0.1 0.2 0.3
24 24	#29, #29,			Mixed-Use- 116 Office- 11677						
25	#30	Zone 25	1.00 Subtotal	Mausoleum Bldg	1.00	0.00	1	0	1 1	0.0
26	#31	Zone 26	1.00 Subtotal	Condos- 10617	1.00	6.00	1	6 6	7 7	0.1

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA

Future With Project (Unsignalized as Signalized) - AM Peak

Zone			Units	Rate	Rate	Trips	Trips	Total	% Of
#	Subzone	Amount	Units	In	Out	In	Out	Trips	Total
27	#33	1.00	Apt.s- 1817 S B	2.00	6.00	2	6	8	0.1
	Zone 27	Subtota	Apts- 1817 S B			2	6	8	0.1
28	#34	1.00	Live/Work- 115	9.00	34.00	9	34	43	0.8
	Zone 28	Subtota	1			9	34	43	0.8
20	1126	1 00	D t 10	2 00	0.00	0	0	4	0 1
29	#36	I.UU	Restaurant- 10	2.00	2.00	2	2	4	0.1
	Z011E 29	Subtota	±			2	2	4	0.1
30	#37, 56, 57	1.00	Condos- 1807 S Auto Service- Office- SW Cor 1	1.00	6.00	1	6	7	0.1
30	#37, 56, 57	1.00	Auto Service-	4.00	2.00	4	2	6	0.1
30	#37, 56, 57	1.00	Office- SW Cor	55.00	7.00	55	7	62	1.1
	Zone 30	Subtota	1			60	15	75	1.3
31	#38	1.00	Condos- 2263 S	1.00	6.00	1	6	7	0.1
	Zone 31	Subtota	1			1	6	7	0.1
3.2	#39	1 00	Cooking School	4 00	2 00	4	2	6	0.1
32		Subtota	Cooking School	4.00		4	2	6	
	20110 32								
33	#40	1.00	Bank- 1762 Wes	3.00	8.00	3	8	11	0.2
	Zone 33	Subtota	1			3	8	11	0.2
2.4		1 00			0.00	•			
34	#41- NA-Alre	1.00	Westside Pavil Le Lycee Franc Mixed-Use- 106	171 00	100.00	171	100	200	0.0
35	#42, 49	1.00	Mired Hear 106	I/I.00	7 00	1/1	109	10	0.2
33	70ne 35	Subtota	1	5.00	7.00	176	116	292	5.2
36	#44, 60, 67	1.00	Discounted Sto Olympic-Stoner Bed, Bath & Be	20.00	10.00	20	10	30	0.5
36	#44, 60, 67	1.00	Olympic-Stoner	2.00	0.00	2	0	2	0.0
36	#44, 60, 67	1.00	Bed, Bath & Be	0.00	0.00	0	0	0	0.0
	Zone 36	Subtota	1			22	10	32	0.6
2.7	11.4.6	1 00	D-1	17 00	0 00	1.7	0	٥٦	0 4
3 /	#46 Zono 27	I.UU	Belmont Villag	17.00	8.00	17	8	25	0.4
	Zone 37	Subtota	±			Ι/	0	23	0.4
38	#47, B12, B3	1.00	Apts- 10000 W Hotel- 150 Las Beverly Hilton	-167.0	0 115.00	-16	7 115	-52	2 -0.
38	#47, B12, B3	1.00	Hotel- 150 Las	15.00	9.00	15	9	24	0.4
38	#47, B12, B3	1.00	Beverly Hilton	48.00	94.00	48	94	142	2.5
	Zone 38	Subtota	1			-104	218	114	2.0
2.0		1 00			10.00	•	1.0	0.77	0 5
39	#48	1.00	Mixed-Use- 109	9.00	18.00	9	18	27	0.5
	ZOIIE 39	Subcota	1			9	ΤQ	21	0.5
40	#50	1.00	Regent Westwoo	140.00	47.00	140	47	187	3.3
			1						

Page 2-4

Future With Project AM PeakWed Jul 23, 2008 18:06:43

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Page 2-5

UCLA NHIP and Amended LRDP Traffic Study
Los Angeles, CA
Future With Project (Unsignalized as Signalized)- AM Peak

Zone #	Subz	one	Amount	Units	Rate In	Rate Out	Trips In	Trips Out	Total Trips	% Of Total
			1 00	Office- 1100 W		10.00				
41	#51	Zone 41		0111ce- 1100 w					80 80	1.4
42	#52	Zone 42	1.00 Subtota	Del Capri Hote	9.00	36.00	9 9	36 36	45 45	0.8
43	#53	Zone 43	1.00 Subtota	Condos- 11611	2.00	7.00	2 2	7 7	9 9	0.2
44	#55	Zone 44	1.00 Subtota	Retail- 11305	7.00	4.00	7 7	4	11 11	0.2
45	#58	Zone 45		Fastfood- 1086				50 50	125 125	2.2
46	#59	Zone 46	1.00 Subtota	Brentwood Reta	2.00	1.00	2 2	1	3	0.1
47 47 47 47 47 47	#B1, #B1, #B1, #B1, #B1, #B1,	B5, B11 B5, B11 B5, B11 B5, B11 B5, B11 B5, B11 Zone 47	1.00 1.00 1.00 1.00 1.00 1.00 1.00	Young Israel- Retail Expansi Cultural Cente Condos- 437-44 Service Facili Mixed-Use- 421 Condos- 432 N	16.00 1.00 34.00 1.00 101.00 29.00 3.00	9.00 1.00 21.00 6.00 55.00 9.00 12.00	16 1 34 1 101 29 3 185	9 1 21 6 55 9 12	25 2 55 7 156 38 15 298	0.4 0.0 1.0 0.1 2.8 0.7 0.3 5.3
48 48 48 48 48 48 48 48 48 48 48 48 48 4	#B2, #B2, #B2, #B2, #B2, #B2, #B2, #B2,	B3, B6, B3, B6, B3, B6, B3, B6, B3, B6, B3, B6, B3, B6, B3, B6, B3, B6, B3, B6, B3, B6, B3, B6, B3, B6, B3, B6, B3, B6, B3, B6, B3, B6, B3, B6, B3, B6, B3, B6,	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	Beverly Hills Mixed-Use- 265 Condos- 125 S Medical Plaza- Commercial/Ret Mixed-Use- 131 Assisted Care Senior Congreg Screening Room Condos- 261-28 Mixed-Use- 920 Mixed-Use- 959 Hotel- 9730 Wi Condos- 140-14 Condos- 133 Sp office/Medical Condos- 156-16 Condos- 144 Re Condos- 155 N	86.00 103.00 3.00 77.00 8.00 64.00 6.00 1.00 1.00 11.00 0.00 14.00 1.00 0.00 0	57.00 30.00 15.00 22.00 6.00 43.00 7.00 2.00 0.00 -1.00 23.00 27.00 44.00 2.00 4.00 6.00 1.00	866 1033 3777 8644 663 31 0010 111 700 114 11 00458	57 30 15 22 6 43 7 2 0 -1 23 27 44 4 2 4 6 1 1	143 133 18 99 14 107 13 5 1 -1 33 38 114 5 2 18 7 1 1 751	2.5 2.4 0.3 1.8 0.2 1.9 0.1 0.0 -0.0 0.6 0.7 2.0 0.1 0.3 0.1 0.0 0.3

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

		With Project		zed as	Signali:				
Zone #		Amount Units		Rate	Rate	Trips	Trips	Total	% Of
49 49 49 49	#B4, B14, B2 #B4, B14, B2 #B4, B14, B2 #B4, B14, B2 Zone 49	1.00 Church 1.00 Synag 1.00 Apts- 1.00 Condo Subtotal	ch Expansi gogue/Priv - 428-430 os- 313-31	1.00 23.00 0.00 1.00	0.00 13.00 1.00 3.00	1 23 0 1 25	0 13 1 3 17	1 36 1 4	0.0 0.6 0.0 0.1
50 50	#B18, B21 #B18, B21 Zone 50	1.00 Bever 1.00 Robin Subtotal	rly Hills nson's May	131.00 34.00	-4.00 116.00	131 34 165	-4 116 112	127 150 277	2.3 2.7 4.9
51	#B27 Zone 51	1.00 Healt Subtotal							
52 53		1.00 Whole 1.00 New W Subtotal						0 230 230	
54	#66 Zone 54	1.00 Unior Subtotal	n Bank of	3.00	2.00	3	2	5 5	0.1
55	#68 Zone 55	1.00 Leo E Subtotal	Baeck Temp	10.00	0.00	10 10	0	10 10	
56	#69 Zone 56	1.00 Conve	enience St					251 251	
57	#71 Zone 57	1.00 Westw Subtotal	wood Villa	52.00	51.00	52 52	51 51	103 103	1.8
58	#72 Zone 58	1.00 Office Subtotal	ce Bldg- 2	41.00	6.00	41 41	6 6	47 47	0.8
59		1.00 Mixed Subtotal							
60	UCLA LOT 36 Zone 60	1.00 UCLA Subtotal	PARKING L	358.00	89.00	358 358	89 89	447 447	7.9 7.9

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA

Future With Project (Unsignalized as Signalized) - AM Peak

Trip Distribution Report

Percent Of Trips Project

To Gates											
	1	2	3	4	5	6	9	10	11	12	13
Zone											
1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2	8.0	3.0	0.0	4.0	0.0	3.0	16.0	0.0	11.0	0.0	5.0
3	8.0	3.0	0.0	4.0	0.0	3.0	16.0	0.0	11.0	0.0	5.0
4	8.0	3.0	0.0	4.0	0.0	3.0	16.0	0.0	11.0	0.0	5.0
5	8.0	3.0	0.0	4.0	0.0	3.0	16.0	0.0	11.0	0.0	5.0
6	10.0	0.0	0.0	0.0	0.0	5.0	0.0	0.0	5.0	0.0	0.0
7	15.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	5.0	0.0	0.0
8	15.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	5.0	0.0	0.0
9	5.0	5.0	5.0	5.0	5.0	20.0	5.0	0.0	0.0	0.0	0.0
10	10.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0	0.0
11	10.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0	0.0
12	10.0	0.0	0.0	0.0	0.0	5.0	0.0	0.0	5.0	0.0	0.0
13	10.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0	0.0
14	8.0	3.0	0.0	4.0	0.0	3.0	16.0	0.0	11.0	0.0	5.0
15	0.0	0.0	0.0	0.0	0.0	0.0	10.0	5.0	10.0	5.0	0.0
16	10.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	5.0	0.0	0.0
17	10.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0
18	10.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0
19	10.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0
20	10.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0
21	10.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0	0.0
22	10.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0
23	10.0	0.0	0.0	0.0	0.0		5.0	5.0	0.0	2.5	2.5
24	10.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0
25	15.0	0.0	0.0	0.0	0.0		5.0	5.0	5.0	0.0	0.0
26	10.0	0.0	0.0	0.0	0.0	0.0	10.0	0.0	0.0	0.0	0.0
27	10.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0
28	10.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0
29	8.0	3.0	0.0	4.0	0.0	3.0	16.0	0.0	11.0	0.0	5.0
30	10.0	0.0	0.0	0.0	0.0	0.0	10.0	0.0	0.0	0.0	0.0
31	10.0	0.0	0.0	0.0	0.0		5.0	0.0	0.0	0.0	0.0
32	10.0	0.0	0.0	0.0	0.0		5.0	5.0	0.0	0.0	0.0
33	0.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	10.0	0.0	0.0
34	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
35	10.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0
36	10.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0
37	10.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	5.0	0.0	0.0
38	10.0	0.0	0.0	0.0	0.0	5.0	0.0	0.0	5.0	0.0	0.0
39	0.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	5.0	0.0	0.0
40	8.0	3.0	0.0	4.0	0.0	3.0	16.0	0.0	11.0	0.0	5.0
41	8.0	3.0	0.0	4.0	0.0	3.0	16.0	0.0	11.0	0.0	5.0
42	10.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	5.0	0.0	0.0
43	10.0	0.0	0.0	0.0	0.0		5.0	5.0	0.0	0.0	0.0
44	10.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future With Project (Unsignalized as Signalized) - AM Peak

Future With Project AM PeakWed Jul 23, 2008 18:06:43

	1				То	Gates						
	1	2	3	4	5	6	9	10	11	12	13	
Zone												
45	0.0 10.0 10.0 10.0 10.0 10.0 5.0 0.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	5.0	0.0	0.0	
46	10.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0	
47	10.0	0.0	0.0	0.0	0.0	5.0	0.0	0.0	5.0	0.0	0.0	
48	10.0	0.0	0.0	0.0	0.0	5.0	0.0	0.0	5.0	0.0	0.0	
49	10.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0	0.0	
50	10.0	0.0	0.0	0.0	0.0	5.0	0.0	0.0	5.0	0.0	0.0	
51	5.0	5.0	5.0	5.0	5.0	20.0	5.0	0.0	0.0	0.0	0.0	
52	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
53		0.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0 11.0	0.0	0.0	
54	8.0	3.0	0.0	4.0	0.0	3.0	16.0	0.0	11.0	0.0	5.0	
55	0.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0	5.0	
56	0.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	10.0	0.0	0.0	
57	8.0	3.0	0.0	4.0	0.0	3.0	16.0	0.0	11.0	0.0	5.0	
58 59	10.0	0.0	0.0	4.0	0.0	0.0	16.0	5.0	11 0	0.0	0.0	
60	0.0 0.0 8.0 10.0 8.0 28.0	0.5	0.0	0.5	0.0	3.0	3 U	3.0	2 0	2.0	2.0	
00	20.0	0.5	0.0	0.5	0.0	3.0	5.0	3.0	2.0	2.0	2.0	
					To	Gates						
	14	15	16	17	18	19	20	21	22	23	28	
Zone												
1	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	
1 2	0.0	0.0	0.0	6.0	0.0	22 0	0.0	0.0	0.0	2.0	2.0	
3	3.0	0.0	9.0	6.0	0.0	23.0	0.0	0.0	0.0	3.0	2.0	
4	3.0	0.0	9.0	6.0	0.0	23.0	0.0	0.0	0.0	3.0	2.0	
5	3.0	0.0	9.0	6.0	0.0	23.0	0.0	0.0	0.0	3.0	2.0	
5 6	3.0 3.0 3.0 5.0	0.0	5.0	5.0	5.0	10.0	0.0	0.0	0.0	0.0	0.0	
7	5.0	0.0	5.0	5.0	5.0	15.0	0.0	0.0	0.0	0.0	0.0	
8	5.0	0.0	5.0	5.0	5.0	15.0	0.0	0.0	0.0	0.0	0.0	
9	0.0	0.0	2.5	0.0	5.0	2.5	5.0	0.0	0.0	0.0	0.0	
10	5.0	0.0	5.0	3.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0	
11	5.0 0.0 5.0 5.0	0.0	5.0	3.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0	
13 14	5.0 3.0	0.0	5.0	5.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0	
15	10 0	10.0	10 0	10.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
16	3.0 10.0 5.0 5.0	0.0	5.0	5.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0	
17	5.0	0.0	5.0	5.0	0.0	10.0	0.0	3 0	0.0	0.0	0.0	
18	5.0	0.0	5.0	5.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0	
19	0.0	0.0	0.0	5.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0	
20	0.0	0.0	0.0	5.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0	
21	5.0 0.0 0.0 5.0	0.0	5.0	3.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0	
22	0.0	0.0	0.0	5.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0	
23	5.0	2.5	5.0	2.5	0.0	10.0	0.0	0.0	0.0	0.0	0.0	
24	0.0	0.0	0.0	5.0	0.0	10.0	0.0	0.0	5.0	0.0	0.0	
25	5.0	0.0	5.0	5.0	5.0	15.0	0.0	0.0	0.0	0.0	0.0	
26	5.0 0.0 5.0 5.0	0.0	5.0	5.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0	
27	5.0	0.0	5.0	5.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0	

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future With Project (Unsignalized as Signalized) - AM Peak

	To Gates												
	14	15	16	17	18	19	20	21	22	23	28		
Zone													
28	0.0	0.0	0.0	5.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0		
29	3.0			6.0	0.0	23.0	0.0	0.0	0.0	3.0	2.0		
	5.0		5.0	5.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0		
	5.0	0.0	5.0	3.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0		
32	5.0	0.0	5.0	5.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0		
33	5.0	5.0	5.0	5.0		0.0	0.0	0.0	0.0	0.0	0.0		
34	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0		
35	5.0	0.0	5.0	5.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0		
36	0.0		0.0	5.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0		
37	5.0	0.0	5.0	5.0		10.0	0.0	0.0	0.0	0.0	0.0		
38 39	5.0 5.0	0.0	5.0	5.0 5.0		10.0	0.0	0.0	0.0	0.0	0.0		
40	3.0	0.0	9.0	6.0	0.0	23.0	0.0	0.0	0.0	3.0	2.0		
41	3.0			6.0		23.0	0.0	0.0	0.0	3.0	2.0		
42	5.0			5.0		10.0	0.0	0.0		0.0	0.0		
43	5.0			0.0		10.0	0.0			0.0	0.0		
44	0.0			5.0		10.0	0.0	0.0		0.0	0.0		
45	5.0		5.0	5.0		0.0	0.0	0.0		0.0	0.0		
46	5.0			0.0	0.0	10.0	0.0	0.0	5.0	0.0	0.0		
47	5.0	0.0	5.0	5.0	5.0	10.0	0.0	0.0	0.0	0.0	0.0		
48	5.0	0.0	5.0	5.0	5.0	10.0	0.0	0.0	0.0	0.0	0.0		
49	5.0			3.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0		
	5.0			5.0		20.0	0.0	0.0		0.0	0.0		
51	0.0		2.5	0.0		2.5	5.0	0.0		0.0	0.0		
52	0.0		0.0	0.0		0.0	0.0	0.0		0.0	0.0		
	0.0		0.0	5.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0		
	3.0			6.0	0.0	23.0	0.0	0.0	0.0	3.0	2.0		
	0.0		5.0	0.0	0.0	10.0	10.0	0.0	0.0	0.0	0.0		
	5.0 3.0			5.0 6.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
	5.0		5.0	5.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0		
59	3.0			6.0	0.0	23.0	0.0	0.0	0.0	3.0	2.0		
	3.0			3.0	1.0	39.0	3.0	1.0		0.0	0.0		
0.0	5.0	5.0	5.0	5.0	1.0	55.0	5.0	1.0	0.0	0.0	0.0		

	To Gate	
	29	30
Zone		
1	0.0	0.0
2	2.0	2.0
3	2.0	2.0
4	2.0	2.0
5	2.0	2.0
6	0.0	0.0
7	0.0	0.0
8	0.0	0.0
9	0.0	0.0
10	0.0	0.0

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

Future With Project AM PeakWed Jul 23, 2008 18:06:43 UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA

Future With Project (Unsignalized as Signalized) - AM Peak

	To Gate	es
Zone		
11	0.0	
12	0.0	
13		0.0
14	2.0	2.0
15	0.0	0.0
16	0.0	0.0
17	0.0	0.0
18	0.0	0.0
19	0.0	0.0
20	0.0	0.0
21	0.0	0.0
22	0.0	0.0
23	0.0	0.0
24	0.0	0.0
25	0.0	0.0
26	0.0	0.0
27	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0
28	0.0	0.0
29	2.0	2.0
30	0.0	0.0
31	0.0	0.0
32	0.0	0.0
33	0.0	0.0
34	0.0	0.0
35	0.0	0.0
36	0.0	0.0
37	0.0	0.0
38	0.0	0.0
39	0.0	0.0
40	2.0	2.0
41	2.0	2.0
42	0.0	0.0
43	0.0	0.0
44	0.0	0.0
45	0.0	0.0
46	0.0	0.0
47	0.0	0.0
48	0.0	0.0
49	0.0	0.0
50	2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0
51	0.0	0.0
52	0.0	0.0
53	0.0 0.0 2.0 0.0	0.0
54	2.0	2.0
55	0.0	0.0
56		0.0
57	2.0	2.0
58	2.0	0.0

Page 3-5

Future With Project AM PeakWed Jul 23, 2008 18:06:43

Page 4-1

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA

Future With Project (Unsignalized as Signalized) - AM Peak

To Gates
29 30
Zone ----59 2.0 2.0
60 0.0 0.0

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA

Future With Project (Unsignalized as Signalized) - AM Peak

Turning Movement Report
AM Peak

Volume Type		rthbou Thru R			outhbo Thru			astbo Thru			estbo Thru		Total Volume
			_			_			5				
#1 Sepi													
Base	13	509	76		1387	558	88	55	27	91	151	0	2959
Added	0	42	0	0		0	1	0	0	0	0	0	61
Total	13	551	76	4	1405	558	89	55	27	91	151	0	3020
#2 Chu	rch Lai	ne and	l San	Diego	Fwy :	SB On/C	ff Ran	np					
Base	0	150	333	234	689	0	0	2	1	1507	1	23	2940
Added	0	1	0	0	0	0	0	0	0	38	0	0	39
Total	0	151	333	234	689	0	0	2	1	1545	1	23	2979
#3 Church Lane and Sunset Boulevard													
Base	54	7	107	685	166	1010	104	1799	117	6	1229	454	5736
Added	0	0	0	38	0	0	1	11	0	0	3	0	53
Total	54	7	107	723	166	1010	105	1810	117	6	1232	454	5789
#4 San	Diego	Fwy N	IB On	Off R	amps a	and Sur	set B	ouleva	ard				
Base	674	ō	547	0	0	0	0	1547	996	0	1025	0	4789
Added	0	0	0	0	0	0	0	50	0	0	30	0	80
Total	674	0	547	0	0	0	0	1597	996	0	1055	0	4869
#5 Vete	eran Av	venue	and S	Sunset	Boule	evard							
Base	60	0	364	0	0	0	0	1812	194	310	972	0	3713
Added	30	0	14	0	0	0	0	1	49	17	1	0	112
Total	90	0	378	0	0	0	0	1813	243	327	973	0	3825
#6 Bel:	lagio V	Wav an	ıd Sur	nset B	ouleva	ard							
Base	43	5	8	181	53	267	187	1764	237	18	969	101	3833
Added	0	0	0	4	0	16	9	7	0	0	2	4	42
Total	43	5	8	185	53	283	196	1771	237	18	971	105	3875
#7 West	twood I	Boueva	ırd ar	nd Sun:	set Bo	oulevar	-d						
Base	27	0	22	0	0	0		1506	395	184	1067	0	3200
Added	0	0	0	0	0	0	0		0	0	6	0	16
Total	27	0	22	0	0	0	-	1516	395		1073	0	3216
#8 Sto	ne Can	von Ro	ad ar	nd Sun	set Bo	nulevar	-d						
Base	51	1	45	0	0	63		1333	252	93	1211	23	3133
Added	0	0	1	0	0	0	0	10	0	3	6	0	20
Total	51	1	46	0	0	63	-	1343	252		1217	23	3153
#9 Hil	#9 Hilgard Avenue/Copa De Oro Road and Sunset Boulevard												
Base	149	40	112	29	77	17		1083	274	475	1120	22	3417
Added	4	0	22	0	, ,	0	0	7	4	45	4	0	86
Total	153	40	134	29	77	17		1090	278		1124	22	3503
10041	100	10	131	23	, ,	- /		1000	2,0	520			3303

Future With Project (Unsignalized as Signalized) - AM Peak

Volume	N	orthboi	and	S	outhbo	und	Ea	astbo	und	W	estbo	ınd	Total
													Volume
-21			5										
#10 Be	verlv	Glen H	Roules	zard ai	nd Sur	set Bo	ulevai	rd					
Base	91		408	53	80	9		1073	111	503	1472	76	3989
Added	0	0	46	0	0	0				77			201
Total	91		454	53	80	9		1102			1521		4190
10001			101		00	_		1102		500	1021	, 0	1100
#11 Re	verlv	Glen I	Roules	zard aı	nd Sur	set Bo	nılevar	rd (Ea	ast I/S)			
Base	0		0		0	852		1183	0		1179	35	3733
Added	0	0	0	0		26	19	56	0	0		2	203
Total	0		0		0			1239			1279	37	3936
10001		Ü	·	100	·	0,0	5 10	1200	•		12/5	٠,	3,30
#12 Se	nulve	da Bou	levaro	and !	San Di	ean Fu	v NR (off-Ra	amp				
Base	0		0		1372	0	290	0	9	0	0	0	2072
Added		4	0		6	-		-	-	0	-	0	14
Total	0		0		1378	0				0	0	0	2086
	-		-	-		-		-	-	-	-	-	
#13 Se	pulve	da Bou	levaro	and I	Montar	a Aver	nue						
Base	78		287		1158	23	8	286	105	103	74	75	2868
Added	0	4	4	16	2	0	0	0	0	4	0	10	40
Total	78	332	291	360	1160	23	8	286	105	107	74	85	2908
25 250 250 250 250 250 250 250 250 250 2													
#14 Le	verin	a Aveni	ue and	d Monta	ana Av	renue							
Base	39	0	3	0	0	0	0	799	356	6	163	0	1366
Added	14	0	0	0	0	0	0	0	20	0	0	0	34
Total	53	0	3	0	0	0	0	799	376	6	163	0	1400
#15 Ve	teran	Avenue	e and	Montai	na Ave	nue/Ga	ley Av	venue					
Base	35	230	22	176	335	20	120	582	45	12	82	50	1708
Added	0	42	0	6	60	0	0	0	0	0	0	1	109
Total	35	272	22	182	395	20	120	582	45	12	82	51	1817
#16 Ga	ley A	venue a	and St	rathmo	ore Pl	ace							
Base	5	83	294	498	278	3	2	124	15	100	19	49	1470
Added	0	1	0	0	6	0	0	0	0	0	0	0	7
Total	5	84	294	498	284	3	2	124	15	100	19	49	1477
#17 Ve	teran	Avenue	e and	Lever	ing Av	renue							
Base	20	245	29	22	406	3	2	121	213	69	24	30	1185
Added	5	18	3	26	34	0	0	11	10	33	9	24	173
Total	25	263	32	48	440	3	2	132	223	102	33	54	1358
#18 Hi	lgard	Avenue	e and	Wyton	Drive	2							
Base	217	290	9	28	618	56	17	25	99	62	89	29	1540
Added	0	26	0	0	49	0	0	0	0	0	0	0	75
Total	217	316	9	28	667	56	17	25	99	62	89	29	1615

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future With Project (Unsignalized as Signalized)- AM Peak

			WICII	PIOJEC				.s 519		A			
Volume						ound							Total
Type	Left	Thru F	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Volume
#19 Bev	ærlv	Glen F	alud a	ind Wyt	on Dr	-/Comat	ock Av	e [5-	T.ea In	terge	tion-	Wyton	Snlit
Base	8		5		523	3		23	12	32	35	40	1045
Added	0		0	0				0	0	0		0	123
Total	8		5		600		1		12	32	35	40	1168
#20 Hil	lgard	Avenue	e and	Westho	lme A	venue							
Base	171	398	43	16	558	138	21	11	30	42	204	51	1682
Added	0	26	0	0	49	0	0	0	0	0	0	0	75
Total	171	424	43	16	607	138	21	11	30	42	204	51	1757
#21 Hil	lgard	Avenue	and	Mannin	g Ave	nue							
Base	0		13		540	0	0	0	0	6	0	69	1402
Added	0	26	0	0	49	0	0	0	0	0	0	0	75
Total	0	778	13	22	589	0	0	0	0	6	0	69	1477
#22 Gay	yley A	Avenue	and I	e Cont	e Ave	enue							
Base	7	667	246	130	228	16	25	125	12	165	78	133	1831
Added	0	1	4	0	6	0	0	45	0	6	11	0	73
Int #2	0	51		-23	23	0	0	-23	23	-50	-51	-51	-124
Total	7	719	227	107	257	16	25	147	35	121	38	82	1780
#23 Wes	stwood												
Base	56		216		205	92	176	343	35	137		112	2402
Added	122	0	1	0	0	0	0	8	59	1		0	208
Int #2	0	0	0	0	0	0	0	-69	0		-152	0	-221
Total	178	664	217	34	205	92	176	282	94	138	198	112	2389
#24 Tiv													
Base	26	105	29	25	37	206	190	305	42		344	91	1416
Added	0		0	0	3	0	0	8	0	0		0	29
Int #2			0	0		0	0	-69	0		-152	0	-221
Total	26	106	29	25	40	206	190	244	42	16	209	91	1224
#25 Hil													
Base	23		27	11		299	286	0	34	7	0	25	1390
Added	0		0	0		17	8	0	0	0	0	0	74
Int #2	0		69	0	0	0	0	0	0	152	0	0	221
Total	23	468	96	11	259	316	294	0	34	159	0	25	1685
#26 Gay													
Base	29	791	117		420	78	200	179	23	39	45	38	1975
Added	0	13	69	16		0	0	32	0	26	20	16	211
Int #2	0		23	46	0	0	0	0	0	50	51	51	221
Total	29	804	209	80	439	78	200	211	23	115	116	105	2407

Future With Project (Unsignalized as Signalized) - AM Peak

Volume	No	rthbo	und	S	outhbo	ound	Ea	astbo	und	We	estboi	ınd	Total
													Volume
						_						-	
#27 We	stwood	l Boul	evard	and We	eyburr	a Avenu	e						
Base	74	692	45		338				33	35	45	14	1420
Added	17	123	73	0	60	0	0	17	16			0	412
Int #2	0	0	73 0	0	0	0	0	69	0	0	152	0	221
Total	91	815	118			30				115	223	14	2053
#28 Ti	vertor	ı Drvi	e and	Weybu	rn Ave	enue							
Base	14	111	7	28	0	34	27	38		0			313
Added	0	0	0	0	0	3	1	35		0	45	0	84
Int #2	0	0	0	0	0	0	0	69	0	0	152	0	221
Total	14	111	7	28	0	34 3 0 37	28	142	0	0	233	18	618
#29 Hi						enue							
	30	484	5	14	264	41		28	66			28	
Added	0	2	0	0	4	27	16	19	0	0		-	86
#25 In	0	0	0	0	0	152	69	U	U		0		
Total	30	486	5	14	268	220	121	47	66	7	45	28	1338
#30 Westwood Boulevard and Kinross Avenue													
										_			
Base	56		26	13		38 1	58	32	25	5 7	47		
Added		212	50	5	151	1 39	0	4					
Total	113	1018	76	18	512	39	58	36	43	12	48	63	2036
#31 We		D 1		- m - d - T -		ale Desi							
Base		836	227				30	137	47	98	138	28	1907
Added			227			0		137			130		
Total	2	1154	220	21	E 0.7	11	20	138		100			
IULAI	3	1134	223	21	307	11	30	130	4/	100	141	20	2400
#32 Gl	endon	Tiver	ton/L	indhro	nk.								
Base			412	8	25	45	3.8	335	22	165	179	41	1561
Added			6	0	2	0	0	2			5		
Total			418	8	27	45	38	337		172			
#33 Se	pulved	la Bou	levar	d and	Consti	tution	Aveni	ıe					
Base		305	7	3	1177	173	88	0	20	2	0	2	1845
Added	0	4	0	0	6	0	0	0	0	0	0	0	10
Total	67	309	7	3	1183	173 0 173	88	0	20	2	0	2 0 2	1855
#34 Sa:	n Vice	ente B	oueva	rd and	Wilsh	nire Bo	uelva	rd					
Base	103	214	117	1449					68			973	7565
Added	28	50	10	89	53	14	3	180	8 76	7	172	59	673
Total	131	264	127	1538	358	33	72	2234	76	63	2311	1032	8238
#35 Se													
Base			276		669				141			65	
Added	10		37		4	0	_1	800	11			2	1354
Total	174	253	313	295	673	297	76	3674	152	134	3138	67	9245

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

UCLA NHIP and Amended LRDP Traffic Study
Los Angeles, CA
Future With Project (Unsignalized as Signalized)- AM Peak

						nsignal 							
Volume	N	orthbo	und	Sc	uthb	ound	Ea	astbo	und	We	estbo	und	Total
Type	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Volume
#36 Ve	teran	Avenu	e and	Wilshi	ire B	oulevar	d						
Base	217	404	104	116	265	386	555	3046	141	55	2412	37	7737
Added	-6	17	14	4	8	63	138	704	-4	6	431	15	1390
Total	211	421	118	120	273	449	693	3750	137	61	2843	52	9127
						ulevard							
Base	62		55	59	105			2545			2091		6435
Added	0		0	18	0			475		0			
Total	62	350	55	77	105	389	768	3020	160	67	2454	159	7664
						re Boul							
Base	142		123	64	286			2079			1983		6327
Added	13		43	35	66		149			39	311		1244
Total	155	743	166	99	352	238	597	2414	179	180	2294	155	7571
						ouelvar							
Base	9		23	60	116	43		1770	120		2068		4978
Added	0	-	0	2	0	7	6				401		835
Total	9	186	23	62	116	50	340	2178	120	69	2470	191	5813
						oulevar		1000		0.0			4240
Base	3		47	3	1			1776			2293		4342
Added	6		0	21	0	0		403		0			853
Total	9	0	47	24	1	42	68	2179	40	23	2685	76	5195
						Boulev							
Base	59		68	47	44			1882			2312		4813
Added	1		2	0	0			434		2			819
Total	60	107	70	47	44	21	33	2316	69	32	2689	144	5632
						ulevard		1000		1.0	0000	0.1	4501
Base	78		22	91	63			1862			2339		4781
Added	0		0	0	0	0	0			0	366	0	804
Total	78	38	22	91	63	92	70	2300	33	12	2705	81	5585
						lshire							
Base	169		38	36	529	50		1674			2179	11	5447
Added	19		51	41	30	7	4			79			1041
rotal	188	367	89	77	559	57	97	2064	251	183	2519	38	6488
				and Oh									
Base	63		135	26	94		86	887		75		90	2330
Added	0	0	4	0	0	0	0	26		1		0	49
Total	63	318	139	26	94	19	86	913	56	76	498	90	2379

Future With Project AM PeakWed Jul 23, 2008 18:06:43

Page 4-7

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA

Future With Project (Unsignalized as Signalized) - AM Peak

	Northb											
Type	Left Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Volume
#45 Sep	ulveda Bo				Avenue							
Base	101 477		40		86	183	730	82	78	504	75	3006
Added	3 40) 1	6	26	0	2	24	4	4	14	7	131
Total	104 517	133	46	546	86	185	754	86	82	518	82	3137
#46 Vet	eran Aver	ue and	Ohio A	Avenue	2							
Base				155	105	281	727	39	26	500	43	2304
Added	0 22 35 363	2 0	0	8	-1	6	25	1	0	21	0	82
Total	35 363	37	15	163	104	287	752	40	26	521	43	2386
#47 Wes	twood Bou	levard	and Oh	nio Av	venue							
Base	130 1238	50	34	484	62 8	177	292	96	67	279	53	2962
	26 156						0	25	0	0	0	329
Total	156 1394	50	34	586	70	189	292	121	67	279	53	3291
#48 Saw	telle Bou	levard	and Sa	anta 1	Monica	Boule	vard					
Base	63 477	216	99	166	30	24	1240	22	125	1789	64	4316
Added	1 4 64 481	11	1	1	0	0	207	2	7	161	0	395
Total	64 481	227	100	167	30	24	1447	24	132	1950	64	4711
	n Diego Fw					nica B	ouleva	ard				
Base	0 0	0	756	295	421	0	1096	439	626	1535	0	5168
Added	0 0	0	84	0	27	0	182	37	44	142	0	516
Total	0 0	0	840	295	448	0	1278	476	670	1677	0	5684
	n Diego Fw	ry NB Ra	amps ar	nd Sar	nta Mor	nica B	ouleva	ard				
Base	709 403	756	0	0	0	418	1495	0	0	1384	340	5505
Added	23 5	756 88	0	0	0	36	230	0	0	163	45	590
Total	732 408	844	0	0	0	454	1725	0	0	1547	385	6095
	ulveda Bo											
Base		142		791		104				1345		
Added						1	313	4				
Total	217 910	142	164	813	197	105	2099	383	104	1548	154	6836
#52 Vet	eran Aver					evard						
Base	67 278 0 12	57	139	153	69	106	1931	25 1	66	1386	63	4341
Added				5	5	11	309	1				
Total	67 290	57	138	158	74	117	2240	26	66	1593	62	4889
	twood Bou											
	96 1058									1352		
Added	4 149 100 1207	9	7	104	18	26	273	3				
Total	100 1207	86	236	658	97	173	2157	105	140	1535	141	6635

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

	1	Future	e With	Projec		s Ange signal			nalize	ed) - Al	M Peal	ς.	
Volume	. No	orthbo	ound	Sc	uthbo	und	Ea	Eastbound			Westbound		
Type	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Volume
#54 Mu	lholla	and Di	rive an	nd Rosc	omare	Road							
Base	205	0	79	0	0	0	0	749	429	193	545	0	2200
Added	12	0	0	0	0	0	0	1	20	0	0	0	33
Total			79	0	0	0		750	449	193	545	0	2233
#55 Ro	scoma	re Roa	ad and	Strade	lla R	oad/Li	nda Fl	ora I	rive				
Base	13	78	8	94	444	17	17	1	40	9	0	34	755
Added	0	12	0	0	20	0	0	0	0	0	0	0	32
Total			8						40	9	0	34	787
#56 Be	llagi	o Road	d and C	halon	Road								
Base			0			21	12	0	42	0	0	0	755
Added	0	12	0	0	20	0	0	0	0	0	0	0	32
Total	32	137	0	0	544	21	12	0	42	0	0	0	787
#57 Be	verly	Glen	Boulev	ard an	d Mul	hollan	d Driv	re					
Base	62	209	74	803	784	135	44	587	40	44	319	307	3408
Added	0	16	0	0	27	0	0	0	1	1	0	0	45
Total	62	225	74	803	811	135	44	587	41	45	319	307	3453
#58 Be	verlv	Glen	Boulev	ard an	ıd Gre	endale	Drive	2					
Base		308			969	0		0	0	82	0	49	1556
Added	0	17	4	1	26	0	0	0	0	0	0	0	48
Total	0	325	18	135	995	0	0	0	0	82	0	49	1604

UCLA NHIP and Amended LRDP Traffic Study

Page 5-1

Future With Project AM PeakWed Jul 23, 2008 18:06:43

UCLA NHIP and Amended LRDP Traffic Study

Los Angeles, CA Future With Project (Unsignalized as Signalized) - AM Peak ______

Page 6-1

Level Of Service Computation Report

Circular 212 Planning Method (Future Volume Alternative) *************************

Intersection #14 Levering Avenue and Montana Avenue ******************* Cycle (sec): 100 Critical Vol./Cap.(X): 1.031 Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/veh): xxxxxx Optimal Cycle: 180 Level Of Service: Street Name: Levering Avenue Montana Avenue Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R Control: Split Phase Split Phase Permitted Permitted
 Rights:
 Include
 Include
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0 Lanes: 0 0 1! 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 -----|----|-----|------| Volume Module: >> Count Date: 7 Feb 2008 << 800-900 Base Vol: 37 0 3 0 0 0 0 761 339 6 155 0 Initial Bse: 39 0 3 0 0 0 0 799 356 6 163 0 Ω Ω PHF Volume: 53 0 3 0 0 0 799 376 6 163 0 Ω 6 163 FinalVolume: 53 0 3 0 0 0 799 376 6 163 0 -----| Saturation Flow Module: Lanes: 0.94 0.00 0.06 0.00 0.00 0.00 0.08 0.32 0.04 0.96 0.00

Final Sat.: 1133 0 68 0 0 0 0 816 384 45 1155 0

Vol/Sat: 0.05 0.00 0.05 0.00 0.00 0.00 0.00 0.98 0.98 0.14 0.14 0.00 Crit Volume: 56 0 1175 6
Crit Moves: **** ****

Capacity Analysis Module:

Future With Project AM PeakWed Jul 23, 2008 18:06:43

UCLA NHIP and Amended LRDP Traffic Study

Los Angeles, CA Future With Project (Unsignalized as Signalized) - AM Peak

> Impact Analysis Report Level Of Service

Intersection	Base Del/ V/	Future Del/ V/	Change in
# 14 Levering Avenue and Montana Av	LOS Veh C F xxxxx 1.003	LOS Veh C F xxxxx 1.031	+ 0.028 V/C
# 28 Tiverton Drvie and Weyburn Ave	A xxxxx 0.201	A xxxxx 0.366	+ 0.165 V/C
# 40 Malcolm Avenue and Wilshire Bo	C xxxxx 0.754	D xxxxx 0.891	+ 0.137 V/C
# 55 Roscomare Road and Stradella R	A xxxxx 0.529	A xxxxx 0.546	+ 0.017 V/C
# 56 Bellagio Road and Chalon Road	A xxxxx 0.525	A xxxxx 0.542	+ 0.017 V/C

Los Angeles, CA

Future With Project (Unsignalized as Signalized) - AM Peak ______

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA

Future With Project (Unsignalized as Signalized) - AM Peak

Level Of Service Computation Report

Circular 212 Planning Method (Future Volume Alternative)

Intersection #28 Tiverton Drvie and Weyburn Avenue

************************ Cycle (sec): 100 Critical Vol./Cap.(X): 0.366

0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec):

xxxxxx Optimal Cycle: 23 Level Of Service:

Street Name: Tiverton Drive Weyburn Avenue Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R T. - T - R Control: Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 0 0 1! 0 0 0 0 1! 0 0 0 1 0 0 0 0 0 1 0 -----| Volume Module: >> Count Date: 6 Feb 2008 << 700-800

Base Vol: 13 106 7 27 0 32 26 36 0 0 34 17 Initial Bse: 14 111 7 28 0 34 27 38 0 0 36 18 Added Vol: 0 0 0 0 3 1 35 0 0 45 Ω 0 0 0 Ω Ω Ω 0 69 0 152 Tnt #25: Ω Ω Initial Fut: 14 111 7 28 0 37 28 142 0 0 233 18 PHF Volume: 14 111 7 28 0 37 28 142 0 0 233 18 Reduct Vol: 0 0 0 0 0 0 0 0 0 Reduced Vol: 14 111 7 28 0 37 28 142 0 0 0 0 0 0 233 1.8

FinalVolume: 14 111 7 28 0 37 28 142 0 0 233 18 -----| Saturation Flow Module: Lanes: 0.10 0.84 0.06 0.44 0.00 0.56 0.17 0.83 0.00 0.00 0.93 0.07 Final Sat.: 124 1010 67 524 0 676 200 1000 0 0 1115 85

-----|----|-----|-----| Capacity Analysis Module: Vol/Sat: 0.11 0.11 0.11 0.05 0.00 0.05 0.14 0.14 0.00 0.00 0.21 0.21 Crit Volume: 132 28 28 251 Crit Moves: **** **** ****

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA. LONG BEACH. CA

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) ************************* Intersection #40 Malcolm Avenue and Wilshire Boulevard ************************ Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/veh): xxxxxx Optimal Cycle: 132 Level Of Service: Street Name: Malcolm Avenue Wilshire Boulevard Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - F T. - T - R Control: Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 0 0 1! 0 0 0 0 1! 0 0 1 0 2 1 0 1 0 2 1 0 -----| Volume Module: >> Count Date: 7 Feb 2008 << 745-845 Base Vol: 3 0 45 3 1 40 65 1691 28 22 2184 53 Initial Bse: 3 0 47 3 1 42 68 1776 29 23 2293 56 Added Vol: 6 0 0 21 0 0 0 403 11 0 392 20
PasserByVol: 0 0 0 0 0 0 0 0 0 0 0 0
Initial Fut: 9 0 47 24 1 42 68 2179 40 23 2685 76 PHF Volume: 9 0 47 24 1 42 68 2179 40 23 2685 76 FinalVolume: 9 0 47 24 1 42 68 2179 40 23 2685 76 -----|----||------|

Tanes: 0.16 0.00 0.84 0.36 0.02 0.62 1.00 2.95 0.05 1.00 2.92 0.08

Final Sat.: 195 0 1005 431 19 750 1200 3534 66 1200 3501 99

Vol/Sat: 0.05 0.00 0.05 0.06 0.06 0.06 0.06 0.62 0.62 0.02 0.77 0.77

Crit Volume: 56 24 68 920 Crit Moves: **** **** ****

-----|----|-----|------|

Saturation Flow Module:

Capacity Analysis Module:

Future With Project (Unsignalized as Signalized) - AM Peak

Level Of Service Computation Report

Circular 212 Planning Method (Future Volume Alternative) ************************ Intersection #55 Roscomare Road and Stradella Road/Linda Flora Drive ************************** 0 (Y+R=4.0 sec) Average Delay (sec/veh): Loss Time (sec): XXXXXX Optimal Cycle: 32 Level Of Service: Street Name: Roscomare Road Stradella Road/Linda Flora Drive Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Permitted Permitted Permitted Permitted Include Include Include Control: Rights: Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 0 0 1! 0 0 0 0 1! 0 0 0 0 1! 0 0 0 0 1! 0 0 -----| Volume Module: >> Count Date: 21 Feb 2008 << 800-900 Base Vol: 12 74 8 90 423 16 16 1 38 9 0 32 Initial Bse: 13 78 8 94 444 17 17 1 40 9 0 34 Added Vol: 0 12 0 0 20 0 0 0 0 0 0 Ο PasserByVol: 0 0 0 Ω Ω 0 0 Ω Ω Ω Ω Initial Fut: 13 90 8 94 464 17 17 1 40 9 0 34 PHF Volume: 13 90 8 94 464 17 17 1 40 9 0 34 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 13 90 8 94 464 17 17 1 40 0 0 0 3.4 FinalVolume: 13 90 8 94 464 17 17 1 40 9 0 34 -----|----||------| Saturation Flow Module: Lanes: 0.11 0.81 0.08 0.16 0.81 0.03 0.29 0.02 0.69 0.22 xxxx 0.78 Final Sat.: 137 972 91 197 968 35 349 22 829 263 0 937 -----|----|----|-----| Capacity Analysis Module: Vol/Sat: 0.09 0.09 0.09 0.48 0.48 0.48 0.05 0.05 0.05 0.04 0.00 0.04 Crit Volume: 13 575 58 9
Crit Moves: **** **** ****

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA. LONG BEACH. CA

Crit Moves: ****

Los Angeles, CA Future With Project (Unsignalized as Signalized) - AM Peak ______ Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) ************************* Intersection #56 Bellagio Road and Chalon Road ******************* Cycle (sec): 100 Critical Vol./Cap.(X): 0.542 Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/veh): xxxxxx Optimal Cycle: 41 Level Of Service: Street Name: Bellagio Road Chalon Road Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - F T. - T - R Control: Permitted Permitted Split Phase Split Phase Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 0 1 0 0 0 0 0 0 1 0 0 0 1! 0 0 0 0 0 0 Volume Module: >> Count Date: 21 Feb 2008 << 745-845 Base Vol: 30 119 0 0 499 20 11 0 40 0 0 Initial Bse: 32 125 0 0 524 21 12 0 42 0 0 0 PHF Volume: $32 \ 137 \ 0 \ 0 \ 544 \ 21 \ 12 \ 0 \ 42 \ 0 \ 0 \ 0$ Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 32 137 0 0 544 21 12 0 42 0 0 0 0 FinalVolume: 32 137 0 0 544 21 12 0 42 0 0 -----| Saturation Flow Module:

UCLA NHIP and Amended LRDP Traffic Study

Future With Project AM PeakWed Jul 23, 2008 18:06:43

Lanes: 0.19 0.81 0.00 0.00 0.96 0.04 0.22 0.00 0.78 0.00 0.00 0.00

Final Sat.: 224 976 0 0 1155 45 259 0 941 0 0

Crit Volume: 32 565 54 0
Crit Moves: **** ****

Capacity Analysis Module:

-----|

Page 1-1

Future With Project PM PeakWed Jul 23, 2008 18:06:57

Page 2-1

______ UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA

Future With Project (Unsignalized as Signalized) - PM Peak

Scenario Report

Scenario: Future With Project PM Peak

Future With Project PM Peak Volume: Future PM

Geometry: Future

Command:

Impact Fee: Default Impact Fee

Trip Generation: PM Peak Trip Distribution: Project Paths: Project Routes: Default Route

Configuration: Future

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA

Future With Project (Unsignalized as Signalized) - PM Peak

Trip Generation Report

Forecast for PM Peak

	Subzone		Units	In		In	Out	Trips	Total
1 2	#1- NA FBI #2	1.00	FBI Office- 11 Palazzo Westwo	0.00 266.00	0.00 237.00	0 266	0 237	0 503	0.0 7.6
3	#3 Zone 3	1.00 Subtotal	Mixed-Use - S/	195.00	271.00	195 195	271 271	466 466	7.1 7.1
4	#4 Zone 4	1.00 Subtotal	Theater Expans	8.00	8.00	8	8	16 16	0.2
5 5	#5, 17 #5, 17 Zone 5	1.00 1.00 Subtotal	Mixed-Use- 108 Residential Ho	-16.00 17.00	-25.00 15.00	-16 17 1	-25 15 -10	-41 32 -9	-0.6 0.5 -0.1
6	#6 Zone 6	1.00 Subtotal	Apartments- 86	6.00	3.00	6 6	3	9 9	0.1
7	#7 Zone 7	1.00 Subtotal	Condos- 10804	34.00	17.00	34 34	17 17	51 51	0.8
8 8 8	#8, 25, 61 #8, 25, 61	1.00 1.00	Condos- 10776 Condos-10763 W Condos- 10710	22.00 23.00	11.00 12.00	18 22 23 63	11 12		0.2 0.5 0.5 1.3
9	#9 Zone 9	1.00 Subtotal	Private School	0.00	9.00	0 0	9 9	9 9	0.1
10	#10 Zone 1		Fox Studio Exp			54 54	226 226	280 280	4.2 4.2
11 11 11 11	#11, 12, 45 #11, 12, 45 #11, 12, 45 #11, 12, 45 Zone 1	, 1.00 , 1.00 , 1.00 , 1.00 , Subtotal	High School Ex Private School Condos- 1333 S Condos- 552-55	37.00 65.00 2.00 3.00	55.00 166.00 1.00 2.00	37 65 2 3 107	55 166 1 2 224	92 231 3 5 331	1.4 3.5 0.0 0.1 5.0
12	#13 Zone 1		Wilshire/Comst						
13 13			ABC Entertainm Condos- 10131						

Page 2-3

ICIA NUID and Amended IPDD Traffic Study

UCLA NHIP and Amended LRDP Traffic Study
Los Angeles, CA

Future With Project (Unsignalized as Signalized) - PM Peak

Zone #	Subz	one	Amount	Units						% Of Total
14 14	#16, #16,	35 35 Zone 14	1.00 1.00 Subtotal	Condos- 527 Mi Condos- 430 Ke	61.00 15.00	30.00	61 15 76	30 7 37	91 22 113	1.4 0.3 1.7
	#18		1.00	Health/Fitness	19.00	18.00	19		37	0.6
16	# 19	Zone 16	1.00 Subtotal	Condos-1826 S	6.00	3.00	6 6	3	9 9	0.1
17	#20	Zone 17	1.00 Subtotal	Condos- 1417 S	6.00	3.00	6 6	3	9 9	0.1
		Zone 18		New Car Sales-						
19 19	#22, #22,	70 70 Zone 19	1.00 1.00 Subtotal	Condos- 1625 S Mixed-Use- 115	7.00 43.00	3.00	7 43 50	3 21 24	10 64 74	0.2 1.0 1.1
20 20	#23, #23,	24 24 Zone 20	1.00 1.00 Subtotal	Condos- 1525 S Condos- 1633 S	7.00 6.00	3.00	7 6 13	3 3 6	10 9 19	0.2 0.1 0.3
21	#26	Zone 21	1.00 Subtotal	Condos- 2037 S	6.00	3.00	6 6	3	9 9	0.1
22 22 22	#27, #27, #27,	63, 65 63, 65 63, 65 Zone 22	1.00 1.00 1.00 Subtotal	Office- 12233 Westside Media SM Apt Project	140.00 16.00 45.00	36.00 15.00 25.00	140 16 45 201	36 15 25 76	176 31 70 277	2.7 0.5 1.1 4.2
23 23	#28, #28,	32 32 Zone 23	1.00 1.00 Subtotal	Condos- 1511 S Condos- 1517 B	6.00	3.00	6 8 14	3 4 7	9 12 21	0.1 0.2 0.3
24 24	#29, #29,	54 54 Zone 24	1.00 1.00 Subtotal	Mixed-Use- 116 Office- 11677	37.00 29.00	71.00 144.00	37 29 66	71 144 215	108 173 281	2.6
25	#30	Zone 25	1.00 Subtotal	Mausoleum Bldg	1.00	2.00	1	2 2	3	0.0
26	#31	Zone 26	1.00 Subtotal	Condos- 10617	6.00	3.00	6 6	3	9 9	0.1

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA

Future With Project (Unsignalized as Signalized) - PM Peak

Zone #				Units						
	#33			Apts- 1817 S B						
28	#34 Zone	28	1.00 Subtota	Live/Work- 115	27.00	14.00	27 27	14 14	41 41	0.6
			Subtota	Restaurant- 10			23	11	34	0.5
30	#37, 56,	57	1.00	Condos- 1807 S Auto Service- Office- SW Cor	6.00	3.00	6	3	9	0.1
30	#37, 56,	57	1.00	Office- SW Cor	18.00	89.00	18	89	107	1.6
	Zone	30								
31	#38		1.00	Condos- 2263 S	5.00	3.00	5	3	8	0.1
32	#39 Zone	32	1.00 Subtotal	Cooking School	3.00	2.00	3	2 2	5 5	0.1
33	#40 Zone	33	1.00 Subtota	Bank- 1762 Wes	73.00	67.00	73 73	67 67	140 140	2.1
34	#41- NA-A	lre	1.00	Westside Pavil	0.00	0.00	0	0	0	0.0
35	#42, 49		1.00	Le Lycee Franc	46.00	62.00	46	62	108	1.6
35	Zone	35	Subtota	Westside Pavil Le Lycee Franc Mixed-Use- 106			61	77	138	2.1
36	#44, 60,	67	1.00	Discounted Sto	152.00	152.00	152	152	304	4.6
36	#44, 60,	67	1.00	Olympic-Stoner	47.00	59.00	47	59	106	1.6
30	Zone	36	Subtota	Discounted Sto Olympic-Stoner Bed, Bath & Be			199	211	410	6.2
37	#46		1.00	Belmont Villag	22.00	19.00	22	19	41	0.6
				1				19		
38	#47, B12,	В3	1.00	Apts- 10000 W Hotel- 150 Las Beverly Hilton	102.00	-115.00	102	2 -115	-1:	3 -0.
38	#47, B12,	B3	1.00	Hotel- 150 Las	13.00	12.00	13	12	25	0.4
38	#4/, B12, Zone	38	Subtota	l		01.00	215	-42	173	2.4
39	#48		1.00	Mixed-Use- 109	29.00	25.00	29	25	54	0.8
	Zone	39	Subtota:	1			29	25	54	0.8
40	#50	40	1.00	Regent Westwoo	238.00	134.00	238	134	372	5.6
	20116	+0	Subtota.	<u> </u>			230	134	3/2	٥.٥

UCLA NHIP and Amended LRDP Traffic Study

Los Angeles, CA Future With Project (Unsignalized as Signalized)- PM Peak

Zone #			Units					Total Trips	% Of Total
41	#51	1.00	Office- 1100 W	20.00	90.00	20	90	110 110	
42	#52 Zone 42	1.00 Subtota	Del Capri Hote	35.00	19.00	35 35	19 19	54 54	0.8
43	#53 Zone 43		Condos- 11611				3	10 10	
44	#55 Zone 44		Retail- 11305						
45	#58 Zone 45	1.00 Subtota	Fastfood- 1086	42.00	41.00	42 42	41 41	83 83	
		Subtota	Brentwood Reta			46	52	98 98	1.5
47 47 47 47 47 47	#B1, B5, B11 #B1, B5, B11 #B1, B5, B11 #B1, B5, B11 #B1, B5, B11 #B1, B5, B11 Zone 47	1.00 1.00 1.00 1.00 1.00 1.00 1.00 Subtota	Young Israel- Retail Expansi Cultural Cente Condos- 437-44 Service Facili Mixed-Use- 421 Condos- 432 N	4.00 2.00 16.00 5.00 90.00 31.00 12.00	4.00 3.00 40.00 3.00 89.00 47.00 6.00	4 2 16 5 90 31 12 160	4 3 40 3 89 47 6	8 56 8 179 78 18 352	0.1 0.8 0.1 2.7 1.2 0.3 5.3
48 48 48 48	#B2, B3, B6, #B2, B3, B6, #B2, B3, B6, #B2, B3, B6, #B2, B3, B6,	1.00 1.00 1.00 1.00	Beverly Hills Mixed-Use- 265 Condos- 125 S Medical Plaza- Commercial/Ret Mixed-Use- 131 Assisted Care Senior Congreg Screening Room Mixed-Use- 959 Hotel- 9730 Wi Condos- 140-14 Condos- 133 Sp Office/Medical Condos- 156-16 Condos- 144 Re Condos- 155 N	141.00 44.00 14.00 52.00 14.00	97.00 119.00 7.00 116.00 18.00	141 44 14 52 14	97 119 7 116 18	238 163 21 168 32	3.6 2.5 0.3 2.5 0.5

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

Future With Project PM PeakWed Jul 23, 2008 18:06:57

UCLA NHIP and Amended LRDP Traffic Study

Los Angeles, CA Future With Project (Unsignalized as Signalized) - PM Peak

	ruture		(Ulisigha.				PM Peak		
Zone #	Subzone		Units				Trips Out	Total Trips	% Of Total
49	#B4, B14, B2	1.00	Church Expansi Synagogue/Priv Apts- 428-430 Condos- 313-3	1.00	0.00	1	0	1	0.0
49	#B4, B14, B2	1.00	Synagogue/Priv	7.00	8.00	7	8	15	0.2
49	#B4, B14, B2	1.00	Apts- 428-430	1.00	0.00	1	0	1	0.0
49	#B4, B14, B2	1.00	Condos- 313-31	L 3.00	2.00	3	2	5	0.1
	Zone 49	Subtota	1			12			
50	#B18, B21	1.00	Beverly Hills Robinson's May	21.00	140.00	21	140	161 1 162	2.4
50	#B18, B21	1.00	Robinson's May	20.00	-19.00	20	-19	1	0.0
	Zone 50	Subtota	1			41	121	162	2.5
51	#B27	1.00	Health Spa- 96	5 4.00	4.00	4	4	8	0.1
	Zone 51	Subtota	Health Spa- 96			4	4	8	0.1
52	#62-NA Whole	1.00	Whole Foods Ma	a 0.00	0.00	0	0	0	0.0
53	#64	1.00	Whole Foods Ma New West Middl	L 51.00	47.00	51	47	98	1.5
			1			51	47	98	
54	#66	1.00	Union Bank of	32.00	32.00	32	32	64	1.0
			1						
55	#68	1.00	Leo Baeck Temp	165.00	199.00	165	199	364	5.5
		Subtota	1			165 165	199 199	364	
56	#69	1.00	Convenience St	50.00	48.00	50	48	98	1.5
			1					98	
57	#71	1.00	Westwood Villa	42.00	40.00	42	40	82	1.2
			1					82	
58	#72	1 00	Office Bldg- 2	2 9 00	41 00	9	41	5.0	0.8
			1				41	50 50	0.8
59	Hekmat Mixed	1 00	Mixed Use	60 00	55 00	60	55	115	1.7
33			1					115	
60	TICLA LOT 26	1 00	UCLA PARKING I	. 177 00	413 00	177	413	500	8.9
00			1				413		8.9
	Zone oo	Jan Coca.				1,7	113	350	0.9
TOTA	L					2886	3722	6608	100.0

Page 3-2

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA

Future With Project (Unsignalized as Signalized) - PM Peak

Trip Distribution Report

Percent Of Trips Project

					To	Gates					
	1	2	3	4	5	6	9	10	11	12	13
Zone											
1 2 3	0.0	0.0	0.0	0.0 4.0 4.0	0.0	0.0 3.0 3.0	0.0	0.0	0.0 11.0 11.0	0.0	0.0 5.0 5.0
4	8.0	3.0	0.0	4.0	0.0	3.0	16.0 16.0	0.0	11.0	0.0	5.0
5	8.0	3.0	0.0	4.0	0.0	3.0	16.0	0.0	11.0	0.0	5.0
6	10.0	0.0	0.0	0.0	0.0	5.0	0.0	0.0	5.0	0.0	0.0
7	15.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	5.0	0.0	0.0
8	15.0	0.0	0.0	0.0		0.0	5.0	5.0	5.0	0.0	0.0
9	5.0	5.0	5.0	5.0	5.0	20.0	5.0	0.0	0.0	0.0	0.0
10	10.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0	0.0
11	10.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0	0.0
12	10.0	0.0	0.0	0.0	0.0	5.0	0.0	0.0	5.0	0.0	0.0
13	10.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0	0.0
14 15	8.0	3.0	0.0	4.0	0.0	3.0	16.0 10.0	0.0 5.0	11.0	0.0	5.0
16	10.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	10.0	0.0	0.0
17	10.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0
18	10.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0
19	10.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0
20	10.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0
21	10.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0	0.0
22	10.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0
23	10.0	0.0	0.0	0.0	0.0		5.0	5.0	0.0	2.5	2.5
24	10.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0
25	15.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	5.0	0.0	0.0
26 27	10.0 10.0	0.0	0.0	0.0	0.0	0.0	10.0	0.0 5.0	0.0	0.0	0.0
28	10.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0
29	8.0	3.0	0.0	4.0	0.0	3.0	16.0	0.0	11.0	0.0	5.0
30	10.0	0.0	0.0	0.0	0.0	0.0	10.0	0.0	0.0	0.0	0.0
31	10.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0	0.0
32	10.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0
33	0.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	10.0	0.0	0.0
34	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
35	10.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0
36	10.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0
37	10.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	5.0	0.0	0.0
38	10.0	0.0	0.0	0.0	0.0	5.0	0.0	0.0	5.0	0.0	0.0
39	0.0 8.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	5.0	0.0	0.0
40 41	8.0	3.0	0.0	4.0	0.0	3.0	16.0 16.0	0.0	11.0 11.0	0.0	5.0
41	10.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	5.0	0.0	0.0
43	10.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0
44	10.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

UCLA NHIP and Amended LRDP Traffic Study
Los Angeles, CA
Future With Project (Unsignalized as Signalized)- PM Peak

Future With Project PM PeakWed Jul 23, 2008 18:06:57

	I dodz	C //12011	11000	(011)	313141	III a	D DISIN		.,	Cur	
					То	Gates					
	1	2	3	4	5	6	9	10	11	12	13
Zone											
45		0.0	0.0	0.0	0.0	0.0	5.0	5.0	5.0	0.0	0.0
46		0.0					5.0				
47		0.0					0.0				
48		0.0					0.0				
49	10.0	0.0					5.0				
50	10.0 5.0 0.0						0.0				
51 52	5.0	5.0					5.0				
53	10.0	0.0					0.0 5.0				
54	8.0	3.0					16.0				
55	0.0	0.0					5.0				
56		0.0	0.0				5.0				
57	8 0	3 0	0 0	4 0	0 0	3 0	16 0	0 0	11 0	0 0	5.0
58	10.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0	0.0	0.0	0.0
59	8.0	3.0	0.0	4.0	0.0	3.0	16.0	0.0	11.0	0.0	5.0
60	10.0 8.0 28.0	0.5	0.0	0.5	0.0	3.0	3.0	3.0	2.0	2.0	2.0
					To	Gates					
	14	15	16	17	18	19	20	21	22	23	28
Zone											
	0 0			0 0			0 0				0 0
1 2	0.0	0.0	0.0	6.0	0.0	22.0	0.0	0.0	0.0	0.0	0.0
3		0.0	9.0	6.0	0.0	23.0	0.0	0.0	0.0	3.0	2.0
4		0.0	9.0	6.0	0.0	23.0	0.0	0.0	0.0	3.0	2.0
5		0.0	9 0	6.0	0.0	23.0	0.0	0.0	0.0	3.0	2.0
6			5.0	5.0	5.0	10.0	0.0		0.0		
7		0.0					0.0				
8		0.0	5.0	5.0	5.0	15.0		0.0	0.0	0.0	0.0
9		0.0	2.5	0.0	5.0	2.5	5.0		0.0	0.0	0.0
10		0.0	5.0	3.0	0.0	10.0	0.0			0.0	
11		0.0		3.0					0.0		
12				5.0					0.0		
13		0.0		3.0					0.0		
14		0.0		6.0			0.0		0.0		
15	10.0	10.0	10.0	10.0				0.0	0.0		
16	5.0			5.0					0.0		0.0
17 18		0.0		5.0 5.0					0.0		0.0
19		0.0		5.0			0.0				0.0
20		0.0		5.0						0.0	
21			5.0	3.0	0.0	10.0	0.0		0.0		
22		0.0					0.0				
23		2.5		2.5					0.0		
24	0.0	0.0	0.0	5.0			0.0				
25	5.0	0.0	5.0	5.0	5.0	15.0	0.0	0.0	0.0	0.0	0.0
26	5.0	0.0	5.0	5.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0
27	5.0	0.0	5.0	5.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0

Los Angeles, CA Future With Project (Unsignalized as Signalized) - PM Peak

						a					
	14	15	16	17	18	Gates 19	20	21	22	23	28
Zone											
28	0.0	0.0	0.0	5.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0
29	3.0	0.0	9.0	6.0	0.0	23.0	0.0	0.0	0.0	3.0	2.0
30	5.0	0.0	5.0	5.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0
31	5.0	0.0	5.0	3.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0
32	5.0	0.0	5.0	5.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0
33	5.0	5.0	5.0	5.0		0.0	0.0	0.0	0.0	0.0	0.0
34	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
35	5.0	0.0	5.0	5.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0
36	0.0	0.0	0.0	5.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0
37	5.0	0.0	5.0	5.0	5.0	10.0	0.0	0.0	0.0	0.0	0.0
38	5.0	0.0	5.0	5.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0
39	5.0	5.0	5.0	5.0		0.0	0.0	0.0	0.0	0.0	0.0
40	3.0	0.0	9.0	6.0	0.0	23.0	0.0	0.0	0.0	3.0	2.0
41	3.0	0.0	9.0	6.0	0.0	23.0	0.0	0.0	0.0	3.0	2.0
42	5.0	0.0	5.0	5.0	5.0	10.0	0.0	0.0	0.0	0.0	0.0
43	5.0	0.0	5.0	0.0	0.0	10.0	0.0	0.0	5.0	0.0	0.0
44	0.0	0.0	5.0	5.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0
45	5.0	5.0	5.0	5.0		0.0	0.0	0.0	0.0	0.0	0.0
46	5.0	0.0	5.0	0.0	0.0	10.0	0.0	0.0	5.0	0.0	0.0
47	5.0	0.0	5.0	5.0	5.0	10.0	0.0	0.0	0.0	0.0	0.0
48	5.0	0.0	5.0	5.0	5.0	10.0	0.0	0.0	0.0	0.0	0.0
49	5.0	0.0	5.0	3.0	0.0 5.0	10.0	0.0	0.0	0.0	0.0	0.0
50 51	5.0	0.0	5.0 2.5	5.0		10.0	0.0	0.0	0.0	0.0	0.0
51	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
53	0.0	0.0	0.0	5.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0
53 54	3.0	0.0	9.0	6.0	0.0	23.0	0.0	0.0	0.0	3.0	2.0
55	0.0	0.0	5.0	0.0	0.0	10.0	10.0	0.0	0.0	0.0	0.0
56	5.0	5.0	5.0	5.0		0.0	0.0	0.0	0.0	0.0	0.0
57	3.0	0.0	9.0	6.0	0.0	23.0	0.0	0.0	0.0	3.0	2.0
58	5.0	0.0	5.0	5.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0
59	3.0	0.0	9.0	6.0	0.0	23.0	0.0	0.0	0.0	3.0	2.0
60	3.0		3.0	3.0		39.0	3.0	1.0		0.0	0.0
0.0	5.0	5.0	5.0	5.0	1.0	55.0	5.0	1.0	0.0	0.0	0.0

	To Gate	as 30
Zone		
1 2 3 4 5 6 7 8 9	0.0 2.0 2.0 2.0 2.0 0.0 0.0	0.0 2.0 2.0 2.0 0.0 0.0 0.0

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

Future With Project PM PeakWed Jul 23, 2008 18:06:57 Page 3-4 UCLA NHIP and Amended LRDP Traffic Study

Los Angeles, CA Future With Project (Unsignalized as Signalized) - PM Peak

To Gates 29 30 Zone 11 0.0 0.0 12 0.0 0.0 13 0.0 0.0 14 2.0 2.0 15 0.0 0.0 16 0.0 0.0 17 0.0 0.0 18 0.0 0.0 19 0.0 0.0 20 0.0 0.0 21 0.0 0.0 22 0.0 0.0 22 0.0 0.0 23 0.0 0.0 24 0.0 0.0 25 0.0 0.0 26 0.0 0.0 27 0.0 0.0 28 0.0 0.0 29 2.0 2.0 30 0.0 0.0 31 0.0 0.0 32 0.0 0.0 31 0.0 0.0 32 0.0 0.0 33 0.0 0.0 34 0.0 0.0 35 0.0 0.0 36 0.0 0.0 37 0.0 0.0 38 0.0 0.0 39 0.0 0.0 39 0.0 0.0 39 0.0 0.0 39 0.0 0.0 39 0.0 0.0 39 0.0 0.0 39 0.0 0.0 39 0.0 0.0 39 0.0 0.0 39 0.0 0.0 39 0.0 0.0 39 0.0 0.0 39 0.0 0.0 39 0.0 0.0 30 0.0 0.0 31 0.0 0.0 31 0.0 0.0 32 0.0 0.0 33 0.0 0.0 34 0.0 0.0 35 0.0 0.0 36 0.0 0.0 37 0.0 0.0 38 0.0 0.0 39 0.0 0.0 39 0.0 0.0 39 0.0 0.0 39 0.0 0.0 30 0.0 0.0 31 0.0 0.0	
Zone 11	
11	
12	
12	
14	
14	
15	
16	
17	
19	
19	
20	
21	
22	
24	
24	
26	
26	
27	
29	
29	
31	
31	
32	
33	
33	
36 0.0 0.0 37 0.0 0.0 38 0.0 0.0 39 0.0 0.0 40 2.0 2.0 41 2.0 2.0 42 0.0 0.0 43 0.0 0.0	
36 0.0 0.0 37 0.0 0.0 38 0.0 0.0 39 0.0 0.0 40 2.0 2.0 41 2.0 2.0 42 0.0 0.0 43 0.0 0.0	
37 0.0 0.0 38 0.0 0.0 39 0.0 0.0 40 2.0 2.0 41 2.0 2.0 42 0.0 0.0 43 0.0 0.0	
38 0.0 0.0 39 0.0 0.0 40 2.0 2.0 41 2.0 2.0 42 0.0 0.0 43 0.0 0.0	
38 0.0 0.0 39 0.0 0.0 40 2.0 2.0 41 2.0 2.0 42 0.0 0.0 43 0.0 0.0	
40 2.0 2.0 41 2.0 2.0 42 0.0 0.0 43 0.0 0.0	
41 2.0 2.0 42 0.0 0.0 43 0.0 0.0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
43 0.0 0.0	
43 0.0 0.0 44 0.0 0.0	
44 0.0 0.0	
45 0 0 0 0	
45 0.0 0.0	
46 0.0 0.0	
48 0.0 0.0	
49 0.0 0.0 50 0.0 0.0	
51 0.0 0.0	
52 0.0 0.0	
53 0.0 0.0	
54 2.0 2.0	
55 0.0 0.0	
56 0.0 0.0	
56 0.0 0.0 57 2.0 2.0	
58 0.0 0.0	

Page 3-5

Future With Project PM PeakWed Jul 23, 2008 18:06:57

Page 4-1

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA

Future With Project (Unsignalized as Signalized) - PM Peak

To Gates
29 30
Zone ----59 2.0 2.0
60 0.0 0.0

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA

Future With Project (Unsignalized as Signalized) - PM Peak

Turning Movement Report PM Peak

Volume		rthbou			outhbo			astbo			estbo		Total
Type	Left	Thru I	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Volume
#1 Sep	ulveda	Boule	evard	and Ch	nurch	Ln/Ova	ada Pl						
Base	4	1702	237	3	923	383	586	107	19	68	101	7	4141
Added	0	136	0	0	59	50	17	0	0	0	0	0	262
Total	4	1838	237	3	982	433	603	107	19	68	101	7	4403
#2 Chu:	rch La	ne and	d San	Diego	Fwv S	SB On/C	Off Ran	am					
Base	6	668	261	101	479	0	5	3	9	945	1	27	2506
Added	0	17	0	20	30	0	0	0	0	68	0	0	135
Total	6	685	261	121	509	0	5	3	9	1013	1	27	2641
#3 Chu:	rch La	ne and	d Suns	set Bou	ılevaı	rd							
Base	132	41	81	559	97	753	427	1280	35	29	904	443	4781
Added	0	0	0	78	0	20	17	6	0	0	13	0	134
Total	132	41	81	637	97	773		1286	35	29	917	443	4915
#4 San	Diego	Fwv 1	VIR On	Off Ra	amps a	and Sur	nset Ro	oulev:	ard				
Base	102	0	87	0	0	0		1046	914	0	1281	0	3429
Added	0	0	0,	0	0	0	0		0		81	0	165
Total	102	0	87	0	0	0	-	1130	914	-	1362	0	3594
IOLAI	102	U	0/	U	U	U	U	1130	914	U	1302	U	3594
#5 Vet					Boule 0		•	000	1.50	200	1 4 1 4	0	2570
Base	392	0	416	0	-	0	0		159		1414		3570
Added	71	0	25	0	0	0	0	10	73	27		0	216
Total	463	0	441	0	0	0	0	912	232	315	1424	0	3786
#6 Bel	lagio	Way ar	nd Sur	nset Bo	uleva	ard							
Base	274	101	32	58	6	143	350	899	86	16	1295	118	3376
Added	0	0	0	8	0	22	22	13	0	0	15	7	87
Total	274	101	32	66	6	165	372	912	86	16	1310	125	3463
#7 Wes	twood	Boueva	ard ar	nd Suns	set Bo	oulevar	rd						
Base	205	0	201	0	0	0	0	914	99	48	1266	0	2732
Added	0	0	0	0	0	0	0	21	0	0	22	0	43
Total	205	0	201	0	0	0	0		99	-	1288	0	2775
#8 Sto	ne Can	von R	oad ar	nd Suns	set Br	oulevar	rd						
Base	146	0	137	65	0	106		1274	130	166	1027	23	3198
Added	140	0	3	0	0	0	123	21	130	1	22	0	47
Total	146	0	140	65	0	106	-	1295	130	_	1049	23	3245
IOCAI	140	O	110	03	U	100	123	1295	130	107	1042	23	3243
#9 Hil										1.00	015	_	2020
Base	273	35	382	37	72	21		1202	126	166		7	3239
Added	7	0	63	0	0	0	0	16	8	59	17	0	170
Total	280	35	445	37	72	21	3	1218	134	225	932	7	3409

Page 4-2

Future With Project PM PeakWed Jul 23, 2008 18:06:57

UCLA NHIP and Amended LRDP Traffic Study

Page 4-3

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA

Future With Project (Unsignalized as Signalized) - PM Peak

												- 	
Volume	N	orthbo	und	Sc	outhbo	und	Ea	astbo	ınd	We	estboi	ınd	Total
													Volume
-21-			5			5							
#10 Be	verlv	Glen	Roules	zard ar	nd Sun	set Bo	ulevai	rd					
Base	233	175	610	109	71	20		1350	63	408	1008	83	4149
Added	0	0	60	0	0	0	0		0	29		0	244
Total	233	175	670	109	71	20		1429	63		1084	83	4393
10041	255	1,5	0,0	100	, _	20		110,	0.5	10,	1001	0.5	1333
#11 Be	verlv	Glen	Boules	ard ar	nd Sun	set Bo	ulevai	rd (Ea	ast I/S)			
Base	0		0	121	0	382		1287	0	0	953	132	3781
Added	0		0	3	Ō	42	38			0	63	1	248
Total	0		0		Ō			1388			1016	133	4029
10001	·	·	Ü		Ü		, 10	1500		Ü	1010	100	1025
#12 Ser	nulve	da Bou	levaro	and 9	San Di	ean Fw	v NR (off-Ra	amp				
Base		1681	0		898	0	97		26	0	0	0	2702
Added	0		0	0	34	0	34	0	0	0	0	0	99
Total		1712	0		932	0	131	0	26	0	0	0	2801
	-		-	-		-		-		-	-	-	
#13 Sej	pulve	da Bou	levaro	and N	Montan	a Aven	ue						
Base		1474	123	59		16	3	96	120	169	198	267	3318
Added	0	44	21	26	33	0	0	0	0	2	0	25	151
Total	133	1518	144	85	693	16	3	96	120	171	198	292	3469
#14 Le	verin	a Aven	ue and	Monta	ana Av	enue							
Base	266	0	8	0	0	0	0	338	111	1	531	0	1256
Added	27	0	0	0	0	0	0		47	0		0	74
Total	293	0	8	0	0	0	0	338	158	1	531	0	1330
#15 Ve	teran	Avenu	e and	Montar	na Ave	nue/Ga	ley Av	venue					
Base	57	475	27	61	309	51	121	166	55	23	440	298	2082
Added	0	90	0	3	97	0	0	0	0	0	0	7	197
Total	57	565	27	64	406	51	121	166	55	23	440	305	2279
#16 Ga	ley A	venue	and St	rathmo	ore Pl	ace							
Base	23	381	180	127	164	14	8	107	19	335	160	353	1870
Added	0	7	0	0	3	0	0	0	0	0	0	0	10
Total	23	388	180	127	167	14	8	107	19	335	160	353	1880
#17 Ve	teran	Avenu	e and	Leveri	ing Av	enue							
Base	183	574	42	23	369	5	0	43	87	55	101	71	1553
Added	14	47	15	41	56	0	0	31	16	16	13	42	291
Total	197	621	57	64	425	5	0	74	103	71	114	113	1844
#18 Hi	lgard	Avenu	e and	Wyton	Drive								
Base	123	654	45	35	393	24	53	116	336	21	27	13	1839
Added	0	70	0	0	67	0	0	0	0	0	0	0	137
Total	123	724	45	35	460	24	53	116	336	21	27	13	1976

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

			ОСП	A NUIP		os Ange			LIC SCI	luy			
	1	Future	e With	Proje		os ange nsignal			malize	ed) - Pi	M Peak		
Volume						ound							
Type	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru :	Right	Volume
													Split
Base	26		15			12	20	33	27	48	69	129	1653
Added	0		0			0	0 20	0		0		0	89
Total	26	823	15	29	510	12	20	33	27	48	69	129	1742
#20 Hi						Avenue							
Base	102		33			41	205	243	158	28		49	2140
Added	0	70	0		67	0	0	0	0	0	0	0	137
Total	102	659	33	76	631	41	205	243	158	28	54	49	2277
#21 Hi	lgard	Aveni	ue and	Manni	ng Ave	enue							
Base	- 0	659	8	67	895	0	0	0	0	11	0	24	1664
Added	0	70	0	0	67	0	0	0	0	0	0	0	137
Total	0	729	8	67	962	0	0	0	0	11	0	24	1801
#22 Ga	vlev i	Avenue	e and	Le Con	te Ave	enue							
Base		420			1089	37	15	133	13	210	315	165	2874
Added	0	7	6	0	3	0	0	40	0	4	63	0	123
#25 In	0	34	-72	-73	73	0	0	-73	73	-34	-34	-34	-140
Total	64	461	148	127	1165	37	15	100	86	180	344	131	2857
#23 We	stwoo	d Boul	levard	and L	e Cont	e Aven	iue						
Base	105		161		470	223	94	429	107	170	416	65	2694
Added	178	0	7	0	0	0	0	26	226	7	19	0	463
#25	0				0	0	0	-218	0	0	-102	0	-320
Total	283	345	168	108	470	223	94	237	333	177	333	65	2837
#24 Ti	verto	n Driv	ve and	Le Co	nte Av	venue							
Base	37		43			204	134	508	137	23	476	41	1854
Added	0	3	0	0	1	0	0		0	0		0	49
#25 In	0	0	0	0	0	0	0	-218	0	0	-102	0	-320
Total			43					316	137		393	41	1583
#25 Hi	lgard	Aveni	ue and	Le Co	nte Av	venue							
Base	59		11			386	338	0	85	11	0	29	1739
Added	0	44				19	26	0	0	0		0	137
#25 In	0					0	0	0	0	102	0	0	320
Total	59					405	364	0	85	113	0	29	2196
											-		

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

Base 62 520 215 66 991 295 92 174 34 116 174 92 2832 Added 0 19 128 12 13 0 0 66 0 71 46 13 368 #25 In 0 0 72 146 0 0 0 0 0 34 34 34 320 Total 62 539 415 224 1004 295 92 240 34 221 254 139 3520

#26 Gayley Avenue and Weyburn Avenue

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA

Future With Project (Unsignalized as Signalized) - PM Peak

Volume	No	rthbo	und	Sc	outhbo	und	Ea	astbou	and	We	estboi	ınd	Total
Type	Left	Thru	Right	Left	Thru	Right.	Left	Thru	Right.	Left	Thru	Right.	Volume
-21-			5			5			3			5	
#27 Wo	atrood	l Boul	orrand	and W	or rhouwn	Avenu	_						
#27 WE	152	670	116	and we	SADULI	105	0.2	1 5 1	1 / /	101	220	EΩ	2552
Base	153	6/8	110	42	699	105	83	151	144	101	230	50	2553
Added	20	185	175	0	232	U	0	43	16	151	46	Ü	868
#25 In	. 0	0	0	0	0	0	0	218	0	0	102	0	320
Total	173	863	291	42	931	105	83	412	160	252	378	50	2553 868 320 3741
#28 Ti	vertor	ı Drvi	e and	Weybur	n Ave	nue							
Base	23	64	47	104	0	170	70	177	1	1	100	33	791
Added	0	0	0	0	0	1	3	79	0	0	89	0	172
#25 Tn	0	0	0	0	0	0	0	218	0	0	102	0	320
Total	23	64	47	104	n	171	73	474	1	1	291	33	791 172 320 1283
10041	23	01	1,	101	U	1/1	, ,	1,1	_	_	271	33	1205
#29 Hi	laard	Λιτοπιι	e and	Weighin	on Arre	nue							
#25 DI	rgaru	Avelia	22	weybui	III AVE	iiue E2	FO	104	175	1.4	20	2.1	1404
Base	21	300	22	27	201	23	41	104	T/2	14	30	21	1404
Added	U	3	U	U	2	4/	41	38	U	U	4.3	U	1/4
#25 In	. 0	0	0	0	- 0	102	218	0		0	0	0	320
Total	51	363	22	27	563	202	317	142	175	14	81	21	1484 174 320 1978
#30 We	stwood	l Boul	.evard	and K:	inross	Avenu	e						
Base	82	776	36	39	781	124	101	226	99	17	134	42	2456
Added	80	372	14	1	397	1	1	1	57	64	5	6	999
Total	162	1148	50	40	1178	125	102	227	156	81	139	48	2456 999 3455
#31 We	stwood	Boul	evard	and L:	indbro	ok Dri	ve						
Base	1	747	182	29	856	16	32	137	57	93	254	44	2447
Added	0	466	0	-0	518	0	0	4	0	-2	2	0	988
Base Added Total	1	1213	182	29	1374	16	32	141	57	91	256	44	3435
10041	_	1213	102	2,	13/1	10	52	111	5,	7.1	250		3133
#22 C1	ondon	Tirror	ton/T	ndhra	-le								1712 16 1728
#32 GI	22	121	102	20	120	161	22	225	1.0	415	270	E 6	1710
Dase	24	131	193	20	130	101	33	233	19	413	270	50	1/12
Added	0	3	104	0	14	1.61	0	- 4	10	-6	0.70	- 0	100
Total	32	134	194	38	144	161	33	239	19	409	270	56	1728
#33 Se	pulved	la Bou	llevaro	d and (Consti	tution	Aveni	ıe					
Base	20	1091	2	4	865	105	558	2	80	11	5	5	2748
Added	0	31	0	0	34	0	0	0	0	0	0	0	65
Total	20	1122	2	4	899	105	558	2	80	11	5	5	2748 65 2813
#34 Sa	n Vice	ente B	Bouevai	d and	Wilsh	ire Bo	uelvai	rd					
Base	100	390	242	1119	337	49	11	1033	21	132	1804	827	6065
Added	10	50	5	123	47	6	13	214	23	7	216	131	845
Total	110	440	247	1242	384	55	24	1247	44	130	2020	959	6065 845 6910
iocai	110	440	27/	1212	JU4	23	24	121/		133	2020	230	0210
#2E Ca	n.,]	la Barr	10,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	and t	ailahi	re Bou	1 0110	i					
#35 Se	purvec	ia Bou	ilevaro	and I	VIISNI	re Bou.	revaro	1000	4.1	205	0205	1 7 7	6604
∌ase	129	583	2/2	113	45/	13/	147	1929	41	305	2395	1/7	5554
Added	6	12	50	13	12	10	8	779	7	53	1005	11	6684 1966 8650
Total	135	595	322	126	469	147	155	2708	48	358	3400	188	8650

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future With Project (Unsignalized as Signalized) - PM Peak

	F	uture	With	Proje		ısıgnal				ea) - Pi	M Peal	ĸ	
Volume	No.	rthbou	ınd	S		ound				W	estbo	und	Total
Type	Left	Thru F	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Volume
#36 Ve	teran	Avenue	and	Wilch	ire B	oulevar	ď						
Base	233	677	147		1073	1604		2176	48	44	2542	30	9079
Added	4	12	24	18		171		759			894		2013
Total	237	689	171		1093			2935	52		3436		11092
#37 Ga	yley A					ılevard							
Base	223	305	107	137		679		1932	97		1723		6148
Added	0	0	0	41	0	269	237		0		653		1795
Total	223	305	107	178	472	948	586	2496	97	40	2376	116	7943
						re Boul							
Base		499	187	172		248		1769	249		1611		6023
Added	20	161	44	80		268		363	22		390	93	1870
Total	178	660	231	252	799	516	431	2132	271	221	2001	201	7893
						ouelvar		0014	20	1.0	1552	0.5	4695
Base	60	215	48	137 14	285 0	114 -6		2014			1557 537		1037
Added Total	1 61	0 215	48	151	285	108		486 2500	1 39		2094		5732
						oulevar							
Base	3	1	42	12	1	53		2083	60		1670		4001
Added	6		0	36		0	0		4		534		1108
Total	9	1	42	48	1	53	21	2568	64	1/	2204	76	5109
						Boulev							
Base	46	78	57	98	228	12		1974			1644		4422
Added	5	0	3	0	0	0	0		2		572	0	1080
Total	51	78	60	98	228	12	39	2469	68	58	2216	126	5502
						ılevard							
Base	38	24	34	89	68	44		2059	28		1812	51	4293
Added	0	0	0	0		0	0		0		572		1059
Total	38	24	34	89	68	44	35	2546	28	11	2384	51	5352
						lshire							
Base	163		57	57		56		1768	274		1678	49	5221
Added	15	5	53	37		8	9		-9	22		46	1195
Total	178	487	110	94	396	64	129	2248	265	128	2223	95	6416
#44 Sa								450	2.2				01.50
Base	59	93	98	78	459	126	56		33	99	550	53	2160
Added	1	0 93	100	0		126	0		1	102		0	61
Total	60	93	100	78	459	126	56	482	34	103	579	53	2221

Page 4-6

Future With Project PM PeakWed Jul 23, 2008 18:06:57

Page 4-7

UCLA NHIP and Amended LRDP Traffic Study
Los Angeles, CA

Future With Project (Unsignalized as Signalized) - PM Peak

Volume	No	orthbou	ınd	S	outhbo	ound	Ea	astbo	and	We	estbo	ınd	Total
													Volume
			_						-				
#45 Sep	ulve	da Boul	evaro	d and	Ohio A	Avenue							
Base		692			890		99	417	45	71	501	38	3365
Added	3	64					1	21	4	2	28	3	202
Total							100			73			
#46 Vet	eran	Avenue	and	Ohio	Avenue	e.							
Base			47	18	386	164	152	527	48	152	504	45	2416
Added	1	34	0	0	34	11	6		1	0			124
Added Total	28	378	47	18	420	175							
10041	20	370	1,	10	120	1,5	150	311	17	132	521	13	2310
#47 Wes	twoo.	A Boule	ward	and Ol	nio Ar	renije							
				46	1284	122	0.3	244	83	80	258	43	3303
Added	17	902 222	42	-10	223	122	55	277	83 17	0.0	230	0	
Total	112	1124	42	16	1516	121	00	244	100	89	250	43	
IULAI	113	1124	43	40	1310	131	90	244	100	0,5	250	43	3603
#48 Saw	+ 011	. Boul	arawd	and C	anta 1	Monias	Poul or	rowd					
Base	70	277	412	126	EE0	22	16	1252	22	177	1262	71	4494
Dase	/ 0	311	413	120	336	33	13	1332	33	1//	1202	1	492
Added Total	2	270	401	100		22	1 -	205	2.4	100	1500	Τ.	492
IOLAI	80	3/9	421	120	502	33	15	155/	34	100	1522	12	4900
#49 San	Dia.	F	CD D		- a c		dan D						
#49 San	ı Die	30 FWY	DB Ro	unps an	IU Sai	nta Moi	iica B	16E6	310	F00	1020	0	4007
Base	0	0	0	390	55/	203	0	170	200	200	212	0	4097
Base Added Total	0	0	0	-21		2/	0	1000	204	617	213	0	192
Total	U	U	U	3/5	55/	260	U	1826	304	θI /	1451	U	5389
#50 San	D: -		NTD D										
#50 San	470	30 FWY	NB Ko	anips an	iu sai	iita Moi	IICa Bo	1426	aru o	0	1420	400	5307
Base Added	4/0	529	431	0	0	0	223	1430	0	0	1420	490	425
Added	5/	71	-ZI	0	0	0	5.60	109	0	0	185	54	425
Total	527	550	410	U	U	U	563	1545	0	U	1005	532	5732
#51 Sep	7	a - D 3			~ t		. D 1						
		a Boul 836	evaro	and :	santa	Monica	BOUL	evara	319	200	1418	170	6498
Base			213	153	11/9	210	152	14/4	319				
Added		60	2	1.50	62	3 213	1.56	83	1		212		
Total	178	896	215	160	1241	213	156	1557	320	200	1630	177	6943
			,										
#52 Vet	eran	avenue	and	santa	Monio	ca Boul	levard	1.00	2.2	0.0	1 400	0.0	4671
Base	65	298	48	129	561	62	183	1626	33 1	93	1483	90	4671
Added		14	0	1	16	17	19	73	1				
Total	65	312	48	130	577	79	202	1699	34	93	1684	92	5015
			_										
#53 Wes													
Base		910											
Added Total	. 4	207	8	. 6	209	33	27	39	3 141	10	163	. 6	715
Total	115	1117	112	213	1635	161	199	1534	141	215	1608	248	7297

			UCLA	NHIP		Amended os Ange			fic Stu	ıdy			
	1	Future	e With	Projec		nsignal			gnalize	ed) - Pi	M Peal	2	
Volume			ound			ound		astbo			estbo		Total
Type	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Volume
#54 Mul	lholla	and Di	rive an	d Rosc	comare	e Road							
Base	302	0	152	0	0	0	0			47		0	1569
Added	29		0	0	0	0	0	-	30	0	_	0	60
Total	331	0	152	0	0	0	0	337	137	47	624	0	1629
#55 Ros			ad and						Drive				
Base	23	410	6	39	61	13	15	0	11	6	1	62	646
Added	0	29	0	0	30	0	0	0	-	0	0	0	59
Total	23	439	6	39	91	13	15	0	11	6	1	62	705
#56 Be	llagio	Road	d and C	halon	Road								
Base	70	533	0	0	103	25	12	0	13	0	0	0	756
Added	0		0	0	30	0	0	0	0	0	0	0	59
Total	70	562	0	0	133	25	12	0	13	0	0	0	815
#57 Bev	verly	Glen	Boulev	ard ar	nd Mu	lhollan	d Driv	<i>r</i> e					
Base	42	811	85	216	377	38	54	204	39	47	562	739	3213
Added	1	39	1	0	40	0	0	0	0	0	0	0	81
Total	43	850	86	216	417	38	54	204	39	47	562	739	3294
#58 Bev	verly	Glen	Boulev	ard ar	nd Gre	eendale	Drive	2					
Base	0	1138	9	65	434	0	0	0	0	46	0	231	1924
Added	-	39	0	-	40	0	0	0	0	4	0	1	84
Total	0	1177	9	65	474	0	0	0	0	50	0	232	2008

Page 5-1

Future With Project PM PeakWed Jul 23, 2008 18:06:57

Intersection #14 Levering Avenue and Montana Avenue

Page 6-1

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA

Future With Project (Unsignalized as Signalized) - PM Peak

Impact Analysis Report Level Of Service

Intersection	Base Del/ V/	Future Del/ V/	Change in
# 14 Levering Avenue and Montana Av	LOS Veh C B xxxxx 0.672	LOS Veh C B xxxxx 0.694	+ 0.023 V/C
# 28 Tiverton Drvie and Weyburn Ave	A xxxxx 0.456	C xxxxx 0.707	+ 0.251 V/C
# 40 Malcolm Avenue and Wilshire Bo	B xxxxx 0.657	D xxxxx 0.837	+ 0.180 V/C
# 55 Roscomare Road and Stradella R	A xxxxx 0.468	A xxxxx 0.492	+ 0.024 V/C
# 56 Bellagio Road and Chalon Road	A xxxxx 0.523	A xxxxx 0.547	+ 0.024 V/C

Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/veh): Optimal Cycle: 61 Level Of Service: xxxxxx Street Name: Levering Avenue Montana Avenue Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R Control: Split Phase Split Phase Permitted Permitted
 Rights:
 Include
 Include
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0 Lanes: 0 0 1! 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 -----|----|-----|------| Volume Module: >> Count Date: 7 Feb 2008 << 500-600 Base Vol: 253 0 8 0 0 0 0 322 106 1 506 0 Initial Bse: 266 0 8 0 0 0 0 338 111 1 531 0 Added Vol: 27 0 0 0 0 0 0 0 47 0 0 0 PasserByVol: 0 0 0 0 0 0 0 338 158 1 531 Ω PHF Volume: 293 0 8 0 0 0 0 338 158 1 531 0 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 293 0 8 0 0 0 0 338 158 0 0 0 Ω 1 531 FinalVolume: 293 0 8 0 0 0 0 338 158 1 531 0 -----| Saturation Flow Module: Lanes: 0.97 0.00 0.03 0.00 0.00 0.00 0.08 0.32 0.01 0.99 0.00 Final Sat.: 1167 0 33 0 0 0 0 817 383 2 1198 0 -----| Capacity Analysis Module:

UCLA NHIP and Amended LRDP Traffic Study

Los Angeles, CA Future With Project (Unsignalized as Signalized)- PM Peak

Level Of Service Computation Report

Circular 212 Planning Method (Future Volume Alternative)

 Los Angeles, CA

Future With Project (Unsignalized as Signalized) - PM Peak

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative)

************************* Intersection #28 Tiverton Drvie and Weyburn Avenue ************************

0 (Y+R=4.0 sec) Average Delay (sec/veh):

Loss Time (s	0 (Y+R	=4.0 8	sec)	Averag	re De.	ay (s	ec/veh)	:	XXXX	:xx		
Optimal Cycle	e: ****	4 *****	9 *****	****	*****	rever	OI S	*****	*****	*****	****	· * * * * *
Street Name: Approach:	No	rth Bo	und	Soi	ith Bo	und	ī	last B	ncybari. ound	Wes	t Bc	und
Movement:	Τ.	- Т	- R	т	- Т	- R	т.	- T	- R	T	т	- R
	1			1			1			1		
Control:												
Rights:		Inclu	de		Inclu	ıde		Incl	ude	I	nclu	ıde
Rights: Min. Green:	0	0	0	0	0	0	(0	0	0	0	0
Lanes:	0	0 1!	0 0	0 (1!	0 0	0	0 1!	0 0	0 0	1!	0 0
Volume Module												
Base Vol:	22	61	45	99	0	162	6	169	1	1	95	31
Growth Adj:												1.05
Initial Bse:												33
Added Vol:	0	0	0	0	0	1	1	79	0	0		0
#25 Int:	0	0	0	0	0	0	(218	0			
Initial Fut:											291	33
User Adj:										1.00 1		1.00
PHF Adj:				1.00					1.00			1.00
PHF Volume:						171					291	33
Reduct Vol:												
Reduced Vol:											291	
PCE Adj:												
MLF Adj:	1.00	1.00	1.00							1.00 1		
FinalVolume:										1		
Saturation F												
Sat/Lane:												1200
Adjustment:						1.00			1.00			1.00
Lanes:						0.62				0.01 0		0.10
Final Sat.:			422	454	0	746	160	1037	2	4 1	076	120
Capacity Ana	Lysis	Modul	e:									

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

Vol/Sat: 0.11 0.11 0.11 0.23 0.00 0.23 0.46 0.46 0.46 0.27 0.27 0.27

Crit Volume: 23 275 549 1
Crit Moyee: **** **** ****

Crit Moves: ****

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future With Project (Unsignalized as Signalized) - PM Peak ______ Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) ************************* Intersection #40 Malcolm Avenue and Wilshire Boulevard *********************** Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/veh): Optimal Cycle: 88 Level Of Service: xxxxxx Street Name: Malcolm Avenue Wilshire Boulevard Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - F L - T - R Control: Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 0 0 1! 0 0 0 0 1! 0 0 1 0 2 1 0 1 0 2 1 0 Volume Module: >> Count Date: 7 Feb 2008 << 415-515 Base Vol: 3 1 40 11 1 50 26 1984 57 16 1590 31 Initial Bse: 3 1 42 12 1 53 27 2083 60 17 1670 33 Added Vol: 6 0 0 36 0 0 0 485 4 0 534 43
PasserByVol: 0 0 0 0 0 0 0 0 0 0 0 0 0
Initial Fut: 9 1 42 48 1 53 27 2568 64 17 2204 76 FinalVolume: 9 1 42 48 1 53 27 2568 64 17 2204 76 Saturation Flow Module: Lanes: 0.18 0.02 0.80 0.47 0.01 0.52 1.00 2.93 0.07 1.00 2.90 0.10 Final Sat.: 210 24 966 564 12 623 1200 3513 87 1200 3481 119 -----|----|-----|------| Capacity Analysis Module: Vol/Sat: 0.04 0.04 0.04 0.08 0.08 0.08 0.02 0.73 0.73 0.01 0.63 0.63 Crit Volume: 9 101 877 17 Crit Moves: **** **** ****

Future With Project PM PeakWed Jul 23, 2008 18:06:58

Page 10-1

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA

Future With Project (Unsignalized as Signalized) - PM Peak

Level Of Service Computation Report

Circular 212 Planning Method (Future Volume Alternative) ************************ Intersection #55 Roscomare Road and Stradella Road/Linda Flora Drive *********************** Cycle (sec): 100 Critical Vol./Cap.(X): 0.492 0 (Y+R=4.0 sec) Average Delay (sec/veh): xxxxxx Loss Time (sec): Optimal Cycle: 28 Level Of Service:

Street Name:	*****	*****	****** 0900ma	re Po	*****	*****	Stra	***** Pella	Poad/I	inda 1	***** Flora	Drive
Approach:	No	rth Bo	und	SO1	ith Bo	ound	F:	act Br	noau/i	JIIIGA I	est Bo	
Movement:												
		Permit				ted			ted		Permit	
Rights:												
	0			0		0			0		0	n
Lanes:												
nancs.			I			I						
Volume Module				1								
Base Vol:	22		6	37	58	12		0	1.0	6	1	59
Growth Adj:				1.05		1.05		1.05			1.05	
Initial Bse:		410		39		13	15				1	62
Added Vol:				0		0	0		0	0	0	0
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	0
Initial Fut:	23	439	6	39	91	13	15	0	11	6	1	62
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Volume:	23	439	6	39	91	13	15	0	11	6	1	62
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:	23	439	6	39	91	13	15	0	11	6	1	62
PCE Adj:				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MLF Adj:					1.00	1.00	1.00		1.00		1.00	1.00
FinalVolume:				39		13	15				1	62
Saturation F												
Sat/Lane:		1200		1200		1200		1200			1200	1200
	1.00		1.00		1.00	1.00		1.00			1.00	1.00
Lanes:					0.64	0.09		0.00			0.02	0.89
Final Sat.:	. 59	1125	16		766		700				18	1073
Capacity Ana	lysis	Modul	e:									

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

Vol/Sat: 0.39 0.39 0.39 0.12 0.12 0.12 0.02 0.00 0.02 0.06 0.06 0.06

Crit Volume: 468 39 15 69
Crit Moves: *** *** ***

Crit Moves:

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future With Project (Unsignalized as Signalized) - PM Peak ______ Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative) ************************ Intersection #56 Bellagio Road and Chalon Road ************************ Cycle (sec): 100 Critical Vol./Cap.(X): 0.547 Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/veh): Optimal Cycle: 41 Level Of Service: xxxxxx Street Name: Bellagio Road Chalon Road Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R Control: Permitted Permitted Split Phase Split Phase Rights: Include Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Lanes: 0 1 0 0 0 0 0 0 1 0 0 0 1! 0 0 0 0 0 Volume Module: >> Count Date: 21 Feb 2008 << 500-600 Base Vol: 67 508 0 0 98 24 11 0 12 0 0 0 Initial Bse: 70 533 0 0 103 25 12 0 13 0 0 Added Vol: 0 29 0 0 30 0 0 0 0 0 0 0 0 0 0 0 0 PasserByVol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Initial Fut: 70 562 0 0 133 25 12 0 13 PHF Volume: $70 \ 562 \ 0 \ 0 \ 133 \ 25 \ 12 \ 0 \ 13 \ 0 \ 0 \ 0$ Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 70 562 0 0 133 25 12 0 13 0 0 FinalVolume: 70 562 0 0 133 25 12 0 13 0 0 -----|-----| Saturation Flow Module: Lanes: 0.11 0.89 0.00 0.00 0.84 0.16 0.48 0.00 0.52 0.00 0.00 0.00 Final Sat.: 133 1067 0 0 1009 191 574 0 626 0 0 -----| Capacity Analysis Module: Vol/Sat: 0.53 0.53 0.00 0.00 0.13 0.13 0.02 0.00 0.02 0.00 0.00 0.00

Future With Project PM PeakWed Jul 23, 2008 18:06:58

Crit Volume: 633 0 24 0
Crit Moves: **** ****

Existing LOS Analysis Future Without Project LOS Analysis Future With Project LOS Analysis

(Westwood Boulevard and Le Conte Scramble Analysis)

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Existing 2007 AM Peak

	Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative)											
***********	1rcula ****	3r ∠1∠ *****	*****	.ing Me	etnoa *****	(Futur ****	*****	IME A.	ternat ******	*****	*****	****
Intersection									*****	****	****	*****
Cycle (sec):		10	0			Critic	al Vol	L./Car	o.(X):		0.5	85
Loss Time (se	ec):		0 (Y+R	=4.0 \$	sec)	Averag	e Dela	ay (se	ec/veh)	:	XXXX	XX
Optimal Cycle	e:	4	5 *****	****		Level				*****	****	A *****
Street Name:			wood B						e Conte		ie	
Approach:	No	rth Bo	und	Sot	ith Bo	ound	Εć	ast Bo	ound	W∈	est Bo	
Movement:	L -	- T	- R	L -	- T	- R	L ~	- T	- R	. L -	- T	- R
Control:									ted			
Rights:		0×1			Tncli	ide			ıde		Inclu	
Min. Green:						0		0	0	0 0 0		
Lanes:			0 1			0 1			1 0			
										1		
Volume Module												
Base Vol:	53	632	206	32	195	88		327	33		317	107
Growth Adj:			1.00			1.00		1.00	1.00	1.00		1.00
Initial Bse:			206	32		88	168	327	33	130	317	107
Added Vol:	0	-	0	0	0	0	0	0	0	0	0	0
PasserByVol:			0	0	0	0	0	0	0	0	0	0
Initial Fut:		632	206	32	195	88	168	327	33		317	107
User Adj:		1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00
PHF Adj:		1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00
PHF Volume:	53	632	206	32	195	88	168	327 0	33 0	130 0	317 0	107
Reduct Vol:	-	-	0	0	105	0 88	0 168	327	33	130	317	107
Reduced Vol:			206	32	195			1.00	1.00		1.00	1.00
PCE Adj:		1.00	1.00			$1.00 \\ 1.00$		1.00	1.00		1.00	1.00
MLF Adj: FinalVolume:		632	206		195	88	168		33		317	107
Final volume:		032										
Saturation F	low Mo	odule:										
Sat/Lane:	1425	1425	1425	1425	1425	1425	1425	1425	1425	1425	1425	1425
Adjustment:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00
Lanes:		2.00	1.00			1.00	1.00				1.00	1.00
Final Sat.:			1425			1425		2589			1425	1425
Capacity Ana:	•				·							
Vol/Sat:	0.04	0.22	0.14	0.02	0.07	0.06	0.12	0.13	0.13	0.09	0.22	0.08
Crit Volume:							168				317	
Crit Moves:		***		****			****				****	
****	****	*****	*****	****	****	*****	****	****	*****	****	****	****

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA

Existing 2007 PM Peak

		I	evel O	f Serv	7ice (Computa	tion F	≀eport	_			
									lternat			
******	****	*****	*****	****	*****	*****	*****	*****	******	*****	*****	*****
Intersection									******	*****	****	*****
Cycle (sec): 100 Critical Vol./Cap.(X): 0.568												
Loss Time (se	ed):			=4.0 s	sec)				ec/veh)	:	XXXX	XXX
Optimal Cycle			.3		, , ,	Level				•		Α
*****				*****	****					*****	****	*****
Street Name:		West	wood B	ouleva	ard			Le	e Conte	Aveni	ıe	
Approach:	No:	rth Bo	und	Soi	ı±h Bo	ound	Ea	est Bo	ound		est Bo	ound
Movement:			- R						- R		- T	
Control:									tted			
Rights:	•	Ovl			Incli		_	Inclu			Incli	
Min. Green:	0		0		0		0		0	0		0
Lanes:	_	_	0 1	-	1 2	0 1			1 0) 1	0 1
			-									
Volume Module	•			•								·
Base Vol:	100	329	153	103	448	212	90	409	102	162	396	62
Growth Adj:		1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:		329	153	103	448	212	90	409	102	162	396	62
Added Vol:	0	. 0	0	0	0	0	0	0	0	0	0	0
PasserByVol:	0	0	0	Ö	0	Ŏ	0	0	0	0	0	0
Initial Fut:		329	153	103	448	212	90	409	102	162	396	62
User Adi:		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	1.00		1.00		1.00	1.00	1.00		1.00	1.00	1.00	1.00
PHF Volume:	100	329	153	103	448	212	90	409	102	162	396	62
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:	100	329	153	103	448	212	90	409	102	162	396	62
PCE Adj:		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MLF Adj:		1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00
FinalVolume:	100	329	153	103	448	212	90	409	102	162	396	62
						1	1					1
Saturation Fl	Low Mo	odule:	•				•		,			·
Sat/Lane:	1425	1425	1425	1425	1425	1425	1425	1425	1425	1425	1425	1425
Adjustment:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Lanes:		2.00	1.00		2.00	1.00		1.60	0.40		1.00	1.00
Final Sat.:		2850	1425		2850	1425		2281	569		1425	1425
			•									
Capacity Anal	'		,				,			•		'
Vol/Sat:			0.11	0.07	0.16	0.15	0.06	0.18	0.18	0.11	0.28	0.04
Crit Volume:				,	224		90	- 	•		396	
Crit Moves:	****				****		****				****	
******	****	****	*****	****	· * * * * :	*****	****	****	*****	****	****	*****

Future Without Project AM PWed Sep 24, 2008 11:25:36

Page 1-1

UCLA NHIP and Amended LRDP Traffic Study

Los Angeles, CA

Future 2013 Without Project-Westwood/Le Conte Scramble- AM Peak

Scenario Report

Future Without Project AM Peak Scenario:

Future Without Project AM Peak Volume: Future AM

Command:

Geometry: Future Impact Fee: Default Impact Fee

Trip Generation: AM Peak Trip Distribution: Project Paths: Project Routes: Default Route

Future

Configuration:

Future Without Project AM PWed Sep 24, 2008 11:25:36

Page 4-1

UCLA NHIP and Amended LRDP Traffic Study

Los Angeles, CA

Future 2013 Without Project-Westwood/Le Conte Scramble- AM Peak

Impact Analysis Report Level Of Service

Intersection

Base

Change Future

in

Del/ V/ Del/ V/
LOS Veh C LOS Veh C # 23 Westwood Boulevard and Le Cont E xxxxx 0.916 C xxxxx 0.772 -0.145 V/C

Capacity Analysis Module:

Page 5-1

UCLA NHIP and Amended LRDP Traffic Study

Los Angeles, CA Future 2013 Without Project-Westwood/Le Conte Scramble- AM Peak

Level Of Service Computation Report

*******	******	********	******
Cycle (sec):	100	Critical Vol./Cap.(X):	0.772
Loss Time (sec):	0 (Y+R=4.0 sec)	Average Delay (sec/veh):	xxxxxx

		-	10		-	10	1	_	1.	1	-	
Control:	'	Permi	tted	' I	Permi	tted '	'	Permi	tted	1		
Rights:		Ovl				ude		Incl	ude		Incl	ude
Min. Green:	0	0	0	0	0	0	0	0	0	0	0	0
Lanes:	1	0 2	0 1	1	0 2	0 1	1) 1	1 0	1 () 1	0 1
Volume Module	e: >>	Coun	t Date:	30 Ja	an 20	08 << 7	45-84	5				
Base Vol:	53	632	206	32	195	88	168	327	33	130	317	107
Growth Adj:	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05
Initial Bse:	56	664	216	34	205	92	176	343	35	137	333	112
Added Vol:	122	0	1	0	0	0	0	7	59	0	14	0
Int #25:	0	0	0	0	0	0	0	-69	0	0	-152	0
Initial Fut:	178	664	217	34	205	92	176	281	94	137	195	112
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Volume:	178	664	217	34	205	92	176	281	94	137	195	112
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:	178	664	217	34	205	92	176	281	94	137	195	112
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
FinalVolume:	178			34	205	92	176	281	94	137	195	112
	1											
Saturation F	low M	odule	:									
	1425				1425			1425				
Adjustment:	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67	0.67
Lanes:	1.00	2.00	1.00	1.00	2.00	1.00	1.00	1.50	0.50	1.00	1.00	1.00
Final Sat.:	955	1910	955	955	1910	955	955	1433	477	955	955	955
Connaite Ann	liraia	Moda	1 ~ •									

 Vol/Sat:
 0.19 0.35
 0.23
 0.04 0.11
 0.10
 0.18 0.20
 0.20
 0.14 0.20
 0.12

 Crit Volume:
 332
 34
 176
 195

 Crit Moves:

Future Without Project PM PWed Sep 24, 2008 11:26:55

Page 1-1

UCLA NHIP and Amended LRDP Traffic Study

Los Angeles, CA

Future 2013 Without Project- Westwood/Le Conte Scramble - PM Peak

Scenario Report

Future Without Project PM Peak Scenario:

Future Without Project PM Peak Volume: Future PM

Geometry: Future

Command:

Impact Fee: Default Impact Fee

PM Peak Trip Generation: Trip Distribution: Project Paths: Project Default Route Routes:

Configuration: Future Intersection

Page 4-1

UCLA NHIP and Amended LRDP Traffic Study

Los Angeles, CA

Future 2013 Without Project- Westwood/Le Conte Scramble - PM Peak

Future Without Project PM PWed Sep 24, 2008 11:26:55

Impact Analysis Report Level Of Service

> Base Del/ V/ Del/ V/
> LOS Veh C LOS Veh C

Change Future

in

23 Westwood Boulevard and Le Cont D xxxxx 0.891 F xxxxx 1.076 + 0.185 V/C

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

Page 5-1

UCLA NHIP and Amended LRDP Traffic Study

Los Angeles, CA

Future 2013 Without Project- Westwood/Le Conte Scramble - PM Peak

Level Of Service Computation Report Circular 212 Planning Method (Future Volume Alternative)

********************* Intersection #23 Westwood Boulevard and Le Conte Avenue ************************ Cycle (sec): 100 Critical Vol./Cap.(X): 1.076 Loss Time (sec): 0 (Y+R=4.0 sec) Average Delay (sec/veh): xxxxxx Optimal Cycle: 180 Level Of Service: Street Name: Westwood Boulevard Le Conte Avenue Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R
 Control:
 Permitted
 Permitted
 Permitted
 Permitted
 Prot+Permit

 Rights:
 Ovl
 Include
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 Volume Module: >> Count Date: 30 Jan 2008 << 500-600 Base Vol: 100 329 153 103 448 212 90 409 102 162 396 62 Initial Bse: 105 345 161 108 470 223 94 429 107 170 416 65 Added Vol: 178 0 6 0 0 0 0 23 226 6 18 #25: 0 0 0 0 0 0 0 -218 0 0 -102 0 0 Initial Fut: 283 345 167 108 470 223 94 234 333 176 332 65 PHF Volume: 283 345 167 108 470 223 94 234 333 176 332 65 0 FinalVolume: 283 345 167 108 470 223 94 234 333 176 332 65 -----| Saturation Flow Module: Final Sat.: 955 1910 955 955 1910 955 955 955 955 955 955 -----|----|----| Capacity Analysis Module: Vol/Sat: 0.30 0.18 0.17 0.11 0.25 0.23 0.10 0.25 0.35 0.18 0.35 0.07 Crit Volume: 283 235 333 176

Crit Moves: ****

Future With Project AM PeakWed Sep 24, 2008 11:28:12

Page 1-1

UCLA NHIP and Amended LRDP Traffic Study

Los Angeles, CA

Future With Project-Westwood/Le Conte Scramble AM Peak

Scenario Report

Future With Project AM Peak Scenario:

Future With Project AM Peak Volume: Future AM

Command:

Geometry: Future

Impact Fee: Default Impact Fee

Trip Generation: AM Peak Trip Distribution: Project Paths: Project Routes: Default Route

Configuration: Future

Future With Project AM PeakWed Sep 24, 2008 11:28:12

UCLA NHIP and Amended LRDP Traffic Study

Los Angeles, CA

Future With Project-Westwood/Le Conte Scramble AM Peak

Impact Analysis Report Level Of Service

Intersection

Base

Change Future in

Page 4-1

Del/ V/ Del/ V/
LOS Veh C LOS Veh C

23 Westwood Boulevard and Le Cont E xxxxx 0.916 C xxxxx 0.775 -0.141 V/C

Page 5-1

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA

Future With Project-Westwood/Le Conte Scramble AM Peak

Level Of Service Computation Report

Loss Time (sec	:):	0 (Y+R=4.0	sec)	Averag	e Dela	ay (se	ec/veh)	:	XXXX	cxx
Optimal Cycle:	*****	. * * * * *	*****	*****	******	*****	****	*****	*****	****	*****
Street Name: Approach: Movement:	North	Westwo Bound T -	ood Boul l S R L	evard outh B - T	ound - R	Ea L -	Le ast Bo - T	e Conte ound - R	Avenu We L -	e st Bo	ound - R
	-										
Control:	Per	mitted	1	Permi	tted	I	ermit	ted	Pro	t+Per	rmit
Rights: Min. Green:	^)AT	0	TUCI	uae	0	Incli	aae ^	0	Incli	iae ^
Min. Green: Lanes:	1 0	2 0	1 1	0 0	0 1	1 (. 1	1 0	1 0	. 1	0 1
	1 0	2 0	1 11	0 2	0 1	1 (, 1	1 0	1 0	1	0 1
Volume Module:	>> Cc	unt Da	ate: 30	Jan 20	08 << 7	45-845	5				
Base Vol:	53 6	32 2	206 3	2 195	88	168	327	33			
Growth Adj: 1											
Initial Bse:	56 6	64 2	216 3	4 205	92	176	343	35	137	333	112
Added Vol: Int #25:	122	0	1	0 0	0	0	8	59	1	17	0
Int #25:	0	0	0	0 0	0	0	-69	0	0	-152	0
Initial Fut:											
User Adj: 1											
PHF Adj: 1											
PHF Volume:											
Reduct Vol:	0	0	0	0 0	0	0	0	0	0	0	0
Reduced Vol:											
PCE Adj: 1											
MLF Adj: 1											
FinalVolume:											
Saturation Flo				- 140-	1.405	1 405	1.405	1.405	1.405	1 405	1.405
Sat/Lane: 1											
Adjustment: 0											
Lanes: 1											
Final Sat.:											
- Capacity Analy	rsis Mo	dule:			·						
Vol/Sat: 0											0.12
Crit Volume:	3	32	3	4		176				198	

Crit Moves:

Future With Project PM PeakWed Sep 24, 2008 11:31:23

Page 1-1

Future With Project PM PeakWed Sep 24, 2008 11:31:23

Page 4-1

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA

Scenario Report

Future With Project- Westwood/Le Conte Scramble PM Peak

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA Future With Project- Westwood/Le Conte Scramble PM Peak

Level Of Service

Impact Analysis Report

Intersection

Base Future

Change in

Del/ V/ Del/ V/
LOS Veh C LOS Veh C

23 Westwood Boulevard and Le Cont D xxxxx 0.891 F xxxxx 1.077 + 0.186 V/C

Future With Project PM Peak Scenario: Command: Future With Project PM Peak

Volume: Future PM Geometry: Future

Impact Fee: Default Impact Fee

Trip Generation: PM Peak Trip Distribution: Project Paths: Project Routes: Default Route

Configuration: Future

Traffix 7.8.0115 (c) 2007 Dowling Assoc. Licensed to MMA, LONG BEACH, CA

Page 5-1

UCLA NHIP and Amended LRDP Traffic Study Los Angeles, CA

Future With Project- Westwood/Le Conte Scramble PM Peak

Level Of Service Computation Report

Circular 212 Planning Method (Future Volume Alternative) Intersection #23 Westwood Boulevard and Le Conte Avenue

Intersection #2								*****	*****	****	*****
Cycle (sec):	10	0			Critic	cal Vol	L./Caj	o.(X):		1.0)77
Loss Time (sec)	:	0 (Y+R	=4.0 s	sec)	Avera	ae Dela	ay (s	ec/veh)	:	XXXX	cxx
Optimal Cycle:	18	30			Level	Of Ser	rvice	:			F
******	******	*****	*****	****	*****	*****	****	*****	*****	****	*****
Street Name:	Wes	twood	Boulev	ard			L	e Conte	Avenu	e	
Approach:						Εá				st Bo	ound
	- T									Т	
Control:	Permit	ted					Permi	tted	Pro	t+Per	rmit
Rights:	Ovl				ıde			ude		Inclu	
Min. Green:		0			0			0			0
	0 2							1 0			
Volume Module:											
		153		448	212		409	102		396	
Growth Adj: 1.			1.05		1.05		1.05	1.05			
Initial Bse: 1		161		470	223	94		107	170		65
	78 0		0	0	0	0	26		7	19	0
	0 0		0	0	0	-	-218	-	0		0
	345	168	108	470		94	237	333		333	65
User Adj: 1.		1.00	1.00		1.00		1.00	1.00			1.00
PHF Adj: 1.		1.00	1.00		1.00		1.00	1.00			1.00
	345	168	108		223	94			177		65
Reduct Vol:		0	0	0	0	0	0	0	-	0	0
	345	168	108	470	223	94				333	
	00 1.00	1.00	1.00		1.00	1.00	1.00	1.00			1.00
MLF Adj: 1.	00 1.00 83 345	1.00	1.00	470	1.00	94		333		333	65
								I			
Saturation Flow			1			11					
	MOGUIE: 25 1425		1425	1425	1425	1425	1425	1425	1425	1425	1425
Sat/Lane 14								1425			

Vol/Sat: 0.30 0.18 0.18 0.11 0.25 0.23 0.10 0.25 0.35 0.19 0.35 0.07

Crit Volume: 283 235 333 177
Crit Moves: **** ****

Capacity Analysis Module:

Crit Moves: ****

Table 10- Related Project Footnotes

- [1] Draft Traffic Study for 10131 Constellation Boulevard Residential Project, prepared by Kaku Associates, Inc., October 2005.
- [2] Draft Study for the Los Angeles Field Office Headquarters of the Federal Bureau of Investigation (FBI), prepared by Katz, Okitsu & Associates, February 24, 2006.
- [3] Traffic Study for Palazzo Westwood Project, prepared by Crain & Associates, November 2002.
- [4] Daily and AM peak hour trips based on ITE Land Use Code 443 (Movie Theater w/o Matinee) trip generation average rates. PM peak hour trips based on the City of Los Angeles West Los Angeles Transportation Improvement and Mitigation Specific Plan (WLA TIMP).
- [5] Daily and AM peak hour trips based on ITE Land Use Code 220 (Apartment) trip generation average rates. PM peak hour trips based on the City of Los Angeles West Los Angeles Transportation Improvement and Mitigation Specific Plan (WLA TIMP).
- [6] Daily and AM peak hour trips based on ITE Land Use Code 820 (Shopping Center) trip generation average rates. PM peak hour trips based on the City of Los Angeles West Los Angeles Transportation Improvement and Mitigation Specific Plan (WLA TIMP).
- [7] Daily and AM peak hour trips based on ITE Land Use Code 230 (Residential Condominium/Townhouse) trip generation average rates. PM peak hour trips based on the City of Los Angeles West Los Angeles Transportation Improvement and Mitigation Specific Plan (WLA TIMP).
- [8] Traffic Impact Analysis for the 10776 Wilshire Boulevard Project, prepared by Crain & Associates, April 2005.
- [9] Traffic Impact Analysis for the Wilshire/Comstock Project, prepared by Crain & Associates, November 2004.
- [10] Traffic Impact Study for the 2000 Avenue of the Stars Project, Century City, prepared by Crain & Associates, June 2002.
- [11] Daily and AM peak hour trips based on ITE Land Use Code 310 (Hotel) trip generation average rates. PM peak hour trips based on the City of Los Angeles West Los Angeles Transportation Improvement and Mitigation Specific Plan (WLA TIMP).
- [12] Los Angeles Department of Transportation Programs and Development Review. Directional distribution based on ITE Land Use Code 492 (Health/Fitness Club) trip generation average rates.
- [13] Daily and AM peak hour trips based on ITE Land Use Code 841 (New Car Sales) trip generation equation rates. PM peak hour trips based on the City of Los Angeles West Los Angeles Transportation Improvement and Mitigation Specific Plan (WLA TIMP).
- [14] Daily and AM peak hour trips based on ITE Land Use Code 710 (General Office) trip generation average rates. PM peak hour trips based on the City of Los Angeles West Los Angeles Transportation Improvement and Mitigation Specific Plan (WLA TIMP).
- [15] Daily and AM peak hour trips based on ITE Land Use Code 814 (Specialty Retail) trip generation equation rates. PM peak hour trips based on the City of Los Angeles West Los Angeles Transportation Improvement and Mitigation Specific Plan (WLA TIMP).
- [16] ITE Land Use Code 566 (Cemetery) trip generation average rates.

- [17] Daily and AM peak hour trips based on ITE Land Use Code 931 (Quality Restaurant) trip generation average rates. As the WLA TIMP does not provide rates based on the number of seats, the PM peak hour trips were based on ITE average rates based on the number of seats.
- [18] ITE Land Use Code 540 (Junior/Community College) trip generation average rates.
- [19] Daily and AM peak hour trips based on ITE Land Use Code 911 (Walk-in Bank) trip generation average rates. PM peak hour trips based on the WLA TIMP.
- [20] Los Angeles Department of Transportation Programs and Development Review. Directional distribution based on ITE Land Use Code 820 (Shopping Center) AM and PM peak hour trip distribution rates.
- [21] Los Angeles Department of Transportation Programs and Development Review. Directional distribution based on ITE Land Use Code 536 (Private School (K-12)) AM and PM peak hour trip distribution rates.
- [22] Traffic Impact Study, prepared by Crain & Associates, as provided by LADOT.
- [23] Los Angeles Department of Transportation Programs and Development Review. Directional distribution based on ITE Land Use Code 815 (Discount Store) AM and PM peak hour trip distribution rates.
- [24] Traffic Impact Study, Belmont Village Project, prepared by LLG Engineers, March 2006.
- [25] Traffic Impact Study, Brentwood Retail Center Project, prepared by LLG Engineers, May 2005.
- [26] Traffic and Parking Impact Analysis for Beverly Hills Gardens and Montage Hotel Project, prepared by Parsons Transportation Group, November 2003.
- [27] Traffic Impact Study for a proposed 9200 Wilshire Boulevard Project, prepared by Katz, Okitsu & Associates, January 2006.
- [28] Traffic Impact Study, 9900 Wilshire Boulevard, City of Beverly Hills, prepared by Meyer, Mohaddes Associates, December 2005.
- [29] AM and PM peak hour trips based on the ITE Land Use Code 942 (Automobile Care Center) trip generation average rates. The PM peak hour was conservatively assumed to comprise 10 percent of the daily trip generation.
- [30] ITE Land Use Code 720 (Medical-Dental Office Building) trip generation average rates.
- [31] ITE Land Use Code 820 (Shopping Center) trip generation average rates.
- [32] ITE Land Use Code 230 (Residential Condominium/Townhouse) trip generation average rates.
- [33] ITE Land Use Code 220 (Apartment) trip generation average rates.
- [34] ITE Land Use Code 710 (General Office) trip generation average rates.
- [35] ITE Land Use Code 310 (Hotel) trip generation average rates.
- [36] Los Angeles Department of Transportation Programs and Development Review. Directional distribution based on ITE Land Use Code 850 (Supermarket) AM and PM peak hour trip distribution rates.
- [37] Los Angeles Department of Transportation Programs and Development Review. Directional distribution based on ITE Land Use Code 492 (Fitness Club) AM and PM peak hour trip distribution rates.
- [38] Los Angeles Department of Transportation Programs and Development Review. Directional distribution based on ITE Land Use Code 522 (Middle School) AM and PM peak hour trip distribution rates.

- [39] Los Angeles Department of Transportation Programs and Development Review. Directional distribution based on ITE Land Use Code 220 (Apartments) AM and PM peak hour trip distribution rates.
- [40] Los Angeles Department of Transportation Programs and Development Review. Directional distribution based on ITE Land Use Code 911 (Walk-in Bank) AM and PM peak hour trip distribution rates.
- [41] Los Angeles Department of Transportation Programs and Development Review. Directional distribution based on ITE Land Use Code 814 (Specialty Retail) AM and PM peak hour trip distribution rates.
- [42] Los Angeles Department of Transportation Programs and Development Review. Net PM trips provided by LADOT. Daily, AM Trips, and AM and PM directional distribution based on ITE Land Use Code 536 (Private School (K-12)) trip generation average rates for students.
- [43] Los Angeles Department of Transportation Programs and Development Review. Net PM trips provided by LADOT. Daily, AM Trips, and AM and PM directional distribution based on ITE Land Use Code 561 (Synagogue) trip generation average rates per thousand square feet.
- [44] Los Angeles Department of Transportation Programs and Development Review. Net PM trips provided by LADOT. Daily, AM Trips, and AM and PM directional distribution based on ITE Land Use Code 851 (Convenience Market) trip generation average rates per thousand square feet.
- [45] Los Angeles Department of Transportation Programs and Development Review. Net daily and PM trips provided by LADOT. AM Trips, and AM and PM directional distribution based on ITE Land Use Code 230 (Condominium) trip generation average rates per dwelling unit.
- [46] Los Angeles Department of Transportation Programs and Development Review. Directional distribution based on ITE Land Use Code 851 (Convenience Market) AM and PM peak hour trip distribution rates.
- [47] Los Angeles Department of Transportation Programs and Development Review. Directional distribution based on ITE Land Use Code 710 (General Office) AM and PM peak hour trip distribution rates.
- [48] Trip generation rates for Related Projects #1-61 and #B1-B36 were provided by LADOT and are based on Table 9-2, Related Projects Weekday Trip Generation, in the Westfield Century City- New Century Plan, prepared by Linscott, Law & Greenspan, Engineers, October 10, 2007.
- [49] Project is included on the City of Los Angeles Department of Transportation List of Related Projects, but has recently been completed and is fully operational. Trips generated by the project are included in the existing counts, thus, the trip generation has been zeroed out.
- [50] A formal application has not been submitted to the City of Los Angeles. Due to its close proximity to UCLA, the project was included on the Related Project List to provide the most conservative analysis.

Ap	pendix	J

Water Supply Assessment

Water Supply Analysis

UCLA 2008 Northwest Housing Infill Project and Long Range Development Plan Amendment

November 2008

Fernando Avila Best Best & Krieger LLP 300 S. Grand Avenue 25th Floor Los Angeles, California 90071

Introduction

Physical development of the University of California, Los Angeles ("UCLA") is guided by the 2002 Long Range Development Plan, adopted by the Regents in February 2003. The Long Range Development Program ("LRDP") fulfills the function of a "master plan" for campus land use development and the accompanying Final EIR for the 2002 LRDP was certified by the Regents pursuant to the requirements of the California Environmental Quality Act ("CEQA").

The 2002 LRDP EIR analyzed the environmental impacts of the addition of 1.71 million gross square feet (gsf) and 4,000 full time equivalent ("FTE") students pursuant to the 2002 LRDP. Senate Bill 610, which requires a water supply analysis by the local water provider for certain projects, applies only to "cities and counties" and not to the University of California, a constitutionally-established public entity. In 2002, UCLA voluntarily requested that the local water provider, the Los Angeles Department of Water & Power ("LADWP"), prepare a Water Supply Assessment ("WSA") for the 2002 LRDP analyzing the sufficiency of LADWP's water supplies to meet existing and future water demands, including those of the 2002 LRDP and any unbuilt previously-approved development under prior LRDPs. The 2002 WSA for the 2002 LRDP was adopted by the LADWP Board of Commissioners on July 2, 2002. It concluded that water supplies were adequate to meet the needs of the 2002 LRDP along with those water demands projected to arise within LADWP's service area. The 2002 WSA and a Supplementary Water Supply Analysis prepared by UCLA were then included in the 2002 LRDP EIR, forming the basis of that EIR's conclusion that water supply impacts would be less than significant.

UCLA is proposing to amend the LRDP for the UCLA campus to provide an additional 550,000 square feet of development for the proposed 2008 Northwest Housing Infill Project ("2008 NHIP"). Because the 2008 NHIP has an estimated completion date of 2013, and the 2002 LRDP has a planning horizon of 2010, the Draft EIR and this water supply assessment account for an extended LRDP planning horizon from 2010 to 2013. The 2002 LRDP as modified by the proposed LRDP amendment ("LRDP Amendment") would preserve the 2002 LRDP's campus-wide trip generation and parking caps, reconfirm the remaining LRDP development square footage entitlements within campus land use zones (with the exception of the NHIP), and provide for a small increase in total campus population through 2013. In summary, the 2002 LRDP as amended would provide for a total new development of approximately 1.87 million gross square feet (i.e. approximately 1.32 million gsf remaining under the 2002 LRDP and the proposed 550,000 gsf addition for the 2008 NHIP).

In preparing this analysis, significant references and data have been utilized from the City of Los Angeles Year 2005 Urban Water Management Plan ("UWMP"). The 2005 UWMP and the information contained therein are incorporated as a part of this water supply analysis, and the 2005 UWMP is attached to this document.

Summary of Findings

Campus water demand attributable to the 2002 LRDP as amended is estimated to increase by approximately 307 acre feet ("AF") annually by 2013 in conjunction with an estimated increase in square footage of 1.87 million gross square feet. This analysis concludes that adequate water supplies will be available to meet the water demands of development under the LRDP Amendment, as the projected water demand can be met during normal, single-dry, and multiple-dry water years, in addition to the existing and planned future demands on LADWP.

The basis for reaching this conclusion is the City of Los Angeles' 25-year water resource plan, the

2005 UWMP. LADWP's water demand forecast as contained in the 2005 UWMP uses a population growth forecast that is consistent with the projections used in the City of Los Angeles General Plan. The California Urban Water Management Planning Act requires water suppliers to develop an UWMP every five years to identify short-term and long-term water resources management measures to meet growing water demands during normal, dry, and multiple-dry years.

The City of Los Angeles is currently experiencing its second year of dry conditions. These current dry conditions fall within the planning assumptions of the 2005 UWMP. The 2005 UWMP includes multiple-dry year scenarios as part of its water shortage contingency analysis. The anticipated water demand from the 2002 LRDP Amendment falls within the 2005 UWMP's projected water supplies for normal, single-dry, and multiple-dry years through the year 2030 and within the 2005 UWMP's 25-year water demand growth projection. Overall the UWMP projected an increase in citywide water demands based on new development (well beyond that remaining under the 2002 LRDP Amendment), while anticipating multi-year dry water supply conditions occurring at the same time. Therefore, water supplies are or will be adequate to meet the demands of the 2002 LRDP Amendment, according to the 2005 UWMP.

Project Description & Project Water Demand Estimate

In 2007/2008, the UCLA campus accommodated approximately 16.8 million gsf of occupied space, by 2013 (the date of buildout of the 2002 LRDP as amended), this could increase to 18,844,631 gsf. The proposed LRDP Amendment would allow the development and occupancy of approximately 1.87 million square feet of gross space on the UCLA campus beyond that existing in 2008: 550,000 square feet for the proposed 2008 NHIP and 1.32 million square feet of building entitlement remaining from the 2002 LRDP (which entitlement was itself left over from the 1990 LRDP). While the bulk of this 1.87 million square feet of new development (i.e., the 1.32 million square feet from the 2002 LRDP) was actually analyzed in the 2002 LRDP EIR, which determined that there was sufficient water supply to meet the water demands that this new space would generate, this 2008 water supply analysis will assess the sufficiency of water supplies to meet the demands of all development above and beyond that actually existing in 2008. Therefore, the water supply impact of the 2002 LRDP Amendment would be the demand generated from the development of approximately 1.87 million square feet to the campus.

In order to be consistent with the general methodology utilized by the City of Los Angeles Department of Water and Power ("LADWP") for calculating demand for water, a ratio of water demand to sewer generation for the UCLA campus was derived. Utilizing the 2007 sewer monitoring information reported in the sewer study prepared for the 2002 LRDP Amendment, the campus' overall wastewater generation for 2007 was 2,035,000 gallons per day ("gpd"). At the same time, the average water use for the campus in 2007 was 2,337,598 gpd, based upon metering data from LADWP. These data indicate that campus sewage generation is approximately 87 percent of the amount of water used, corresponding to a campus water-demand-to-sewage-generation ratio of approximately 1.15.

¹ Sewer Study (RBF Consulting, 2008).

TABLE I
2002 LRDP Amendment Water Demand Use Ratio

2007 Average Annual Water Use (gpd)	2007 Annual Sewage Generation (gpd)	Ratio (water/sewer)
2,337,598	2,035,000	1.15
gpd - gallons per day		

The sewer study conducted for the proposed 2002 LRDP Amendment measured the actual wastewater generated by the campus for 2007 and estimated the wastewater generation for the Ronald Reagan Medical Center (RRUCLAMC) that was built but not fully occupied at the time of the sewer study. The results of the sewer metering study, the estimated wastewater for the RRUCLAMC, and the projection of wastewater generation for the 2013 build-out year are shown in column one of Table II below. Similarly, using actual water use meter data for the campus in 2007, and applying the water-demand-to-sewage-generation ratio previously discussed, the water demand for the campus for the 2013 build-out year is derived in column two of Table II below.

TABLE II
2002 LRDP Amendment Water/Wastewater Baseline for 2008

Scenario	Wastewater Generation (gpd)	Water Use (gpd)
2008 Existing Campus	2,035,000	2,337,598
2008 R.R. Medical Center	120,000 ²	138,000
Total 2008 Baseline	2,155,000	2,475,598
Total 2013 Campus	2,393,441 ²	2,749,805
Increase between 2008 and 2013 due to LRDP Amendment	238,441	274,207
Notes: 1. Based on 2007 meterin 2. Based on 2008 Sewer	ng data. Study by RBF Consulting.	

The estimated increase in daily water demand for the campus of 274,207 gpd is equivalent to an annual increase in water demand for the campus of approximately 307 AF (i.e. 325,851 gallons equal one acre foot).

Water Demand Forecast

LADWP's 2005 UWMP projects yearly water demand to reach 776,000 AF by 2030, or an increase of 17 percent or 115,000 AF from 2005. Water demand projections in five-year increments through 2030 are available in the 2005 UWMP for each of the major customer classes: single-family, multifamily, commercial, governmental, and industrial. Demographic data from the Southern California Association of Government's 2004 Regional Transportation Plan as well as billing data for each major customer class, weather, and conservation were factors used in forecasting future water demand growth.

The 2005 UWMP used a service area-wide method in developing its water demand projections. This methodology does not rely on individual development demands to determine area-wide growth. Rather, the growth in water use for the entire service area was considered in developing long-term water projections for the City of Los Angeles through the year 2030. The 2005 UWMP is updated every five years as required by California law. This process entails, among other requirements, an update of water supply and water demand projections for water agencies. In the next update, LADWP

will develop a revised demand forecast that will factor in the water demand for all water supply assessments that have been prepared in addition to future demands, in order to continually hone the accuracy of the water demand forecasts. While quantified water demands will be added to the water demand baseline for use in future UWMPs, project consistency with the amount of growth assumed in the 2005 UWMP's projections supports a conclusion that such a project's demands were included in the 2005 UWMP supply-demand analysis.

As mentioned above, the 2005 UWMP anticipates a growth in water demand of 115,000 AF per year by 2030. The additional water demand represented by the 2002 LRDP Amendment, 307 AF per year, falls well within this amount. Further, the 2005 UWMP anticipates that governmental land uses (under which the UCLA campus would fall) would result in an increase of 3,000 AF per year in water demands by 2030, with 1,000 AF per year of this demand growth occurring by 2010.² Therefore, the additional water use that would result from the 2002 LRDP Amendment is also consistent with these land-use specific projections. The growth in water demand that would occur under the 2002 LRDP Amendment is consequently included within the demand forecasts utilized in the 2005 UWMP.

Water Supplies

The Los Angeles Aqueducts ("LAA"), local groundwater, purchased water from the Metropolitan Water District of Southern California ("MWD"), and recycled water are the primary sources of water supplies for the City of Los Angeles. Table II shows LADWP water supplies over the last ten years from these sources.

TABLE II LADWP Water Supply

Year	Los Angeles Aqueducts	Local Groundwater	MWD	Recycled Water	Total
1997	435,624	110,629	93,217	1,873	641,343
1998	466,836	80,003	56,510	1,326	604,675
1999	309,037	170,660	164,112	1,812	645,621
2000	255,183	87,946	336,116	2,200	681,445
2001	266,923	79,073	309,234	1,636	656,866
2002	179,338	92,376	410,329	1,945	683,988
2003	251,942	90,835	322,329	1,759	666,865
2004	202,547	71,831	391,834	1,774	667,986
2005	368,839	56,547	185,346	1,402	612,134
2006	378,956	63,270	188,781	3,981	634,988
Note: Units are	in AF	•		•	1

Los Angeles Aqueducts

Snowmelt runoff from the Eastern Sierra Nevada Mountains is collected and conveyed to the City of Los Angeles via the LAA. LAA supplies come primarily from snowmelt and secondarily from groundwater pumping, and can fluctuate yearly due to varying hydrologic conditions. In recent years,

² See LADWP 2005 UWMP, p. 1-10.

LAA supplies have been less than the historical average because of environmental obligations to restore Mono Lake and mitigate dust from Owens Lake.

The City holds water rights in the Eastern Sierra Nevada where LAA supplies originate. These supplies originate from both streams and from groundwater. In 1905, the City approved a bond measure for the purchase of land and water rights in the Owens River Valley. By 1913, the First Los Angeles Aqueduct began its deliveries of water to the City primarily from surface water diversions from the Owens River and its tributaries. Historically, these supplies were augmented from time to time by groundwater extractions from beneath the lands that the City had purchased in the Owens Valley.

In 1940, the First Los Angles Aqueduct was extended north to deliver Mono Basin water to the City pursuant to water rights permits and licenses granted by the State Water Resources Control Board. In 1970, the Second Los Angeles Aqueduct was completed increasing total delivery capacity of the LAA system to approximately 550,000 AF per year. The Second Los Angeles Aqueduct was to be filled by completing the Mono Basin diversions originally authorized in 1940 by a more effective use of water for agricultural purposes on City-owned lands in the Owens Valley and Mono Basin and by increased groundwater pumping from the City's lands in the Owens Valley.

In 1972, Inyo County filed a California Environmental Quality Act lawsuit challenging the City's groundwater pumping program for the Owens Valley. The lawsuit was finally ended in 1997, with the County of Inyo and the City of Los Angeles entering into a long-term agreement for the management of groundwater in the Owens Valley. That agreement, entered as a judgment of the Superior Court in the County of Inyo (County of Inyo v. City of Los Angeles, Inyo Co. Super. Ct. Case No. 12908) outlines the management of the City's Owens Valley groundwater resources.

Further, in September 1994 by virtue of the public trust doctrine, the State Water Resources Control Board issued Decision No. 1631, which effectively reduced LADWP's Mono Basin water rights from 100,000 AF a year to the current 16,000 AF a year. In brief, LADWP's ability to export Mono Basin water is now tied directly to the elevation of Mono Lake and flows of various streams that are tributary to Mono Lake. When Mono Lake reaches its target elevation, then exports from the Mono Basin can increase from its current levels.

In July 1998, LADWP and the Great Basin Unified Air Pollution Control District entered into a Memorandum of Agreement. It delineated the dust-producing areas of the Owens lakebed that needed to be controlled, specified measures required to control the dust, and outlined a timetable for implementation of the control measures. The Memorandum of Agreement was incorporated into a formal air quality control plan by the Great Basin Unified Air Pollution Control District and subsequently approved by the United States Environmental Protection Agency in October 1999. Pursuant to the Memorandum of Agreement, a dust mitigation program was implemented on the Owens Lake. An estimated 55,000 AF of water annually may ultimately be required to sustain the dust mitigation program.

Taking all of this into consideration, LADWP predicts that 276,600 AF per year would be available in average year scenarios through 2030. In single-dry years LAA deliveries would be about 95,300 AF per year, and in multiple dry year droughts, deliveries would range from 135,500 AF in the first year to 63,200 AF per year in the third year.³

³ LADWP 2005 UWMP, exhibits 6C through 6I.

Groundwater

LADWP extracts groundwater from various locations throughout the Owens Valley and four local groundwater basins. LADWP owns extensive property in the Owens Valley. LADWP appropriates groundwater from beneath its lands for use in the Owens Valley and in Los Angeles. It has a long-term groundwater management plan in place. Additionally, LADWP holds adjudicated extraction rights in four local groundwater basins: San Fernando, Sylmar, Central, and West Coast.

The Owens Valley, located on, the eastern slope of the Sierra Nevada Mountains, encompasses approximately 3,300 square miles of drainage area. LADWP has extracted the following quantities of groundwater from the Owens Valley in the last five runoff years (April1 — March 31):

2002–2003: 82,281 AF 2003–2004: 87,726 AF 2004–2005: 85,820 AF 2005–2006: 57,412 AF 2006–2007: 58,621 AF

Owens Valley is not identified as an overdrafted basin in the California Department of Water Resources California's Groundwater Bulletin 118 Update 2003. Further, the Bulletin 118 Update 2003 does not project the Owens Valley to become overdrafted if present groundwater management conditions continue. Also, in 1990, the City of Los Angeles and Inyo County as part of the preparation of the long-term groundwater management agreement, prepared the "Green Book for the Long-Term Groundwater Management Plan for the Owens Valley and Inyo County". It contains plans and procedures to prevent overdraft conditions from groundwater pumping as well as to manage vegetation in the Owens Valley.

The San Fernando and Sylmar basins are subject to the judgment in *City of Los Angeles v. City of San Fernando* (Los Angeles Co. Super. Ct. Case No. 650079). Pumping is reported to the court-appointed Upper Los Angeles River Area ("ULARA") Watermaster. The San Fernando Basin is the largest of four basins within ULARA. The basin consists of 112,000 acres of land and comprises 91.2 percent of the ULARA valley fill. LADWP has accumulated nearly 374,091 AF of stored water credit in the San Fernando Basin as of October 2006. This is water LADWP can withdraw from the basin during normal and dry years or in an emergency, in addition to LADWP's approximately 87,000 AF annual entitlement in the basin. The majority of LADWP's groundwater is extracted from the San Fernando Basin. The Sylmar Basin is located in the northern part of the ULARA, consists of 5,600 acres and comprises 4.6 percent of the ULARA valley fill. LADWP has an annual entitlement of 3,255 AF from the Sylmar Basin. The court decision on pumping rights in the ULARA was implemented in a judgment on January 26, 1979. Further information about the ULARA basin is in the ULARA Watermaster Report. The ULARA Watermaster report and the judgment are available for review at the office of the ULARA Watermaster.

LADWP additionally has adjudicated rights to extract groundwater from the Central and West Coast Basins, respectively. Pumping in these basins is reported to the California Department of Water Resources ("DWR"), which acts as Watermaster. Annual entitlements to the Central and West Coast Basins are 15,000 AF and 1,503 AF, respectively. LADWP does not exercise its pumping rights in

⁴ See Appendix F of the 2005 UWMP for copies of the relevant portions of the ULARA judgment.

the West Coast Basin at this time due to localized water quality issues.⁵ The complete judgments are available for review at DWR.

For the period of October 2005 to September 2006, LADWP extracted 35,428 AF, 1,853 AF, and 13,395 AF from the San Fernando, Sylmar, and Central Basins, respectively. LADWP plans to continue production from its groundwater basins in the coming years to offset reductions in imported supplies. Extraction from the basins will however be limited by water quality and overdraft protection. Both LADWP and DWR have programs in place to monitor wells to prevent overdrafting. LADWP's groundwater pumping practice is based on a "safe yield" operation. The objective, over a period of years, is to extract an amount of groundwater equal to the native and imported water that recharges. Extractions by LADWP from the San Fernando, Sylmar, Central, and West Coast Basins for the last five years are shown on Table III.

TABLE III Local Groundwater Basin Supply (Amounts Extracted)

Water Year (Oct-Sep)	San Fernando Basin	Sylmar Basin	Central Basin	West Coast Basin
2001–2002	66,823	1,240	8,639	0
2002–2003	78,045	3,662	9,811	0
2003–2004	72,235	2,634	15,907	0
2004–2005	46,815	1,509	14,870	0
2005–2006	35,428	1,853	13,395	0
Note: Units are in AF				•

In the future, LADWP expects that 276,000 AF per year would be available in average year scenarios through 2030. In single-dry years, groundwater production would be about 135,000 AF per year, and in multiple dry year droughts, groundwater production would range from 135,000 AF in the first year to 95,000 AF per year in the fourth year.⁶

Metropolitan Water District of Southern California

MWD is the largest water wholesaler for domestic and municipal uses in Southern California. As one of 26 member agencies, LADWP purchases water from MWD to supplement LADWP supplies from local groundwater and the LAA. MWD imports a portion of its water supplies from Northern California through the State Water Project's ("SWP") California Aqueduct and from the Colorado River through MWD's own Colorado River Aqueduct. LADWP will continue to rely on MWD to meet its current and future supplemental water needs.

All 26-member agencies have preferential rights to purchase water from MWD. Pursuant to Section 135 of the MWD Act, "Each member public agency shall have a preferential right to purchase from the district for distribution by such agency, or any public utility therein empowered by such agency for the purpose, for domestic and municipal uses within the agency a portion of the water served by the district which shall, from time to time, bear the same ratio to all of the water supply of the district as the total accumulation of amounts paid by such agency to the district on tax assessments and otherwise, excepting purchase of water, toward the capital cost and operating

-

See Appendix F of the 2005 UWMP for copies of the relevant portions of the West Coast Basin and Central Basin judgments.

⁶ LADWP 2005 UWMP, exhibits 6E through 6I.

expense of the district's works shall bear to the total payments received by the district on account of tax assessments and otherwise, excepting purchase of water, toward such capital cost and operating expense." This is known as a preferential right. As of June 30, 2006, LADWP has a preferential right to purchase 21.16 percent of MWD's total water supply. However, preferential rights to MWD water have never been invoked by member agencies, even in the driest of years, and the MWD Board adopted in February 2008 a Water Supply Allocation Plan that, while not eliminating preferential rights, would more equitably distribute water to member agencies during severe drought conditions. Still, preferential rights remain an option available in the direct of circumstances.

MWD has also been developing plans and taking actions to provide additional water supply reliability for the entire southern California region. LADWP coordinates closely with MWD to ensure implementation of these water resource development plans. Part of this planning effort is the creation by MWD of a 500,000 AF "buffer" supply that is meant to protect against uncertainties in water resource supply like the recent restrictions on export pumping from the San Francisco Bay-Delta (see discussion below). MWD's long-term plans to meet its member agencies' growing reliability needs are through water transfer programs, outdoor conservation measures, and development of additional local resources, such as recycling, brackish water desalination, and seawater desalination. Additionally, MWD has more than 3.8 million AF of storage capacity available in reservoirs and banking/transfer programs, with approximately 2.5 million AF currently in that storage. Such programs enabled MWD to conclude in its 2005 Regional Urban Water Management Plan ("RUWMP") that its present and planned supplies would be sufficient to meet the projected supplemental water needs of its member agencies through 2030 in average, single-dry year, and multiple-dry year hydrological scenarios. For LADWP, its 2005 UWMP predicts that average year MWD deliveries will be at most 309,550 AF per year by 2030; 2030 single-dry year needs will be 498,250 AF per year; and 2030 multiple-dry year deliveries will range from 445,250 AF per year to 562,150 AF per year.8

Recent Issues Related to Imported Water Supplies from MWD

In discussing imported water supplies from MWD, it must be noted that several factors affect the availability and reliability of LADWP's imported water supplies from MWD. Such factors include potential reductions in Delta exports and Colorado River supplies, potential regulatory and emergency constraints on the use of water conveyance facilities, water quality issues, and short and long term climatic changes. These factors and their impact on water supplies have been independently analyzed in careful detail. For instance, the likelihood of SWP supplies being available to MWD over the long-term period has been extensively analyzed and addressed by the California Department of Water Resources ("DWR") in its 2002 and 2005 Final SWP Delivery Reliability Report. ("DWR Reliability Report"). (The DWR Reliability Report is incorporated herein by reference.)

According to the DWR Reliability Report, the long-term average delivery of contractual amounts of SWP Table A supply is expected to range from 63 percent under current (2007) conditions to between 66 and 69 percent under future (2027) conditions. Within that long-term average, SWP Table A deliveries can range from 6 percent (single dry year) to 90 percent of contractual amounts under current (2007) conditions, and from 6 to 7 percent (single dry year) to 100 percent of

⁸ LADWP 2005 UWMP, exhibits 6E through 6I.

DWR Reliability Report, p. 30.

-8-

⁷ MWD 2005 UWMP, p. II-11.

DWR Reliability Report, pp. 30-31, 39-40, 46, Appendix B-4.

contractual amounts under future (2027) conditions. 11 The analyses provided in the DWR Reliability Report are based upon 82 years of historical records for rainfall and runoff that have been adjusted to reflect the current and future levels of development in the sources areas by analyzing land use patterns and projecting future land and water uses. 12 Of key importance, the studies in the DWR Reliability Report for current (2007) through future (2027) conditions assumes and accounts for current facilities and institutional limitations, including water quality, fish protection, export curtailments and other requirements under State Board Water Rights Decision 1641, the Vernalis Adaptive Management Plan ("VAMP") as described in the 2004 Operations Criteria and Plan ("OCAP"), and the August 2007 court-ordered in-Delta flow targets in Old and Middle Rivers to protect delta smelt (see discussion below regarding litigation in Natural Resources Defense Council v. Kempthorne), as well as potential effects of Delta levee failures and other seismic or flood events. 13 In addition, however, the long-term SWP delivery reliability analyses incorporate assumptions to account for potential supply shortfalls related to global climate change factors.¹⁴ Indeed, the DWR Reliability Report accounts for potential affects of future climate change on SWP deliveries through the year 2050 by examining four climate change scenarios: weak temperature warming and weak precipitation increase in California under model PCM; modest warming and modest drying under model PCM; modest warming and modest drying under model GFDL v. 2.0; and weak temperature warming and weak precipitation increase in California under model GFDL v. 2.0. 15 Again, the effects of these institutional, administrative and court-ordered reductions in Delta exports, as well as the potential effects of long-term global climate change, are analyzed and accounted for within the SWP delivery reliability estimates set forth above and described in greater detail by DWR's 2007 Draft SWP Delivery Reliability Report.

The 29 SWP Contractors and water agencies throughout California utilize the DWR Reliability Report in their water supply analyses, planning and reporting obligations. Indeed, as discussed below, MWD's RUWMP acknowledges that SWP entitlements differ from actual SWP deliveries made available to SWP Contractors. SWP Contractors generally understand that the variability of SWP supplies may increase in the future as the Contractors request their maximum Table A amounts and as system-wide issues such as Delta exports are resolved. At the same time, however, SWP Contractors such as MWD who utilize groundwater basins to recharge portions of their SWP deliveries, as well as other exchange and transfer arrangements, can plan to accept long-term average deliveries of 66 to 69 percent of their SWP Table A allotments. As indicated above, MWD utilizes DWR's SWP reliability studies and analyzes several other key factors in developing its conservative estimate of long-term SWP deliveries.

Moreover, MWD has developed an overall reliability analysis in its computer-based model referred to as the IRPSIM, which evaluates the reliability of its water supplies, including supplies available from the SWP, the Colorado River, water transfers and exchanges, and other sources. ¹⁹ The IRPSIM is based on 70 years of historical hydrology (from 1922 to 1991) to allow it to estimate water surplus and shortage over a 20-year period and beyond. The model has allowed MWD to analyze the reliability of deliveries to its member agencies during worst-case single year and multiple year

DWR Reliability Report, pp. 39, 46.

DWR Reliability Report, p. 7.

DWR Reliability Report, pp. 8, 16, 18-21, 27, 30, 32, 35, 37-39, Appendices A-B.

 $^{^{14}}$ Id

¹⁵ DWR Reliability Report, pp. 1, 17, 27, 37-39, 43, Appendices A-B.

MWD RUWMP, pp. III-41 to III-50.

¹⁷ 2005 DWR Reliability Report, pp. 39-40.

MWD RUWMP, pp. III-41 to III-50.

¹⁹ MWD RUWMP, pp. II-1 to II-15.

drought events. The results of MWD's modeling indicate that it can maintain reliable supplies under such drought conditions throughout the 2005 to 2030 time period. Detailed analyses regarding MWD's supply projections are also set forth in Appendix A of MWD's RUWMP, which is incorporated herein by reference. As detailed in those analyses, MWD's overall supply and delivery reliability is based not just on Colorado River and the SWP supplies, but also on conservation programs, groundwater storage programs, and water transfer/exchange programs. In addition to these reliability measures, LADWP has prepared a Water Shortage Contingency Plan to address any water shortages within its service area, and has developed a Emergency Response Plans ("ERPs") to address responses to catastrophic events affecting water supplies.

Another factor affecting SWP supplies is current litigation concerning operations of the SWP. In February 2005, the United States Fish and Wildlife Service ("FWS") issued a "no jeopardy" determination and biological opinion ("B.O.") analyzing impacts to the threatened delta smelt in connection with in-Delta operations of the federal Central Valley Project ("CVP") and the State SWP through the year 2030. The project/action evaluated in the B.O., formally known as the "Operations Criteria and Plan" or OCAP, included not only the projects' existing Delta pumping operations, but also proposals to increase SWP pumping by 20 percent some time during the 30-year period and to undertake other operational changes. In February 2005, the Natural Resources Defense Council and several other groups (collectively, "NRDC") filed suit in federal court against FWS and the Secretary of the Interior challenging the validity of the OCAP B.O.²² The California Department of Water Resources ("DWR"), as well as groups representing the public agencies that hold contracts to receive water from the CVP and SWP, intervened in the action. In May 2007, Judge Wanger determined that the B.O. violated the requirements of the federal Endangered Species Act ("ESA"). At about the same time, FWS and the Bureau of Reclamation, the operator of the CVP, decided to reinitiate ESA Section 7 consultation regarding how the projects affect the delta smelt. Thus, the two agencies are now preparing the necessary documentation to produce a new B.O. NRDC asked the Court to impose an "interim remedy" which would be effective until the new B.O. is completed.

Judge Wanger conducted a trial between August 21 and August 31, 2007 to receive evidence for determining an interim remedy. Prior to the hearing, each of the parties submitted proposals on how to best operate the CVP/SWP to protect the smelt in the interim period. Under each of the proposals, if the 2007-2008 water year is above normal, impacts to the yield of the projects were expected to be minimal. However, impacts were expected to be more substantial if 2007-2008 is a dry or average water year. FWS submitted an "Action Matrix" that called for a series of actions to reduce project pumping operations between December 25, 2007 and late June 2008, with the precise amount of pumping reduction (or curtailment) largely depending upon whether smelt are located in zone of influence of the pumps at particular times. Based upon modeling conducted by DWR before the trial, the predicted impacts on the combined yield of the two projects of this proposal were 6 to 25 percent (representing a 183,000 to 814,000 acre-foot reduction in Delta exports) if 2007-2008 is a dry year, and 14 to 37 percent if it is an average year (820,000 to 2,170,000 acre-foot reduction). DWR supported the FWS Action Matrix with several modifications which reduced the impacts to Project yield to an estimated 3 to 13 percent in a dry year, and 8 to 24 percent in an average year. NRDC asked the Court to impose interim restrictions which would have resulted in losses ranging from 35 to 60 percent of total Project yield (or 1,117,000 to 3,567,000 AF of water). After the 10-day hearing, the Court issued an oral ruling which, in terms of water supply impacts, effectively "split the difference" between the FWS Action Matrix and the DWR proposal.

-

²⁰ MWD RUWMP, p. II-15.

²¹ LADWP 2005 UWMP, p. 6-14.

²² See Natural Resources Defense Council v. Kempthorne, et al., USDC Case No. 05-CV-1207-OWW.

On December 14, 2007, the Court issued its Final Interim Remedial Order, which sets forth temporary restrictions on Delta exports from the SWP and CVP, which restrictions are based on flow rates in certain significant rivers near the export facilities and information concerning the distribution and spawning status of delta smelt: (1) Loss of 9 to 29 percent (or 512,000 to 1,741,000 AF) if 2007-2008 is an average water year; and (2) Loss of 3 to 19 percent (or 80,000 to 627,000 AF) if 2008-2008 is a dry water year. Notably, these figures represent total restrictions to the SWP and CVP combined. Thus, DWR has indicated that SWP deliveries will be adjusted proportionately. By adopting these interim measures, Judge Wanger left in place the incidental take statement set forth in the 2005 B.O., pending release of the new B.O. This means that the CVP and SWP are legally permitted to take delta smelt while operating until the new B.O. is issued, which the Court ordered to be completed no later than September 15, 2008.

As indicated above, reductions in SWP deliveries to MWD based on the Kempthorne ruling will depend on precipitation and other weather conditions affecting Delta water supplies, distribution and behavior patters of the delta smelt, flow conditions in the Delta, and how water supply reductions are divided between the SWP and CVP. MWD is engaged in an aggressive planning process to address this decision and ensure that its overall water supply portfolio is capable of providing reliable longterm service to its member agencies. Currently, MWD continues to rely upon the plans and policies outlined in its RUWMP and IRP to address water supply scenarios and meet existing and projected water demands within its service territory. In addition, MWD has a Water Surplus and Drought Management Plan to guide its operations of water management programs. Actions outlined in that Plan include, without limitation, voluntary water conservation measures, increased recycled water usage, and voluntary curtailment or reduction of groundwater replenishment and agricultural water deliveries where appropriate. Furthermore, MWD is maximizing supplies from existing agreements and pursuing water transfers as needed. As pointed out in MWD's RUWMP, MWD has projected a potential reserve and replenishment supply ranging from 632,000 AF in 2010 to 408,000 AF in 2030.²³ Thus, even assuming an extreme worse-case scenario that MWD's SWP allotment would be permanently reduced by 29 percent each year through the year 2025 (which assumptions drastically exceed the holding of *Kempthorne*, which only entails a maximum 29 percent reduction until the new B.O. is issued in September 2008), MWD's RUWMP illustrates that MWD would still be able to meet the projected water demands of its member agencies throughout that time period under such extreme circumstances.²⁴

Beyond MWD's efforts, several other proceedings are ongoing to evaluate options to address delta smelt impacts and other environmental concerns in the Delta. In addition to the Section 7 reconsultation process and interim remedy measures set forth by the *Kempthorne*, the Bay Delta Conservation Plan process and the Delta Vision process are defining long-term solutions for the Delta. MWD is actively engaged in these processes and has adopted a framework and directions for key elements of a Delta Action Plan to address water supply risks in the Delta over the short and long term. The Bay-Delta Conservation Plan process involves several state and federal resource agencies, along with various environmental and water user entities, who are currently engaged in developing a plan to address ecosystem needs and secure long-term operating permits for the SWP. The process is scheduled for completion during the third quarter of 2009, with acquisition of appropriate permits and completion of necessary environmental review. The Delta Vision process established by Governor Schwarzenegger is also aimed at identifying long-term solutions for the Delta. On December 17, 2007, the Delta Vision Blue Ribbon Task Force released its Final Report entitled Our Vision for the California Delta, containing findings and recommendations for sustaining the Delta as

-

MWD RUWMP, table II-9.

MWD RUWMP, p. II-14.

a healthy ecosystem and critical water supply resource for California's future population and growing economy.

SWP and CVP operations are also being considered in a separate litigation matter. In October 2004, the National Marine Fisheries Service ("NMFS") issued a "no jeopardy" determination and B.O. analyzing impacts to threatened winter and spring-run salmon in connection with SWP and CVP operations in the Delta through the year 2030. As with the *Kempthorne* case above, the project/action evaluated in the NMFS B.O. included current and future Delta pumping operations under the Operations and Criteria Plan ("OCAP"). In August 2005, several environmental plaintiff groups filed suit in federal court against NMFS and the Secretary of Commerce challenging the validity of the B.O.²⁵ Several groups representing the public agencies that hold contracts to receive water from the CVP and SWP intervened in the action. The plaintiffs later filed an amended complaint and thereafter the case was stayed for a period of time while the parties attempted to negotiate a settlement of the issues. The stay was later lifted and, in May 2007, the plaintiffs filed a motion for summary judgment to invalidate the B.O. without a trial. Similar to the situation discussed above in the *Kempthorne* case, NMFS and the Bureau of Reclamation have decided, notwithstanding the outcome of the litigation, to reinitiate ESA Section 7 consultation regarding how the projects affect the protected salmon species. Thus, the two agencies are now preparing the necessary documentation to produce a new B.O. However, that new document is not expected until 2008-2009. A hearing on the summary judgment motions in the Gutierrez case was held on October 3, 2007 and District Court Judge Oliver Wanger took the matter under submission. As of this date, the Court has not issued a ruling on the summary judgment motions and, therefore, interim remedy proceedings like those held in the Kempthorne case above have not been scheduled nor are they certain to occur. Preliminary estimates of water supply impacts of the Gutierrez decision have not been determined at this point. However, based on pleadings filed in the case, water agency parties do not expect the decision to result in the type of Delta export reductions seen in *Kempthorne* because of the many protective measures already in place throughout the Delta to protect salmon migration and habitat.

A third litigation matter concerning SWP operations is *Watershed Enforcers v. California Dept. of Water Resources, et al.*²⁶ In that case, a plaintiffs group filed suit against DWR alleging the SWP is being operated without "take authorization" under the California Endangered Species Act. The case was heard on November 17, 2006 and, on April 18, 2007, the Alameda County Superior Court issued a judgment granting a peremptory writ of mandate ordering DWR to cease and desist further operations of the Harvey O. Banks pumping plant facilities of the SWP unless DWR obtained proper authorization from the California Department of Fish and Game for the take of threatened and endangered salmon species and delta smelt. The trial court decision was appealed by DWR and several water agency parties and the case was stayed pending the appeal. Due to the stay, the judgment is not in effect and DWR is not required to cease its operations of the Banks pumping plant facilities. Moreover, the parties have stipulated to extend the time for the appeal and, therefore, a final decision is not expected in the near future. For these reasons, and because the effects of SWP operations on protected fish species in the Delta are already being addressed in the *Kempthorne* and *Gutierrez* cases discussed above, the *Watershed Enforcers* case is not currently anticipated to result in additional reductions to SWP supplies.

See Pacific Coast Federation of Fishermen's Association / Institute for Fisheries Resources, et al. v. Gutierrez, et al., USDC Case No. 1:06-CV-00245-OWW.

Alameda Co. Super. Ct. Case No. RG06292124.

The allocation of Colorado River supplies is also the subject of litigation. In the Coordinated OSA Cases, 27 several cases are being litigated in regard to the historic, negotiated accord that determines how California's annual share of Colorado River water is allocated among certain water supply agencies, including MWD. In 2003, those water supply agencies executed several agreements know as the Quantification Settlement Agreements ("QSA"). In general terms, the QSA involves significant long-term water conservation measures within the Imperial Irrigation District ("IID"), where then up to 200,000 AF per year of conserved Colorado River water is transferred from IID to the San Diego County Water Authority and 100,000 AF per year is made available for acquisition by MWD and/or the Coachella Valley Water District. Several legal actions were filed after the QSA was adopted and those cases were coordinated and stayed for over two years beginning in 2004 while a procedural issue in two of the cases was determined by the Court of Appeal. The cases became active again in late 2007 and are being litigated in the Sacramento County Superior Court. A principal contested issue in the Coordinated QSA Cases is whether the environmental review documents prepared for the QSA approvals comply with CEQA. Notably, the Colorado River water at issue in those cases represents only a small part of MWD's overall water supply portfolio. Moreover, since deliveries of Colorado River water are determined by the U.S. Department of the Interior, Bureau of Reclamation, who is not a party to the *Coordinated QSA Cases*, it is not known whether the cases will affect the amount of Colorado River water delivered by the Bureau. Accordingly, it does not appear probable at this point that the Coordinated OSA Cases will affect MWD's ability to provide reliable water service as set forth in its RUWMP.

Further buttressing MWD's Colorado River supplies is a recent agreement entered into among the states of Wyoming, Utah, Colorado, Nevada, New Mexico, Arizona and California regarding how shortages in Colorado River water will be administered over the next 19 years. The agreement sets forth three major elements: (1) it establishes particular water level elevations at Lake Mead that trigger water cutbacks among the states, which will total less than 10 percent of the Lower Basin's allocation, with Arizona's agriculture and Nevada bearing the brunt of any such cutback and California's allocation not being impacted; (2) Lake Powell and Lake Mead will be operated as one reservoir system, which is expected to facilitate control of water levels in Lake Mead, thereby helping control conditions that trigger a shortage; and (3) the states will be allowed to hold conserved water in Lake Mead from year to year, which changes the current use-or-lose allocation system and allows agencies to store conserved water for later use. This agreement will ensure the predictability and reliability of Colorado River supplies in future years.

Secondary Sources and Other Considerations

Water conservation and recycling will play an increasing role in meeting future water demands. LADWP has implemented conservation and recycling programs with efforts under way to further promote and increase the level of these programs. LADWP is committed to supplying a higher percentage of the City's water demand through conservation and recycling, and efforts are underway to increase water recycling, further conserve local storm water runoff, explore seawater desalination, engage in water transfer programs, and expand LADWP's water conservation program. The City has also pioneered community-based job programs to assist in conservation program implementation. While significantly assisting with program implementation, these community-based organizations also provide important social and economic benefits to neighborhoods.

²⁷ Sacramento Co. Super. Ct., Judicial Council Coordination Proceeding No. 4353.

See LADWP 2005 UWMP, chapters 2 and 5, for a complete discussion of all LADWP water conservation and secondary source programs.

Furthermore, the University has itself implemented water conservation at the UCLA campus, resulting in the saving of water that otherwise would have been consumed. The following sections detail some of the conservation programs that have resulted in a reduction of campus water demand.

Retrofit & Maintenance Program

A water conservation program on the UCLA campus since the early 1990s included the consolidation of air-conditioning equipment for buildings on the north campus, improving the water chemistry in the air conditioning system, and the installation of water flow restrictors in showers, toilets, and urinals throughout campus. A urinal replacement program in Fiscal Year 2008/09 will replace the over 260 urinals in selected campus buildings with ultra flow (one-eighth gallon) fixtures.

The UCLA campus also established maintenance programs in the early 1990s to reduce water loss from leaky faucets and water main breaks, and has installed hot water circulating pumps that provide almost instantaneous hot water in lavatory faucets, thereby preventing the wasteful use of running water until it becomes hot. Replacement of older galvanized irrigation pipes with new polyvinyl chloride ("PVC") pipes and automatic sprinkler controls have also reduced water use by scheduling the irrigation systems during evening or early morning hours to minimize evaporation.

Irrigation Management

Conservation through efficient irrigation reduces water usage and promotes healthier plants. To achieve the maximum water savings, advanced irrigation technology and products are used in combination with system design, installation, and maintenance. The components of the system include:

- High efficient irrigation components (nozzles, pressure compensation remote control valves and screens)
- Drip irrigation
- Computer Operated Irrigation Management
- State of the art irrigation design
- Proper and continuous irrigation system maintenance
- Maintenance of proper irrigation scheduling for plants during the four seasons

All landscaped and turf areas are irrigated as required to maintain adequate growth, health, and appearance regardless of plant types or soil condition. Water is regulated to avoid the creation of excessively wet or waterlogged areas that cause a decline in plant health and result in excessive water run off.

Native and Endemic Plants

The UCLA Grounds Department is committed to increasing biodiversity and creating a self-sustaining landscape system by using endemic and native plant material on campus. Facilities Management has supported several student projects to plant native and endemic plants around campus, including projects at the Sunset Canyon Recreation Center and the north slope of Parking Lot 11.

Co-Generation Plant

Through the Co-Generation Plant's cooling system, the campus has a process whereby condensate water from mechanical equipment (such as air circulation fans) is captured for reuse. Similarly, groundwater obtained from site dewatering activities for the Ronald Reagan UCLA Medical Center is collected and used in the Co-Gen Plant. Both of these processes generate approximately 210,000 gpd of water for cooling that is essentially reused, rather than entering the wastewater system. UCLA recycles approximately 50 percent of cooling water used in the Co-Generation Plant and continues to achieve reductions in water usage for cooling campus buildings. The campus has continued to improve its cooling water treatment program through alterations to water chemistry, thereby extending the number of times the water can be recycled through the system. While this is strictly speaking a water recycling program, and not water conservation, the result is the same: reducing demands on water supplies by making water use more efficient.

Integrated Planning

Integrated planning has also filled an important role in developing secondary sources of supply for Los Angeles. This is an approach that has been taken in southern California with overall water resources planning. The City of Los Angeles works closely with MWD, the City's Bureau of Sanitation (wastewater agency), other regional water providers, and various stakeholder groups to develop and implement programs that reduce overall water use. Integrated resources planning is a process that is being used by many water and wastewater providers to meet their future needs in the most effective way possible, and with the greatest public support. The planning process differs from traditional planning processes in that it incorporates:

- public stakeholders in an open, participatory process;
- multiple objectives such as reliability, cost, water quality, environmental stewardship, and quality of life;
- risk and uncertainty; and
- partnerships with other agencies, institutions, and non-governmental organizations.

Through integrated planning, not only water-use efficiency and recycling activities are maximized, but potential alternative supplies such as water transfer, seawater desalination, and storm water runoff reuse are considered and evaluated as part of the City's long-term water resources portfolio. This collaboration is critical in ensuring that the City's anticipated water demands are incorporated into MWD's long-term water resources development plan. This is a continuous regional effort involving all of MWD's member agencies, and has resulted in reliable supplemental water supplies for the City from MWD.²⁹

⁻

²⁹ See LADWP 2005 UWMP, chapter 4, for more information regarding LADWP's IRP process.

Conclusion

The proposed 2002 LRDP Amendment is estimated to increase campus annual water demand by 307 AF by 2013 based upon the campus-specific water-to-sewer ratio. The 307 AF increase falls within the available and projected water supplies for normal, single-dry, and multiple-dry years through the year 2030 as described in LADWP's year 2005 UWMP. Thus, LADWP will be able to meet the water demand of the 2002 LRDP Amendment as well as existing and planned future water demands of its service area, as demonstrated on the supply-demand charts contained in LADWP's 2005 UWMP.

LADWP 2005 UWMP, exhibits 6E through 6J.

Appendix k
Climate Change Calculation

UCLA LRDP BASELINE CO2 EMISSIONS

Emissions Source	2007 Annual	Percent	
Ellissions source	Emissions	of Total	
Campus Purchased Electricity	94,578.73 MTCO ₂	28%	
Campus Purchased Natural Gas	168,613.74 MTCO ₂	49%	
Emergency Diesel (Generators)	131.62 MTCO ₂	<1%	
Propane	11.42 MTCO ₂	<1%	
Mobile Sources	75,970.00 MTCO ₂	22%	
Water Consumption	4,082.26 MTCO ₂	1%	
Total	343,387.77 MTCO ₂		
Notos			

Notes:

 MTCO_2 = metric tons carbon dioxide

UCLA LRDP BASELINE WATER CONSUMPTION CO2 EMISSIONS

	Gross Square		Baseline Emissions from Water				
Emissions Source	Footage	Usage Factor	Total Usage	Consumption			
Water	16,807,928	0.13908 gallons/day/gsf 13,022 kwh/MG	2.337647 MG/day 11,110,905 kwh/year	4,082,255 kg CO2 4,082 MTCO2			

UCLA LRDP BUILDOUT 2013 EMISSIONS

	Gross Square			Percent of New		
Emission Source	Footage Increase	Annual Usage Factor	Total Estimat	Emissions		
Purchased Campus Electricity	2,008,615	14.14778 kwh/gsf	28,417,443 kwh/yr	10,440,848 kg CO2	10,441 MTCO ₂	47%
Purchased Campus Natural Gas	2,008,615	0.00797 mmBTU/gsf	12,807 mmBTU/yr	676,078 kg CO2	676 MTCO ₂	3%
Water Consumption	2,008,615	0.13885 gallons/day/gsf	0.278896 MG/day	487,039 kg CO2	487 MTCO ₂	2%
		13,022 kwh/MG	1,325,602 kwh/year	467,039 kg CO2		<1%
Private Vehicle Trips	2,008,615	[Trip Rates per EIR Traffic Report]	6,397 daily trips	10,705,290 kg CO2	10,705 MTCO ₂	48%
Total, LDRP Build-out in 2013				22,309,255 kg CO2	22,309 MTCO ₂	
Baseline in 2007				343,387,765 kg CO2	343,388 MTCO ₂	
Total 2013 Operational Emissions	(2007 Baseline + 201	365,697,020 kg CO2	365,697 MTCO ₂			
Percentage Increase in Annual Em	issions: Baseline to 2	6.509	%			

Notes:

kwh = kilowatt hour

gsf = gross square foot mmBTU = million British Thermal Units

MG = million gallons

kg = kilogram

CO₂ = carbon dioxide

MT = Metric Tons

Emission Category	CCAR Emission Factor			
Purchased Campus Electricity	0.81 lbs/kwh			
Emergency Diesel Generators	9.96 kg/gallon			
Propane Liquid Gas	5.67 kg/gallon			
Purchased Campus Natural Gas	52.79 kg/mmBTU			
Water	Energy Usage Factor			
Indoor Potable Water Consumption	13,022 kwh/MG			
Outdoor Potable Water Consumption	11,111 kwh/MG			

Convert	
Pounds to Metric Tons, multiply pounds by:	0.00045359
Tons to Metric Tons, multiply tons by:	0.90718474
Kilogram to pounds, multiply kg by:	2.2046
Pound to kilograms, multiply lbs. by:	0.45359237
1 kilogram to Metric Tons, multiply kg by:	0.001
kBTU to kilowatt hours, multiply kBTU by:	0.29307108
kBTU to megawatt hours, multiply kBTU by:	0.00029307

Page: 1 10/22/2008 07:41:57 PM

Urbemis 2007 Version 9.2.4

Summary Report for Annual Emissions (Tons/Year)

Project Name: UCLA NHIP Amended LRDP

Project Location: Los Angeles County

On-Road Vehicle Emissions Based on: Version: Emfac2007 V2.3 Nov 1 2006

Off-Road Vehicle Emissions Based on: OFFROAD2007

CONSTRUCTION EMISSION ESTIMATES

	ROG	<u>NOx</u>	CO	<u>SO2</u>	PM10 Dust PM	I10 Exhaust	PM10	PM2.5 Dust PM2	.5 Exhaust	PM2.5	<u>CO2</u>	
												MT CO2 calc
2009 TOTALS (tons/year unmitigated)	0.25	2.31	1.15	0.00	2.50	0.14	2.63	0.52	0.12	0.65	257.35	234
2009 TOTALS (tons/year mitigated)	0.25	2.31	1.15	0.00	0.38	0.14	0.52	0.08	0.12	0.20	257.35	
Percent Reduction	0.00	0.00	0.00	0.00	84.72	0.00	80.38	84.61	0.00	68.36	0.00	
2010 TOTALS (tons/year unmitigated)	3.04	18.79	21.89	0.02	3.37	1.05	4.42	0.71	0.97	1.68	3,326.05	3027
2010 TOTALS (tons/year mitigated)	3.04	18.79	21.89	0.02	0.52	1.05	1.57	0.12	0.97	1.09	3,326.05	
Percent Reduction	0.00	0.00	0.00	0.00	84.67	0.00	64.49	83.29	0.00	35.41	0.00	
2011 TOTALS (tons/year unmitigated)	3.33	19.86	25.28	0.02	0.09	1.16	1.25	0.03	1.06	1.09	3,889.48	3539
2011 TOTALS (tons/year mitigated)	3.33	19.86	25.28	0.02	0.09	1.16	1.25	0.03	1.06	1.09	3,889.48	
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
2012 TOTALS (tons/year unmitigated)	1.38	8.19	11.01	0.01	0.04	0.46	0.51	0.02	0.43	0.44	1,773.11	1614
2012 TOTALS (tons/year mitigated)	1.38	8.19	11.01	0.01	0.04	0.46	0.51	0.02	0.43	0.44	1,773.11	
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
									Ave	erage CO2	2,311.50 to	ons 2,103.46
											2103.46	MT